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Mean free path and energy fluctuations in quantum chaotic billiards
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The elastic mean free path of carriers in a recently introduced model of quantum chaotic billiards in two and
three dimensions is calculated. The model incorporates surface roughness at a microscopic scale by randomly
choosing the atomic levels at the surface sites between2W/2 andW/2. Surface roughness yields a mean free
path l that decreases asL/W2 asW increases,L being the linear system size. But this diminution ceases when
the surface layer begins to decouple from the bulk for large enough values ofW, leaving more or less
unperturbed states on the bulk. Consequently, the mean free path shows a minimum of aboutL/2 forW of the
order of the bandwidth. Energy fluctuations reflect the behavior of the mean free path. At small energy scales,
strong level correlations manifest themselves by small values ofS2(E) that are close to random matrix theory
~RMT! in all cases. At larger energy scales, fluctuations are below the logarithmic behavior of RMT for
l.L, and above RMT value whenl,L. @S0163-1829~97!05527-6#
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I. INTRODUCTION

Quantum systems in which the scattering of carriers
bulk impurities or defects is negligible are traditionally co
sidered as ballistic. An interesting example of these syst
is the so-called billiards: a region of space in which all sc
tering occurs at the boundary. The ballistic character of th
systems is usually taken for granted, even in the case w
their classical analogs behave chaotically.1 This is so despite
the fact that in wave mechanics the localized character of
scattering centers does not guarantee that their effects
also localized. On the other hand, experimental data for
mean free path of microcavities always correspond to
bulk material from which the cavity was produced. For i
stance, Changet al.2 give a transport mean free path of th
bulk material that is ten times larger than the cavity diame

In this work, we characterize quantum billiards by t
standard magnitude used in transport studies, i.e., by
mean free path. Surprisingly, the calculated elastic mean
path l is smaller than the linear size of the system for phy
cally relevant values of surface roughness. Afterwards,
consequences of such small values ofl are studied on mea
surable magnitudes such as the long-range energy cor
tions within the spectrum. Our calculations are done fo
quantum chaotic billiard model recently proposed by us3,4

The model considers a system that is perfect all through
the bulk, whereas its surface shows roughness at a m
scopic scale. Bulk disorder is not considered since, as
marked above, experimental mean free paths of the bulk
tems are usually much larger than cavity diameters.
560163-1829/97/56~4!/2120~7!/$10.00
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efficient implementation of this idea was developed in o
previous work:3 a tight-binding Hamiltonian with a single
atomic level per lattice site in which the energies of t
atomic orbitals at the surface sites are chosen at random
proved that, in the thermodynamic limit, this model sho
the accepted signs of quantum chaotic behavior:5–7an energy
spectrum characterized by a Wigner-Dyson distribution
nearest level spacings, and typical scars in the probab
amplitude of wave functions.

Section II introduces the quantum billiard model. Th
elastic mean free path is calculated in two complement
ways in Sec. III. Long-range energy fluctuations, which a
known to be a clear hallmark of diffusive or ballisti
behaviors,8–10are analyzed in Sec. IV. We end with a secti
that summarizes our main results.

II. QUANTUM BILLIARD MODEL

Our quantum billiard model is defined by the followin
tight-binding Hamiltonian:

Ĥ5(
iPS

v i ĉi
†ĉi1(̂

i j &
t i j ĉi

†ĉ j , ~1!

where the operatorĉi destroys an electron on sitei , andt i j is
the hopping integral between sitesi and j ~the symbol̂ i j &
denotes that the sum is restricted to nearest-neighbor si!.
We taket i j5t521 and consider square and cubic lattic
for two-dimensional~2D! and 3D systems, respectively. Th
energyv i of a given atomic level at the surface (S) site i is
2120 © 1997 The American Physical Society
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56 2121MEAN FREE PATH AND ENERGY FLUCTUATIONS IN . . .
randomly chosen between2W/2 andW/2, whereas other
sites have a constant energy equal to zero. Calculations
been carried out for squares with sides up toL5130 and for
cubes with sides up toL520, whereL is given in units of
the lattice constant. The Schwarz algorithm for symme
band matrices11 was used to compute the whole spectrum

Note that this model, in contrast with standard billiard5

has two length scales: the system sizeL and the lattice con-
stanta. Thus, even in the macroscopic limit (L/a→`) mi-
croscopic roughness remains, and is felt by quantum
ticles, i.e., particles characterized by a wavelength of
order ofa.

III. ELASTIC MEAN FREE PATH

The ratiol /L, l being the mean free path, is the parame
that controls whether a system is diffusive or ballistic and
controls the type of fluctuation.8–10 The standard definition
of the elastic mean free path is12,13

l k[vktk5
\vk

2uImS~k,k;ek!u
, ~2!

wheretk is the relaxation time andvk the velocity of a state
with momentumk. We calculate the self-energy induced b
disorder in an ordered state of momentumk and energyek
from the Dyson equation:

Ŝ~ek![^Ĝ~ek!&
212Ĝ0

21~ek!, ~3!

where Ŝ is the self-energy operator,Ĝ0 the unperturbed
Green function, and̂Ĝ& the perturbed Green function ave
aged over disorder realizations. Then, in order to calcu
the matrix elementS(k,k;ek), we only have to determine
the inverse of the averaged perturbed Green function in
k-space basis using its site representation:

^ku^Ĝ~ek!&
21uk&5(

i , j
ck~r i !ck~r j !^G~ i , j ;ek!&

21, ~4!

whereck(r i) are the wave functions of the ordered cluste

ck
2D~r i !5

2

L11
sin~kxxi !sin~kyyi !, ~5a!

ck
3D~r i !5

2A2
~L11!3/2

sin~kxxi !sin~kyyi !sin~kzzi !. ~5b!

It should be noted that nondiagonal elements in Eq.~4!
are essential in this case, due to the strong breaking of tr
lational invariance introduced by surface disorder. On
other hand, we have checked that a calculation of the s
energy due to bulk disorder without the incorporation of no
diagonal elements gives very accurate results.12,13

The qualitative behavior ofl can be obtained by second
order perturbation theory.12 Averaged real-space matrix ele
ments of the self-energy operator are approximately given

S~ i , j ;ek!'d i j ^v i
2&G0~ i ,i ;ek! ~6!

for those sitesi for which the diagonal energyv i fluctuates,
i.e., for the surface sites. Using the basis given by Eqs.~5! to
ve
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transform tok space and assuming a constant density
states (1/4d, with d being the dimension of the physica
space! to get a rough approximation for the imaginary part
the diagonal elements of the unperturbed Green func
„Im@G0( i ,i ;ek)#;p/4d…, we obtain

ImS~k,k;ek!'
p

24

W2

L
. ~7!

Substituting the self-energy in Eq.~2! for this approximate
value and using the 2D dispersion relation of the ba
ek522@cos(kx)1cos(ky)# to get an explicit equation for
\vk , we finally have

l k'
24

p

L

W2Asin2~kx!1sin2~ky!. ~8!

The final expression forl only uses dimensionless magn
tudes; i.e., disorder energiesW are measured in units of th
hopping energyt, lengths in units of the lattice constanta,
andk in units ofa21. The corresponding expression for 3
has an additional term within the square root.

When second-order perturbation theory is used to ge
approximate value of the mean free path induced by b
disorder, a rather good approximation12,13 is obtained due to
the homogeneous character of both the perturbation and
real-space Green function. Nevertheless, when the s
scheme is applied to billiards, it gives the correctL and
W22 dependences but fails to describe the variation ol
within the band~see our numerical results shown in Fig. 1!.

Comparison of the mean free path of a billiard@Eq. ~8!#
with the result obtained for bulk disorder12 reveals an essen
tial feature of the present model: whereas for bulk disor
l is independent of the system sizeL, in the present case i
depends linearly onL. This result is a consequence of havin
the scattering centers located at the surface, an essentia

FIG. 1. Mean free path~divided by the system sizeL) as a
function of the energy~scaled by half the bandwidth, 4 and 6 in 2
and 3D, respectively!, for the chaotic billiards discussed in thi
work. In the 2D case the results correspond toL8 and 32~circles
and triangles! andW52, and in the 3D case toL56 and 10~circles
and triangles! andW54. The fact that the data for the two size
collapse indicates thatl}L ~see text!.
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2122 56E. LOUIS, E. CUEVAS, J. A. VERGE´S, AND M. ORTUÑO
ture of billiards. Therefore, ballistic (l>L) or even clean
behavior (l@L) could naively be expected over the who
band for any value ofW. Our results will show that this is
not the case for physically relevant values ofW.

Figure 1 shows typical numerical results for the mean f
path in 2D and 3D. Note thatl is indeed proportional to the
system sizeL in agreement with the approximate result r
ported in Eq.~8!. The dependence of the mean free path
the energy reflects the nature of the eigenvalues discuss
our previous works.3,4 In 2D, l increases near the edges a
at the center of the band, due to the presence of quasi-i
states in these energy regions.14 Quasi-ideal states also ap
pear in three dimensions near the band edges and this fa
also reflected in the behavior of the mean free path. T
energy dependence ofl is significantly weaker than in the
case of bulk disorder. Actually,l is almost constant excep
near the band edges and the band center.

Equation~8! shows that the mean free path monotonica
decreases withW. However, we note that the definition o
the mean free path@Eq. ~2!# is intrinsically perturbative. As a
consequence, the results for largeW cannot be trusted. In
fact in the limit of largeW the surface decouples from th
bulk, leaving a fully ordered cluster of linear sizeL22. Con-
sequently, the mean free pathof the inner partshould tend to
infinity. In order to handle this problem, we have calculat
the mean free path in the large-W limit by considering the
perturbation of the ordered states of the (L22)d cluster due
to the addition of the surface layer.

Firstly, the averaged Green function of the whole clus
of linear sizeL is calculated for the eigenenergies of t
smaller cluster of linear sizeL22. Secondly, the average
Green function of the inner cluster is obtained using a p
jection operatorP̂, and finally, the self-energy operator
defined by means of an equation quite similar to Eq.~3!:

Ŝ~ek![@ P̂†^Ĝ~ek!&P̂#212Ĝ0
21~ek!. ~9!

Since Eq.~9! is an operator definition, any basis can
used in the numerical calculation. We use the tight-bind
basis in which the projectorP̂ is particularly simple. Thus
the diagonal elements of the self-energy in thek space basis
are given by

^kuŜ~ek!uk&5(
i , j

ck~r i !ck~r j !S~ i , j ;ek!. ~10!

This alternative perturbation theory provides us with
second value of the mean free path. Of course, the la
value is the only one that is physically relevant~perturbation
theory logically starts from the less perturbed system!. Al-
though we have not found an analytic approximation for t
second value ofl , our numerical results show thatl is indeed
linearly dependent onL ~see Fig. 2!. Apart from some fea-
tures that can be related to singularities of the density
states, this new value ofl behaves in the same way as t
standard value: it shows considerable fluctuations aroun
mean value that is almost constant within the band. Sim
results have been found for three-dimensional billiards.

Figure 3 shows the scaling behavior of both values ol
with disorder. The relevant~larger! values ofl closely follow
aW22 law for smallW values while the scaling is close t
e
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W for largeW values. These scaling laws do not depend
the system size. On the contrary, adding the external she
the cluster is a perturbation that decreases in importanc
the cluster increases~see the behavior of triangles in the le
part of Fig. 3!. Our results show that the ratiol /L can reach

FIG. 2. Mean free path~divided by the system sizeL) as a
function of the energy~scaled by half the bandwidth! for the chaotic
billiards discussed in this work. Results correspond toL516 and 32
~circles and triangles! andW510. The fact that the data for the tw
sizes collapse indicates thatl}L ~see text!.

FIG. 3. Mean free pathl divided byL as a function ofW for the
quantum chaotic billiards investigated in this work. Standard
proach results are given by circles whereas our alternative calc
tion is represented by inverted triangles. Small symbols corresp
to L516 and large symbols toL532. The results correspond to a
average over an energy window of 0.2 around an energy equ
22.
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56 2123MEAN FREE PATH AND ENERGY FLUCTUATIONS IN . . .
values as small as 0.4 close toW56. We will see in the next
section that the value of this ratio strongly determines
behavior of long-range correlations within the energy sp
trum. Our data show that the scaling behavior given in Fig
for two-dimensional billiards holds for billiards in spaces
larger dimension. This result is not surprising according
well-known results for bulk disorder: the mean free path
weakly dimension dependent in those regions in which i
almost constant.13

Let us mention that although nearest-neighbor spac
statistics has been proved to follow Wigner-Dyson statis
in our previous work,3 finite clusters only show ‘‘nice’’ GOE
statistics for a range ofW values close to the bandwidth
Figure 4 illustrates this fact. It shows the variance of t
nearest-neighbor spacing distribution as a function ofW for
several system sizes. As expected, chaotic behavior is
found when disorder is either very strong or very weak. B
yond a value ofW'10, which is of the order of the band
width, the variance becomes larger than the value co
sponding to the Wigner-Dyson statistics~0.286!, indicating
that the surface starts to decouple from the bulk. For
value ofW, most of the energy levels that are mainly loca
ized on surface sites lie outside the band and follow Pois
statistics. Also for smallW values, the value becomes larg
than 0.286. This indicates aclean behavior of our system
statistics of clean~ordered! systems is more or less Poisso
up to some energy scale.15 The dependence of the varianc
on the system size is also illustrated in Fig. 4. WhenL in-
creases from 32 to 90, the lower value ofW below which the
variance is no longer that of the Gaussian orthogonal
semble~GOE! decreases. Further increases ofL would re-
duce to zero the widths of the energy regions where qu
ideal states appear, and thus the variance would become
of GOE through the whole band, no matter how smallW
would be.

IV. ENERGY FLUCTUATIONS

In this section we analyze the relationship between
mean free path and measurable physical magnitudes.

FIG. 4. Variance of the nearest level spacing distributions a
function of the disorder parameterW for the two ~circles,L532;
triangles,L590) and three~squares,L510) dimensional billiards
investigated here. The results correspond to an average ove
energy window of 0.2 around the energy21. The dashed horizon
tal line corresponds to the GOE variance~0.286!.
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though conductance was our first candidate, finally we ch
long-range energy fluctuations due to the importance t
have in analyzing quantum chaotic systems. Moreover, w
the behavior of energy fluctuations within the spectrum is
intrinsic property, conductance depends on the way the
tem is attached to the metallic leads.

The variance of the number of levels in a given ener
interval are well-known statistics usually referred to
S2(E) statistics.6 The standard way of measuringS2(E)
proceeds firstly to transform real spectra onto unfolded sp
tra: each real spectrum$e i% is mapped onto an unfolde
spectrum$Ei% throughEi5N̄(e i), whereN̄(e) is the aver-
aged number of levels up to an energye. Secondly, the vari-
ance of the number of levels found in an interval of fix
lengthE is directly obtained from the unfolded spectra.
this section, we present results for the variance of the num
of levels obtained by a different numerical procedure.
course, we have checked that overall features are proce
independent, i.e., our method coincides with the standard
when subtleties are ignored. Nevertheless, fine details of
number variance are better given by a more direct definiti

Let us sketch the numerical procedure. Some energy
terval @e1 ,e2# of the band spectrum is chosen. The me
number of levels within the interval is given by

N̄5^N~e2!2N~e1!&W , ~11!

whereN(e) gives the total number of states below ener
e for a generic disorder realization and averaging over d
order configurations is done. In the same way, the mean
the squared number of levels is given by

N̄ 25^@N~e2!2N~e1!#
2&W . ~12!

The variance of the number of levels contained in t
energy interval@e1 ,e2# is simply

S2~N̄!5N̄ 22N̄ 2. ~13!

In this way, just a value of theS2(E) function is obtained.
This sequence is repeated a large number of times for
domly selected energy intervals until a relatively smoo
value is obtained for the variance of the number of lev
averagedover energy intervals containing the same num
of levels. The last step implies averaging the number v
ance over some selected region of the energy band.

Note that only fluctuations induced by disorder are tak
into account by our method. Therefore, number fluctuation
strictly zero for an isolated spectrum. On the other hand,
standard method can be used even in this situation. The v
ance is defined by

S2~E!5@N~E01E!2N~E0!2E#2. ~14!

The subtlety within this definition is the way followed fo
unfolding just one spectrum. Sometimes, the asymtotic fo
of Ne→`(e) ~Weyl formula!5 is used even in the lower par
of the spectrum and number fluctuations are measured
tive toNe→`(e). Most frequently, a large number of levels
used to measure the average level spacing and then flu
tions relative to the mean value are measured in smaller
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2124 56E. LOUIS, E. CUEVAS, J. A. VERGE´S, AND M. ORTUÑO
tervals. In this way, it has been proved that crystalline sp
tra are uncorrelated to some energy extent, and conseque
S2(E) statistics is Poisson:15

SPoisson
2 ~E!5E. ~15!

Let us remark that our procedure is quite appropriate
billiard ensembles as it is our case~surface roughness is ran
dom and several samples can be generated for a given v
of surface disorderW). On the other hand, it gives no fluc
tuations for conventional billiards~just one spectrum!.

We have checked that our numerical procedure reco
both the analytical results for random series of energy lev
@see Eq.~15!# and for the eigenvalue series of matrices b
longing to the GOE:16

SGOE
2 ~E!'

2

p2F ln~2pE!11.57722
p2

8 G . ~16!

The logarithmic dependence onE makes this value much
smaller than the one corresponding to uncorrelated spe
The well-known spectral rigidity of GOE follows: the num
ber of levels in any energy interval is very close to its me
value.

As stated in the last part of Sec. III, we routinely calcula
the variance of the nearest-level spacing distribution in or
to check that the Wigner-Dyson value of 0.286 is recove
by our numerical code. This is always the case for ‘‘reas
able’’ values ofW ~see Fig. 4! in spite of dealing with sys-

FIG. 5. S2(E) as a function ofE for the 2D billiard. The results
correspond toL532 and disorderW52 ~black thin line!, W56
~gray thick line!, andW510 ~black thick line!. 1000 samples and
all states in the region23<e<3 are included in the calculation
Circles show the variance value corresponding to GOE fluctuati
c-
tly,

r

lue

rs
ls
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ra.
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r
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tems of finite size. Notice that the calculation ofS2(E) for
very small values ofW is made difficult by finite-size oscil-
lations in the density of states.17

Figure 5 shows the typical behavior of the number va
anceS2(E) in different transport regimes. Results corr
spond to the spectra of a large collection of 32332 clusters
~1000 samples!. All states within the central part of the ban
(23<e<3) have been considered. The black thin line c
responding toW52 shows a typicalballistic behavior: fluc-
tuations are really small in a large energy interval~the num-
ber of levels fluctuates in less than one level for interv
containing 100 levels!. On the other hand, the black thic
line shows a typicaldiffusive result that corresponds t
W510. In this case, number fluctuation follows GOE stat
tics for a small number of energy levels ('8), remains be-
low GOE up to about 35 levels, and is well above GO
values at larger energy scales. In any case, fluctuations
still much smaller than Poisson values@SPoisson

2 (100)
5100#. The gray thick line shows results corresponding
an intermediate situation (W56). A natural physical expla-
nation of such different behaviors is provided by the ratio
the mean free path to the cluster side:l /L is about 0.7 for the
diffusive system but 2.6 for the ballistic one. Although bo
values are not too far from the accepted assumptionl;L,
long-range energy correlations within the spectrum are q
different. Our results for the intermediate value ofW prove
that the transition from one regime to the other is smooth

Let us further comment on our numerical result for bid
mensional billiards of sideL532 ~Fig. 5!. Firstly, a continu-
ous increase of the number of levels following GOE statist
is observed for increasing values ofW (W52,6,10). Sec-
ondly, it follows a region in whichS2(E) deviates from
GOE showing a saturation effect. And finally, an almost l
ear increase of the variance follows at larger energies.
qualitative interpretation of this behavior is the followin
Strict GOE statistics is limited by the maximum degenera
of crystalline bands. For a 2D cluster of the square latt
with open boundary conditions, the maximum degenerac
2 although splitting of the eightfold levels corresponding
periodic boundary conditions is really small. Surface roug
ness produces a mixing of this degenerate state that is
described by the random matrix elements of matrices of
GOE. This suffices to give Wigner-Dyson statistics for t
nearest-neighbor spacing distribution. When larger ene
scales are considered, the fact that crystalline levels ra
from energy24 to 4 implies an incomplete mixing of level
~in the limit of very small nondiagonal random couplin
S2(E) would be constant beyond the number of levels c
responding to maximum degeneracy!. This explains satura-
tion with variance values below GOE statistics. The alm
linear Poisson-like increase of the number variance at la
energy is a subtle effect associated to the randomness o
energy levels at the surface. Energy levels suffer unco
lated shifts due to the formation of surface resonances
uncorrelated energies. It is clear that for a large enough va
of W, about 4L surface states appear outside the band.
the same reason, about 4L surface resonances exist with
the band for smallerW values. While saturation can be easi
checked using matrices of random nondiagonal elements

s.
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56 2125MEAN FREE PATH AND ENERGY FLUCTUATIONS IN . . .
fixed diagonal elements, the Poisson-like linear incre
found at larger energies is a characteristic feature of
model.

Similar results are obtained in 3D as shown by Fig. 6
large collection~100 samples! of clusters with random sur
face roughness has been fully diagonalized and the num
variance has been calculated. Fluctuations have been
tained for the central part of the band excluding the ba
center:24<e<22. In this case, the ballistic regime
clearly obtained forW52 ~black thin line! whereas diffusive
behavior is obtained forW510 ~black thick line!. An inter-
mediate behavior is obtained forW54 ~gray thick line!. Re-
sults can be interpreted as in 2D. Strict GOE statistics
always followed by at least six levels~typical 3D crsytalline
degeneracy for open boundary conditions!. A region show-
ing saturation ofS2(E) follows ~this is clearer forW52
than in the other two cases!. At larger energy scales an un
correlated behavior of the variance can be seen. The la
slope of the linear region found forW510 as compared to
W52 reflects the fact that surface resonances are bette
fined in the first case. About 125 energy levels closely foll
GOE statistics for the intermediate degree of surface rou
ness (W54). We believe that this property is related to
minimum value of thel /L ratio. The smallest value of th
mean free path at fixed cluster size is obtained when
mixing of crystalline states is maximum. Therefore, a larg
number of energy levels shows correlations that are well
scribed by RMT. Generally speaking, ballistic behav
( l>L) corresponds to a minimum mixing of energy leve
~only degenerate states are mixed by the surface random
turbation! while diffusive behavior (l<L) is seen when sur
face resonances dominate the value of the number varia

FIG. 6. S2(E) as a function ofE for the 3D billiard. The results
correspond toL520 and disorderW52 ~black thin line!, W54
~gray thick line!, andW510 ~black thick line!. 100 samples and al
states in the region24<e<22 are included in the calculation
The dashed line shows the variance value corresponding to G
fluctuations.
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Figure 7 shows the increase in the number of stron
correlated energy levels for a fixed surface roughn
(W52) as the size of the system increases. In this figur
clear discontinuous change of slope can be seen for b
curves. About 140 and 300 levels are strongly correlated
L514 and 20, respectively, before the effect of uncorrela
surface resonances dominates. One could naively sugge
L2 scaling for the number of correlated levels. Neverthele
a precise assessment about the scaling of such critical en
would require further numerical simulations well beyond o
actual possibilities.18

V. CONCLUDING REMARKS

We have found that the mean free path in the mode
quantum chaotic billiards discussed in this work can be s
stantially smaller than the system size. Actually, the ra
l /L reaches a minimum value of about 0.5 for the most r
evant disorder values (W of the order of the band width!.
The transition from ballistic to diffusive behavior is gov
erned by the disorder parameterW, which simulates surface
roughness at a microscopic scale. The behavior of the n
ber variance statistics@S2(E) statistics# clearly distinguishes
between both regimes. After closely following RMT for
small number of energy levels,S2(E) shows a tendency to
saturation before increasing in an almost linear way at lar
energies. The region of saturation extends up to a really la
number of levels in the ballistic regime, while the line
increase quickly dominates in the diffusive regime. The
fore, S2(E) is roughly below or above the values corr
sponding to GOE statistics for ballistic or diffusive regime

E

FIG. 7. Number variance as a function of the mean numbe
levels of a 3D billiard of surface roughness given byW52 and two
different sizes. Results forL514 are given by filled circles wherea
results forL520 are given by empty circles. The correspondi
GOE values are shown by the dashed line.
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respectively. In any case, both transport regimes are
characterized by having a mean free path of the order of
linear size of the system andS2(E) values much smalle
thanE, i.e., much smaller than values corresponding to co
pletely uncorrelated energy spectra. The behavior of
number variance has been related to the structure of the
ticular type of random matrices produced by surface dis
der. Preliminary studies show that these results are no
stricted to the particular model analyzed in this work sin
,

t,

cs

nd

b

ill
e

-
e
ar-
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e

similar results have been found for a model with real surfa
roughness.19
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