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Mean free path and energy fluctuations in quantum chaotic billiards
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The elastic mean free path of carriers in a recently introduced model of quantum chaotic billiards in two and
three dimensions is calculated. The model incorporates surface roughness at a microscopic scale by randomly
choosing the atomic levels at the surface sites betwe®fi2 andW/2. Surface roughness yields a mean free
path| that decreases 49W? asW increasesl. being the linear system size. But this diminution ceases when
the surface layer begins to decouple from the bulk for large enough valu¥g, ééaving more or less
unperturbed states on the bulk. Consequently, the mean free path shows a minimum &ff2afoutV of the
order of the bandwidth. Energy fluctuations reflect the behavior of the mean free path. At small energy scales,
strong level correlations manifest themselves by small valug2¢E) that are close to random matrix theory
(RMT) in all cases. At larger energy scales, fluctuations are below the logarithmic behavior of RMT for
I>L, and above RMT value wher<L. [S0163-182627)05527-6

[. INTRODUCTION efficient implementation of this idea was developed in our
previous worlk® a tight-binding Hamiltonian with a single
Quantum systems in which the scattering of carriers byatomic level per lattice site in which the energies of the
bulk impurities or defects is negligible are traditionally con- atomic orbitals at the surface sites are chosen at random. We
sidered as ballistic. An interesting example of these systemiroved that, in the thermodynamic limit, this model shows
is the so-called billiards: a region of space in which all scatthe accepted signs of quantum chaotic behaviban energy
tering occurs at the boundary. The ballistic character of thesgPectrum characterized by a Wigner-Dyson distribution of
systems is usually taken for granted, even in the case whef€arest level spacings, and typical scars in the probability
their classical analogs behave chaoticAlljhis is so despite @MPplitude of wave functions. .
the fact that in wave mechanics the localized character of the S€ction Il introduces the quantum billiard model. The
scattering centers does not guarantee that their effects aféastic mean free path is calculated in two complementary
also localized. On the other hand, experimental data for th¥/@ys in Sec. lll. Long-range energy fluctuations, which are
mean free path of microcavities always correspond to th&nown to_llaoe a clear hallmark of diffusive or ballistic
bulk material from which the cavity was produced. For in- behaviors, are analyzed in Sec. IV. We end with a section
stance, Changt al? give a transport mean free path of the that summarizes our main results.
bulk material that is ten times larger than the cavity diameter.
In this work, we characterize quantum billiards by the Il. QUANTUM BILLIARD MODEL
standard magnitude used in transport studies, i.e., by its - . . .
mean free path. Surprisingly, the calculated elastic mean free Our. quantum t)_lll|a(d model is defined by the following
pathl is smaller than the linear size of the system for physi-t'ght'blndlrlg Hamiltonian:
cally relevant values of surface roughness. Afterwards, the
consequences of such small valued aire studied on mea- A= wc/c+Y tijai’raj 7 (1)
surable magnitudes such as the long-range energy correla- ies (i)
tions within the spectrum. Our calculations are done for a R
quantum chaotic billiard model recently proposed by*tis. where the operatar; destroys an electron on siteandt;; is
The model considers a system that is perfect all throughouhe hopping integral between sitesindj (the symbol(ij)
the bulk, whereas its surface shows roughness at a micralenotes that the sum is restricted to nearest-neighboy.sites
scopic scale. Bulk disorder is not considered since, as reA/e taket; =t=—1 and consider square and cubic lattices
marked above, experimental mean free paths of the bulk sy$er two-dimensional2D) and 3D systems, respectively. The
tems are usually much larger than cavity diameters. Arenergyw; of a given atomic level at the surfac8)(sitei is
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randomly chosen betweerW/2 and W/2, whereas other

sites have a constant energy equal to zero. Calculations have

been carried out for squares with sides uhte130 and for
cubes with sides up tb =20, whereL is given in units of

the lattice constant. The Schwarz algorithm for symmetric

band matrices was used to compute the whole spectrum.
Note that this model, in contrast with standard billiatds,

has two length scales: the system dizand the lattice con-

stanta. Thus, even in the macroscopic limitfa— ) mi-

croscopic roughness remains, and is felt by quantum par-
ticles, i.e., particles characterized by a wavelength of the

order ofa.

Ill. ELASTIC MEAN FREE PATH

The ratiol/L, | being the mean free path, is the parameter
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that controls whether a system is diffusive or ballistic and so

controls the type of fluctuatiof.’° The standard definition
of the elastic mean free path'is>

| B _ ﬁl)k
U2 ImE (kK e

wherer, is the relaxation time andy the velocity of a state
with momentumk. We calculate the self-energy induced by
disorder in an ordered state of momenténand energyey
from the Dyson equation:

)

S(6)=(G(€)) =G5 (€0, 3)

Wherei is the self-energy operatof, the unperturbed
Green function, andG) the perturbed Green function aver-

aged over disorder realizations. Then, in order to calculate

the matrix element (k,k;ey), we only have to determine
the inverse of the averaged perturbed Green function in th
k-space basis using its site representation:

<k|<é(ek>>‘1|k>=i2j D) (r (G, i) L (4)

where ¢, (r;) are the wave functions of the ordered cluster:

201 )= —2_gin(k x)sink.y,
lpk (rl) L+1S|n(kxx,)sm(kyy|), (58)

w22 . .
i (ri)_mzsm(kxxi)sm(kyyi)sm(kzzi)- (5b)

It should be noted that nondiagonal elements in &q.
are essential in this case, due to the strong breaking of tran
lational invariance introduced by surface disorder. On th
other hand, we have checked that a calculation of the sel

energy due to bulk disorder without the incorporation of non-

diagonal elements gives very accurate resdis.
The qualitative behavior df can be obtained by second-
order perturbation theor’¥?. Averaged real-space matrix ele-

ments of the self-energy operator are approximately given b}fvit

3(0,); &)= 8 {w?)Go(i i} ) (6)

for those sites for which the diagonal energy, fluctuates,
i.e., for the surface sites. Using the basis given by Efjsto

FIG. 1. Mean free pathdivided by the system sizk) as a
function of the energyscaled by half the bandwidth, 4 and 6 in 2D
and 3D, respectively for the chaotic billiards discussed in this
work. In the 2D case the results correspond-®and 32(circles
and trianglesandW= 2, and in the 3D case fo=6 and 10(circles
and triangles and W=4. The fact that the data for the two sizes
collapse indicates thdt<L (see text

transform tok space and assuming a constant density of
states (1/d, with d being the dimension of the physical
space to get a rough approximation for the imaginary part of
the diagonal elements of the unperturbed Green function
(Im[Gq(i,i; €) ]~ w/4d), we obtain

mS(k kig)~ o - 7

m ( ’ lek)NﬂT' ()
%ubstituting the self-energy in EqR) for this approximate
value and using the 2D dispersion relation of the band
ex=—2[cosk)+cosk)] to get an explicit equation for

hvy, we finally have

24

Ik%_

L
W\/sinz(kx)+sin2(ky). (8
The final expression fol only uses dimensionless magni-
tudes; i.e., disorder energi®g are measured in units of the
hopping energyt, lengths in units of the lattice constaat
andk in units ofa™*. The corresponding expression for 3D
has an additional term within the square root.

When second-order perturbation theory is used to get an
approximate value of the mean free path induced by bulk
disorder, a rather good approximatid®is obtained due to
he homogeneous character of both the perturbation and the
real-space Green function. Nevertheless, when the same
scheme is applied to billiards, it gives the corréctand
W2 dependences but fails to describe the variation of
within the band(see our numerical results shown in Fig. 1
Comparison of the mean free path of a billidiqg. (8)]

h the result obtained for bulk disordéreveals an essen-

tial feature of the present model: whereas for bulk disorder

| is independent of the system sike in the present case it
depends linearly oh. This result is a consequence of having
the scattering centers located at the surface, an essential fea-
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ture of billiards. Therefore, ballisticl&L) or even clean 2
behavior (>L) could naively be expected over the whole 10
band for any value ofV. Our results will show that this is
not the case for physically relevant valuesvif

Figure 1 shows typical numerical results for the mean free
path in 2D and 3D. Note thdtis indeed proportional to the
system sizel in agreement with the approximate result re- 10
ported in Eq.(8). The dependence of the mean free path on
the energy reflects the nature of the eigenvalues discussed in
our previous works:* In 2D, | increases near the edges and
at the center of the band, due to the presence of quasi-ideal
states in these energy regiofisQuasi-ideal states also ap- 10°
pear in three dimensions near the band edges and this fact is
also reflected in the behavior of the mean free path. The
energy dependence ofis significantly weaker than in the
case of bulk disorder. Actually, is almost constant except
near the band edges and the band center.

1/L

Equation(8) shows that the mean free path monotonically 10
decreases wittW. However, we note that the definition of -1.0 05 0.0 0.5 1.0
the mean free patfEq. (2)] is intrinsically perturbative. As a E

consequence, the results for largé cannot be trusted. In
fact in the limit of largeW the surface decouples from the g 5 Mean free patfidivided by the system size) as a

bulk, leaving a fully ordered cluster of linear size-2. Con-  ynction of the energyscaled by half the bandwidtfor the chaotic

sequently, the mean free paththe inner partshould tend to  pijjiards discussed in this work. Results correspont 016 and 32

infinity. In order to handle this problem, we have calculated(circles and trianglésandW=10. The fact that the data for the two

the mean free path in the lard®-limit by considering the sizes collapse indicates thatL (see text

perturbation of the ordered states of the-(2)9 cluster due

to the addition of the surface layer. W for largeW values. These scaling laws do not depend on
Firstly, the averaged Green function of the whole clusterthe system size. On the contrary, adding the external shell to

of linear sizel is calculated for the eigenenergies of thethe cluster is a perturbation that decreases in importance as

smaller cluster of linear size—2. Secondly, the averaged the cluster increasgsee the behavior of triangles in the left

Green function of the inner cluster is obtained using a propart of Fig. 3. Our results show that the ratibL can reach

jection operatorP, and finally, the self-energy operator is

defined by means of an equation quite similar to &)

S (e)=[P"(G(e))P1 1~ Gy (). ©) o

Since Eq.(9) is an operator definition, any basis can be 10 o
used in the numerical calculation. We use the tight-binding o
basis in which the projectdP is particularly simple. Thus, o
the diagonal elements of the self-energy in khepace basis o v
are given by

1/L

(kli(ek)lk>=i2j (r) n(rp (0L 5 ) (10) 100 vyvvyvvvyo Qg,‘

vvvvvvvvvv¥¥vgo

This alternative perturbation theory provides us with a 889
second value of the mean free path. Of course, the larger g
value is the only one that is physically relevdpérturbation o
theory logically starts from the less perturbed systei- o
though we have not found an analytic approximation for this 0™ ) X 4
second value off, our numerical results show thiats indeed 10 10 10
linearly dependent oh (see Fig. 2 Apart from some fea- \\%
tures that can be related to singularities of the density of
states, this new .value of beha\,/es in the Same, way as the FIG. 3. Mean free pathdivided byL as a function of/V for the
standard value: it shows considerable fluctuations around &antum chaotic billiards investigated in this work. Standard ap-
mean value that is almost constant within the band. Similaprgach results are given by circles whereas our alternative calcula-
results have been found for three-dimensional billiards.  tjon is represented by inverted triangles. Small symbols correspond

Figure 3 shows the scaling behavior of both values of o =16 and large symbols tb=32. The results correspond to an
with disorder. The relevaritargen values ofl closely follow  average over an energy window of 0.2 around an energy equal to
aW~?2 law for smallW values while the scaling is close to —2.
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10 , , , though conductance was our first candidate, finally we chose
long-range energy fluctuations due to the importance they
have in analyzing quantum chaotic systems. Moreover, while
the behavior of energy fluctuations within the spectrum is an
intrinsic property, conductance depends on the way the sys-
tem is attached to the metallic leads.

The variance of the number of levels in a given energy
interval are well-known statistics usually referred to as
S2(E) statistics The standard way of measuring?(E)
proceeds firstly to transform real spectra onto unfolded spec-
. . . tra: each real spectrurfie;} is mapped onto an unfolded

0 1 10 100 1000 spectrum{E;} throughE;=N(¢;), whereN(e) is the aver-
W aged number of levels up to an energySecondly, the vari-
ance of the number of levels found in an interval of fixed

FIG. 4. Variance of the nearest level spacing distributions as 4&€Ngth E is directly obtained from the unfolded spectra. In
function of the disorder parameti for the two (circles,L=32;  this section, we present results for the variance of the number
triangles,L =90) and threesquaresL.=10) dimensional billiards Of levels obtained by a different numerical procedure. Of
investigated here. The results correspond to an average over aourse, we have checked that overall features are procedure
energy window of 0.2 around the energyl. The dashed horizon- independent, i.e., our method coincides with the standard one

VARIANCE

tal line corresponds to the GOE varian@286. when subtleties are ignored. Nevertheless, fine details of the
number variance are better given by a more direct definition.
values as small as 0.4 close\é= 6. We will see in the next Let us sketch the numerical procedure. Some energy in-

section that the value of this ratio strongly determines thderval [e;,e,] of the band spectrum is chosen. The mean
behavior of long-range correlations within the energy spechumber of levels within the interval is given by
trum. Our data show that the scaling behavior given in Fig. 3
for two-dimensional billiards holds for billiards in spaces of N_:<N(EZ)_N(61)>W1 (11)
larger dimension. This result is not surprising according to
well-known results for bulk disorder: the mean free path iswhereN(e) gives the total number of states below energy
weakly dimension dependent in those regions in which it ise for a generic disorder realization and averaging over dis-
almost constant® order configurations is done. In the same way, the mean of
Let us mention that although nearest-neighbor spacinghe squared number of levels is given by
statistics has been proved to follow Wigner-Dyson statistics o
in our previous work finite clusters only show “nice” GOE N2=([N(€e2) —N(e1)]*)w- (12
statistics for a range ofV values close to the bandwidth.
Figure 4 illustrates this fact. It shows the variance of the The variance of the number of levels contained in the
nearest-neighbor spacing distribution as a functiomofor  energy interval €, ,€,] is simply
several system sizes. As expected, chaotic behavior is not
found when disorder is either very strong or very weak. Be- S2(N)=N2-N2. (13
yond a value oW~ 10, which is of the order of the band-
width, the variance becomes larger than the value correin this way, just a value of th&2(E) function is obtained.
sponding to the Wigner-Dyson statisti(®.289, indicating  This sequence is repeated a large number of times for ran-
that the surface starts to decouple from the bulk. For thislomly selected energy intervals until a relatively smooth
value of W, most of the energy levels that are mainly local- value is obtained for the variance of the number of levels
ized on surface sites lie outside the band and follow Poissoaveragedover energy intervals containing the same number
statistics. Also for smalW values, the value becomes larger of levels. The last step implies averaging the number vari-
than 0.286. This indicates @ean behavior of our system: ance over some selected region of the energy band.
statistics of clear{ordered systems is more or less Poisson  Note that only fluctuations induced by disorder are taken
up to some energy scate The dependence of the variance into account by our method. Therefore, number fluctuation is
on the system size is also illustrated in Fig. 4. Whein-  strictly zero for an isolated spectrum. On the other hand, the
creases from 32 to 90, the lower valueWifbelow which the  standard method can be used even in this situation. The vari-
variance is no longer that of the Gaussian orthogonal enance is defined by
semble(GOE) decreases. Further increasesLofvould re-
duce to zero the widths of the energy regions where quasi- S2(E)=[N(Eq+E)—N(Ey)—EJ% (14
ideal states appear, and thus the variance would become that
of GOE through the whole band, no matter how smll The subtlety within this definition is the way followed for
would be. unfolding just one spectrum. Sometimes, the asymtotic form
of N__...(€) (Weyl formula® is used even in the lower part
V. ENERGY FLUCTUATIONS qf the spectrum and number fluctuations are measured rela—
tive toN,_,..(€). Most frequently, a large number of levels is
In this section we analyze the relationship between theised to measure the average level spacing and then fluctua-
mean free path and measurable physical magnitudes. Ations relative to the mean value are measured in smaller in-
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tems of finite size. Notice that the calculation Bf(E) for
very small values oW is made difficult by finite-size oscil-
lations in the density of statés.

Figure 5 shows the typical behavior of the number vari-
ance 32(E) in different transport regimes. Results corre-
spond to the spectra of a large collection 0322 clusters
(1000 samples All states within the central part of the band
(—3=<e€e=<3) have been considered. The black thin line cor-
responding toV=2 shows a typicaballistic behavior: fluc-
tuations are really small in a large energy interitak num-
ber of levels fluctuates in less than one level for intervals
containing 100 leve)s On the other hand, the black thick
line shows a typicaldiffusive result that corresponds to
W=10. In this case, number fluctuation follows GOE statis-
tics for a small number of energy levels-8), remains be-
low GOE up to about 35 levels, and is well above GOE
values at larger energy scales. In any case, fluctuations are
still much smaller than Poisson valudss2 ... (100)

VARIANCE

0.0 ‘ ‘ ‘ ‘ =100]. The gray thick line shows results corresponding to
0 20 40 60 80 100 an intermediate situatioV{=6). A natural physical expla-
NUMBER OF LEVELS nation of such different behaviors is provided by the ratio of

the mean free path to the cluster sitlé: is about 0.7 for the
diffusive system but 2.6 for the ballistic one. Although both

(gray thick ling, andW=10 (black thick lind. 1000 samples and VA/UES are not too far from the accepted assumpltioh,
all states in the regior-3<e<3 are included in the calculation. long-range energy correlations within the spectrum are quite

Circles show the variance value corresponding to GOE fluctuationglifférent. Our results for the intermediate valueWfprove
that the transition from one regime to the other is smooth.

tervals. In this wav. it has been proved that crvstalline spec- Let us further comment on our numerical result for bidi-
' Y b y P ensional billiards of side =32 (Fig. 5. Firstly, a continu-

tra are uncorrelated to some energy extent, and consequent[n, . : o
S2(E) statistics is Poissol® gus increase of the number of levels following GOE statistics

is observed for increasing values W (W=2,6,10). Sec-
ondly, it follows a region in which>2(E) deviates from
32 sssol E)=E. (155  GOE showing a saturation effect. And finally, an almost lin-
ear increase of the variance follows at larger energies. Our
qualitative interpretation of this behavior is the following.
Let us remark that our procedure is quite appropriate foiStrict GOE statistics is limited by the maximum degeneracy
billiard ensembles as it is our cagurface roughness is ran- of crystalline bands. For a 2D cluster of the square lattice
dom and several samples can be generated for a given valygth open boundary conditions, the maximum degeneracy is

of surface disordewV). On the other hand, it gives no fluc- 2 ajthough spliting of the eightfold levels corresponding to
tuations for conventional billiardgust one spectruim

FIG. 5. 22(E) as a function o for the 2D billiard. The results
correspond td_=32 and disordeV=2 (black thin line, W=6

[see Eq.(15)] and for the eigenvalue series of matrices be

longing to the GOE® GOE. This suffices to give Wigner-Dyson statistics for the

nearest-neighbor spacing distribution. When larger energy
scales are considered, the fact that crystalline levels range
) w2 from energy—4 to 4 implies an incomplete mixing of levels
E(Z;oE(E)*? In(27E)+1.5772- 3l (16)  (in the limit of very small nondiagonal random coupling,
>2(E) would be constant beyond the number of levels cor-
responding to maximum degeneracyhis explains satura-
The logarithmic dependence dbh makes this value much tion with variance values below GOE statistics. The almost
smaller than the one corresponding to uncorrelated spectrinear Poisson-like increase of the number variance at larger
The well-known spectral rigidity of GOE follows: the num- energy is a subtle effect associated to the randomness of the
ber of levels in any energy interval is very close to its mearenergy levels at the surface. Energy levels suffer uncorre-
value. lated shifts due to the formation of surface resonances at
As stated in the last part of Sec. lll, we routinely calculateuncorrelated energies. It is clear that for a large enough value
the variance of the nearest-level spacing distribution in ordeof W, about 4. surface states appear outside the band. For
to check that the Wigner-Dyson value of 0.286 is recoveredhe same reason, abouL 4urface resonances exist within
by our numerical code. This is always the case for “reasonthe band for smallew values. While saturation can be easily
able” values ofW (see Fig. 4 in spite of dealing with sys- checked using matrices of random nondiagonal elements but
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FIG. 6. 22(E) as a function o for the 3D billiard. The results FIG. 7. Number variance as a function of the mean number of

correspond td_=20 and disordeWW=2 (black thin line, W=4 levels of a 3D billiard of surface roughness givenWy=2 and two
(gray thick line, andw= 10 (black thick ling. 100 samples and all different sizes. Results fdr= 14 are given by filled circles whereas
states in the region-4<e<-—2 are included in the calculation. results forL=20 are given by empty circles. The corresponding
The dashed line shows the variance value corresponding to GOEOE values are shown by the dashed line.

fluctuations.

fixed diagonal elements, the Poisson-like linear increase Figure 7 shows the increase in the number of strongly
found at larger energies is a characteristic feature of ougorrelated energy levels for a fixed surface roughness
model. (W=2) as the size of the system increases. In this figure, a
Similar results are obtained in 3D as shown by Fig. 6. Aclear discontinuous change of slope can be seen for both
large collection(100 samplesof clusters with random sur- curves. About 140 and 300 levels are strongly correlated for
face roughness has been fully diagonalized and the numbér=14 and 20, respectively, before the effect of uncorrelated
variance has been calculated. Fluctuations have been oburface resonances dominates. One could naively suggest an
tained for the central part of the band excluding the band.? scaling for the number of correlated levels. Nevertheless,
center: —4<e<—2. In this case, the ballistic regime is a precise assessment about the scaling of such critical energy

clearly obtained foW=2 (black thin ling whereas diffusive  would require further numerical simulations well beyond our
behavior is obtained fow= 10 (black thick lin@. An inter-  actual possibilitied®

mediate behavior is obtained fd¢=4 (gray thick ling. Re-
sults can be interpreted as in 2D. Strict GOE statistics is
always followed by at least six level{ypical 3D crsytalline
degeneracy for open boundary conditibn& region show-

ing saturation of>?(E) follows (this is clearer forw=2 We have found that the mean free path in the model of
than in the other two casesAt larger energy scales an un- quantum chaotic billiards discussed in this work can be sub-
correlated behavior of the variance can be seen. The largstantially smaller than the system size. Actually, the ratio
slope of the linear region found fo=10 as compared to |/L reaches a minimum value of about 0.5 for the most rel-
W=2 reflects the fact that surface resonances are better devant disorder valuesW of the order of the band widjh
fined in the first case. About 125 energy levels closely followThe transition from ballistic to diffusive behavior is gov-
GOE statistics for the intermediate degree of surface rougherned by the disorder paramet&, which simulates surface
ness W=4). We believe that this property is related to aroughness at a microscopic scale. The behavior of the num-
minimum value of thd/L ratio. The smallest value of the ber variance statistids® ?(E) statisticg clearly distinguishes
mean free path at fixed cluster size is obtained when thbetween both regimes. After closely following RMT for a
mixing of crystalline states is maximum. Therefore, a largersmall number of energy level,?(E) shows a tendency to
number of energy levels shows correlations that are well desaturation before increasing in an almost linear way at larger
scribed by RMT. Generally speaking, ballistic behaviorenergies. The region of saturation extends up to a really large
(I=L) corresponds to a minimum mixing of energy levels number of levels in the ballistic regime, while the linear
(only degenerate states are mixed by the surface random péncrease quickly dominates in the diffusive regime. There-
turbation while diffusive behavior (<L) is seen when sur- fore, 3%(E) is roughly below or above the values corre-
face resonances dominate the value of the number variancgponding to GOE statistics for ballistic or diffusive regimes,

V. CONCLUDING REMARKS
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respectively. In any case, both transport regimes are stiimilar results have been found for a model with real surface
characterized by having a mean free path of the order of theoughnesg?

linear size of the system anB?(E) values much smaller

thanE, i.e., much smaller than values corresponding to com- ACKNOWLEDGMENTS
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