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Hall conductance of Bloch electrons in a magnetic field

D. Springsguth, R. Ketzmerick, and T. Geisel
MPI für Strömungsforschung und Institut fu¨r Nichtlineare Dynamik der Universita¨t Göttingen, D-37073 Go¨ttingen, Germany

~Received 22 January 1997!

We study the energy spectrum and the quantized Hall conductance of electrons in a two-dimensional
periodic potential with perpendicular magnetic fieldwithout neglecting the coupling of the Landau bands.
Remarkably, even for weak Landau band coupling significant changes in the Hall conductance compared to the
one-band approximation of Hofstadter’s butterfly are found. The principal deviations are the rearrangement of
subbands and unexpected subband contributions to the Hall conductance.@S0163-1829~97!07728-X#
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I. INTRODUCTION

Since many decades the problem of electrons under
influence of a two-dimensional periodic potential~Bloch
electrons! and a perpendicular magnetic field is of gre
interest.1 Each of the limiting cases, just a periodic potent
and just a magnetic field, was solved in the early days
quantum mechanics.2,3 Their solutions are translation invar
ant Bloch waves with energybandsand rotation invariant
oscillator functions with discrete Landaulevels, respectively.
Away from the limiting cases the system must combine th
adverse properties. For very weak and for very strong m
netic fields, compared with the potential strength, this co
bination gives rise to a fractal energy spectrum—the fam
Hofstadter butterfly4 ~see Fig. 2!. It is based on a one-ban
approximation that leads to the tight-binding Harp
equation.5,6 In the intermediate regime, where the magne
field is of comparable strength to the potential, one has
take into account the coupling between the Landau level
between the Bloch bands. In doing so, one obtains a vect
tight-binding equation,7 which has the correct chaotic class
cal limit,7,8 whereas the one-band approximation of t
Harper equation has an integrable classical limit. The c
pling causes considerable changes in the Hofstadter butt
and is of importance for experimental observations.7,9,10

Currently, one tries to find signatures of Hofstadter’s b
terfly in lateral superlattices with periods of about 100 nm
GaAs-AlxGa12xAs heterojunctions. Straightforward spe
troscopic measurements are not yet feasible11 and, instead,
the efforts are concentrated on magnetotransp
measurements.12,13 In fact, substructure in the Shubnikov-d
Haas oscillations~oscillations in the longitudinal resistanc
due to the Landau levels! was found, which demonstrates th
splitting of Landau levels due to the periodic potential.13

Beyond these qualitative findings in the longitudinal r
sistance the study of the Hall conductance would provid
quantitative demonstration of the Landau level substruct
Von Klitzing, Dorda, and Pepper discovered in 1980 that
Hall conductances is quantized between Landau levels
integer multiples ofe2/h ~Ref. 14! @Fig. 1~a!#. Under the
influence of a weak periodic potential each Landau le
broadens into a Landau band with so-called minigaps,
one might have thought that the Hall conductances in th
minigaps were rational multiples ofe2/h. Thoulesset al.,15

however, showed, with an argument by Laughlin,16 that the
560163-1829/97/56~4!/2036~8!/$10.00
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Hall conductance is quantized even in these minigaps inin-
tegermultiples ofe2/h. For Hofstadter’s butterfly they found
that these integer values vary irregularly from gap to g
according to a diophantic equation@see Figs. 1~b! and 2#.17

Whereas the longitudinal resistance is zero in every gap,
Hall conductance differs from gap to gap, and thus conta
quantitative information about the Landau band substruct

In order to make the minigaps observable in the prese
of finite disorder broadening,18 one has to increase the po
tential strength sufficiently. This increases the width of t
Landau bands and the minigaps, but at the same time
creases the coupling between the Landau bands. This
pling, however, changes the structure of the energy spect

FIG. 1. The Hall conductance~solid lines! in the energy gaps in
units of (e2/h) is plotted schematically vs energy in units of cycl
tron energy\vc in the cases~a! without a periodic potential~quan-
tum Hall effect!, ~b! with a periodic potential neglecting coupling o
Landau bands, and~c! including coupling of Landau bands@see also
Fig. 3~b!#. The magnetic flux per unit cell is 3/2. The dotted lin
serve as a guide to the eye. One can see that the coupling
dramatically change the Hall conductances~arrows!.
2036 © 1997 The American Physical Society
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56 2037HALL CONDUCTANCE OF BLOCH ELECTRONS IN A . . .
considerably,7 and the results for the Hall conductance
Hofstadter’s butterfly no longer apply@Fig. 1~c!#. The integer
quantization of the Hall conductance in any gap, on the ot
hand, is ensured by Laughlin’s argument even in this gen
case. Therefore the question arises: How will the Land
band coupling influence the integer values of the Hall c
ductance?

We will answer this question by studying the energy sp
trum and the Hall conductance for different strengths of
Landau band coupling. The Hall conductance in a gap
change only if the gap closes and reopens as a function o
coupling strength. Surprisingly, this happens even for w
Landau band coupling, and we find the following princip
deviations from the Hall conductance in Hofstadter’s butt
fly: ~i! opening of previously closed gaps,~ii ! rearrangemen
of subbands, including their contributions to the Hall co
ductance, and~iii ! unexpected subband contributions to t
Hall conductance. We finally make some remarks on
observability in lateral superlattices on semiconductor h
erojunctions.

In the last years, electrons in two dimensions have a
been studied under the influence of a magnetic modulatio19

instead of an electric modulation. It was shown that th
exists a connection between these two cases, e.g., the H
systems with magnetic modulation conductance is also qu
tized in an energy gap. Consequently, the phenomena
cussed in this paper may also apply to these systems.

In Sec. II the model is introduced. The Hall conductanc
when neglecting the Landau band coupling, are presente
Sec. III. In Sec. IV we study the influence of Landau ba
coupling on the energy spectrum and on the quantized va
of the Hall conductance. The experimental observability
these findings is discussed in Sec. V, and Sec. VI gives c
cluding remarks.

II. MODEL

The one-particle Hamiltonian for an electron with char
2e and effective massm* in a magnetic field and in a two
dimensional potential has the form

H5
1

2m*
~p1eA!21V~x,y!, ~1!

where we neglect spin and electron-electron interaction.
a homogeneous magnetic fieldB in z direction the vector
potential in the Landau gauge is given byA5B(0,x,0), and
the periodic potential can be written in its Fourier decomp
sition

V~x,y!5V0(
r ,s

v r ,se
2p i ~rx/a1sy/b!, ~2!

wherea andb are periods in thex andy directions, respec-
tively, andV0 is the difference between the maximum a
the minimum of the potential.

As a basis we choose the eigenfunctions of the case w
out potential in coordinate representation, namely,

^x,yun,u&5Nei ~y/b!u CnS xl 1
u l

b D , ~3!
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where l5A\/(eB) is the magnetic length,Cn(z)
5exp(2z2/2) Hn(z), whereHn is the nth Hermite polyno-
mial, normalizationN,20 n50,1,2,. . . , anduPR. The ma-
trix elements of the first part of the Hamiltonian read

^m,wu
1

2m*
~p1eA!2un,u&5\vc~n11/2!dm,ndw,u , ~4!

which are the Landau levels with cyclotron frequen
vc5eB/m* , and those of the potential

^m,wuv r ,se2p i ~rx/a1sy/b!un,u&

5Pmn~r ,s!e2 i ~F0 /F!rwdw,u12ps , ~5!

with

Pmn~r ,s!5v r ,se
irsp~F0 /F!e2u/2S n!

m! D
1/2S p

F0

F D ~m2n!/2

3~sa211 ir a!m2nLn
m2n~u!, m>n ~6!

and

FIG. 2. Neglecting the Landau band coupling the scaled ene

Ẽ @Eq. ~21!# vs the inverse magnetic fluxp/q yields for every
Landau band the same spectrum, namely, the Hofstadter butte
The numbers in the energy gaps are the quantized Hall con
tances in units of (e2/h) to which one has to add the Landau ba
index n.



l

r

da

,

it
e

y

lso

he

.e.,

t-

ou-
its

t-
nd
her

not
ith-
i-
ut
u

nds

2038 56D. SPRINGSGUTH, R. KETZMERICK, AND T. GEISEL
Pmn~r ,s!5v r ,se
irsp~F0 /F!e2u/2S m!

n! D
1/2S p

F0

F D ~n2m!/2

3~2sa211 ir a!n2mLm
n2m~u!, n>m ~7!

Lm
n (u) are the Laguerre polynomials,a5Ab/a, and

u5@p(r 2a21s2a22)F0 /F#. HereF0 /F is the magnetic
flux quantumF05h/e divided by the fluxF through a unit
cell of the periodic potential

F0

F
5

h/e

abB
. ~8!

We divide the parameteru into u52pn1q with integer
nPZ and phaseqP@0,2p), as the Hamiltonian is diagona
in q. The eigenstatesu j ,q& of the Hamilton operator are
decomposed into the basis states by

u j ,q&5(
n,n

an
n~ j ,q!un,n,q&. ~9!

Inserting this into the Schro¨dinger equation, one obtains fo
everyq the eigenvalue equation

Anan1(
sÞ0

Tn,san1s5
E

\vc
an , ~10!

with the vector

an5~an
0 ,an

1 , . . . ,an
n , . . . ! ~11!

and the matricesAn andTn,s ,

An
mn5~n11/2!dn,m1K

F0

F (
r
Pmn~r ,0!e2 ir ~2pn1q!~F0 /F!,

~12!

Tn,s
mn5K

F0

F (
r
Pmn~r ,2s!e2 ir ~2pn1q!~F0 /F!. ~13!

Here the important parameter

K52pm* abV0 /h
2 ~14!

is a measure for the strength of the coupling of the Lan
bands.

Equation~10! is an infinite dimensional matrix equation
which cannot be diagonalized numerically. Only ifF0 /F is
a rational number

F0

F
5

h

eBab
5
p

q
with p,qPN, ~15!

which means thatq flux quanta penetratep unit cells, one
can make use of the magnetic translation operators.21,22 For
the vector potential in the Landau gauge they are defined

Ma5eiya/ l
2
ea]x and Mb5eb]y, ~16!

and displace a wave function by one unit cell in thex or y
direction. The magnetic translation operators commute w
the Hamilton operator, but in general not with each oth
Only in the case whenF0 /F is a rational number@Eq. ~15!#,
can one enlarge the unit cell of the periodic potential b
factor of p to a new magnetic unit cell, and find
u

by

h
r.

a

@Mpa ,Mb#50. ~17!

Then the eigenfunctions of the Hamilton operator are a
eigenfunctions ofMpa and Mb with eigenvalueseik and
eiu, respectively, andkP@0,2p) anduP@0,2pq). It follows
that

an2q
m ~ j ,q,k!5eikan

m~ j ,q,k!, ~18!

so thatn can be restricted to 0,1,. . . ,q21, producingq
subbands. Furthermore, if we take onlyN consecutive Lan-
dau bands into account, Eq.~10! reduces to a finite
(Nq3Nq) eigenvalue equation for everyk and everyq. As
one can see from Eqs.~12! and~13!, the energy spectrum in
units of\vc for a given potential shape depends only on t
number of flux quanta per unit cellF0 /F and the Landau
band couplingK.

III. HALL CONDUCTANCE WITHOUT
LANDAU BAND COUPLING

If one neglects the coupling of the Landau bands, i
neglects the terms withnÞm in Eqs.~12! and~13!, and takes
into account only the lowest Fourier components@Eq. ~2!#,
i.e., the cosx1cosy potential

V~x,y!5
V0

4 FcosS 2px

a D1cosS 2py

a D G , ~19!

one obtains the Harper equation5

an111an2112 cosF ~2pn1q!
F0

F Gan5Ẽan , ~20!

with the scaled energy

Ẽ5@E2\vc~n11/2!#/@Pn,n~1,0!V0#. ~21!

For every Landau bandn the resulting energy subbands plo
ted against the inverse fluxp/q show the well-known Hofs-
tadter butterfly4 ~see Fig. 2!.

The Hall conductance for this case was derived by Th
lesset al.15 as the solution of a diophantic equation. In un
of e2/h the Hall conductances in the gth gap of Hofs-
tadter’s butterfly is given by

g5wp1sq with uwu<q/2, ~22!

g,p,qPN, andw,sPZ.23 Figure 2 shows the Hofstadter bu
terfly with the Hall conductance of the lowest Landau ba
written in the large gaps. For the Hall conductance in hig
Landau bands one has to add the Landau band indexn to
these values. Figure 2 shows that the Hall conductance is
always a monotonous function of energy, as in the case w
out potential@Fig. 1~a!#, a fact that could be the first exper
mentally obtainable hint for the internal band structure. B
will this figure remain valid if the coupling of the Landa
bands is taken into account?

IV. HALL CONDUCTANCE WITH
LANDAU BAND COUPLING

The influence of the coupling between the Landau ba
on the spectrum is determined by the coupling strengthK
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FIG. 3. The five lowest Landau bands for the cosx1cosy potential@Eq. ~19!# are plotted for increasing coupling strengthK51, 6, and
12. Forp/q51/2 the Hall conductances in the minigaps are shown, and also forp/q51/3 and 2/3, if they deviate from the correspondin
value of Hofstadter’s butterfly~given in brackets!. The number of Landau bands considered numerically is 6, 9, and 13, respectively
t
ied
-

@Eq. ~14!#. How does an increase of the coupling streng
affect the spectrum?

Figure 3 shows the energy spectrum24 as a function of
p/q for three different values of the coupling strengthK for
hthe cosx1cosy potential ~19!. For smallK @Fig. 3~a!# each
Landau band resembles the Hofstatder butterfly multipl
with Pn,n @Eq. ~21!#. The Laguerre polynomials in this ex
pression become zero for certainF0 /F, so that the width of
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2040 56D. SPRINGSGUTH, R. KETZMERICK, AND T. GEISEL
the corresponding Landau band vanishes, the so-called
band positions. Their number increases with the Lan
band index. With increasingK each Landau band become
wider, even at the original (K!1) flatband positions, and
more distorted@Fig. 3~b!#. For p/q with evenq the q/2th
minigap, which is closed without coupling, opens due to
coupling. If the coupling is strong enough, Landau ban
may even overlap. In this case the classification into Lan
bands becomes meaningless@Fig. 3~c!#. Similar effects also
occur for other periodic potentials, e.g., for potentials of
form

V~x,y!5V0FcosS px

a D cosS py

a D Gb

, ~23!

which are used as model potentials for antidots25 @see Fig.
5~b!#. Such spectra for Bloch electrons in a magnetic fi
with Landau band coupling were previously studied in Re
7 and 9, where slight mistakes in the matrix elements of
potential, however, led to different results„in Ref. 9 only for
antidot potentials@Eq. ~23!# with b.2….

The diophantic equation~22! for the Hall conductance is
valid for the general case with coupling and arbitrary pe
odic potential only without the constraintuwu<q/2;26,27how-
ever, it then allows many solutions for the Hall conductan
in a given gap. Instead, one may take advantage of a form
derived by Strˇeda:28 For any energy gap the Hall condu
tance~in units ofe2/h) is given by

s5
]N~E!

]B

h

e
, ~24!

with N(E) the number of states per unit area having ene
lower than the gap energy. As the Hall conductance in
gap is quantized, it is possible to replace]N/]B by
nN/nB for adjacent rationalsp1 /q1 andp2 /q2 which share
this gap. Using the fact that the number of states per unit a
in a subband iseBi /hqi ( i51, and 2!, and Eq.~15!, one
finds

s5S n1p1 2
n2
p2

D Y S q1p1 2
q2
p2

D5
n1p22n2p1
q1p22q2p1

, ~25!

whereni is the number of subbands below the gap for
corresponding magnetic fieldBi .

The Hall conductance in a gap can only change if the
closes and opens again as a function of the Landau b
coupling.29,19We find three types of deviations from the Ha
conductance of Hofstadter’s butterfly:~i! opening of previ-
ously closed gaps,~ii ! rearrangement of subbands, includin
their contributions to the Hall conductance, and~iii ! unex-
pected subband contributions to the Hall conductance.
will now discuss these deviations in more detail.

~i! The gaps in the middle of a Landau band forp/q with
q even are closed in Hofstadter’s butterfly~Fig. 2!, but, due
to the coupling of Landau bands they may open~Fig. 3!.
Consequently, there appears an additional plateau in the
conductance. As an aside, we note that near flatband p
tions, where a Landau band is small, the minigap
p/q51/2 is often surprisingly large@see the 11th and 14t
Landau band in Fig. 5~a!#.
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~ii ! The second effect occurs, e.g., atp/q51/3 in Fig. 3~b!
~see also Fig. 4!. Without coupling one would expect th
Hall conductance in the second minigap of the second L
dau band to be 2, namely, 1 from Hofstadter’s butterfly~Fig.
2! plus 1 from the one Landau band below. With couplin
instead, we find Hall conductance 1. One can understand
effect by looking at the entire spectrum for a givenK ~Fig.
3!: With increasing p/q the uppermost~for small p/q)
branch of the second Landau band is bent downward in s
a way that atp/q51/3 the middle branch lies at the top o
the Landau band and so does its contribution~11! to the
Hall conductance. This rearrangement gives rise to
change of the Hall conductance from 2 to 1 in the seco
minigap. It has consequences also forp/q52/3 in the second
Landau band. There the sequence of the Hall conducta
in the minigaps reads, starting below the Landau ba
s5$1,0,1,2% instead of$1,2,1,2%. The subband carrying the
Hall conductance~11! is exchanged with the one carryin
~21!.

~iii ! A surprising effect is found in Fig. 3~b! @see also Fig.
1~c!#. Applying the diophantic equation~22! to the case
p/q52/3, each subband carries a Hall conductance (11) or
(21). But in the fourth Landau band the sequence of
plateaus is found to bes5$3,6,3,4%, which means that two
of the subbands contribute instead with (13) and (23),
respectively. Something similar happens in Figs. 3~b! and
3~c! for p/q51/3: Without the coupling of the Landa
bands, one expects for the second Landau band a mon
nous sequences5$1,1,2,2%; with coupling it reads
$1,0,1,2%, and now the lowest subband carries a negat
conductance. These two examples are in full agreement
a formula derived by Dana, Avron, and Zak,26 which gives
all possible contributions of subbands to the Hall cond
tance for any periodic potential, namely,

15mp1nsq, ~26!

wherens is the contribution of a subband andmPZ.
But this still leaves the question: How do such unexpec

contributions arise? In Fig. 2 one sees that there exis
minigap with a Hall conductance~13! to the left of
p/q52/3, which ends at the second subband ofp/q52/3. In
fact, as a function of the coupling strength the first minig
for p/q52/3 in the fourth Landau band closes and opens
such a way that now it includes the minigap with Hall co
ductance~13!, giving rise to the sequences5$3,6,3,4%.
Similarly, one can explain the above example atp/q51/3,
where one finds a minigap to the left of the first subband
p/q51/3 with the Hall conductance~21! ~Fig. 2!.

Remarkably, even for very weak Landau band coupl
we found examples for subband rearrangement~ii !. For van-
ishing coupling and for the cosx1cosy potential ~19!, the
width of the Landau band at flatband positions is zero. F
example, in the second Landau band nearp/q51/3 the bot-
tom, middle, and top branches of the band cross in one p
@Fig. 4~a!#. This degeneracy is lifted as soon as the Land
band coupling is turned on, and subbands are rearran
including their contribution to the Hall conductance. Th
Hall conductance in the second Landau band atp/q51/3
thus changes froms5$1,1,2,2% to $1,1,1,2% @Fig. 4~b!#. With
increasing coupling strength thep/q range of this rearrange
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FIG. 4. The second lowest Landau band of the cosx1cosy potential @Eq. ~19!# is shown~a! without and~b! with weak (K51), ~c!
moderate (K56), and~d! strong coupling of Landau bands (K512). One can see that even for a very weak periodic potential there can
deviations from the diophantic equation~22! near flatband positions, here atp/q51/3 ~arrows!, as discussed in the text.
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ment expands@Fig. 4~c!#. Furthermore, one finds in Figs
4~c! and 4~d! the Hall conductance 0~instead of 1! in the first
minigap ofp/q51/3, discussed above as an example of
viation ~iii !. It has its origin in the correspoding crossing
branches in Fig. 4~b!.

Another example of a deviation from the diophantic equ
tion ~22! even for weak Landau band coupling can be fou
in the fourth Landau band nearp/q51 for ratios of the form
(q21)/q. Each subband adds one unit of conductance,
cept for the middle one that carries the large negative c
ductance 22q, so that the sum of the contributions for
Landau band equals one. Specifically, forp/q56/7 the se-
quence of the values of the Hall conductance in the g
between the subbands for the fourth Landau band re
without coupling with increasing energy,

s5$3,4,5,6,1,2,3,4%, ~27!

as can be seen in Fig. 2 with~13! added for the lower three
Landau bands. Even for weak coupling@Fig. 3~a!#, one in-
stead finds

s5$3,4,5,0,1,2,3,4%, ~28!

where the step to lower values occurs earlier in the seque
One can interpret this effect by the exchange of the subb
carrying~25! with one carrying~11!. Again, it is due to the
sensitivity of flatband positions to the Landau band coupli

Figure 5 compares a sequence of 15 Landau bands fo
cosx1cosy potential~19! and the antidot potential~23!, and
shows the deviations from the Hall conductances of Ho
tadter’s butterfly forp/q51/2, 1/3, and 2/3. For the antido
potential one finds even without Landau band coupling s
-

-
d

x-
n-

s
s,

ce.
nd

.
he

-

-

eral deviations from the diophantic equation~22! due to the
different potential shape. Taking the coupling into accou
we find the three principal types~i!–~iii ! of deviations from
the case without coupling as discussed above. Again, e
weak Landau band coupling gives rise to these deviati
near crossings~as a function ofp/q) of branches of the
spectrum.

To summarize, we find that crossings of branches of
spectrum, e.g., at flatband positions, may lead to deviati
of the Hall conductance from the diophantic equation~22!
even for weak coupling~Fig. 4!. With increasing coupling
the p/q range of these deviations expands.

V. REMARKS ON OBSERVABILITY

Bloch electrons in a magnetic field may be experimenta
studied in lateral superlattices on semiconductor heteroju
tions. The main obstacle for observing the subband struc
is that most minigaps are small compared to the disor
broadening. A crude estimation of the disorder broaden
can be given in the self-consistent Born approximation:30 A
single Landau level~or one of theq subbands! will be broad-
ened by disorder to a sharp half-ellipse with a total width
2G ~or 2G/Aq), with G given by

G25
2

p

\

mm* /e
\vc , ~29!

with the mobility m. For typical valuesm550 m2/~V s!,
a5100 nm, and m*50.067me this equation gives
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FIG. 5. The lowest 15 Landau bands are plotted forK56 for the cosx1cosy potential@Eq. ~19!#, and the antidot potential@Eq. ~23!# with
b52. Forp/q51/2 the Hall conductances in the minigaps are shown, and also forp/q51/3 and 2/3, if they deviate from the correspondin
value of Hofstadter’s butterfly~given in brackets!. 21 Landau bands were numerically taken into account.
a
n
in

l
gth,
ng,
it is
ds
G50.18Ap/q\vc . All the minigaps in Fig. 3~a! and all,
except for the largest ones, in Fig. 3~b! are closed by such a
disorder broadening.

Thus, for a given disorder broadening one has to incre
the strength of the potential in order to enlarge the inter
gaps, using the fact that the width of a Landau band
se
al
-

creases proportionally toV0. Increasing the potentia
strength, however, also increases the coupling stren
which influences the spectrum. If the coupling is too stro
the Landau bands merge, many gaps are closed, and
difficult to interpret the spectra in terms of Landau ban
@Fig. 3~c!#. One has to choose the coupling strengthK in
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such a way that the Landau bands are as wide as possib
order to obtain observable gaps, while not overlapping w
adjacent bands in the desired range ofF0 /F. A quantitative
estimation beyondV05\vc , which is equivalent to
K5F/F0, would have to consider that the shape of the La
dau bands differs from band to band, and that it depe
strongly on strength and Fourier components of the poten
as can be seen in Fig. 5.

Restricting ourself to the case of nonoverlapping Land
bands andp/q,1, we find for different potential shapes an
strengths, that the largest minigaps usually occur
p/q'1/2, 1/3, and 2/3. The corresponding Hall condu
tances will thus be the first to be found experimentally. Th
will differ from the Hall conductances of Hofstadter’s bu
terfly, as discussed in Sec. IV and shown in Fig. 5.

VI. CONCLUSION

We have studied the energy spectrum of electrons i
two-dimensional periodic potential with perpendicular ma
netic field without neglecting the coupling of the Landa
hy
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y
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bands. We examined the Hall conductance, since its val
which are quantized in every energy gap, contain quant
tive information about the structure of the spectrum. T
Landau band coupling changes this structure compare
Hofstadter’s butterfly, resulting in dramatical modificatio
of the Hall conductance. We find the following three princ
pal deviations from the Hall conductance in Hofstadter’s b
terfly: ~i! opening of previously closed gaps;~ii ! rearrange-
ment of subbands, including their contributions to the H
conductance, and~iii ! unexpected subband contributions
the Hall conductance. Remarkably, even for weak Land
band coupling these changes can be found. This was
plained by the occurrence of crossings of branches of
spectrum, e.g., flatband positions, which are very sensitiv
the Landau band coupling.
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