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Hall conductance of Bloch electrons in a magnetic field
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We study the energy spectrum and the quantized Hall conductance of electrons in a two-dimensional
periodic potential with perpendicular magnetic fieldthout neglecting the coupling of the Landau bands.
Remarkably, even for weak Landau band coupling significant changes in the Hall conductance compared to the
one-band approximation of Hofstadter’s butterfly are found. The principal deviations are the rearrangement of
subbands and unexpected subband contributions to the Hall condudta@t63-182807)07728-X]

I. INTRODUCTION Hall conductance is quantized even in these minigaps-in
tegermultiples ofe?/h. For Hofstadter’s butterfly they found

Since many decades the problem of electrons under thiéat these integer values vary irregularly from gap to gap
influence of a two-dimensional periodic potenti@loch  according to a diophantic equatigsee Figs. (b) and 2.
electrony and a perpendicular magnetic field is of greatWhereas the longitudinal resistance is zero in every gap, the
interest! Each of the limiting cases, just a periodic potential Hall conductance differs from gap to gap, and thus contains
and just a magnetic field, was solved in the early days ofjuantitative information about the Landau band substructure.
quantum mechanics® Their solutions are translation invari-  In order to make the minigaps observable in the presence
ant Bloch waves with energpandsand rotation invariant of finite disorder broadenintf, one has to increase the po-
oscillator functions with discrete Land#evels respectively. tential strength sufficiently. This increases the width of the
Away from the limiting cases the system must combine theséandau bands and the minigaps, but at the same time in-
adverse properties. For very weak and for very strong magereases the coupling between the Landau bands. This cou-
netic fields, compared with the potential strength, this com$ling, however, changes the structure of the energy spectrum
bination gives rise to a fractal energy spectrum—the famous

Hofstadter butterfl§ (see Fig. 2 It is based on a one-band G’g

approximation that leads to the tight-binding Harper a) —_—
equatior®® In the intermediate regime, where the magnetic 4 J—

field is of comparable strength to the potential, one has to 2 —

take into account the coupling between the Landau levels or o} — . . . T
between the Bloch bands. In doing so, one obtains a vectorial 0 1 2 3 4 5

tight-binding equatiord,which has the correct chaotic classi-
cal limit,”® whereas the one-band approximation of the
Harper equation has an integrable classical limit. The cou- b
pling causes considerable changes in the Hofstadter butterfly

and is of importance for experimental observati6its®
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Currently, one tries to find signatures of Hofstadter’s but- oY
terfly in lateral superlattices with periods of about 100 nm on o
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GaAs-AlLGa, _,As heterojunctions. Straightforward spec-

troscopic measurements are not yet feastodd, instead,
the efforts are concentrated on magnetotransport
measurement$: 13 In fact, substructure in the Shubnikov-de
Haas oscillationgoscillations in the longitudinal resistance
due to the Landau levelsvas found, which demonstrates the
splitting of Landau levels due to the periodic potental.
Beyond these qualitative findings in the longitudinal re-
sistance the study of the Hall conductance would provide a
guantitative demonstration of the Landau level substructure:
Von Kiitzing, Dordai and Pe_pper discovered in 1980 that t_he FIG. 1. The Hall conductandgsolid lineg in the energy gaps in
Hall conductancer is quantized between Landau levels in units of (€/h) is plotted schematically vs energy in units of cyclo-

integer multiples ofe?/h (Ref. 14 [Fig. 1@)]. Under the  on energytiw, in the casesa) without a periodic potentiaiquan-
influence of a weak periodic potential each Landau levelym Hall effecy, (b) with a periodic potential neglecting coupling of
broadens into a Landau band with so-called minigaps, anfandau bands, an@) including coupling of Landau bandisee also

one might have thought that the Hall conductances in thesgig. 3(b)]. The magnetic flux per unit cell is 3/2. The dotted lines
minigaps were rational multiples @/h. Thoulesset al,’®  serve as a guide to the eye. One can see that the coupling can
however, showed, with an argument by Laughfinhat the  dramatically change the Hall conductancasows.
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considerably, and the results for the Hall conductance of ~
Hofstadter’s butterfly no longer appl¥ig. 1(c)]. The integer E
guantization of the Hall conductance in any gap, on the othe
hand, is ensured by Laughlin’s argument even in this genere
case. Therefore the question arises: How will the Landat 4
band coupling influence the integer values of the Hall con-
ductance?

We will answer this question by studying the energy spec-
trum and the Hall conductance for different strengths of the 2 -
Landau band coupling. The Hall conductance in a gap cal
change only if the gap closes and reopens as a function of tt
coupling strength. Surprisingly, this happens even for weal
Landau band coupling, and we find the following principal
deviations from the Hall conductance in Hofstadter's butter- O -
fly: (i) opening of previously closed gap$, rearrangement
of subbands, including their contributions to the Hall con-
ductance, andiii) unexpected subband contributions to the
Hall conductance. We finally make some remarks on the_2
observability in lateral superlattices on semiconductor het:
erojunctions.

In the last years, electrons in two dimensions have alst
been studied under the influence of a magnetic modulafion,
instead of an electric modulation. It was shown that there—
exists a connection between these two cases, e.g., the Hall
systems with magnetic modulation conductance is also quar
tized in an energy gap. Consequently, the phenomena dit O 1
cussed in this paper may also apply to these systems. /

In Sec. Il the model is introduced. The Hall conductances p q
when neglecting the Landau band coupling, are presented in FIG. 2. Neglecting the Landau band coupling the scaled energy
Sec. lll. In Sec. IV we study the influence of Landau band_ g
coupling on the energy spectrum and on the quantized valuds [Ed. (21)] vs the inverse magnetic flup/q yields for every
of the Hall conductance. The experimental observability ofilandau band the same spectrum, namely, the Hofstadter butterfly.

these findings is discussed in Sec. V, and Sec. VI gives conthe numbers in the energy gaps are the quantized Hall conduc-
cluding remarks. tances in units ofé?/h) to which one has to add the Landau band

index v.

IIl. MODEL
where |=7#/(eB) is the magnetic length, ¥ (2)

The one-particle Hamiltonian for an electron with charge=exp(—7%2) H,(z), whereH, is the vth Hermite polyno-

—e and effective mass* in a magnetic field and in a two- mial, normalizationN,?° »=0,1,2,. . ., andfe R. The ma-
dimensional potential has the form trix elements of the first part of the Hamiltonian read
He ——(p+eA)2+V(xy) (1) 1 2
om* Y <,u,,<p|ﬁ(p+eA) |v,0)=ho(v+ 1/2)5, ,0,4, (4

where we neglect spin and electron-electron interaction. For )

a homogeneous magnetic fieRlin z direction the vector Which are the Landau levels with cyclotron frequency
potential in the Landau gauge is given By=-B(0x,0), and @c=eB/m*, and those of the potential

the periodic potential can be written in its Fourier decompo-

sition <Iu”(P|Ur'se2m(rx/a+sy/b)| v, 0)

V(X,y)=Vo2 v, 2T (/atsyb), ) =P, (1,9)e (P54 oms, (5)
r,s

wherea andb are periods in thet andy directions, respec- with
tively, andV, is the difference between the maximum and
the minimum of the potential.

As a basis we choose the eigenfunctions of the case with- P..(r.S)=v, €

out potential in coordinate representation, namely,

!

1\ 172 (m—v)2
irSTr(<I>0/tIJ)eu/2< V') (ﬂ_‘bo)
()]

X(Sa_l-f—ira)“_VLff_V(u), U=V (6)

) x ol
<x,y|v,6)=Ne'(y’b>"\If,,(|—+—>, ©)

b and
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1/2 (v—p)I2
u! D,
P/,,,,(I',S):v |r57-r(q)0/¢)e u/2( ) ( )

T —
pl

P

X(—Sa_l-i-il‘a)”_'“LV_“(u) v=u  (7)

Ls(u) are the Laguerre polynomialsp=+b/a, and
u=[m(r?a?+s?a 2)®y/®]. Here ®,/d is the magnetic
flux quantum®,=h/e divided by the fluxfb through a unit
cell of the periodic potential

D, hle

® abB’ ®)

We divide the parametet into §=2mn+ ¢ with integer

ne 7 and phasej [0,27), as the Hamiltonian is diagonal
in 9. The eigenstate$j, ) of the Hamilton operator are

decomposed into the basis states by

|j,9)= 2

f(J, v.n,9). ©)

Inserting this into the Schdinger equation, one obtains for

every 9 the eigenvalue equation

E
Anan+ >, Ths@nts=7 —an, (10
s#0 (OF
with the vector
a,=(a%,at,...a’, ... (1D
and the matrice#, and T, ¢,
ARY=(v+ 1/2)5,,M+K E P,.(r,0)e "2m+ )(@o/®)
(12
TMV_K%E P _ —ir(2mn+ 9)(®y/P) 13
ns— il Mv(r! S)e . ( )
Here the important parameter
K=2mm*abV,/h? (14)
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[Mya,Mp]=0. (17)

Then the eigenfunctions of the Hamilton operator are also
elgenfunctlons ofMp, and My, with eigenvaluese'” and

¢ respectively, and €[0,27) and 8 [0,2mrq). It follows
that

pa:

aff—q(]yﬁ,K)=ei"aﬁ(j,ﬂ,K), (18)

so thatn can be restricted to 0,1, .,q—1, producingq
subbands. Furthermore, if we take omMlyconsecutive Lan-
dau bands into account, Eq10) reduces to a finite
(NgXNQq) eigenvalue equation for everyand everyd. As
one can see from Eq§l2) and(13), the energy spectrum in
units of 4w, for a given potential shape depends only on the
number of flux quanta per unit celb,/® and the Landau
band couplingK.

IIl. HALL CONDUCTANCE WITHOUT
LANDAU BAND COUPLING

If one neglects the coupling of the Landau bands, i.e.,
neglects the terms with+ u in Egs.(12) and(13), and takes
into account only the lowest Fourier componefts. (2)],

i.e., the cos+cosgy potential

v 21X 2wy 19
(x,y)= Ao X +co - I (19
one obtains the Harper equatfon
o]
am+1+a,_1+2co (2wn+0)$ a,=Ea,, (20
with the scaled energy
E=[E-fw(v+1/2][P, (1,0V,]. (21)

For every Landau band the resulting energy subbands plot-
ted against the inverse flyxq show the well-known Hofs-
tadter butterfl§ (see Fig. 2

The Hall conductance for this case was derived by Thou-
lesset al® as the solution of a diophantic equation. In units

is a measure for the strength of the coupling of the Landa®f e?/h the Hall conductancer in the gth gap of Hofs-

bands.

Equation(10) is an infinite dimensional matrix equation,

which cannot be diagonalized numerically. Onlydif/® is
a rational number

®, h

p
® eBab q (15

with p,qeN,

which means thag flux quanta penetratp unit cells, one
can make use of the magnetic translation operafarsEor

the vector potential in the Landau gauge they are defined b

(16)

and displace a wave function by one unit cell in ther y

o2
M,=eY¥""e?% and M,=eb%,

direction. The magnetic translation operators commute with
the Hamilton operator, but in general not with each other.

Only in the case whef®/® is a rational numbédEq. (15)],

tadter’s butterfly is given by

g=wp+oq with |w|<q/2, (22

g,p.qe N, andw, o e Z.2% Figure 2 shows the Hofstadter but-
terfly with the Hall conductance of the lowest Landau band
written in the large gaps. For the Hall conductance in higher
Landau bands one has to add the Landau band ind&x
these values. Figure 2 shows that the Hall conductance is not
always a monotonous function of energy, as in the case with-

ut potential[Fig. 1(a)], a fact that could be the first experi-

entally obtainable hint for the internal band structure. But
will this figure remain valid if the coupling of the Landau
bands is taken into account?

IV. HALL CONDUCTANCE WITH
LANDAU BAND COUPLING

can one enlarge the unit cell of the periodic potential by a The influence of the coupling between the Landau bands

factor of p to a new magnetic unit cell, and find

on the spectrum is determined by the coupling strerigth
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FIG. 3. The five lowest Landau bands for the x6s0s/ potential[Eq. (19)] are plotted for increasing coupling strend¢k=1, 6, and

12. Forp/g=1/2 the Hall conductances in the minigaps are shown, and alg@/dpr 1/3 and 2/3, if they deviate from the corresponding
value of Hofstadter’s butterflygiven in brackets The number of Landau bands considered numerically is 6, 9, and 13, respectively.

[Eq. (14)]. How does an increase of the coupling strengththe cos+cosy potential (19). For smallK [Fig. 3@)] each
affect the spectrum? Landau band resembles the Hofstatder butterfly multiplied
Figure 3 shows the energy spectiinas a function of  with P,., [Eq. (21)]. The Laguerre polynomials in this ex-

p/q for three different values of the coupling strend¢thfor ~ pression become zero for certain,/®, so that the width of
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the corresponding Landau band vanishes, the so-called flat- (ii) The second effect occurs, e.g.pdt=1/3 in Fig. 3b)
band positions. Their number increases with the Landausee also Fig. ¥ Without coupling one would expect the
band index. With increasing each Landau band becomes Hall conductance in the second minigap of the second Lan-
wider, even at the original{<1) flatband positions, and dau band to be 2, namely, 1 from Hofstadter’s butte(fg.

V(x,y)=Vo

more distorted Fig. 3(b)]. For p/q with evenq the g/2th  2) plus 1 from the one Landau band below. With coupling,
minigap, which is closed without coupling, opens due to thenstead, we find Hall conductance 1. One can understand this
coupling. If the coupling is strong enough, Landau bandsffect by looking at the entire spectrum for a givién(Fig.
may even overlap. In this case the classification into Landa®): With increasingp/q the uppermost(for small p/q)
bands becomes meaningld§sg. 3(c)]. Similar effects also branch of the second Landau band is bent downward in such
occur for other periodic potentials, e.g., for potentials of thea way that atp/q=1/3 the middle branch lies at the top of
form the Landau band and so does its contributierl) to the
Hall conductance. This rearrangement gives rise to the
X my\1# change of the Hall conductance from 2 to 1 in the second
COS( ?) COS{? , (23 minigap. It has consequences alsogéq = 2/3 in the second
Landau band. There the sequence of the Hall conductances
which are used as model potentials for antifsee Fig. in the minigaps reads, starting below the Landau band,
5(b)]. Such spectra for Bloch electrons in a magnetic fieldo={1,0,1,2 instead 0f{1,2,1,3. The subband carrying the
with Landau band coupling were previously studied in RefsHall conductance+1) is exchanged with the one carrying
7 and 9, where slight mistakes in the matrix elements of thé—1).
potential, however, led to different resu(ia Ref. 9 only for (ii ) A surprising effect is found in Fig.(®) [see also Fig.
antidot potential$Eq. (23)] with 8> 2). 1(c)]. Applying the diophantic equatioi22) to the case
The diophantic equatiof22) for the Hall conductance is p/q=2/3, each subband carries a Hall conductancé) or
valid for the general case with coupling and arbitrary peri-(—1). But in the fourth Landau band the sequence of the
odic potential only without the constraijw|<q/2;?*®?"how-  plateaus is found to be={3,6,3,4, which means that two
ever, it then allows many solutions for the Hall conductanceof the subbands contribute instead with3) and (—3),
in a given gap. Instead, one may take advantage of a formul@spectively. Something similar happens in Figé) 3and
derived by Steda?® For any energy gap the Hall conduc- 3(c) for p/q=1/3: Without the coupling of the Landau

tance(in units of e?/h) is given by bands, one expects for the second Landau band a monoto-
nous sequencesc={1,1,2,2; with coupling it reads
IN(E) h {1,0,1,2, and now the lowest subband carries a negative
7B e (24 conductance. These two examples are in full agreement with

a formula derived by Dana, Avron, and Z&kwhich gives
with N(E) the number of states per unit area having energ\all possible contributions of subbands to the Hall conduc-
lower than the gap energy. As the Hall conductance in théance for any periodic potential, namely,
gap is quantized, it is possible to replagdN/oB by
AN/AB for adjacent rationalp; /g, andp,/q, which share 1=mp+Aoq, (26)
this gap. Using the fact that the number of states per unit area
in a subband i€B,/hqg; (i=1, and 2, and Eq.(15), one  whereA ¢ is the contribution of a subband ande 7.
finds But this still leaves the question: How do such unexpected

contributions arise? In Fig. 2 one sees that there exists a

ng Ny d: Jd2| Nipa—Nepg minigap with a Hall conductancé+3) to the left of
o= (p__ _) / (__ = (29 p/q=2/3, which ends at the second subbangf=2/3. In
1 P2 P1 P2/ diP2—0d2P:1 . ) . o
fact, as a function of the coupling strength the first minigap
wheren; is the number of subbands below the gap for thefor p/q=2/3 in the fourth Landau band closes and opens in
corresponding magnetic fiel, . such a way that now it includes the minigap with Hall con-
The Hall conductance in a gap can only change if the gagluctance(+3), giving rise to the sequence={3,6,3,4.
closes and opens again as a function of the Landau barfsimilarly, one can explain the above examplepat=1/3,
coupling®®*®We find three types of deviations from the Hall where one finds a minigap to the left of the first subband of
conductance of Hofstadter’s butterflii) opening of previ- p/q=1/3 with the Hall conductance-1) (Fig. 2.
ously closed gapdji) rearrangement of subbands, including Remarkably, even for very weak Landau band coupling
their contributions to the Hall conductance, afiit) unex-  we found examples for subband rearrangentihtFor van-
pected subband contributions to the Hall conductance. Wishing coupling and for the c&s-cosy potential (19), the
will now discuss these deviations in more detail. width of the Landau band at flatband positions is zero. For
(i) The gaps in the middle of a Landau band fdg with example, in the second Landau band nefay=1/3 the bot-
g even are closed in Hofstadter’s butterflig. 2), but, due  tom, middle, and top branches of the band cross in one point
to the coupling of Landau bands they may opéig. 3. [Fig. 4(@]. This degeneracy is lifted as soon as the Landau
Consequently, there appears an additional plateau in the Haddland coupling is turned on, and subbands are rearranged,
conductance. As an aside, we note that near flatband posicluding their contribution to the Hall conductance. The
tions, where a Landau band is small, the minigap forHall conductance in the second Landau band/at=1/3
p/gq=1/2 is often surprisingly largésee the 11th and 14th thus changes fromr={1,1,2,2 t0{1,1,1,2 [Fig. 4b)]. With
Landau band in Fig. ®)]. increasing coupling strength tipdq range of this rearrange-
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FIG. 4. The second lowest Landau band of thexeas/ potential[Eq. (19)] is shown(a) without and(b) with weak (K=1), (c)
moderate K= 6), and(d) strong coupling of Landau bandK & 12). One can see that even for a very weak periodic potential there can exist
deviations from the diophantic equati¢22) near flatband positions, here @tg= 1/3 (arrows, as discussed in the text.

ment expandgFig. 4(c)]. Furthermore, one finds in Figs. eral deviations from the diophantic equati(#®) due to the

4(c) and 4d) the Hall conductance (nstead of 1in the first  different potential shape. Taking the coupling into account,

minigap of p/q=1/3, discussed above as an example of dewe find the three principal typd$)—(iii) of deviations from

viation (iii ). It has its origin in the correspoding crossing of the case without coupling as discussed above. Again, even

branches in Fig. &). weak Landau band coupling gives rise to these deviations
Another example of a deviation from the diophantic equa-near crossinggas a function ofp/q) of branches of the

tion (22) even for weak Landau band coupling can be foundspectrum.

in the fourth Landau band nepfq=1 for ratios of the form To summarize, we find that crossings of branches of the

(g—1)/q. Each subband adds one unit of conductance, exspectrum, e.g., at flatband positions, may lead to deviations

cept for the middle one that carries the large negative conef the Hall conductance from the diophantic equati@g)

ductance 2-q, so that the sum of the contributions for a even for weak couplindFig. 4). With increasing coupling

Landau band equals one. Specifically, foiq=6/7 the se- thep/q range of these deviations expands.

quence of the values of the Hall conductance in the gaps

between the subbands for the fourth Landau band reads,

without coupling with increasing energy, V. REMARKS ON OBSERVABILITY

o=13,4,5,6,1,2,34 27) B!och_ electronsin a magnetic field may be experiment.ally
studied in lateral superlattices on semiconductor heterojunc-
as can be seen in Fig. 2 witk-3) added for the lower three tions. The main obstacle for observing the subband structure
Landau bands. Even for weak couplifigig. 3@], one in- is that most minigaps are small compared to the disorder
stead finds broadening. A crude estimation of the disorder broadening
can be given in the self-consistent Born approximaffbA:
0=1{3,450,123}4 (28)  single Landau levelor one of theq subbandswill be broad-

_ ened by disorder to a sharp half-ellipse with a total width of
where the step to lower values occurs earlier in the sequenc%F (or 2T//g), with T given by

One can interpret this effect by the exchange of the subban
carrying(—5) with one carrying +1). Again, it is due to the
sensitivity of flatband positions to the Landau band coupling. 2 %

Figure 5 compares a sequence of 15 Landau bands for the [2=— —*/ﬁwc, (29
cox+cogy potential(19) and the antidot potentigR3), and ™ pmere
shows the deviations from the Hall conductances of Hofs-
tadter's butterfly fop/q=1/2, 1/3, and 2/3. For the antidot with the mobility «. For typical valuesu=50 m?/(V s),
potential one finds even without Landau band coupling seva=100 nm, and m*=0.067n. this equation gives
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FIG. 5. The lowest 15 Landau bands are plottedder6 for the cog+cosy potentiallEq. (19)], and the antidot potentifEq. (23)] with
B=2. Forp/gq=1/2 the Hall conductances in the minigaps are shown, and algg/de+ 1/3 and 2/3, if they deviate from the corresponding
value of Hofstadter’s butterflygiven in brackets 21 Landau bands were numerically taken into account.

I'=0.18/p/qhw.. All the minigaps in Fig. 8) and all, creases proportionally toVy. Increasing the potential
except for the largest ones, in FigbB are closed by such a strength, however, also increases the coupling strength,
disorder broadening. which influences the spectrum. If the coupling is too strong,
Thus, for a given disorder broadening one has to increastiie Landau bands merge, many gaps are closed, and it is
the strength of the potential in order to enlarge the internadlifficult to interpret the spectra in terms of Landau bands
gaps, using the fact that the width of a Landau band in{Fig. 3(c)]. One has to choose the coupling strengthin
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such a way that the Landau bands are as wide as possible lrmnds. We examined the Hall conductance, since its values,
order to obtain observable gaps, while not overlapping withwhich are quantized in every energy gap, contain quantita-
adjacent bands in the desired rangebgf/®. A quantitative tive information about the structure of the spectrum. The
estimation beyondVy=#Aw;, which is equivalent to Landau band coupling changes this structure compared to
K=®d/d,, would have to consider that the shape of the Lan-Hofstadter’s butterfly, resulting in dramatical modifications
dau bands differs from band to band, and that it dependsf the Hall conductance. We find the following three princi-
strongly on strength and Fourier components of the potentiapal deviations from the Hall conductance in Hofstadter’s but-
as can be seen in Fig. 5. terfly: (i) opening of previously closed gap@i) rearrange-

Restricting ourself to the case of nonoverlapping Landaument of subbands, including their contributions to the Hall
bands ang/q<1, we find for different potential shapes and conductance, andii) unexpected subband contributions to
strengths, that the largest minigaps usually occur athe Hall conductance. Remarkably, even for weak Landau
p/g~1/2, 1/3, and 2/3. The corresponding Hall conduc-band coupling these changes can be found. This was ex-
tances will thus be the first to be found experimentally. Theyplained by the occurrence of crossings of branches of the
will differ from the Hall conductances of Hofstadter's but- spectrum, e.g., flatband positions, which are very sensitive to
terfly, as discussed in Sec. IV and shown in Fig. 5. the Landau band coupling.

VI. CONCLUSION
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