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We show that differentiniversalvalues can be obtained for the two-terminal conductance of a fractional
qguantum Hall(FQH) state. At large voltages, or strong coupling, the conductance of a pointlike tunneling
junction between an electron gas reservoir and a Laughlin FQH state at filling fractgaturatesto a
universal valueG=[2v/(v+ 1)]e?/h. We use this result to show that devices with different types of contacts
between the reservoir and the FQH state lead to distinct universal values of saturation conductance that are
rational multiples o?/h. The particular fractior?/h is obtained for the case of electron tunneling in and out
of a FQH liquid through two point contacts. We demonstrate that the problem of tunneling between an electron
gas and a FQH state through an impurity is exactly equivalent to the problem of tunneling between a chiral
Fermi liquid and a chiral Luttinger liquid. We investigate in detail the case of tunnelingvtelgaFQH state,
which we show to be equivalent to the problem of tunneliegweerntwo g=% chiral Luttinger liquids. This
system provides an experimental realization of this important exactly solvable case. We use the results of the
single impurity problem to consider the case of many tunneling centers coupled independently to an electron
reservoir, which is relevant to recent experiments by A. Cretraj. We derive an explicit universal expression
for the voltage and temperature-dependent conductance that exhibits a crossover reminiscent of a Kondo effect.
This universal curve fits the experimental data over the full range of probed voltages.
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[. INTRODUCTION experiment is particularly interesting for the following rea-
sons. First, it is able to observe the power-law behavior over
Since its discovery, the quantum Hall effd@QHE) has  more than one decadehandT. Second, the device used in
provided the experimental setting for a variety of ideas inthe experiment is an effective tool to address experimentally
condensed matter physics. For example, the QHE establishése study of how a bulk electron gas serves as reservoir when
a clean experimental realization of strongly correlated onein contact to sharply defined FQH liquids.
dimensional(1D) Luttinger liquids. It was noted first in X. QH tunneling junctions are an ideal setting in which to
G. Wen’s seminal paper on the theory of edge states of fracstudy the physical properties of bulk QH liquids and, in par-
tional quantum Hall(FQH) liquids that the gapless edge ticular, the nature of their quasiparticles. These properties
modes were a realization of(ahiral) Luttinger liquid® One  determine the power-law behavior of the nonlindav
of Wen'’s proposals for testing these ideas was to do expereurves. This behavior of thieV characteristics is just one of
ments that would probe tunneling between the edges of Qlthe many aspects of this rich problem.
states’ He predicted that in experiments in Qéhctions the From the theoretical point of view, the problem of tunnel-
tunneling current should exhibit a power-law dependence oinhg in chiral Luttinger liquids is described by rich quantum-
the applied voltage with an exponent determined by the tofield theories with a nontrivial spectrum, exhibiting a weak-
pological order of the bulk QH liquid. For a QH state with a to.strong coupling duality symmetfyFor special values of
single edge the exponent is determined solely by the fillingne | yttinger liquid parametey, the model is exactly solv-
fraction v. Tunneling in QH states is conceptually related to 56 via the thermodynamic Bethe anshihe conductance
the p,roblem_ of scattering (_)f quasiparticle_s ir_l guantum Wire§S known for all values ofy in terms of dual series expan-
(QW's), which are nonchiral Luttinger liquids. Kane and gjons tor the valueg and 14.”® The noise spectrum con-
Elsher have given a physical p|ctur_e Of. tnneling in I‘Utt'ngertains structures related to the fractional charge and statistics
liquids in the form of a renormalization group theory for . icle®11 and it is believed to be a
both chiral and nonchiral liquids. In particular, they pre- of the tuqnelmg 'part|cle ,—and it is eV 2
nonanalytic function ofg for finite frequencies® Hence,

dicted the nonlineal-V characteristics and the universal . ) . . .
tunneling experiments to QH edges provide a unique win-

shape of the conductance pedks. ) ; i
Experimentally, the power-law scaling of the tunneling dow through which to study the rich and deep physics of

current on voltage and temperature in Luttinger liquids ha$hiral Luttinger liquids beyond the determination of their
been observed by two groups. Milliken, Umbach, and Webbasymptotic scaling behavior.

used a gated quantum point contact to bring the edges of a Experimental devices similar to those of A. Chaeigal.

FQH state closer so as to observe the tunneling current. ThEan be used to address such conceptual issues. Moreover,
is an experimental realization of tunnelibgtweerthe edge these devices also provide a means for studying mesoscopic
states of QH liquids. More recently, Chang, Pfeiffer, andeffects arising from different ways of coupling the reservoirs
WesP measured electron tunneling from a bulk doped-GaAdthe bulk electron gaso the FQH state$

electron gasnto the abrupt edge of a FQH state. The latter We have learned in recent years that the transport proper-
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ties of strongly correlated states depend delicately on theniversal This is the regime we will be primarily interested
properties of the contacts or reservoirs. This is the case fdn. In particular, we will show that different ways of cou-
1D quantum wires, which display quantized conductances ipling to a principal FQH state witlv=1/(2m+ 1) can lead
agreement with noninteracting electrdfid® despite the to values of the two-terminal conductances such as
renormalization that should be expected from the electronG = ve?/h (the usual one G=[2v/(v+1)]e? h or simply
electron interactions in infinite systertislt may seema pri- ~ G=e%h. The main tool that we will use in this paper is a
ori that there should be a clear distinction between nonchiranapping(that we present belowof the problem of tunneling
Luttinger liquids (quantum wires and chiral ones(edge from a higher dimensional electron gas to the edges of a QH
stateg, since the quantized Hall conductance is not alterediquid to anexactlyequivalent problem of tunneling from a
by the reservoirs! However, we will see below that this is a single-channel chiral Fermi liquid and the same QH edge.
rather subtle issue. This is applicable if the coupling is made via a single point-
The physics of tunneling oélectronsfrom a reservoir to  |ike contact. The injected electrons in the QH edge states, as
the edges of a QH liquid is determined by the physical propwe show, arenotin equilibrium with the reservoirs, and this
erties of the QHquasiparticles The natural question that js the origin of the renormalized conductance. Equilibration
arises is whether it is possible to use QH junctions to access recovered if the coupling to the QH state is made through
the properties of the quasiparticles of FQH states, in particumany contacts. In the case of many contacts we obtain an
lar, their fractional charge. |-V characteristic and compare it with recent experimental
The question of how to observe a fractionally chargeddata by A. Changt al. for the full range of probed voltages.
quasiparticle of a strongly correlated system is a rather oltrhis mapping can also be used to describe the problem of
problem. It has been considered in detail in the context of th%nne"ng of electrons from external leads to a nonchiral Lut-
soliton states in quasi-one-dimensional conductors such agger liquid®
polyacetylené? It has been proposed that noise experiments This paper is organized as follows. In Sec. Il we summa-
in both polyacetylen€ and in QH junction$™ could be rize the basic physical picture and results. In Sec. Il we
used to measure the fractional charge. However, experimehow that the tunneling from a generic electron gas to a FQH
tal attempts to measure noise in both physical systems havygyuid through a point contact is equivalent to tunneling from
encountered a number of significant technical and conceptualn effectivechiral Fermi liquid to the edges of the same
difficulties. Observing a fractionally charged excitation from FQH state. Using this mapping we nonperturbatively solve
a bulk FQH state by tunneling from a known stétiee res-  several cases of interest, showing that the two-terminal con-
ervoir) depends on the nature of both the reservoir and thguctance can assume distinct universal values depending on
contacts?’ In the context of the fractional quantum Hall the nature of the contacts. In Sec. IV we show that the
effect (FQHE), the proposed noise experiments rely on the,=1 to »=1% QH junction is an experimental realization of
theoretical picture in which edge states of FQHE liquids arehe problem of tunneling between tvgp= 3 chiral Luttinger
assumedo be in equilibrium with a hypothetical reservoir of |iquids. This is an important theoretical system, since it is
quasiparticlesthat are then allowed to tunnel. However, any exactly solvable for all correlation functions. In Sec. V we
experimental setup must consisteséctronstunneling inand  discuss the role of multiple tunneling processes in the equili-
out of one or several reservoirs into a FQH liquid. The edgeration of QH edge states. In this section we derive a uni-
excitations of the FQH liquid by themselves cannot equili-versal crossover function for the conductance of an electron
brate, since the liquid by itself does not dissipate and there igas to a QH edge state for arbitrary voltages and temperature
no loss of phase coherence. The real loss of phase coherenggough a large number of individually weak tunneling junc-
(and the resulting dissipatipmriginates in the electron res- tions. Since the number of junctions is large, the effective
ervoir, i.e., in the external leads. Hence, the question to bgoupling is large and this system cannot be described pertur-
addressed is how the tunneling of electrons into a FQH syshatively. The crossover function has a remarkable resem-
tem is affected by the nature of the quasiparticles of the FQHblance to a Kondo-like effect. At large voltages the conduc-
|IQUId and by the equilibration mechanism. It is then natura'tance saturates &= Vez/h_ We use this crossover function
to ask for what class of contadfise., couplings with external  to fit the experimental data of A. Chareg al. over the entire
leads is it possible to use tunneling experiments to reveakange of voltage$.We also give a set of asymptotic values
the nature of the FQH quasiparticles. This is the main motiof the universal conductance in the strong coupling limit for
vation of this paper. a generalized problem of, ,Ng contacts to the left and right
The purpose of this paper is thus to develop a conceptugbservoirs. Section VI is devoted to the conclusions. In the
framework for the Study of the nonperturbative phySiCS OprpendiX we present the details of the mapp”']g of a h|gh-
tunneling into a chiral Luttinger liquid from a reservoir. We dimensional electron gas to a one-dimensional chiral Fermi

will be interested on the physics of these systems at generghuid for tunneling through a single impurity.
voltages and temperatures or, equivalently, in the crossover

from weak-to-strong coupling. For the sake of simplicity, in

this paper, we discuss the problem of_ tunnelin_g to single | SUMMARY OF THE APPROACH AND RESULTS

edge QH liquids. Recently, Kane and Fistiatescribed the

behavior of a junction between a QH state and reservoirs in In this paper, we show that for the purposes of studying
the weak coupling regime, where they found that the two+tunneling between an electron gas and a chiral Luttinger lig-
terminal conductance isot universal. In this paper, we will uid, the electron gas behaves as an effective chiral Fermi
show that in the strong coupling limit, the two-terminal con- liquid. The idea, although simple, is strongly justified for
ductance through a FQH state with filling fractiolbecomes reasons other than simply looking at the algebraic decay of
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the electron Green’s function. Just as in the Kondo problem,

scattering through a pointlike impurity potential can be un- (@) G= v &
derstood in terms of the radial motion of an effective one- h
dimensional nonchiral fermion on a semi-infinite lifsee, V,=Vq

for example, Ref. 28 By unfolding the line around the im-
purity, one obtains a chiral fermion on an infinite line. Thus,
it is well grounded to expect that, for the problem of tunnel-
ing through a single point, the electron gas that makes up the
reservoir should behave exactly in the same way as a chiral
Fermi liquid or the edge of a sharp=1 QH state. This

mode selection works regardless of the number of spatial V.=V,
dimensions of the electron gas in the reservoir. One can think

of this construction as the cleanest, easiest, not to mention ®) _av &
cheapest(virtual) realization of a sharp edge ofie=1 QH v+l h

state g=1). V,=—2 Vg + =y

We consider in detail the case of tunneling between an
electron gas and a QH liquid belonging to the principal se-
guence(Laughlin v=1/(2m+1), m an integer. As noted
above, the electron gas can be regarded as a chiral Fermi
liquid, so we have at hand the problem of studying tunneling
between Luttinger liquids with differeng. We perform a
change of basis in order to rescale the radii of the bosonic
fields describing the chiral branches and in this way we map
the problem of tunneling from an electron gas to the edges of
a Laughlin FQH liquid with filling fractionv to the problem
of tunneling between two identical chiral Luttinger liquids
with g=2v/(v+1).

Using this framework, we point to experimentally acces-
sible features of quantum Hall liquids that are consequences
of the chiral Luttinger liquid nature of the edge states. For
example, we show that in a two-terminal conductance ex-
periment where one of the contacts is a pointlike tunneling
center between a FQH liquid and an electron @aservoiy,
the conductance in the strong coupling limit is larger than the v_=V2f+v1 Vi Vz—:,l Vg
Hall conductance, but universally related to it. More explic-
itly, the two-terminal conductance for strong tunnelitay
high voltagesto a Laughlin FQH state of filling fraction is FIG. 1. Different ways of strongly coupling a FQH liquid to
G=[2v/(v+ 1)]e2/h. This implies that the electrons in- reservoirs gives distinct universal values for the two-terminal con-
jected into the FQH liquid will be hottei.e., higher voltage ductance. In(a), the FQH liquid is coupled to the reservoirs via
than those in the reservoir. The tunneling contact is thus &%any cpntacts. The edges are in equilibrigm with their respective
springboard for raising the chemical potenﬁhl. reservoirs of departure,2 and the two-terminal con_du_ctance equals

Since the injected electron is hotter than the reservoir, onf¢ Hall conductancere’/h. In (b), the left reservoir is coupled
might ask how to restore an equilibrium between the Qchrough many points, whergas the right one is F:oupled via a single
liquid and the reservoir. We address this problem by consigduantum channebne point-like contact or impuriy The electrons
ering the effects of many impurities. It was pointed out byat the upper edge\(, ) arenotin equilibrium with the right reser-

. o - ) voir (Vg). The two-terminal conductance &2v/(v+1)]e?/h,
Kane and Fisher that the equilibration mechanism betweeEérgeIr than ve?/h, and the Hall voltage V,—V_=2/

QH Ilqwds and rese_rv0|rs could be ur_]der_stood_ !n term_s ol + 1)(Vg—V)>Vgr—V_ . In (c), both reservoirs are coupled via

t“””e“”g through a line of weak coupling impurities, Wr_"Ch a single pointlike contact. Neither branch is in equilibrium with

would .b_”n.g the YO'tage along t_he edge_ states monOton'Ca”)éither reservoir, and the two-terminal conductanag?is, indepen-

to equilibrium with the reservoir€ In this paper we show yent of the filling fractionv=1/(2m+1).

that the same is true in the case of strong coupling impuri-

ties. The only difference between these two situations is thaG=ve?/h. In this case, the Hall voltagd/, —V_=Vg

as the number of impurities increases, the voltage of the QH-V_, and the edges are in equilibrium with their respective

edge oscillates around the asymptotic equilibrium value. Oneeservoirs of departure. The contacts are made through many

consequence of the equilibration with the reservoirs is thapoints in this case. In Fig. (h) one reservoir is coupled

the two-terminal conductance acquires the value of the bulikhrough many points, whereas the other is coupled through

Hall conductance. one single quantum channel, or pointlike contact. In this
The dependence of the two-terminal conductance on thease, one edge branch is in equilibrium with one reservoir

way the reservoirs are coupled to the FQH liquid is illus-(V_=V,), but the other is not\(, # V). The two-terminal

trated in Fig. 1. In Fig. (@ we show the usual case where conductance in this case is G=[2v/(v+

the two-terminal conductance equals the Hall conductancg)]e?/h, larger than the Hall conductance, and thus the Hall
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voltage ishigher than the two-terminal voltage difference ments of Changt al> We show that the mechanism that we
[V, —V_=2/(v+1)(Vg—V,)]. Finally, in Fig. Xc) both  consider in this paper contains the necessary ingredients to
contacts to the QH state are pointlike and neither edgexplain not only the low voltage, low-temperature power-law
branch is in equilibrium with either of the two reservoirs. behavior, but also the breakdown voltage scale for deviations
The two-terminal conductance @=e?/h, again larger than from the anomalous power-law scaling. In addition, it pre-
the Hall conductance, and the Hall voltage is also higher thadicts the asymptotic large voltage conductances, which
the two-terminal one [V.—V_=v }(Vg— should saturate at the bulk value of the Hall conductance
V,)]. In this last case, there is an analogy to the problem ofe*/h. We show that the conductance between the electron
unrenormalized conductances in quantum wires; there is ongas and the'= 3 FQH state is given by

guantum channel going in and out of the strongly correlated

QH state, so that the conductanceeféh regardless of the e? e~ (12(27TIT?
filling fraction v=1/(2m+1). G=vi] 1- vz ey @
The devices depicted in Fig. 1 are particular cases of the [(1—e‘<2”T’TK) )(m +1

general problem of connecting a Laughlin FQH liquid with
N_ point contacts to the left reservoir, ahk point contacts where T is the temperature and, is a crossover energy
to the right one. For strong couplingvhich can always be scale determined by the couplingsaif impurities connect-
achieved for large enough voltagewe find that the univer- ing the electron gas to the QH state. The only assumption
sal conductanc&y n is given by made in the derivation of E@2) is that individual impurities
are weakly coupled. This assumption, as we show, does not

[1_( v—1\M (r-1 Ne restrict the result to the regime of small conductances, since
v+1 v+1 e? the scal€l can actually take a broad range of values. Hence
GNL,NR: »— 1\ NLTNR e D the expression should remain valid even for voltages large
— compared toT ¢ and conductances as large as the bulk Hall
vl value ve?/h (this point is made clear below
which reproduces the cases in Fig. G, .= ve?lh, The result of Eq(2) can be used for comparison with the
G..1=[2v/(v+ 1)]e?/h, andG; ;= e?/h. experimental data. One can easily check that,MegT,,

In this paper we also consider in detail the problem ofEd. (2) reproduces the scaling form used in Ref. 5. The volt-
equilibrationin the presence of many impurities or contactsage scale for which the experimental data departs from the
coupling a reservoir to the QH liquid. The case of manylow-voltage scaling form is determined by the energy scale
impurities is treated in the following way. The propagation Ty, which is evident in Eq(2). This breakdown voltage
in the reservoir side between spatially separated impuritiescale can be determined from the low-voltage data, since the
takes place incoherently. Moreover, after scattering from amplitude of the tunneling conductance is directly related to
pointlike contact to the QH liquid, the energy of the scatteredlx andT:
electron would drop on the chiral Fermi branch, but would
then be brought back to equilibrium with the reservoir. Thus,
electrons incident on any of the impurities from the reservoir
side will always be at the same voltage. On the QH liquid
side, however, the energy of the scattered electron is mairFherefore, the “breakdown” voltage is indeed part of the
tained from one scattering event to another, because of thiell solution to the problem of tunneling into the FQH edge.
dissipationless nature of the QH state. Multi-impurity scat- One should not overlook the fact that the experimentally
tering will bring, eventually, the QH edge to equilibrium measured conductance saturates to the Hall valeréh.
with the reservoir. This scattering mechanism allows one tdrhis is a signature of many impurities, and it is in agreement
obtain the solution of the many impurity problem from the with Eq. (2). We contrast this case to the one impurity con-
single impurity one. Notice that the behavior of the electrongact[to one of the reservoirs, as in Fig(b}], for which the
in the reservoir side, namely loss of phase memory andwo-terminal conductance should reach the value
equilibration, is what provides the simplification needed inG=[2v/(v+1)]e?/h, and electrons enter the edge of the
solving the multi-impurity case. Clearly, incoherence is aQH liquid hotter than the reservoir.
key assumption here. It must hold for well separated impu- Finally, we would like to point out that, as a natural con-
rities that should act essentially independent from each othegequence of the physics of the point-contact junctions be-
This situation is familiar from the physics of dilute magnetic tween bulk electron gases and FQH states that are discussed
alloys, where the Kondo impurities are indeed independenhere, these junctions constitute a simple physical realization
from each other. It is also clear that as the impuritiess, the  of the dc voltage transformer proposed very recently by Ch-
contacty become closer to each other, coherence effects iklovskii and Halperirt* The point-contact junctions are
the reservoir should become important. In this limit, we ex-more readily realizable and possibly avoid many of the dif-
pect a richer and more complex quantum behavior much likéiculties discussed by Chklovskii and Halperin.
the multi-impurity or multichannel behavior in Kondo sys-

2
e
Go=limG= ,,F[l_ e*(l/Z)(ZTrT/TK)Z]' 3)
V—0

tems. . o IIl. TUNNELING FROM AN ELECTRON GAS
We use this framework for the multi-impurity case and TO A FQH EDGE
apply it to obtain a solution for the case of tunneling, through
many impurities, from an electron gas towe=3 liquid, Our starting point is the Lagrangian density that describes

which is of direct relevance for comparison to the experi-the dynamics on the edge of the FQH liquid, the electron gas
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reservoirs, and the tunneling between the two via a singlevhere & labels the quantum numbers of the channel that
impurity: couples to the impuritfwhich depend on the symmetry in
the problem, such as=0 for the Kondo problem We can
L= Ledget Lgast Luun- (4)  then bosonize the effective chiral 1D mode corresponding

The edge excitations of a FQH liquid with=1/(2m+ 1) to the (unfolded radial direction:

are described by a single free chiral boson figlavith 1 _
1 gaszﬂaxgo(&t_ v &X)(P (8)
Eedge:ﬂ‘9><¢(‘9t_v‘9x)¢ ®)  with the electron operator giveriin terms of ¢) by
_ _ _ J(t,X) =12 e ¢tX):,
and equal-time commutation relatiopg(t,x),#(t,y)]= We are free to rescale the position coordinates and thus

—imsgnk—y). The edge electron operator is written in alter the velocities. Moreover, because the tunneling takes
terms of the boson field aegedt,x)ce” V¥ 1 £ is  place at a point, and also the two chiral boson figldand

the Lagrangian for the electron gas, wifiit,x) the electron ¢ are in separate spaces, we are free to rescale the position
operator there. The tunneling Lagrangian is then coordinates independently, allowing us to set both

I, v=1v=1. (Notice that even though we used the same symbol
Lun=27T 3(x)e™ e W0yt 0)+H.e.  (6)  x for the coordinates of both fields,separately parametrizes
the fields along their arc length. The only commom point in
the parametrization ig=0, which is the impurity location.
The tunneling problem is then described by the Lagrang-
an

The Josephson frequenay;=eV/# is set by the difference
of voltages between the electron gas anditttemingedge
branch to the impurity. As we will see later, the voltage for .

. e . i
the outgoingbranch is raised due to tunneling.

The next step is the mapping between a 2D or 3D electron 1 1
gas to a 1D chiral Fermi liquid for tunneling through a single £=4—ax¢(at— dy) d+ 4—&X<p(&t— dy) ¢
impurity. We follow the conventional procedure used in the ™ i
theory of the Kondo problentsee, for instance, Ref. 23 +T 8(x) € @atel (N0 —¢(t0) 4 ¢ 9

where it is shown that the problem of a single isotropic mag-

netic impurity coupled to a 3D Fermi liquid is mapped to the We can bring the tunneling term to more familiar forms by
problem of a 1D chiral Fermi liquid coupled to the impurity. means of a rotation. Instead of doing this directly for £,

The same conclusions hold for any number of dimensiondet us treat a more general problem. Consider tunneling be-
greater than one. In the Kondo problem, one basically write§wveen av,=1/n; and av,=1/n, QH state, with botm, ,

the electron wave functiog(r) in a spherically symmetric ©dd integerssingle edges The tunneling coupling is

basis, with the origin at the impurity positicfnzo. The op- Etun:r5(X)eiwjtei((1/V/v_1)</>1(t,0)7(1/V/v_2)</>2(t,0))+ He.
eratory(0) depends only on the=0 harmonic, so that this (10)
is the only channel that participates in coupling to the impu-

rity. ForI tfd1e case of two dimensions, only tire=0 channel =T 8(x)e it (WP $a(t.0)~ d(1.0] 4 H.c., (11)
is coupled.

One may worry that if the impurity is on the planar Where we have performed ti@(2) rotation
boundary of the 3D electron gas, the spherical symmetry is .
spoiled. However, the spherical symmetry is not a necessary (¢a) :( cosy sma) ( d’l) (12
condition to arrive at the conclusion that only one quantum by —sind cos/\ ¢/’
channel is coupled via the impurity. We show in appendix A, .
for a very general set of problems, that one can always find gl'th

basis of eigenstates of the Hamiltonian for the electron gas 1 \/TlJr \/Tl
such that only one quantum channel couples to the impurity, co= — Y1 V2
and again only the radial components of that channel are NCENIR
important. The electron operator for this channel can be writ-

ten in terms of left and right moving fermions on a half-line, 1 \/F_ \/?
which is the radial coordinate (left and right moving par- Sinf= — ———.
ticles correspond to incoming and outgoing particles with V2 \/Vfl+V2_1

respect to the impurity By unfolding the half line into a full
line, one can describe the electron operators in terms of
single chiral fermion on an infinite line. Therefore, for tun-

The tunneling term corresponds to tunneling between two
iral Luttinger liquids with

neling through a pointlike contact, the semi-infinite 3D elec- ot R

tron gas becomes effectively equivalent to a 1D chiral Fermi g= yol=t "2 (13

liquid. It can be regarded in much the same way as if it were 2

a sharp edge of=1 QH state. In particular, since we showed that the electron gas couples
Thus, we can write to a single impurity through only one quantum chansele

N Appendix A), it is effectively equivalent to a 1D chiral Fermi
Lyas= Lgast Other channels, (7)) liquid (virtual »=1), and so we have
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_ ~ T(ng+1) (172
_(_1\n-1
7 cn(9)=(-1) I(n+1) r(n(g—-1)+1/2)

The domains of convergence of the dual series are restricted
by 6=[ging+(1-0)In(1-9g)l[2(g—1)].

Due to the injected current, the voltage of the edge branch
past the impurity is raised bgV=1,/(ve?/h).

We now turn to the case of strong coupling[—,
Tk—0), or equivalently, large voltage differences
(V>Tg). In this case, the tunneling conductance reaches the
strong coupling asymptotic valu@,= ge?/h. We then apply
this result to the geometries depicted in Fig. 1.

17

A. One pointlike contact

This is the case shown in Fig(d). One edge branch is in
equilibrium with its reservoir of departureV( =V,), be-

FIG. 2. One impurity scattering picture. The only voltages thatcause this contact is made through many impuritses Sec.
affect the tunneling current are thiscoming ones,V;, and the V) For the other contact, the value of the voltage level
reservoir voltagd/g . The outgoing voltag¥, is raised due to the ~depends on the injected current from the right reservoir. The

injected current,. The outgoing voltage on the reservoir sidg injected current for strong coupling is given by

also depends on the tunneling current; however, after scattering, o2 2 o2
electrons in this branch are equilibrated again with the reservoir. = 0— _ - —
=9 h (VR—V-) > 1 h (VR—V_), (18)
v i+1 and consequently
g=—5—, (14)
~ 2
V,-V_=v1g(Vg—V_)= —7(VrR=V-). (19
wherevw is the filling fraction of the QH state coupled to the vt
electron gagreservoiy through the single impurity. Thus, the voltagd/, is given by
We can then use the known results for tunneling between
two Luttinger liquids and apply them to the problem of tun- 2 v—1
neling from an electron gas to the edge of a FQH liquid. We Vi= v+ 1VR+ v+ 1VL* (20)

can, for example, determine the current injected into the edge )

branch, which depends on the voltage difference between ti2Nd the Hall voltage is

electron gas and th@écoming branch to the impurity, as 2

shown in Fig. 2. V,—V_=——(Vg— V). (22)
Because of the weak-to-strong coupling duality symmetry v+l

present in the problem of tunneling between Luttinger lig-

uids, we can also turn to the dual picture corresponding t?ro

tunneling between two Luttinger liquids with

The two-terminal conductance of the devicktermined
ml./(Vg—V.)] is

EZEZL (15) G= v+1 h" (22)
g v i+l
B. Two pointlike contacts
The differential tunneling conductance depends on both This is the case shown in Fig(d. Neither of the edge

g (or g) andVg—Vj, . At zero temperature, it is given By pranches is in equilibrium with either reservoir. We have to
determine the voltages from the tunneling currents in both
)2n(1/§1> Vv contacts. The voltage¢, andV_ are obtained from

b
PSP

~ 2
_ _ — ., 1 _ - —
Gt—gh>< o [y 2@ Vv . V,=V_=v""g(Vg—V.) V+1(VR Vo),

~ 2
(16) V—_V+:V_lg(VL_V+):m(VL_V+),

whereV is the voltage difference between the reservoir andyhich give
the incoming edge branchg—V,,. The T¢ is an energy
scale set by the tunneling amplitudd® (T v+1 v—1

a- . . . e —— + [RE—
IT|~¥@ *~1), and the coefficients, are given by Vi=7, VRt 3,
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g=1 g=v g=1 one dimension experimentally. For example, one can mea-

-~ - » sure voltages at the two edgf¥, and V_ in Fig. 1(c)]
because they are spatially separated, and by doing so, one

FIG. 3. If the contacts from the FQH liquid to the reservoirs are €81 Probe Luttinger liquid behavior between the reservoirs.

made through a single point each, the edges can be deformed so k8IS IS not possible in the case of quantum wires, because

liquid (quantum wir¢, and soG=e%h. However, in contrast to Chemical potentials separately inside the wire. A measure-
quantum wires, the “extra” spatial dimension in the case of thement of the Hall voltage/, —V_=v"1(Vg—V,) returns a
FQH state, allows measuremefgsich as the ratio~* between the  value that is larger than the two-terminal voltagéztV,)

Hall voltage to the two-terminal voltagewhich probes the Lut- by a factor ofv~1; this factor contains information on the

- &

tinger liquid nature of the state in between the reservoirs. Luttinger liquid behavior between the reservoirs that is ex-
perimentally measurable and has no counterpart in QW's.
v+1 v—1 Another important difference between QW'’s and devices
Ve =WVL+ WVR- such as the ones we discuss in this paper is that QW'’s can be
connected to leads in only one wdye., one end to each
The Hall voltage is given by lead, whereas we can connect a FQH st@eD systemto,
say, N, contacts to one reservoir adi to the other. The
V.=V_=v"Y(Vg—V)). (23)  consequence is that in QW’s one can only observe a conduc-

tancee?/h (and multiples of it, whereas for FQH states the

The current flowing through the device is conductanc&y_ ., as we show in Sec. V, can take values

g2 e2 in whole families of rational multiples o%/h. [Examples
= VF(V+ -V_)= F(VR—VL), (29 are the cases shown in FiggblLand Xc), which correspond
to G.. .= ve’/h andG.. ;=[2v/(v+1)]e?/h, respectivelyl
and therefore the two-terminal conductance is In summary, the strong couplingarge voltage value of

the tunneling conductance from a reservaie., a Fermi lig-
uid) to the chiral Luttinger liquids of the edges of a FQH
G=—. (25 ; ; ; ;
h state, in spite of being universal, depends not only on the
properties of the FQH liquid but also on the nature of the

This result is the universal conductance for spinless noncontacts. Moreover, the physics of the edge states of the
interacting electrons. It resembles the result for the condud=QH states can be probed with a variety of junctions for
tance of quantum wires, where the reservoirs masKrtha-  which there is no counterpart in one-dimensional quantum
chiral) Luttinger liquid behavior of the 1D wir&"*®We can  wires.
understand why there is such correspondence in a very
simple way. Because the contacts are made to the two reser- v, EXPERIMENTAL REALIZATION OF G=1/2
voirs at a single point each, we can deform the edges of the ) ) ) ) )

QH state so as to bring them to line up on top of each other A Very interesting case is when= 3 in which case

at a segment that connects the two contacts. The end resultds=2- This case is the dual point =3, which is exactly
that the two opposite chiralities overlap on the same segmeplvable, not only for the conductance, but for the full noise
(see Fig. 3, which makes the problem the same as its nonspectrum(indeed, all n-point correlation functions This
chiral counterpart of Refs. 14 and 16. Notice also that wehontrivial exactly solvable point is very important theoreti-
have shown that, for pointlike contacts to the reservoirs, théally because it provides the comparison ground for any re-
electron gas making up the external lead behaves effective§ult obtained perturbatively. Before, it was simply a theoret-
as a 1D chiral Fermi liquid, which was the model for the ical tool with no physical realization. The tunneling from an
leads that Maslov and Stone proposed receftin their ~ electron gas to a=3 state makes it now possible to study
picture, the nonchiral Luttinger liquid of a quantum wire the importanig= 3 state experimentally.

turned adiabatically into a Fermi liquiddescribing the Let us focus on thigg=1/2 case and a single impurity.
leads, which they also took to be a 1D Fermi system. OurThe exact solutior(see Refs. 3, 7, and 10 and references
mapping shows that only one mode of the electrons in théhereir} for the tunneling current and differential conduc-
reservoir will effectively tunnel into the Luttinger liquid. tanceis

Furthermore, even if the coupling between the leads and the 5

wire is very smooth, there are always backscattering pro- | :eJ d_w w [f(o—wo)—f(w)] (26)
cesses at the crossover. These processes are always relevant t 2 wer(TK/Z)z 0

operators and the system always flows to strong coupling

where the tunneling picture is accurdt€hus, the mapping 1e? w?

presented here provides a formal justification of the model of Gi=5 FJ dwm[—f’(w— wo)], (27)
Maslov and Stone.

Having mentioned the similarities, let us now look at thewhere f=(1+e is the Fermi distribution, wy=
important differences between transmitting current in quan-3(eV/#), andTc=(2#|T'|) L. The w, and T, besides the
tum wires and FQH liquids. The chiral 1D Luttinger liquid in temperature, are the two energy scales in the problem. As
the case of the FQHE comes from the edges of the 2@ne varies the voltage, the current and conductance scaling
strongly correlated FQH liquid, and we can explore the extrawith V changes depending on the relative valu&/ afs com-

w/T)—l
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pared toT and Tx . Consider, for example, the case where

T<Tg. In this case, the conductance scales as In

1/2#T
3

)2
), v<T
1¢€? T

~ V|2
on| (Y[ rever,
Tk

1, V>Ty.

The anomalous scaling of the current with voltage that is
characteristic of Luttinger liquids takes place between the
two energy scale§ and Ty . In recent experiments, Chang
et al. have observed such scaling. In the experimental data,
the G,=V“ power-law scaling breaks down at a certain volt-
age. One is inclined to think thafx provides the energy

IN-1 <
scale for the breakdown, although in that particular experi-

Iy
Vr
M
VR
ment tunneling takes place not through one, but many impu-

rities. The idea that there is another energy scale in the prob- FIG. 4. Multi (N)-impurity scattering, assembled from the one
lem, however, is still an important one, and we will show impurity building block. Notice that the voltages on the FQH liquid
that indeed such a breakdown scale also occurs for the marsjde are maintained in between scattering events, whereas on the
impurity problem. reservoir side electrons come for the scattering alwayézat

Notice, however, that the voltagss, alone are not suffi-
cient to describe the quantum states at the different stages of
We will show here how to treat the problem of tunneling the cascade. One needs the stades) =|V,;{n.},), where
from an electron gas or reservoir to a QH liquid via manythen, are the occupation numbers of the oscillator modes of
impurities. In the previous section we considered scatteringhe chiral boson¢ describing the edge state. The voltage
through a single impuritysee Fig. 2, in which case the V, measures the total charge or the zero mode of the boson
incident edge channel comes at a voltage I&%gl and the field. The nonzero modes should, in principle, affect khe
electron from the reservoir atg. After scattering, the edge V characteristics for each impurity. An intuitive picture one
is atV,,, and the reservoir branch ®;. We will obtain ~ €an use to see the effects of the excited oscillator modes is
the many impurity result by considering the single scatteringhat they could account for an “effective” increase in the
event as building blocks, and cascading them. temperaturdgsince a higher temperature brings more excited
An important issue for this cascading is that of how themodes. This effective increase in the temperature enters in
scattered electrons on the reservoir side behave differentfp€ expression for the tunneling current, in addition to the
from those in the QH side in between scattering events. IiyoltagesV, andVg.
the reservoir side, regardless of the voltage after scattering, Nonetheless, there are two regimes where the oscillator
the electrons will equilibrate with the reservoir by the time of Modes are not excited: weak and strong coupling. Effects
the next scattering event. It will also lose its phase memorydue to the oscillator modes, as described above, become only
This means that on the reservoir side, electrons will alwaydmportant at intermediate coupling. For the weak and strong
arrive for the scattering events at the same voltage, namelgoupling cases we can simply use 1h¥ characteristics for
Vg. On the QH side, however, the voltage is maintained? Single impurity to obtain recursively the voltagésfor all
between scattering events and is accumulated. Thus, the cds-and we can obtain the total current that flows to the QH
cade can be assembled as shown in Fig. 4. liquid from I = ve*/h(Vy—V,), whereN is the last impurity
The voltages past theth stage of the cascade are labeledon the line, and/, is the initial voltage level of the edgen
V,, and the current flowing from the reservoir to the QH equilibrium with the other reservgirThe recursion equation
liquid is |,. The voltage difference between the outgoingis
(V,) and incoming V,,_1) edge states is obtained from the
currentl , and the Hall conductance for the QH liquid:

V. MULTIPLE IMPURITIES AND EQUILIBRATION

1
Vo= Vao1= - l(Ve= Voot T T). - (30)
I
Vn—Vn,lzjn_ (29 Let us study solutions of these recursion relations for differ-
,,e_ ent regimes of tunneling strengths.

h

Now, the current , is simply the single impurity tunneling A. Weak coupling

current, which depends on the incoming state-(L) and the Without loss of generality, let us concentrate on the case
coupling strength for thaith impurity, as well as the tem- g=2=7g". We will not use the fact thag=1 is exactly

perature. The coupling strength enters as an effective tensolvable; we just choose this example for clarity of presen-
peratureTf{‘) for a given impurity. tation, and because it is applicable to tunneling from an elec-
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tron gas to av=3 FQH state(We will present the result for not assume that the couplingd™ are uniform; they can
generalg after the derivation fog=2=g"1.) fluctuate, and the only important parameter is the effective
If the individual couplings are small, th@,&”’ will be Tk which incorporates even the fluctuations. After integra-

large, in which case we can use for the individual impuritiestion, one obtains
the low voltage ¥ <T{") expression for the current:

e? T§<“>(2WT)3 Ve—Vh_1 +(vR—vnl)3

XN —(12)(27TITK)? Xo (35)
" h e T 27T 27T

—— =g ,
VI+x3 1+x5

or equivalently,

(31
Now, we letx,=(Vg—V,)/27T and substitute it into the

recursion relation Eq30), obtaining ) Vv o\ 2 —12
Vn=Vg—2aT{ e? " 1+ —) -1,
1/2%T 2 5 27T
xn—xnlz—a<_|_(—Kn)) (Xn_1+Xo_1), (32 (36)
which we can transform into a differential equation, since theVNereV=Vg—V, . We have used thato=V/27T, taking
couplings are assumed to be small: the incoming edge at equilibrium with the other reservoir
(Vo=V.). The total current flowing to the QH liquid is ob-
dx 1(2nT\? 3 tained from the voltage differendéy—V,, and is given by
dn~ 6\ T (x+x%), (33 1=y(e¥h)(Vy—V,). The differential conductance then
yields
to be integrated from the initial; to the finalxy (past the
last |mpur|tyN) yleIdlng 92 e_(1/2)(27TT/TK)2
G=v—] 1-
x dx No1(2aT\2 1/24T\? h _emmon| VLT
J ——==—2 = =55 9 (1-e “Nog) +1
xo X+ X n=1 67\ T 2\ Tx T -

in which we define the effectivE ¢ from the individual
Tf{‘). A very important point to be noticed is that one needsThe derivation for genera is similar, and gives

e2 e—(1/2)(27rT/TK)2(9*1>
SR L 1 (g-DaTm2e-y [V 2(9-1) L (2g-DI2Ag-1)] 5 (38)
— a0~ ™ K - +
(g 1 ® N 2aT

The result expressed in E@37) holds for all values of ergy scale in the problem that was not considered. This scale,
V,T, Tk, as long as the assumptions used to derive the exwe argue in this paper, is simply . In fact, notice that one
pression holds, namely, that each individual impurity iscan determinély from the low-voltage data, since the am-
weakly coupled. Notice that, even though fh%) are large, plitude of the tunneling conductan¢ehich in Ref. 5 was a
the effectiveT for the the line of impurities can be made fitting parameteyris directly related tolry and the measured
small by simply having a very long lindarge N). Experi- ~ temperaturer:
mentally one has two ways of varyingy: changing the 5
tunneling barriers and taking Wlde_r samp_les. _ Go=limG= ve—[l—e’ 1/2(271-T/TK)2]. (40)

We can use Eq(37) for comparison with recent experi- Vo0 h
ments by Changt al® The experiments demonstrate power- ) S _
law scaling of the tunneling current with voltage. For small!n the case of the data in Ref. &o<ve/h, in which case
voltages, the data is well fitted by a universa¥ character- Tk muszt ble larger 2than the temperature scale, and
istic that crosses over from a linear regime Y= T, to the ~ Go~=¥(e/h)3(27T/Ty)*. The same value df ¢ that is de-
power-law scaling fo/>T. One can easily check that the termined from the low-voltage dat&/&T) determines the

universal curve used for the conductance correspond to tHgNergy scale for the breakdown of the scaling form used in
T,V<T limit of Eg. (37), namely the fitting of the experimental data. The breakdown voltage

is V~T and is taken into account in E¢37), which holds

for the full range of probed voltages.
: (39 The scaling form used in Ref. 5 should break down when

the conductance becomes comparable to the natural conduc-
However, the fit used in Ref. 5 breaks down beyond a certaitance scale in the problemse®/h. This is explicit in Eq.
voltage scale. This suggests that there should be another ef87). One should also interpret with care the fact that the

2
1+3

~p— —

h 2

e’1/2=T
Tk

2
27TT)
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FIG. 5. Comparison between experimental and theoretical con-
ductances for tunneling between an electron gas and:éFQH
state—data set No. 1. The valuBs 25 mK (in agreement with the
measured valyeand Tx=11 K used in the theoreticalgE&2,
a=2g—1=3) plots are chosen to fit the low-voltage end of the
curve. A better fit to the data is achieved using E88) with
g=1.8(or a=2g—1=2.6), T=25 mK andTx=26.1 K. (Experi-
mental data is courtesy of A. Chahg.

FIG. 6. Comparison between experimental and theoretical con-
ductances for tunneling between an electron gas anet é FQH
state—data set No. 2. The set is best fit with a temperater85
mK, higher than the quote@i=25 mK. The values oT « are 4.9 K
for the theoretical =2, a=2g—1=3) curve, and 10.7 K for the
fit achieved using Eq.38) with g=1.8 (or «=2g—1=2.6). In this
set there are more high-voltage data points, which allows one to see
that the measured conductance saturat&-age?/h, in agreement
conductance saturates to the Hall val@d/h. This is a point with the theoretical prediction for multi-impurity tunneling. This
that should be taken into account carefully, since for tunnel€ase is to be contrasted with the single impurity vatire €.
ing through a single impurity, as seen in the previous sectiorEXPerimental data is courtesy of A. Chang.
the asymptotic value should be [2v/(v+
1)e?/h>ve?/h. What this says is that for a small tunneling tron gas into a single chiral edge, the exponent cannot be
conductance, the multi-impurity problem is very much like modified, since it is determined by the dimension of the lead-
the single impurity one, but for large tunneling conductanceng irrelevant operator and should be=2 (a=3) for v=
there must be a mechanism that lowers the asymptotic valug An effectiveexponenta# 3 is indicative that there is an
of the conductance twe?/h. This mechanism is brought additional crossover in the physics of these junctions. A re-

about by the multiple impurities.

In Figs. 5 and 6 we show, for=3 in two different

the conductance and the scaling form of E@) and(38),

lated issue is that if we use= 3, we find that the data is best
fitted with values ofT¢ that are approximately half of those
samples, the comparison between the experimental data fobtained fora=~2.6. This is a rather large change. A possible
explanation is that subleading irrelevant tunneling operators

valid for the full range of probed voltages. We obtain theare also coupled. The main effects of such operators is to
ratio Tx /T from the asymptotic low-voltage conductance. alter the corrections to scaling. For example, the leading ir-
For the data set of Fig. 5 we use a temperaturé=e25 mK, relevant operators cause an effectvedependence in the
the quoted experimental value. However, the data of Fig. €&ondo-like temperature scal€x. In this case Eq.(37),
appears to be consistent with a higher temperature, close tghich assumes @y that does not scale, should be modified
T=35 mK, rather than 25 mK. We would like to point out accordingly. Such & dependent correction B¢ could be a
that our Eq.(39), which is a low-voltage approximation of reason why other values gfand Eq.(38) fit the experimen-
the full scaling form of the conductance of E®7), is the tal data better. However, other scenarios are also possible.
same as the one used to fit the data in Ref. 5 with an expd-or instance, if there is clustering of tunneling centers at the
nenta=2g—1. atomic scale, the effective Hamiltonian will involve more
The theoretical curve forg=2 [Eq. (37)] (or that one impurity and more than one channel of the electron
a=2g—1=3) fits well the low-voltage data points, has a gas. If that were the case, there would be additional multi-
high-voltage crossover at about the right scalg)( and  impurity/multichannel crossovers just above the Kondo scale
saturates to the right high-voltage asymptotic valuebut will not affect neither the low-voltage regime nor the
(ve?/h). However, for both samples, it seems to overshoohigh-voltage regime.
the experimental data just above the crossover energy scale.
Instead, if we use Eq(38) with an effective exponent of
0=1.8 («a=2g—1=2.6), we get a better fit to the data set
over the full range of voltages. Notice, however, that the Now let us discuss the case where the individual impurity
value of T for the two scaling forms changes by about acouplings are strong. In this case, we can still use the same
factor of 2 (for both samples recursion Eq(30) with the strong coupling or high-voltage
The question on whether the exponentan be modified (V=>T{) expression for the current. Notice that what de-
is an important issue. In the case of tunneling from an elecfines the strong coupling regime is the ratio between the

B. Strong coupling
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voltages and the energy scales set by the impurifid®. C. Large number of impurities and equilibration

Thus, for large enough voltages, tunneling proceeds as if the one common conclusion to the case of weakly or strongly
coupling were strong, even if the nominal coupling constantgoypled individual impurities is that, for a large number of
are finite. In this regime, for each individual impurity, the them, the outgoing edge equilibrates with the reservoir. How
conductance saturates at the valuge®’h=[2v/(v+ the series/,, reaches the asymptotic valig may vary, but
1)]e?/h, so that we have a recursion if the series converge, it must converge\gq for a large
_ number of impuritiesN. Indeed, this result is a statement that
Va=Vao1=v 19 (Vg—Vy_y1) the attractor for the recursion relation EQO) is a single
5 fixed point. The recursion Eq30) implies that, if the volt-
=——(Vg—V,_1), (41  agesV, converge, ther/..=Vg, independent of the impu-
+1 rity couplings.
which has a solution This is the me;chanism for equilibration between the e_dge
and the reservoir. It had been noticed by Kane and Fisher
1\" that impurity tunneling was key in this equilibration, in the
T+l } (42) case where one can assume that the effect of tunneling is a
small leaking conductance that would equilibrate the edge
Again, we have used that,=V_ is the voltage at the in- and reservoir past an equilibration length dependent on the
coming edge branch, which is equilibrium with the otherleak conductance. What we show here is that this equilibra-
reservoir. Notice that the voltage after scattering through théion mechanism is sturdier and more complex, equilibrating
nth impurity converges t&/..=Vg, but not monotonically, edge and reservoir for very general coupling distributions.
oscillating around the asymptotic valgbecause the argu- The most striking example is that of strong coupling, where
ment being raised to the poweris negative, since we have the asymptotic voltage is reached nonmonotonically, which
v<1). For example, in the case of=3, the sequence of isimportant to understand how the result of a single impurity
voltages ¥,—V\)/(Vr—V,) is {0,3/2,3/4,9/8,15/16, . .},  (hot electronsis possible and can be reconciled with the idea
where we recogniz¥; as the strong coupling result from the of tunneling causing equilibration.
single impurity problem.
The conductance can be obtained from the current
through the device,= v(e?/h)(Vy—V,), Which yields

Vn:VL+(VR_VL)[1_

VI. CONCLUSIONS

) In this paper we have investigated the problem of tunnel-
€ (43 ing from an electron ga&eservoij to a FQH state for dif-
h' ferent types of contacts. We showed that differeniversal

. values can be obtained for the two-terminal conductance. At

we Fhus have a Seq“enc‘g of quantized Conductalnces COI'&'rge voltages, or strong coupling, the conductance of a

verging to the Hall valuese”/h. For example, fov=35the  ,ointike tunneling junction between an electron gas reser-
sequence IS voir and a Laughlin FQH state at filling fraction was

p—1\N

v+1

GN:V 1-

113 1) e2 shown to saturate to a universal valueG=[2v/(v+
GN:(E'Z’@’E’ e ’§}F’ (44 1)]e?/h. We used this result to show that devices with dif-
ferent types of contacts between the reservoir and the FQH
and forv=1 state lead to distinct universal values of saturation conduc-
tance that are rational multiples ef/h. In particular, the
117 13 1€ fractione?/h was obtained for the case of electron tunneling
NT13'9'27'81" " "'5| h° 49 inand out of a FQH liquid by two point contacts. We dem-

_ , i onstrated that the problem of tunneling between an electron
For »=1 we have the uninteresting and expected result thaf,q and a fractional quantum Hall state through an impurity

— 2
all Gy=e“/h for all N. . is exactly equivalent to the problem of tunneling between a
In the above, we have assumed that the contact with theyira| Fermi liquid and a chiral Luttinger liquid. The inter-

left reservoir is made through many impurities, so that
Vo=V, . One can easily treat in a very similar manner the
case ofN, contacts with the left reservoirs, aik contacts
with the right one(as we did the case of one contact for each
in Sec. ll). This general case will display a conductance
GNL'NR that will depend on botiN;, andNg:

esting case of tunneling to a=3 FQH state was investi-

gated in detailed and shown to be equivalent to the problem
of tunnelingbetweertwo g= 3 chiral Luttinger liquids. This

system provides an experimental realization of this important
exactly solvable case. The results of the single impurity
problem were used to consider the case of many tunneling
centers coupled independently to an electron reservoir. This

[1_( v—1)M _ V_l)NR problem is relevant to recent experiments by Chabgl.

v+1 v+1 e? Using the exact solution of the single impurity problem, we

Gy Ne= v—1\NLTNR Yo (46) derived an explicit universal expression for the voltage and
P temperature dependent conductance for a problem of many

independent impurities. Here we made the key assumption
One can check that this formula, in particular, reproduces théhat the channels of the electron gas that couple to each in-
cases in Fig. 1Gw,m=ve2/h, G. 1=[2v/(v+ 1)]e?/h, and  dividual impurity are always in equilibrium or, what is the
Gy1=€?/h. same, that there is no phase coherence between channels.
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This assumption must be accurate for widely separated tun- At the impurity location, which we take to be=0, we
neling impurities of an atomically smooth junction. We haye

showed that the voltage and temperature dependent conduc-

tance exhibits a crossover reminiscent of a Kondo effect with o

a Kondo scaleTi determined by the tunneling matrix ele- $(0)= J; dk; bra(0)en(k), (A3)
ment. This universal curve was shown to fit the experimental

data over the full range of probed voltages. It was also oband because the states with the sdmare degenerate, we
served that this universal curve overshoots the experimentgan perform an orthonormal transformation so as go to a
data on a voltage scale abalg but below saturation, where basis where

an effective exponent was found to give a better fit to the 1

data. We interpreted this effective exponent as indicating that = _ =

either a subleading irrelevant operator had a significant am- Calk)= /\/’k; Pra(0)ex(k) (Ad)
plitude (which would be the case if the edge structure is not ) L
sharp or that the physical samples had some degree of cludS & basis vector. The normalization facttf appears be-
tering of tunneling centers, leading to multichannel/multi- €2uSe the vector does not necessarily have nofg(@) has

impurity physics. Also, in this paper we have assumed thaf/€ight at different]. This can always be done via a Gram-
the tunneling matrix elemet is independent of the applied Schm|_dt orthogon.allzatlion Pprocess. Notice thgt the_fact_ that
voltage. Clearly, a3/ increases” should chang&® How- there is a_smg_le |_mpur|ty is used here: one impurity picks
ever, these changes amount to an analytic redefinition of th@nly one direction in each subspace labelledbidence, we
coupling constant and are nonuniversal. Such effects lead /" always use _th|s one direction as the first basis vector in
a redefinition ofT and do not change either the exponent orth® Gram-Schmidt process.

the saturation conductance. We can thus write
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particles with respect to the impurity. This half-line can be
unfolded, so we are left with one chiral fermion on an infi-

APPENDIX A: GENERAL MAP nite line. Thus, from the perspective of the impurity, the
FROM A HIGH-DIMENSIONAL ELECTRON GAS electron gas can be regarded as a chiral Fermi liquid. One
TO A 1D CHIRAL FERMI LIQUID FOR TUNNELING should notice thag=1 is completely fixed in this problem,
THROUGH A SINGLE IMPURITY because the chiral fermions are derived from a higher dimen-

sional system, where the Fermi liquid picture holds.

_Here we consider in detail the general problem of cou-  ge|oy we give particular examples which are applications
pling an impurity to an electron gas subject to genericy ¢ general result.

boundary conditions. We show that, regardless of details of
the boundary conditions, only one quantum channel couples
to the impurity, and the electron gas can be regarded as a 1D
chiral Fermi liquid as what concerns the impurity coupling.  This case is a simple application of the general result.

The sufficient assumption that we make is that the elecHere we follow closely the derivation for the case of the

tron gas in the bulk is isotropic, so that the eneegi) of  impurity at the bulk by Affleck and Ludwfg.

the bulk eigenstates depends only|5h In this case we can Ial:etmilvcea}ssgéone writes the electron operator in terms of
expand the electron operator as P

1. Spherically symmetric system

- dk -
. o . l//(X): J’ (ZT):%QEIK'XCR, (A6)
w0 [ “akS g, (A1)
where the operators; satisfy the anticommutation relations

- J[ -1 = 3(L_ L' . . .
where{ ¢, \(X)} is a complete set on one-particle eigensta‘teéCk Ci }* &*(k=k’). One then notices that at the impurity

that satisfy the correct boundary conditions. Hexgis a set  locationx=0,
of quantum numbers that labelegeneratestates with the
same wavenumbet and e(k). The electron operator obey

d3k
0)=| ——3pCk A7
the anticommutation relation ¥(0) f(277)32 K (A7)

: ) ) depends only on the spherically symmetric component
{ea(k),enr(K") =8y o(k—k"). (A2)  (L=0) of the operatoci, namely,
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© K j @ "8 ¢(_) & s e 1(1/2)¢(ky) gikz_ oi(1/2) (kp) g~ k2
CL= =— Cok, - X)=e'kL ,
L=0 ,_477 Ok ky .k, \/i

: . A1l
which satlsW{c[:O(k), C —o(k')}=68(k—k"). Thus, one (ALY
has only to consider the 1D fermions running along the raby operators
dial coordinates for th& =0 mode for the purposes of cou- _ ; _ ;
pling to the impurity att=0. e (M2l | (2ol

’y(,)T _ LNz L z
K,
2. Impurity at a planar boundary of a 3D electron gas : \/E (A12)

We now consider in detail the case where the pointlike ] . _
contact or impurity is not in the bulk, but at the planar We can redefine fermion operators Cg
boundary between a free electron gas and a potential barrigr Sgnk,)e''?*Jc; so as to absorb the phases into the
that confines the gas. Here we have to take into account th#ee fermions. The Hamiltonian for the system is just that for
the eigenstates are modified by the presence of the boundafjee fermionsci:

Let the boundary be at the=0 plane. Let the barrier high

: d3k  A2K2 d3k  A2K3
be U>0 for z<0, and 0 forz>0. The effect of the barrier H:J CIC,:J ey
on the wave functions can be absorbed completely in the (2m)¥2 2m KK (2m)¥2 2m "k

phase shift that the electron picks up after reflecting of the (A13)
boundary(the barrier is confining, so the Fermi level lies )

under the barrier height, and thus the barrier is completely We can write the electron operator fo=0 as
reflecting. The wave functions foz>0 can then be written

as ¢<>Z>=Jd2i e\ Gk
2m) Jo @mP Pk kY Kk
o - . e (112 d(ky) giksz 4 gi(112)d(ky) o= ik,2 (A14)
¢\ ()=l % ,
(A9) At the impurity locationx=0,
wheree'?? is the phase shift factor due to the reflection at (A (= odk, "
the boundary of a wave with momentuky [notice that $(0)= 2m) Jo 277)172¢li'kz(0)7 kp ok,

d(k,)=—d(—k,)]. Itis an elementary exercise to show that
for a potential barrier of heigh the phase shift is given by _ d3k d(ky,) s
cos(p(k)/2)=k,/ko|, whereko= y2mU/fi. =] G52 sgnik,) Tk

The operator that creates the sta’;tfge+ )k ()Z) can be writ-
1"z

Bk k,
ten in terms of plane wave creation operato&sas = 2m)" C‘Zk_o’
e*i(l’a‘/’(kz)cé . +ei(1’2>‘/’<"z)cE - which depends only on thee&1, M=0) mode of the op-
7,(+>;£ = Lz R eratorcy, namely,
Lk 2
(A10) [3 .
Although the general result we have shown has a simple CL-1, m=o(k)=kK Ef diToco,  (AL5)

proof, the application to a particular case involves explicitly ) ) )

finding the right basis. In this particular problem at hand, thiswhich satisfy the commutation relations

can be greatly simplified by exploring symmetries and en- _ _

larging the Hilbert space. {Cl=1, m=0(kK),CL=1, m=o(K')}=38(k—=K"). (A16)

T .
The Operatorsy(ﬂli,kz generate only half the Hilbert again, one has only to consider the 1D fermions running
space for free fermions without the boundary. The other halfilong the radial coordinates for this angular momentum
is generated from wave functions of different symmetry ~ mode.
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