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Distinct universal conductances in tunneling to quantum Hall states:
The role of contacts

Claudio de C. Chamon and Eduardo Fradkin
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080

~Received 23 December 1996!

We show that differentuniversalvalues can be obtained for the two-terminal conductance of a fractional
quantum Hall~FQH! state. At large voltages, or strong coupling, the conductance of a pointlike tunneling
junction between an electron gas reservoir and a Laughlin FQH state at filling fractionn saturatesto a
universal valueG5@2n/(n11)#e2/h. We use this result to show that devices with different types of contacts
between the reservoir and the FQH state lead to distinct universal values of saturation conductance that are
rational multiples ofe2/h. The particular fractione2/h is obtained for the case of electron tunneling in and out
of a FQH liquid through two point contacts. We demonstrate that the problem of tunneling between an electron
gas and a FQH state through an impurity is exactly equivalent to the problem of tunneling between a chiral
Fermi liquid and a chiral Luttinger liquid. We investigate in detail the case of tunneling to an5

1
3 FQH state,

which we show to be equivalent to the problem of tunnelingbetweentwo g5
1
2 chiral Luttinger liquids. This

system provides an experimental realization of this important exactly solvable case. We use the results of the
single impurity problem to consider the case of many tunneling centers coupled independently to an electron
reservoir, which is relevant to recent experiments by A. Changet al.We derive an explicit universal expression
for the voltage and temperature-dependent conductance that exhibits a crossover reminiscent of a Kondo effect.
This universal curve fits the experimental data over the full range of probed voltages.
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I. INTRODUCTION

Since its discovery, the quantum Hall effect~QHE! has
provided the experimental setting for a variety of ideas
condensed matter physics. For example, the QHE establi
a clean experimental realization of strongly correlated o
dimensional~1D! Luttinger liquids. It was noted first in X
G. Wen’s seminal paper on the theory of edge states of f
tional quantum Hall~FQH! liquids that the gapless edg
modes were a realization of a~chiral! Luttinger liquid.1 One
of Wen’s proposals for testing these ideas was to do exp
ments that would probe tunneling between the edges of
states.2 He predicted that in experiments in QHjunctions, the
tunneling current should exhibit a power-law dependence
the applied voltage with an exponent determined by the
pological order of the bulk QH liquid. For a QH state with
single edge the exponent is determined solely by the fill
fractionn. Tunneling in QH states is conceptually related
the problem of scattering of quasiparticles in quantum wi
~QW’s!, which are nonchiral Luttinger liquids. Kane an
Fisher have given a physical picture of tunneling in Lutting
liquids in the form of a renormalization group theory f
both chiral and nonchiral liquids. In particular, they pr
dicted the nonlinearI -V characteristics and the univers
shape of the conductance peaks.3

Experimentally, the power-law scaling of the tunnelin
current on voltage and temperature in Luttinger liquids h
been observed by two groups. Milliken, Umbach, and We4

used a gated quantum point contact to bring the edges
FQH state closer so as to observe the tunneling current.
is an experimental realization of tunnelingbetweenthe edge
states of QH liquids. More recently, Chang, Pfeiffer, a
West5 measured electron tunneling from a bulk doped-Ga
electron gasinto the abrupt edge of a FQH state. The lat
560163-1829/97/56~4!/2012~14!/$10.00
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experiment is particularly interesting for the following re
sons. First, it is able to observe the power-law behavior o
more than one decade inV andT. Second, the device used i
the experiment is an effective tool to address experiment
the study of how a bulk electron gas serves as reservoir w
in contact to sharply defined FQH liquids.

QH tunneling junctions are an ideal setting in which
study the physical properties of bulk QH liquids and, in pa
ticular, the nature of their quasiparticles. These proper
determine the power-law behavior of the nonlinearI -V
curves. This behavior of theI -V characteristics is just one o
the many aspects of this rich problem.

From the theoretical point of view, the problem of tunne
ing in chiral Luttinger liquids is described by rich quantum
field theories with a nontrivial spectrum, exhibiting a wea
to-strong coupling duality symmetry.6 For special values of
the Luttinger liquid parameterg, the model is exactly solv-
able via the thermodynamic Bethe ansatz.7 The conductance
is known for all values ofg in terms of dual series expan
sions for the valuesg and 1/g.7,8 The noise spectrum con
tains structures related to the fractional charge and statis
of the tunneling particles,9–11 and it is believed to be a
nonanalytic function ofg for finite frequencies.12 Hence,
tunneling experiments to QH edges provide a unique w
dow through which to study the rich and deep physics
chiral Luttinger liquids beyond the determination of the
asymptotic scaling behavior.

Experimental devices similar to those of A. Changet al.
can be used to address such conceptual issues. More
these devices also provide a means for studying mesosc
effects arising from different ways of coupling the reservo
~the bulk electron gas! to the FQH states.13

We have learned in recent years that the transport pro
2012 © 1997 The American Physical Society
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56 2013DISTINCT UNIVERSAL CONDUCTANCES IN . . .
ties of strongly correlated states depend delicately on
properties of the contacts or reservoirs. This is the case
1D quantum wires, which display quantized conductance
agreement with noninteracting electrons,14,16 despite the
renormalization that should be expected from the electr
electron interactions in infinite systems.15 It may seema pri-
ori that there should be a clear distinction between nonch
Luttinger liquids ~quantum wires! and chiral ones~edge
states!, since the quantized Hall conductance is not alte
by the reservoirs.17 However, we will see below that this is
rather subtle issue.

The physics of tunneling ofelectronsfrom a reservoir to
the edges of a QH liquid is determined by the physical pr
erties of the QHquasiparticles. The natural question tha
arises is whether it is possible to use QH junctions to acc
the properties of the quasiparticles of FQH states, in part
lar, their fractional charge.

The question of how to observe a fractionally charg
quasiparticle of a strongly correlated system is a rather
problem. It has been considered in detail in the context of
soliton states in quasi-one-dimensional conductors suc
polyacetylene.18 It has been proposed that noise experime
in both polyacetylene19 and in QH junctions9,10 could be
used to measure the fractional charge. However, experim
tal attempts to measure noise in both physical systems h
encountered a number of significant technical and concep
difficulties. Observing a fractionally charged excitation fro
a bulk FQH state by tunneling from a known state~the res-
ervoir! depends on the nature of both the reservoir and
contacts.20 In the context of the fractional quantum Ha
effect ~FQHE!, the proposed noise experiments rely on t
theoretical picture in which edge states of FQHE liquids
assumedto be in equilibrium with a hypothetical reservoir o
quasiparticlesthat are then allowed to tunnel. However, a
experimental setup must consist ofelectronstunneling in and
out of one or several reservoirs into a FQH liquid. The ed
excitations of the FQH liquid by themselves cannot equ
brate, since the liquid by itself does not dissipate and ther
no loss of phase coherence. The real loss of phase cohe
~and the resulting dissipation! originates in the electron res
ervoir, i.e., in the external leads. Hence, the question to
addressed is how the tunneling of electrons into a FQH s
tem is affected by the nature of the quasiparticles of the F
liquid and by the equilibration mechanism. It is then natu
to ask for what class of contacts~i.e., couplings with externa
leads! is it possible to use tunneling experiments to rev
the nature of the FQH quasiparticles. This is the main m
vation of this paper.

The purpose of this paper is thus to develop a concep
framework for the study of the nonperturbative physics
tunneling into a chiral Luttinger liquid from a reservoir. W
will be interested on the physics of these systems at gen
voltages and temperatures or, equivalently, in the cross
from weak-to-strong coupling. For the sake of simplicity,
this paper, we discuss the problem of tunneling to sin
edge QH liquids. Recently, Kane and Fisher22 described the
behavior of a junction between a QH state and reservoir
the weak coupling regime, where they found that the tw
terminal conductance isnot universal. In this paper, we wil
show that in the strong coupling limit, the two-terminal co
ductance through a FQH state with filling fractionn becomes
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universal. This is the regime we will be primarily intereste
in. In particular, we will show that different ways of cou
pling to a principal FQH state withn51/(2m11) can lead
to values of the two-terminal conductances such
G5ne2/h ~the usual one!, G5@2n/(n11)#e2/h or simply
G5e2/h. The main tool that we will use in this paper is
mapping~that we present below! of the problem of tunneling
from a higher dimensional electron gas to the edges of a
liquid to anexactlyequivalent problem of tunneling from
single-channel chiral Fermi liquid and the same QH ed
This is applicable if the coupling is made via a single poi
like contact. The injected electrons in the QH edge states
we show, arenot in equilibrium with the reservoirs, and thi
is the origin of the renormalized conductance. Equilibrati
is recovered if the coupling to the QH state is made throu
many contacts. In the case of many contacts we obtain
I -V characteristic and compare it with recent experimen
data by A. Changet al. for the full range of probed voltages
This mapping can also be used to describe the problem
tunneling of electrons from external leads to a nonchiral L
tinger liquid.16

This paper is organized as follows. In Sec. II we summ
rize the basic physical picture and results. In Sec. III
show that the tunneling from a generic electron gas to a F
liquid through a point contact is equivalent to tunneling fro
an effectivechiral Fermi liquid to the edges of the sam
FQH state. Using this mapping we nonperturbatively so
several cases of interest, showing that the two-terminal c
ductance can assume distinct universal values dependin
the nature of the contacts. In Sec. IV we show that
n51 to n5 1

3 QH junction is an experimental realization o
the problem of tunneling between twog5 1

2 chiral Luttinger
liquids. This is an important theoretical system, since it
exactly solvable for all correlation functions. In Sec. V w
discuss the role of multiple tunneling processes in the equ
bration of QH edge states. In this section we derive a u
versal crossover function for the conductance of an elec
gas to a QH edge state for arbitrary voltages and tempera
through a large number of individually weak tunneling jun
tions. Since the number of junctions is large, the effect
coupling is large and this system cannot be described pe
batively. The crossover function has a remarkable res
blance to a Kondo-like effect. At large voltages the condu
tance saturates atG5ne2/h. We use this crossover functio
to fit the experimental data of A. Changet al.over the entire
range of voltages.5 We also give a set of asymptotic value
of the universal conductance in the strong coupling limit
a generalized problem ofNL ,NR contacts to the left and righ
reservoirs. Section VI is devoted to the conclusions. In
Appendix we present the details of the mapping of a hig
dimensional electron gas to a one-dimensional chiral Fe
liquid for tunneling through a single impurity.

II. SUMMARY OF THE APPROACH AND RESULTS

In this paper, we show that for the purposes of study
tunneling between an electron gas and a chiral Luttinger
uid, the electron gas behaves as an effective chiral Fe
liquid. The idea, although simple, is strongly justified f
reasons other than simply looking at the algebraic decay
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the electron Green’s function. Just as in the Kondo probl
scattering through a pointlike impurity potential can be u
derstood in terms of the radial motion of an effective on
dimensional nonchiral fermion on a semi-infinite line~see,
for example, Ref. 23!. By unfolding the line around the im
purity, one obtains a chiral fermion on an infinite line. Thu
it is well grounded to expect that, for the problem of tunn
ing through a single point, the electron gas that makes up
reservoir should behave exactly in the same way as a c
Fermi liquid or the edge of a sharpn51 QH state. This
mode selection works regardless of the number of spa
dimensions of the electron gas in the reservoir. One can th
of this construction as the cleanest, easiest, not to men
cheapest,~virtual! realization of a sharp edge of an51 QH
state (g51).

We consider in detail the case of tunneling between
electron gas and a QH liquid belonging to the principal
quence~Laughlin! n51/(2m11), m an integer. As noted
above, the electron gas can be regarded as a chiral F
liquid, so we have at hand the problem of studying tunnel
between Luttinger liquids with differentg. We perform a
change of basis in order to rescale the radii of the boso
fields describing the chiral branches and in this way we m
the problem of tunneling from an electron gas to the edge
a Laughlin FQH liquid with filling fractionn to the problem
of tunneling between two identical chiral Luttinger liquid
with g52n/(n11).

Using this framework, we point to experimentally acce
sible features of quantum Hall liquids that are consequen
of the chiral Luttinger liquid nature of the edge states. F
example, we show that in a two-terminal conductance
periment where one of the contacts is a pointlike tunnel
center between a FQH liquid and an electron gas~reservoir!,
the conductance in the strong coupling limit is larger than
Hall conductance, but universally related to it. More expl
itly, the two-terminal conductance for strong tunneling~or
high voltages! to a Laughlin FQH state of filling fractionn is
G5@2n/(n11)#e2/h. This implies that the electrons in
jected into the FQH liquid will be hotter~i.e., higher voltage!
than those in the reservoir. The tunneling contact is thu
springboard for raising the chemical potential.21

Since the injected electron is hotter than the reservoir,
might ask how to restore an equilibrium between the Q
liquid and the reservoir. We address this problem by con
ering the effects of many impurities. It was pointed out
Kane and Fisher that the equilibration mechanism betw
QH liquids and reservoirs could be understood in terms
tunneling through a line of weak coupling impurities, whic
would bring the voltage along the edge states monotonic
to equilibrium with the reservoirs.22 In this paper we show
that the same is true in the case of strong coupling imp
ties. The only difference between these two situations is t
as the number of impurities increases, the voltage of the
edge oscillates around the asymptotic equilibrium value. O
consequence of the equilibration with the reservoirs is t
the two-terminal conductance acquires the value of the b
Hall conductance.

The dependence of the two-terminal conductance on
way the reservoirs are coupled to the FQH liquid is illu
trated in Fig. 1. In Fig. 1~a! we show the usual case whe
the two-terminal conductance equals the Hall conducta
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G5ne2/h. In this case, the Hall voltageV12V25VR
2VL , and the edges are in equilibrium with their respect
reservoirs of departure. The contacts are made through m
points in this case. In Fig. 1~b! one reservoir is coupled
through many points, whereas the other is coupled thro
one single quantum channel, or pointlike contact. In t
case, one edge branch is in equilibrium with one reserv
(V25VL), but the other is not (V1ÞVR). The two-terminal
conductance in this case is G5@2n/(n1
1)]e2/h, larger than the Hall conductance, and thus the H

FIG. 1. Different ways of strongly coupling a FQH liquid t
reservoirs gives distinct universal values for the two-terminal c
ductance. In~a!, the FQH liquid is coupled to the reservoirs v
many contacts. The edges are in equilibrium with their respec
reservoirs of departure, and the two-terminal conductance eq
the Hall conductancene2/h. In ~b!, the left reservoir is coupled
through many points, whereas the right one is coupled via a sin
quantum channel~one point-like contact or impurity!. The electrons
at the upper edge (V1) arenot in equilibrium with the right reser-
voir (VR). The two-terminal conductance is@2n/(n11)#e2/h,
larger than ne2/h, and the Hall voltage V12V252/
(n11)(VR2VL).VR2VL . In ~c!, both reservoirs are coupled vi
a single pointlike contact. Neither branch is in equilibrium wi
either reservoir, and the two-terminal conductance ise2/h, indepen-
dent of the filling fractionn51/(2m11).
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56 2015DISTINCT UNIVERSAL CONDUCTANCES IN . . .
voltage ishigher than the two-terminal voltage differenc
@V12V252/(n11)(VR2VL)#. Finally, in Fig. 1~c! both
contacts to the QH state are pointlike and neither e
branch is in equilibrium with either of the two reservoir
The two-terminal conductance isG5e2/h, again larger than
the Hall conductance, and the Hall voltage is also higher t
the two-terminal one @V12V25n21(VR2
VL)#. In this last case, there is an analogy to the problem
unrenormalized conductances in quantum wires; there is
quantum channel going in and out of the strongly correla
QH state, so that the conductance ise2/h regardless of the
filling fraction n51/(2m11).

The devices depicted in Fig. 1 are particular cases of
general problem of connecting a Laughlin FQH liquid wi
NL point contacts to the left reservoir, andNR point contacts
to the right one. For strong coupling~which can always be
achieved for large enough voltages!, we find that the univer-
sal conductanceGNL ,NR

is given by

GNL ,NR
5

F12S n21

n11D
NLGF12S n21

n11D
NRG

F12S n21

n11D
NL1NRG n

e2

h
, ~1!

which reproduces the cases in Fig. 1:G`,`5ne2/h,
G`,15@2n/(n11)#e2/h, andG1,15e2/h.

In this paper we also consider in detail the problem
equilibration in the presence of many impurities or contac
coupling a reservoir to the QH liquid. The case of ma
impurities is treated in the following way. The propagati
in the reservoir side between spatially separated impur
takes place incoherently. Moreover, after scattering from
pointlike contact to the QH liquid, the energy of the scatte
electron would drop on the chiral Fermi branch, but wou
then be brought back to equilibrium with the reservoir. Th
electrons incident on any of the impurities from the reserv
side will always be at the same voltage. On the QH liqu
side, however, the energy of the scattered electron is m
tained from one scattering event to another, because of
dissipationless nature of the QH state. Multi-impurity sc
tering will bring, eventually, the QH edge to equilibrium
with the reservoir. This scattering mechanism allows one
obtain the solution of the many impurity problem from th
single impurity one. Notice that the behavior of the electro
in the reservoir side, namely loss of phase memory
equilibration, is what provides the simplification needed
solving the multi-impurity case. Clearly, incoherence is
key assumption here. It must hold for well separated im
rities that should act essentially independent from each ot
This situation is familiar from the physics of dilute magne
alloys, where the Kondo impurities are indeed independ
from each other. It is also clear that as the impurities~i.e., the
contacts! become closer to each other, coherence effect
the reservoir should become important. In this limit, we e
pect a richer and more complex quantum behavior much
the multi-impurity or multichannel behavior in Kondo sy
tems.

We use this framework for the multi-impurity case a
apply it to obtain a solution for the case of tunneling, throu
many impurities, from an electron gas to an5 1

3 liquid,
which is of direct relevance for comparison to the expe
e
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ments of Changet al.5 We show that the mechanism that w
consider in this paper contains the necessary ingredien
explain not only the low voltage, low-temperature power-la
behavior, but also the breakdown voltage scale for deviati
from the anomalous power-law scaling. In addition, it pr
dicts the asymptotic large voltage conductances, wh
should saturate at the bulk value of the Hall conducta
ne2/h. We show that the conductance between the elec
gas and then5 1

3 FQH state is given by

G5n
e2

h H 12
e2~1/2!~2pT/TK!2

F ~12e2~2pT/TK!2!S V

2pTD 211G3/2J , ~2!

whereT is the temperature andTK is a crossover energy
scale determined by the couplings ofall impurities connect-
ing the electron gas to the QH state. The only assump
made in the derivation of Eq.~2! is that individual impurities
are weakly coupled. This assumption, as we show, does
restrict the result to the regime of small conductances, si
the scaleTK can actually take a broad range of values. Hen
the expression should remain valid even for voltages la
compared toTK and conductances as large as the bulk H
valuene2/h ~this point is made clear below!.

The result of Eq.~2! can be used for comparison with th
experimental data. One can easily check that, forV!TK ,
Eq. ~2! reproduces the scaling form used in Ref. 5. The vo
age scale for which the experimental data departs from
low-voltage scaling form is determined by the energy sc
TK , which is evident in Eq.~2!. This breakdown voltage
scale can be determined from the low-voltage data, since
amplitude of the tunneling conductance is directly related
TK andT:

G05 lim
V→0

G5n
e2

h
@12e2~1/2!~2pT/TK!2#. ~3!

Therefore, the ‘‘breakdown’’ voltage is indeed part of th
full solution to the problem of tunneling into the FQH edg

One should not overlook the fact that the experimenta
measured conductance saturates to the Hall valuene2/h.
This is a signature of many impurities, and it is in agreem
with Eq. ~2!. We contrast this case to the one impurity co
tact @to one of the reservoirs, as in Fig. 1~b!#, for which the
two-terminal conductance should reach the va
G5@2n/(n11)#e2/h, and electrons enter the edge of th
QH liquid hotter than the reservoir.

Finally, we would like to point out that, as a natural co
sequence of the physics of the point-contact junctions
tween bulk electron gases and FQH states that are discu
here, these junctions constitute a simple physical realiza
of the dc voltage transformer proposed very recently by C
klovskii and Halperin.24 The point-contact junctions ar
more readily realizable and possibly avoid many of the d
ficulties discussed by Chklovskii and Halperin.

III. TUNNELING FROM AN ELECTRON GAS
TO A FQH EDGE

Our starting point is the Lagrangian density that descri
the dynamics on the edge of the FQH liquid, the electron
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2016 56CLAUDIO de C. CHAMON AND EDUARDO FRADKIN
reservoirs, and the tunneling between the two via a sin
impurity:

L5Ledge1Lgas1Ltun. ~4!

The edge excitations of a FQH liquid withn51/(2m11)
are described by a single free chiral boson fieldf with

Ledge5
1

4p
]xf~] t2v]x!f ~5!

and equal-time commutation relation@f(t,x),f(t,y)#5
2 ipsgn(x2y). The edge electron operator is written
terms of the boson field ascedge(t,x)}e

2 i1/Anf(t,x).1 Lgas is
the Lagrangian for the electron gas, withc(t,x) the electron
operator there. The tunneling Lagrangian is then

Ltun5A2pGd~x!eivJtei1/Anf~ t,0!c~ t,0!1H.c. ~6!

The Josephson frequencyvJ5eV/\ is set by the difference
of voltages between the electron gas and theincomingedge
branch to the impurity. As we will see later, the voltage f
theoutgoingbranch is raised due to tunneling.

The next step is the mapping between a 2D or 3D elec
gas to a 1D chiral Fermi liquid for tunneling through a sing
impurity. We follow the conventional procedure used in t
theory of the Kondo problem~see, for instance, Ref. 23!,
where it is shown that the problem of a single isotropic m
netic impurity coupled to a 3D Fermi liquid is mapped to t
problem of a 1D chiral Fermi liquid coupled to the impurit
The same conclusions hold for any number of dimensi
greater than one. In the Kondo problem, one basically wr
the electron wave functionc(rW) in a spherically symmetric
basis, with the origin at the impurity positionrW50. The op-
eratorc(0W ) depends only on theL50 harmonic, so that this
is the only channel that participates in coupling to the imp
rity. For the case of two dimensions, only them50 channel
is coupled.

One may worry that if the impurity is on the plana
boundary of the 3D electron gas, the spherical symmetr
spoiled. However, the spherical symmetry is not a neces
condition to arrive at the conclusion that only one quant
channel is coupled via the impurity. We show in appendix
for a very general set of problems, that one can always fin
basis of eigenstates of the Hamiltonian for the electron
such that only one quantum channel couples to the impu
and again only the radial components of that channel
important. The electron operator for this channel can be w
ten in terms of left and right moving fermions on a half-lin
which is the radial coordinater ~left and right moving par-
ticles correspond to incoming and outgoing particles w
respect to the impurity!. By unfolding the half line into a full
line, one can describe the electron operators in terms
single chiral fermion on an infinite line. Therefore, for tu
neling through a pointlike contact, the semi-infinite 3D ele
tron gas becomes effectively equivalent to a 1D chiral Fe
liquid. It can be regarded in much the same way as if it w
a sharp edge ofn51 QH state.

Thus, we can write

Lgas5Lgasa 1other channels, ~7!
le

n

-

s
s

-

is
ry

,
a
s
y,
re
t-

a

-
i
e

wherea labels the quantum numbers of the channel t
couples to the impurity~which depend on the symmetry i
the problem, such asL50 for the Kondo problem!. We can
then bosonize thea effective chiral 1D mode correspondin
to the ~unfolded! radial direction:

Lgasa 5
1

4p
]xw~] t2 ṽ ]x!w ~8!

with the electron operator given~in terms of w) by
c(t,x)51/A2p:e2 iw(t,x):.

We are free to rescale the position coordinates and t
alter the velocities. Moreover, because the tunneling ta
place at a point, and also the two chiral boson fieldsf and
w are in separate spaces, we are free to rescale the pos
coordinates independently, allowing us to set bo

v5 ṽ51. ~Notice that even though we used the same sym
x for the coordinates of both fields,x separately parametrize
the fields along their arc length. The only commom point
the parametrization isx50, which is the impurity location.!

The tunneling problem is then described by the Lagra
ian

L5
1

4p
]xf~] t2]x!f1

1

4p
]xw~] t2]x!w

1Gd~x!eivJtei „~1/An!f~ t,0!2w~ t,0!…1H.c. ~9!

We can bring the tunneling term to more familiar forms
means of a rotation. Instead of doing this directly for Eq.~9!,
let us treat a more general problem. Consider tunneling
tween an151/n1 and an251/n2 QH state, with bothn1,2
odd integers~single edges!. The tunneling coupling is

Ltun5Gd~x!eivJtei „~1/An1!f1~ t,0!2~1/An2!f2~ t,0!…1H.c.
~10!

5Gd~x!eivJtei ~1/A n̄ ![fa~ t,0!2fb~ t,0!]1H.c., ~11!

where we have performed theO(2) rotation

S fa

fb
D 5S cosu sinu

2sinu cosu D S f1

f2
D , ~12!

with

cosu5
1

A2

An1
211An2

21

An1
211n2

21

sinu5
1

A2

An1
212An2

21

An1
211n2

21
.

The tunneling term corresponds to tunneling between
chiral Luttinger liquids with

g5 n̄ 215
n1

211n2
21

2
. ~13!

In particular, since we showed that the electron gas cou
to a single impurity through only one quantum channel~see
Appendix A!, it is effectively equivalent to a 1D chiral Ferm
liquid ~virtual n51), and so we have
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g5
n2111

2
, ~14!

wheren is the filling fraction of the QH state coupled to th
electron gas~reservoir! through the single impurity.

We can then use the known results for tunneling betw
two Luttinger liquids and apply them to the problem of tu
neling from an electron gas to the edge of a FQH liquid. W
can, for example, determine the current injected into the e
branch, which depends on the voltage difference between
electron gas and theincoming branch to the impurity, as
shown in Fig. 2.

Because of the weak-to-strong coupling duality symme
present in the problem of tunneling between Luttinger l
uids, we can also turn to the dual picture corresponding
tunneling between two Luttinger liquids with

g̃5
1

g
5

2

n2111
. ~15!

The differential tunneling conductance depends on b
g ~or g̃) andVR2Vin . At zero temperature, it is given by

7,8

Gt5 g̃
e2

h
35 (

n51

`

cn~1/g̃ !S V

2TK
D 2n~1/g̃21!

,
V

2TK
,ed

12 (
n51

`

cn~ g̃ !S V

2TK
D 2n~ g̃21!

,
V

2TK
.ed,

~16!

whereV is the voltage difference between the reservoir a
the incoming edge branch,VR2Vin . The TK is an energy
scale set by the tunneling amplitudeG (TK}

uGu21/( g̃2121)), and the coefficientscn are given by

FIG. 2. One impurity scattering picture. The only voltages th
affect the tunneling current are theincoming ones,Vin and the
reservoir voltageVR . The outgoing voltageVout is raised due to the

injected currentI t . The outgoing voltage on the reservoir sideṼR

also depends on the tunneling current; however, after scatte
electrons in this branch are equilibrated again with the reservo
n

e
ge
he

y
-
to

th

d

cn~ g̃ !5~21!n21
G~n g̃11!

G~n11!

G~1/2!

G„n~ g̃21!11/2…
. ~17!

The domains of convergence of the dual series are restri
by d5@ g̃ lng̃1(12g̃)ln(12g̃)#/@2(g̃21)#.

Due to the injected current, the voltage of the edge bra
past the impurity is raised byDV5I t /(ne

2/h).
We now turn to the case of strong coupling (uGu→`,

TK→0), or equivalently, large voltage difference
(V@TK). In this case, the tunneling conductance reaches
strong coupling asymptotic valueGt5 g̃e2/h. We then apply
this result to the geometries depicted in Fig. 1.

A. One pointlike contact

This is the case shown in Fig. 1~b!. One edge branch is in
equilibrium with its reservoir of departure (V25VL), be-
cause this contact is made through many impurities~see Sec.
V!. For the other contact, the value of the voltage levelV1

depends on the injected current from the right reservoir. T
injected current for strong coupling is given by

I t5 g̃
e2

h
~VR2V2!5

2

n2111

e2

h
~VR2V2!, ~18!

and consequently

V12V25n21g̃~VR2V2!5
2

n11
~VR2V2!. ~19!

Thus, the voltageV1 is given by

V15
2

n11
VR1

n21

n11
VL , ~20!

and the Hall voltage is

V12V25
2

n11
~VR2VL!. ~21!

The two-terminal conductance of the device@determined
from I t /(VR2VL)# is

G5
2n

n11

e2

h
. ~22!

B. Two pointlike contacts

This is the case shown in Fig. 1~c!. Neither of the edge
branches is in equilibrium with either reservoir. We have
determine the voltages from the tunneling currents in b
contacts. The voltagesV1 andV2 are obtained from

V12V25n21g̃~VR2V2!5
2

n11
~VR2V2!,

V22V15n21g̃~VL2V1!5
2

n11
~VL2V1!,

which give

V15
n11

2n
VR1

n21

2n
VL

t

g,
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V25
n11

2n
VL1

n21

2n
VR .

The Hall voltage is given by

V12V25n21~VR2VL!. ~23!

The current flowing through the device is

I t5n
e2

h
~V12V2!5

e2

h
~VR2VL!, ~24!

and therefore the two-terminal conductance is

G5
e2

h
. ~25!

This result is the universal conductance for spinless n
interacting electrons. It resembles the result for the cond
tance of quantum wires, where the reservoirs mask the~non-
chiral! Luttinger liquid behavior of the 1D wire.14,16We can
understand why there is such correspondence in a
simple way. Because the contacts are made to the two re
voirs at a single point each, we can deform the edges of
QH state so as to bring them to line up on top of each ot
at a segment that connects the two contacts. The end res
that the two opposite chiralities overlap on the same segm
~see Fig. 3!, which makes the problem the same as its n
chiral counterpart of Refs. 14 and 16. Notice also that
have shown that, for pointlike contacts to the reservoirs,
electron gas making up the external lead behaves effecti
as a 1D chiral Fermi liquid, which was the model for th
leads that Maslov and Stone proposed recently.16 In their
picture, the nonchiral Luttinger liquid of a quantum wi
turned adiabatically into a Fermi liquid~describing the
leads!, which they also took to be a 1D Fermi system. O
mapping shows that only one mode of the electrons in
reservoir will effectively tunnel into the Luttinger liquid
Furthermore, even if the coupling between the leads and
wire is very smooth, there are always backscattering p
cesses at the crossover. These processes are always re
operators and the system always flows to strong coup
where the tunneling picture is accurate.3 Thus, the mapping
presented here provides a formal justification of the mode
Maslov and Stone.

Having mentioned the similarities, let us now look at t
importantdifferences between transmitting current in qua
tum wires and FQH liquids. The chiral 1D Luttinger liquid i
the case of the FQHE comes from the edges of the
strongly correlated FQH liquid, and we can explore the ex

FIG. 3. If the contacts from the FQH liquid to the reservoirs a
made through a single point each, the edges can be deformed
to line them up much in the same way as in a nonchiral Luttin
liquid ~quantum wire!, and soG5e2/h. However, in contrast to
quantum wires, the ‘‘extra’’ spatial dimension in the case of
FQH state, allows measurements~such as the ration21 between the
Hall voltage to the two-terminal voltage!, which probes the Lut-
tinger liquid nature of the state in between the reservoirs.
-
c-
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D
a

one dimension experimentally. For example, one can m
sure voltages at the two edges@V1 and V2 in Fig. 1~c!#
because they are spatially separated, and by doing so,
can probe Luttinger liquid behavior between the reservo
This is not possible in the case of quantum wires, beca
the two chiralities are mixed and one cannot measure the
chemical potentials separately inside the wire. A measu
ment of the Hall voltageV12V25n21(VR2VL) returns a
value that is larger than the two-terminal voltage (VR2VL)
by a factor ofn21; this factor contains information on th
Luttinger liquid behavior between the reservoirs that is e
perimentally measurable and has no counterpart in QW’s

Another important difference between QW’s and devic
such as the ones we discuss in this paper is that QW’s ca
connected to leads in only one way~i.e., one end to each
lead!, whereas we can connect a FQH state~a 2D system! to,
say,NL contacts to one reservoir andNR to the other. The
consequence is that in QW’s one can only observe a con
tancee2/h ~and multiples of it!, whereas for FQH states th
conductanceGNL ,NR

, as we show in Sec. V, can take valu

in whole families of rational multiples ofe2/h. @Examples
are the cases shown in Figs. 1~b! and 1~c!, which correspond
to G`,`5ne2/h andG`,15@2n/(n11)#e2/h, respectively.#

In summary, the strong coupling~large voltage! value of
the tunneling conductance from a reservoir~i.e., a Fermi liq-
uid! to the chiral Luttinger liquids of the edges of a FQ
state, in spite of being universal, depends not only on
properties of the FQH liquid but also on the nature of t
contacts. Moreover, the physics of the edge states of
FQH states can be probed with a variety of junctions
which there is no counterpart in one-dimensional quant
wires.

IV. EXPERIMENTAL REALIZATION OF G51/2

A very interesting case is whenn5 1
3, in which case

g52. This case is the dual point tog̃5 1
2, which is exactly

solvable, not only for the conductance, but for the full no
spectrum~indeed, all n-point correlation functions!. This
nontrivial exactly solvable point is very important theore
cally because it provides the comparison ground for any
sult obtained perturbatively. Before, it was simply a theor
ical tool with no physical realization. The tunneling from a
electron gas to an5 1

3 state makes it now possible to stud
the importantg5 1

2 state experimentally.
Let us focus on thisg51/2 case and a single impurity

The exact solution~see Refs. 3, 7, and 10 and referenc
therein! for the tunneling current and differential condu
tance is

I t5eE dv

2p

v2

v21~TK/2!2
@ f ~v2v0!2 f ~v!# ~26!

Gt5
1

2

e2

h E dv
v2

v21~TK/2!2
@2 f 8~v2v0!#, ~27!

where f5(11ev/T)21 is the Fermi distribution,v05
1
2(eV/\), andTK5(2puGu)21. Thev0 andTK , besides the
temperature, are the two energy scales in the problem.
one varies the voltage, the current and conductance sca
with V changes depending on the relative value ofV as com-

as
r
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pared toT andTK . Consider, for example, the case whe
T!TK . In this case, the conductance scales as

Gt'
1

2

e2

h 5
1

3S 2pT

TK
D 2, V!T

S VTKD
2

, T!V!TK

1, V@TK .

~28!

The anomalous scaling of the current with voltage tha
characteristic of Luttinger liquids takes place between
two energy scalesT andTK . In recent experiments, Chan
et al. have observed such scaling. In the experimental d
theGt}V

a power-law scaling breaks down at a certain vo
age. One is inclined to think thatTK provides the energy
scale for the breakdown, although in that particular exp
ment tunneling takes place not through one, but many im
rities. The idea that there is another energy scale in the p
lem, however, is still an important one, and we will sho
that indeed such a breakdown scale also occurs for the m
impurity problem.

V. MULTIPLE IMPURITIES AND EQUILIBRATION

We will show here how to treat the problem of tunnelin
from an electron gas or reservoir to a QH liquid via ma
impurities. In the previous section we considered scatte
through a single impurity~see Fig. 2!, in which case the
incident edge channel comes at a voltage levelVin , and the
electron from the reservoir atVR . After scattering, the edge
is at Vout , and the reservoir branch atṼR . We will obtain
the many impurity result by considering the single scatter
event as building blocks, and cascading them.

An important issue for this cascading is that of how t
scattered electrons on the reservoir side behave differe
from those in the QH side in between scattering events
the reservoir side, regardless of the voltage after scatte
the electrons will equilibrate with the reservoir by the time
the next scattering event. It will also lose its phase memo
This means that on the reservoir side, electrons will alw
arrive for the scattering events at the same voltage, nam
VR . On the QH side, however, the voltage is maintain
between scattering events and is accumulated. Thus, the
cade can be assembled as shown in Fig. 4.

The voltages past thenth stage of the cascade are label
Vn , and the current flowing from the reservoir to the Q
liquid is I n . The voltage difference between the outgoi
(Vn) and incoming (Vn21) edge states is obtained from th
currentI n and the Hall conductance for the QH liquid:

Vn2Vn215
I n

n
e2

h

. ~29!

Now, the currentI n is simply the single impurity tunneling
current, which depends on the incoming state (n21) and the
coupling strength for thenth impurity, as well as the tem
perature. The coupling strength enters as an effective t
peratureTK

(n) for a given impurity.
s
e

a,

i-
u-
b-

ny

g

g

tly
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g,
f
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s
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Notice, however, that the voltagesVn alone are not suffi-
cient to describe the quantum states at the different stage
the cascade. One needs the statesuFn&5uVn ;$nk%n&, where
thenk are the occupation numbers of the oscillator modes
the chiral bosonf describing the edge state. The volta
Vn measures the total charge or the zero mode of the bo
field. The nonzero modes should, in principle, affect theI -
V characteristics for each impurity. An intuitive picture on
can use to see the effects of the excited oscillator mode
that they could account for an ‘‘effective’’ increase in th
temperature~since a higher temperature brings more exci
modes!. This effective increase in the temperature enters
the expression for the tunneling current, in addition to t
voltagesVn andVR .

Nonetheless, there are two regimes where the oscill
modes are not excited: weak and strong coupling. Effe
due to the oscillator modes, as described above, become
important at intermediate coupling. For the weak and stro
coupling cases we can simply use theI -V characteristics for
a single impurity to obtain recursively the voltagesVn for all
n, and we can obtain the total current that flows to the Q
liquid from I5ne2/h(VN2V0), whereN is the last impurity
on the line, andV0 is the initial voltage level of the edge~in
equilibrium with the other reservoir!. The recursion equation
is

Vn2Vn215
1

ne2/h
I t~VR2Vn21 ,TK

~n! ,T!. ~30!

Let us study solutions of these recursion relations for diff
ent regimes of tunneling strengths.

A. Weak coupling

Without loss of generality, let us concentrate on the c
g525 g̃21. We will not use the fact thatg̃5 1

2 is exactly
solvable; we just choose this example for clarity of pres
tation, and because it is applicable to tunneling from an e

FIG. 4. Multi (N)-impurity scattering, assembled from the on
impurity building block. Notice that the voltages on the FQH liqu
side are maintained in between scattering events, whereas o
reservoir side electrons come for the scattering always atVR .
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tron gas to an5 1
3 FQH state.~We will present the result for

generalg after the derivation forg525 g̃21.)
If the individual couplings are small, theTK

(n) will be
large, in which case we can use for the individual impurit
the low voltage (V!TK

(n)) expression for the current:

I n5
e2

h

TK
~n!

6 S 2pT

TK
~n! D 3FVR2Vn21

2pT
1SVR2Vn21

2pT D 3G .
~31!

Now, we let xn5(VR2Vn)/2pT and substitute it into the
recursion relation Eq.~30!, obtaining

xn2xn2152
1

6nS 2pT

TK
~n! D 2~xn211xn21

3 !, ~32!

which we can transform into a differential equation, since
couplings are assumed to be small:

dx

dn
52

1

6nS 2pT

TK
~n! D 2~x1x3!, ~33!

to be integrated from the initialx0 to the finalxN ~past the
last impurityN) yielding

E
x0

xN dx

x1x3
52 (

n51

N
1

6nS 2pT

TK
~n! D 252

1

2S 2pT

TK
D 2, ~34!

in which we define the effectiveTK from the individual
TK
(n) . A very important point to be noticed is that one nee
e
is

e

i-
r-
al

e
t

ta
r

s

e

s

not assume that the couplingsTK
(n) are uniform; they can

fluctuate, and the only important parameter is the effect
TK which incorporates even the fluctuations. After integ
tion, one obtains

xN

A11xN
2

5e2~1/2!~2pT/TK!2
x0

A11x0
2
, ~35!

or equivalently,

VN5VR22pTH e~2pT/TK!2F11S V

2pTD 22G21J 21/2

,

~36!

whereV5VR2VL . We have used thatx05V/2pT, taking
the incoming edge at equilibrium with the other reserv
(V05VL). The total current flowing to the QH liquid is ob
tained from the voltage differenceVN2V0, and is given by
I5n(e2/h)(VN2V0). The differential conductance the
yields

G5n
e2

h H 12
e2~1/2!~2pT/TK!2

F ~12e2~2pT/TK!2!S V

2pTD 211G3/2J .
~37!

The derivation for generalg is similar, and gives
G5n
e2

h H 12
e2~1/2!~2pT/TK!2~g21!

F 1

G2~g!
~12e2~g21!~2pT/TK!2~g21!

!S V

2pTD 2~g21!

11G (2g21)/@2~g21!#J . ~38!
ale,

-
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ge
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The result expressed in Eq.~37! holds for all values of
V,T,TK , as long as the assumptions used to derive the
pression holds, namely, that each individual impurity
weakly coupled. Notice that, even though theTK

(n) are large,
the effectiveTK for the the line of impurities can be mad
small by simply having a very long line~largeN). Experi-
mentally one has two ways of varyingTK : changing the
tunneling barriers and taking wider samples.

We can use Eq.~37! for comparison with recent exper
ments by Changet al.5 The experiments demonstrate powe
law scaling of the tunneling current with voltage. For sm
voltages, the data is well fitted by a universalI -V character-
istic that crosses over from a linear regime forV!T, to the
power-law scaling forV@T. One can easily check that th
universal curve used for the conductance correspond to
T,V!TK limit of Eq. ~37!, namely

G'n
e2

h

1

2S 2pT

TK
D 2F113S V

2pTD 2G . ~39!

However, the fit used in Ref. 5 breaks down beyond a cer
voltage scale. This suggests that there should be anothe
x-

l

he

in
en-

ergy scale in the problem that was not considered. This sc
we argue in this paper, is simplyTK . In fact, notice that one
can determineTK from the low-voltage data, since the am
plitude of the tunneling conductance~which in Ref. 5 was a
fitting parameter! is directly related toTK and the measured
temperatureT:

G05 lim
V→0

G5n
e2

h
@12e21/2~2pT/TK!2#. ~40!

In the case of the data in Ref. 5,G0!ne2/h, in which case
TK must be larger than the temperature scale, a
G0'n(e2/h) 12(2pT/TK)

2. The same value ofTK that is de-
termined from the low-voltage data (V!T) determines the
energy scale for the breakdown of the scaling form used
the fitting of the experimental data. The breakdown volta
is V'TK and is taken into account in Eq.~37!, which holds
for the full range of probed voltages.

The scaling form used in Ref. 5 should break down wh
the conductance becomes comparable to the natural con
tance scale in the problem,ne2/h. This is explicit in Eq.
~37!. One should also interpret with care the fact that t
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conductance saturates to the Hall valuene2/h. This is a point
that should be taken into account carefully, since for tunn
ing through a single impurity, as seen in the previous sectio
the asymptotic value should be @2n/(n1
1)e2/h.ne2/h. What this says is that for a small tunneling
conductance, the multi-impurity problem is very much lik
the single impurity one, but for large tunneling conductan
there must be a mechanism that lowers the asymptotic va
of the conductance tone2/h. This mechanism is brought
about by the multiple impurities.

In Figs. 5 and 6 we show, forn5 1
3 in two different

samples, the comparison between the experimental data
the conductance and the scaling form of Eqs.~37! and ~38!,
valid for the full range of probed voltages. We obtain th
ratio TK /T from the asymptotic low-voltage conductance
For the data set of Fig. 5 we use a temperature ofT525 mK,
the quoted experimental value. However, the data of Fig
appears to be consistent with a higher temperature, close
T535 mK, rather than 25 mK. We would like to point ou
that our Eq.~39!, which is a low-voltage approximation of
the full scaling form of the conductance of Eq.~37!, is the
same as the one used to fit the data in Ref. 5 with an ex
nenta52g21.

The theoretical curve for g52 @Eq. ~37!# ~or
a52g2153) fits well the low-voltage data points, has
high-voltage crossover at about the right scale (TK), and
saturates to the right high-voltage asymptotic valu
(ne2/h). However, for both samples, it seems to oversho
the experimental data just above the crossover energy sc
Instead, if we use Eq.~38! with an effective exponent of
g51.8 (a52g2152.6), we get a better fit to the data se
over the full range of voltages. Notice, however, that th
value of TK for the two scaling forms changes by about
factor of 2 ~for both samples!.

The question on whether the exponentg can be modified
is an important issue. In the case of tunneling from an ele

FIG. 5. Comparison between experimental and theoretical co
ductances for tunneling between an electron gas and an5

1
3 FQH

state—data set No. 1. The valuesT525 mK ~in agreement with the
measured value! and TK511 K used in the theoretical (g52,
a52g2153) plots are chosen to fit the low-voltage end of th
curve. A better fit to the data is achieved using Eq.~38! with
g51.8 ~or a52g2152.6),T525 mK andTK526.1 K. ~Experi-
mental data is courtesy of A. Chang.!
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tron gas into a single chiral edge, the exponent cannot
modified, since it is determined by the dimension of the lea
ing irrelevant operator and should beg52 (a53) for n5
1
3. An effectiveexponentaÞ3 is indicative that there is an
additional crossover in the physics of these junctions. A r
lated issue is that if we usea53, we find that the data is best
fitted with values ofTK that are approximately half of those
obtained fora'2.6. This is a rather large change. A possib
explanation is that subleading irrelevant tunneling operato
are also coupled. The main effects of such operators is
alter the corrections to scaling. For example, the leading
relevant operators cause an effectiveV dependence in the
Kondo-like temperature scaleTK . In this case Eq.~37!,
which assumes aTK that does not scale, should be modifie
accordingly. Such aV dependent correction toTK could be a
reason why other values ofg and Eq.~38! fit the experimen-
tal data better. However, other scenarios are also possi
For instance, if there is clustering of tunneling centers at t
atomic scale, the effective Hamiltonian will involve more
that one impurity and more than one channel of the electr
gas. If that were the case, there would be additional mu
impurity/multichannel crossovers just above the Kondo sca
but will not affect neither the low-voltage regime nor th
high-voltage regime.

B. Strong coupling

Now let us discuss the case where the individual impuri
couplings are strong. In this case, we can still use the sa
recursion Eq.~30! with the strong coupling or high-voltage
(V@TK

(n)) expression for the current. Notice that what de
fines the strong coupling regime is the ratio between t

n-
FIG. 6. Comparison between experimental and theoretical co

ductances for tunneling between an electron gas and an5
1
3 FQH

state—data set No. 2. The set is best fit with a temperatureT535
mK, higher than the quotedT525 mK. The values ofTK are 4.9 K
for the theoretical (g52, a52g2153) curve, and 10.7 K for the
fit achieved using Eq.~38! with g51.8 ~or a52g2152.6). In this
set there are more high-voltage data points, which allows one to
that the measured conductance saturates atG5

1
3e

2/h, in agreement
with the theoretical prediction for multi-impurity tunneling. This
case is to be contrasted with the single impurity valueG5

1
2e

2/h.
~Experimental data is courtesy of A. Chang.!
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voltages and the energy scales set by the impurities (TK
(n)).

Thus, for large enough voltages, tunneling proceeds as if
coupling were strong, even if the nominal coupling consta
are finite. In this regime, for each individual impurity, th
conductance saturates at the valueg̃e2/h5@2n/(n1
1)]e2/h, so that we have a recursion

Vn2Vn215n21g̃~VR2Vn21!

5
2

n11
~VR2Vn21!, ~41!

which has a solution

Vn5VL1~VR2VL!F12S n21

n11D
nG . ~42!

Again, we have used thatV05VL is the voltage at the in-
coming edge branch, which is equilibrium with the oth
reservoir. Notice that the voltage after scattering through
nth impurity converges toV`5VR , but not monotonically,
oscillating around the asymptotic value~because the argu
ment being raised to the powern is negative, since we hav
n,1). For example, in the case ofn5 1

3, the sequence o
voltages (Vn2VL)/(VR2VL) is $0,3/2,3/4,9/8,15/16, . . .%,
where we recognizeV1 as the strong coupling result from th
single impurity problem.

The conductance can be obtained from the curr
through the device,I5n(e2/h)(VN2V0), which yields

GN5nF12S n21

n11D
NGe2h . ~43!

We thus have a sequence of quantized conductances
verging to the Hall valuene2/h. For example, forn5 1

3 the
sequence is

GN5H 12 , 14 , 38 , 516, . . . ,13J e2h , ~44!

and forn5 1
5

GN5H 13 , 19 , 727, 1381, . . . ,15J e2h . ~45!

For n51 we have the uninteresting and expected result
all GN5e2/h for all N.

In the above, we have assumed that the contact with
left reservoir is made through many impurities, so th
V05VL . One can easily treat in a very similar manner t
case ofNL contacts with the left reservoirs, andNR contacts
with the right one~as we did the case of one contact for ea
in Sec. III!. This general case will display a conductan
GNL ,NR

that will depend on bothNL andNR :

GNL ,NR
5

F12S n21

n11D
NLGF12S n21

n11D
NRG

F12S n21

n11D
NL1NRG n

e2

h
. ~46!

One can check that this formula, in particular, reproduces
cases in Fig. 1:G`,`5ne2/h, G`,15@2n/(n11)#e2/h, and
G1,15e2/h.
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C. Large number of impurities and equilibration

One common conclusion to the case of weakly or stron
coupled individual impurities is that, for a large number
them, the outgoing edge equilibrates with the reservoir. H
the seriesVn reaches the asymptotic valueVR may vary, but
if the series converge, it must converge toVR for a large
number of impuritiesN. Indeed, this result is a statement th
the attractor for the recursion relation Eq.~30! is a single
fixed point. The recursion Eq.~30! implies that, if the volt-
agesVn converge, thenV`5VR , independent of the impu
rity couplings.

This is the mechanism for equilibration between the ed
and the reservoir. It had been noticed by Kane and Fis
that impurity tunneling was key in this equilibration, in th
case where one can assume that the effect of tunneling
small leaking conductance that would equilibrate the ed
and reservoir past an equilibration length dependent on
leak conductance. What we show here is that this equilib
tion mechanism is sturdier and more complex, equilibrat
edge and reservoir for very general coupling distributio
The most striking example is that of strong coupling, whe
the asymptotic voltage is reached nonmonotonically, wh
is important to understand how the result of a single impu
~hot electrons! is possible and can be reconciled with the id
of tunneling causing equilibration.

VI. CONCLUSIONS

In this paper we have investigated the problem of tunn
ing from an electron gas~reservoir! to a FQH state for dif-
ferent types of contacts. We showed that differentuniversal
values can be obtained for the two-terminal conductance
large voltages, or strong coupling, the conductance o
pointlike tunneling junction between an electron gas res
voir and a Laughlin FQH state at filling fractionn was
shown to saturate to a universal valueG5@2n/(n1
1)]e2/h. We used this result to show that devices with d
ferent types of contacts between the reservoir and the F
state lead to distinct universal values of saturation cond
tance that are rational multiples ofe2/h. In particular, the
fractione2/h was obtained for the case of electron tunneli
in and out of a FQH liquid by two point contacts. We dem
onstrated that the problem of tunneling between an elec
gas and a fractional quantum Hall state through an impu
is exactly equivalent to the problem of tunneling between
chiral Fermi liquid and a chiral Luttinger liquid. The inter
esting case of tunneling to an5 1

3 FQH state was investi-
gated in detailed and shown to be equivalent to the prob
of tunnelingbetweentwo g5 1

2 chiral Luttinger liquids. This
system provides an experimental realization of this import
exactly solvable case. The results of the single impu
problem were used to consider the case of many tunne
centers coupled independently to an electron reservoir. T
problem is relevant to recent experiments by Changet al.
Using the exact solution of the single impurity problem, w
derived an explicit universal expression for the voltage a
temperature dependent conductance for a problem of m
independent impurities. Here we made the key assump
that the channels of the electron gas that couple to each
dividual impurity are always in equilibrium or, what is th
same, that there is no phase coherence between chan
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This assumption must be accurate for widely separated
neling impurities of an atomically smooth junction. W
showed that the voltage and temperature dependent con
tance exhibits a crossover reminiscent of a Kondo effect w
a Kondo scaleTK determined by the tunneling matrix ele
ment. This universal curve was shown to fit the experimen
data over the full range of probed voltages. It was also
served that this universal curve overshoots the experime
data on a voltage scale aboveTK but below saturation, where
an effective exponent was found to give a better fit to
data. We interpreted this effective exponent as indicating
either a subleading irrelevant operator had a significant
plitude ~which would be the case if the edge structure is
sharp! or that the physical samples had some degree of c
tering of tunneling centers, leading to multichannel/mu
impurity physics. Also, in this paper we have assumed t
the tunneling matrix elementG is independent of the applie
voltage. Clearly, asV increasesG should change.25 How-
ever, these changes amount to an analytic redefinition of
coupling constant and are nonuniversal. Such effects lea
a redefinition ofTK and do not change either the exponent
the saturation conductance.
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APPENDIX A: GENERAL MAP
FROM A HIGH-DIMENSIONAL ELECTRON GAS

TO A 1D CHIRAL FERMI LIQUID FOR TUNNELING
THROUGH A SINGLE IMPURITY

Here we consider in detail the general problem of co
pling an impurity to an electron gas subject to gene
boundary conditions. We show that, regardless of details
the boundary conditions, only one quantum channel cou
to the impurity, and the electron gas can be regarded as a
chiral Fermi liquid as what concerns the impurity couplin

The sufficient assumption that we make is that the e
tron gas in the bulk is isotropic, so that the energye(kW ) of
the bulk eigenstates depends only onukW u. In this case we can
expand the electron operator as

c~xW !5E
0

`

dk(
l

fk,l~xW !cl~k!, ~A1!

where$fk,l(xW )% is a complete set on one-particle eigensta
that satisfy the correct boundary conditions. Here$l% is a set
of quantum numbers that labeldegeneratestates with the
same wavenumberk and e(k). The electron operator obe
the anticommutation relation

$cl
†~k!,cl8~k8!%5dl,l8d~k2k8!. ~A2!
n-
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At the impurity location, which we take to bexW50, we
have

c~0!5E
0

`

dk(
l

fk,l~0!cl~k!, ~A3!

and because the states with the samek are degenerate, we
can perform an orthonormal transformation so as go t
basis where

c̃a~k!5
1

Nk
(

l
fk,l~0!cl~k! ~A4!

is a basis vector. The normalization factorNk appears be-
cause the vector does not necessarily have norm 1@c(0) has
weight at differentk#. This can always be done via a Gram
Schmidt orthogonalization process. Notice that the fact t
there is a single impurity is used here: one impurity pic
only one direction in each subspace labelled byk. Hence, we
can always use this one direction as the first basis vecto
the Gram-Schmidt process.

We can thus write

c~0!5E
0

`

dkNk c̃a~k!, ~A5!

which displays clearly that the impurity only couples to
single channel (a). The fermion operators in this chann
satisfy$ c̃a

† (k), c̃a(k8)%5d(k2k8).
The coupled (a) channel can be described in terms

nonchiral fermions in a semi-infinite line, where left an
right moving particles correspond to incoming and outgo
particles with respect to the impurity. This half-line can
unfolded, so we are left with one chiral fermion on an in
nite line. Thus, from the perspective of the impurity, th
electron gas can be regarded as a chiral Fermi liquid. O
should notice thatg51 is completely fixed in this problem
because the chiral fermions are derived from a higher dim
sional system, where the Fermi liquid picture holds.

Below we give particular examples which are applicatio
of our general result.

1. Spherically symmetric system

This case is a simple application of the general res
Here we follow closely the derivation for the case of t
impurity at the bulk by Affleck and Ludwig23.

In this case, one writes the electron operator in terms
plane waves as

c~xW !5E d3k

~2p!3/2
eik

W
•xWckW , ~A6!

where the operatorsckW satisfy the anticommutation relation

$ckW
† ,ckW8%5d3(kW2kW8). One then notices that at the impurit

locationxW50,

c~0!5E d3k

~2p!3/2
ckW ~A7!

depends only on the spherically symmetric compon
(L50) of the operatorckW , namely,
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cL50~k!5
k

A4p
E dV̂cV̂k , ~A8!

which satisfy $cL50
† (k), cL50(k8)%5d(k2k8). Thus, one

has only to consider the 1D fermions running along the
dial coordinates for theL50 mode for the purposes of cou
pling to the impurity atxW50.

2. Impurity at a planar boundary of a 3D electron gas

We now consider in detail the case where the pointl
contact or impurity is not in the bulk, but at the plan
boundary between a free electron gas and a potential ba
that confines the gas. Here we have to take into account
the eigenstates are modified by the presence of the boun

Let the boundary be at thez50 plane. Let the barrier high
beU.0 for z,0, and 0 forz.0. The effect of the barrier
on the wave functions can be absorbed completely in
phase shift that the electron picks up after reflecting of
boundary~the barrier is confining, so the Fermi level lie
under the barrier height, and thus the barrier is comple
reflecting!. The wave functions forz.0 can then be written
as

fkW' ,kz

~1 !
~xW !5eik

W
'•x'

e2 i ~1/2!f~kz!eikzz1ei ~1/2!f~kz!e2 ikzz

A2
,

~A9!

whereeif(kz) is the phase shift factor due to the reflection
the boundary of a wave with momentumkz @notice that
f(kz)52f(2kz)#. It is an elementary exercise to show th
for a potential barrier of heightV the phase shift is given by
cos(f(kz)/2)5ukz /k0u, wherek05A2mU/\.

The operator that creates the statefkW' ,kz

(1) (xW ) can be writ-

ten in terms of plane wave creation operatorsckW
† as

g~1 !
kW' ,kz

†
5
e2 i ~1/2!f~kz!ckW' ,kz

†
1ei ~1/2!f~kz!ckW' ,2kz

†

A2
.

~A10!

Although the general result we have shown has a sim
proof, the application to a particular case involves explici
finding the right basis. In this particular problem at hand, t
can be greatly simplified by exploring symmetries and
larging the Hilbert space.

The operatorsg (1)
kW' ,kz

† generate only half the Hilber

space for free fermions without the boundary. The other h
is generated from wave functions of different symmetry
m
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fkW' ,kz

~2 !
~xW !5eik

W
'•x'

e2 i ~1/2!f~kz!eikzz2ei ~1/2!f~kz!e2 ikzz

A2
,

~A11!

by operators

g~2 !
kW' ,kz

†
5
e2 i ~1/2!f~kz!ckW' ,kz

†
2ei ~1/2!f~kz!ckW' ,2kz

†

A2
.

~A12!

We can redefine fermion operators c̃ kW
5sgn(kz)e

i (1/2)f(kz)ckW so as to absorb the phases into t
free fermions. The Hamiltonian for the system is just that
free fermionsckW :

H5E d3k

~2p!3/2
\2k2

2m
ckW
†
ckW5E d3k

~2p!3/2
\2k2

2m
c̃kW
†
c̃ kW .

~A13!

We can write the electron operator forz>0 as

c~xW !5E d2k'

~2p!
E
0

` dkz
~2p!1/2

fkW' ,kz

~1 !
~xW !g~1 !

kW' ,kz
.

~A14!

At the impurity locationxW50,

c~0!5E d2k'

~2p!
E
0

` dkz
~2p!1/2

fkW' ,kz

~1 !
~0!g~1 !

kW' ,kz

5E d3k

~2p!3/2
cos

f~kz!

2
sgn~kz! c̃ kW

5E d3k

~2p!3/2
c̃ kW

kz
k0
,

which depends only on the (L51, M50) mode of the op-
erator c̃ kW , namely,

c̃ L51, M50~k!5kA 3

4pE dV̂ c̃ V̂kcosu, ~A15!

which satisfy the commutation relations

$ c̃ L51, M50
† ~k!, c̃ L51, M50~k8!%5d~k2k8!. ~A16!

Again, one has only to consider the 1D fermions runni
along the radial coordinates for this angular moment
mode.
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