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Interface states in stressed semiconductor heterojunctions with antiferromagnetic ordering

V. G. Kantser and N. M. Malkova*
Institute of Applied Physics, Academy of Sciences of Moldova, 277028 Kishinev, Moldova

~Received 7 February 1996; revised manuscript received 6 November 1996!

Stressed heterojunctions with antiferromagnetic ordering, in which the constituents have opposite band-edge
symmetry and their gaps have opposite signs, have been investigated. Interface states have been shown to
appear in these heterojunctions, and they are spin split. If the Fermi level lies in one of the interface bands, this
results in magnetic ordering in the interface plane. The interface magnetization effect is expected to take place.
A breakdown of the fundamental symmetries of time and space inversions in such structures is outlined.
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I. INTRODUCTION

Interest in quantum structures~such as heterojunctions
quantum wells, and superlattices! is to a certain extent con
ditioned by interface states localized near the boundary
tween constituent semiconductors. The interface states
pearing in semiconductor structures due to a band ben
are traditionally considered. Such interface states are kn
to be bound up with the transitional region structure. On
other hand, there is a considerable interest in the stud
Tamm’s-type interface states arising in some semicondu
structures. In contrast to the first case, the latter interf
states are not concerned with the transition region struct
being generated from the bulk energy bands of the cons
ents. At first the Tamm’s interface states were theoretic
considered1–3 in the so-called inverted contacts~that is, in
semiconductor heterojunctions based on semiconduc
with mutually inverted bands!, so that the gaps of their con
stituents have opposite signs. The same interface states
been shown4,5 to appear not only on the heterojunctio
boundary but on other inhomogeneities of the electron s
tem, such as an antiferromagnetic ordering vector inhomo
neity ~realized as an antiferromagnetic domain wall! and a
polarization vector inhomogeneity~a ferroelectric one!; com-
binations of these inhomogeneous fields result in a variet
systems with disturbed symmetrical properties. This is
important point, giving an opportunity to separate the int
face states into a separate group.

As an example of inverted contacts, heterojunctions ba
on some narrow-gap IV-VI or II-VI semiconductors used
be considered. In this case, a treatment of the simplest
band approximation, the interface states have a gapless
spectrum that is linear in the interface plane, their ene
reaching the gap of the constituent semiconductors. Su
quent investigations3,6 showed that the same interface sta
can exist in heterojunctions with normal band arrangeme
However, in contrast to the inverted heterojunction, th
states appear either inside the conduction or valence ban
the constituents, the energy spectrum being cut off at a fi
transverse~along the interface plane! momentum. Later it
was shown that there are interface states in superlattice7,8,
quantum wells,9 and quantum dots.10 It is worth noting that,
quite recently,11 magnetic-field dependences of the Hall c
efficient in PbTe/SnTe superlattices have been interpre
560163-1829/97/56~4!/2004~8!/$10.00
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assuming that, in addition to electrons in PbTe and hole
SnTe, a third kind of charge connected with the abo
mentioned interface states appears. A more direct invest
tion of the two-dimensional interface states has been p
formed by means of magnetotunneling spectroscopy of
p-HgxCd12xTe quantum well in Ref. 12.

The majority of semiconductor structures are stressed
to a lattice mismatch of their constituents. The electron
ergy spectrum of the stressed semiconductor structures is
termined by the strains, as well as by the widths of th
layers and physical parameters of the constituents. A m
direct strain effect is the change of the energy spectru
which is different in each constituent and depends upon
acoustic deformation potentials of both conduction and
lence bands. This problem has been rigorously investiga
in different semiconductor structures.13 In stressed semicon
ductor structures the elastic strains, or their gradients du
piezoelectric or flexometric effects, can lead to static pol
ization fields.14 These fields are determined by the strain v
ues, elastic constants, piezoelectric coefficients, and o
material parameters which apparently are different in eac
the alternating layers. In fact the polarization is condition
by the mutual shifts of the cation and anion sublattices o
binary ~or multinary! semiconductor. Proceeding from th
fact that each of these sublattices in their turn generates
energy states of either conduction or valence bands, in
earlier work6 we investigated the strain-induced polarizati
effect on the boundary interface states of the semicondu
heterojunction. As for the straight deformation effect on t
interface states’ energy spectrum, it was shown6 that this
effect is quite trivial, and results in homogeneous shifts
the energy bands.

At doping with transition or rare-earth elements, IV-VI o
II-VI semiconductors turn into dilute magnetic ones, and
low temperature they might transit to ferromagnetic or an
ferromagnetic states. Quantum structures based on
semimagnetic semiconductors have been intensively inve
gated in view of their interesting physical properties,15–17

their nontrivial ~as compared with bulk materials! magnetic
properties being emphasized.18–20 Moreover, it has been
recognized21 that interfaces play a key role in the magne
properties of heterostructures based on semimagnetic s
conductors. The origin of the effects used to be connec
with the structure of the interface plane, its imperfection, a
2004 © 1997 The American Physical Society
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56 2005INTERFACE STATES IN STRESSED SEMICONDUCTOR . . .
the disposition of the magnetic impurities across the in
face. In this paper another model of the interface magnet
tion effect, based on magnetic properties of the interf
states, will be developed.

A crucial point of problems concerning the interfa
states is that for inverted stressed semiconductor struct
with antiferromagnetic ordering, we have a situation
which all three fields cited above~composition, polarization
and antiferromagnetic! are applied to the system. Suc
stressed semiconductor heterocontacts with antiferrom
netic ordering are quantum structures with a breakdown
the fundamental symmetries of time and space invers
The breakdown of theT invariance is a result of the antifer
romagnetic ordering, while the space inversion asymmetr
a general property of any heterostructure. In our case f
stressed heterocontact, an additional space asymmetry o
due to strain-induced polarization. It is well known that tim
inversion symmetry provides the Kramers degeneracy, w
space inversion symmetry gives a twofold degeneracy wh
is referred to as the spin degeneracy. In the structure
question, both types of degeneracy are absent. There
such heterostructures must be systems with unusual m
scopic electron properties. One of them is interface mag
tization effect considered in this paper.

The aim of this work is to study interface states
stressed inverted contacts based on semimagnetic nar
gap semiconductors with antiferromagnetic ordering. It
worth noting that a similar situation might be found in th
system with electron-hole pairing. After placing commens
rate waves of spin and charge density over the system,
energy spectrum of the latter turns out to be spin split. Un
limit doping this leads to electron-spin ordering~that is, we
have a system with exciton ferromagnetism!.22 Now, taking
into account that spin- and charge-density waves might
induced by the antiferromagnetic ordering and by structu
lattice distortions~which are accompanied by the polariz
tion!, respectively, one can affirm that systems with polari
tion and antiferromagnetic ordering will be similar to th
system with the exciton ferromagnetism.

To define our calculations completely, heterojunctio
based on semimagnetic narrow-gap IV-VI semiconduct
will be studied. Since Tamm’s interface states are gener
from the bulk states of the constituent semiconductors,
tially in Sec. II we develop a spectrum model of the bu
stressed narrow-gap IV-VI semiconductors with antifer
magnetic ordering. The effective Dirac Hamiltonian will b
used as a model. In Sec. III the interface states of the
verted stressed contact with antiferromagnetic ordering
be considered, two cases being studied. One of these
case in which the antiferromagnetic ordering is the same
the initial semiconductors, and the other a case when it
opposite signs in the constituents. A spin analysis of
interface states is given in Sec. IV. This is followed by
brief summary.

II. MODEL AND SPECTRUM
OF THE BULK SEMICONDUCTORS

Both materials of the studied heterojunctions of narro
gap IV-VI semiconductors are known to have a direct gap
L points of the Brillouin zone. Thus near the gap midd
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there are two double degenerate bandsL1 andL2 with op-
posite coordinate symmetries. Thus the simplest model of
narrow-gap IV-VI semiconductor spectrum is the two-ba
one.23,24 In the case of mirror symmetry bands, the ener
spectrum of the semiconductor heterojunction with the trig
nal @111# crystal axis picked as thez axis might be described
by the effective Dirac Hamiltonian

Ĥ005S D sW •pŴ

sW •pŴ 2D
D , ~1!

where the upper and lower blocks are related to the st
w andx of the conduction and valence bands, respective
sW 5(sx ,sy ,sz) is the vector with the components of th

Pauli matricespŴ 52 i\(v'¹x ,v'¹y ,v i¹z), v',i being the
interband coupling matrix elements having dimensions of
locity; andD5Eg/2, Eg is the energy gap depending on th
z coordinate, if the heterojunction alongz is in question.
Note that this Dirac form of Hamiltonian~1! is just a first

approximation of thekW•pŴ perturbation theory, when only
matrix elements between near-band states are kept. In
next approximation, the effects of more distant bands
treated in second-order perturbation theory, leading tok2

terms in the Hamiltonian. In this work we neglect the fa
band corrections, keeping in mind that this is the first a
proximation of the perturbation theory. This question will b
discussed in some detail below.

As was emphasized in Sec. I, in stressed semicondu
heterojunctions the polarization effect is induced by t
strain. Being conditioned by mutual shifts of the cation a
anion sublattices of the initial semiconductors, in our mo
Hamiltonian this effect can be described by the followi
term:25

Vst5uW •¹ rW@VA~rW !2VB~rW !#5uW •OW , ~2!

whereVA(rW) andVB(rW) are the potentials of theA andB
sublattices being shifted by the vectoruW in opposite direc-
tions. By adding the potentialVst, the symmetry of the cubic
IV-VI semiconductors is reduced. If the vectoruW is directed
along the trigonalC3 axis, the symmetry of theL points is
reduced fromD3d to C3v . Using an explicit form of the
basis functions of the conductionL6

2 and valenceL6
1 bands

from Ref. 24, by direct calculation of the matrix elements
the potentialVst one obtains

Ĥst5S 0 2 isW •EW

isW •EW 0
D , ~3!

where the components of the vectorEW are
Ei5^L6

2uuiOi uL6
1&. The situation with the polarization field

uW directed along the trigonalC3 axis is considered here, as
is this direction in which the polarization effect is greatest
the structure considered.

In the framework of the deformation potential approxim
tion the direct strain effect can also be taken into accou
Due to the symmetry properties the effect contributes to
diagonal blocks of the Hamiltonian~3!, resulting in trivial
shifts of the interface states. Apparently, this effect can
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2006 56V. G. KANTSER AND N. M. MALKOVA
accounted for by means of the renormalization of the g
parameters in our model Hamiltonian~1!.

In the Hamiltonian describing the energy spectrum of
stressed semiconductor heterojunction with antiferrom
netic ordering, the exchange interaction between the m
netic impurities spinSnW and a bare spin of electronsW ,

Vex5(
n

A~ urW2RW nu!SW nsW , ~4!

has to be included, whereA(urW2RW nu) is an s-like coupling
function centered at the magnetic impurities. We make
plausible assumption that the magnetic impurities are lo
ized in the interstitials, and have the antiferromagnetic vec
along thez axis. In this case a spin density of the magne
impurities Sn is an odd function, that is,Sn(RW n)
52Sn(2RW n) ~whereRW n locates the magnetic impurity!. As
a result the potentialVex gives rise to coupling states wit
opposite parity. So the matrix form of the exchange inter
tion constructed again with the wave functions from Ref.
is

Ĥex5S 0 2 iL

iL 0 D , ~5!

the matrix elementL in the mean-field approximation bein

L5 i ^L6b
2 uVexuL6b

1 &5 i ^L6a
2 uVexuL6a

1 &

5 iS0(
n

@^L6b
2 uA~ urW2RW nu!szuL6b

1 &

2^L6b
2 uA~ urW1RW nu!szuL6b

1 &#,

whereS0 is an absolute mean value of the magnetic impu
spin, and the indicesa andb reflect the Kramers-conjugat
states. Here the sum indexn runs just over the impurity site
Rn from one side of the interface planez50 ~that is, the
magnetic impurities symmetry arrangement is suppos!.
The matrix structure of the exchange HamiltonianĤex, with
cross-coupling matrix elements~betweenL2 andL1), is a
result of the antiferromagnetic ordering of the interstit
magnetic impurities. If the magnetic impurities were subs
tutional ones, the magnetic impurities’ spin density would
an even function, and as a result we should have a stan
diagonal formĤex with the coupling between the states
the same parity~see, for example, Ref. 26!.

Being expressed in terms of Mitchell’s energy spectr
parameters and overlap integrals, the matrix elementsE and
L will be considered as parameters of our model approa
Some numerical evaluations can be given for these. Com
from the definition of the polarization potentialVst, Eq. ~2!,
we might estimate the valueE by 2Du ~whereD is a defor-
mation potential, andu is a relative displacement!. Using
appropriate values forD andu, we obtainE;50–100 meV.
Thus the strain-induced polarization effect is comparable
magnitude to spontaneous polarization in weak ferroe
trics. As for the parameterL, on the basis of the data for th
exchange parameters of the semimagnetic IV-VI semic
ductors given in the Ref. 27, one obtainsL;20–40 meV.
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So the Hamiltonian describing the energy spectrum of
stressed IV-VI semiconductor heterojunction with the an
ferromagnetic ordering along thez axis is

Ĥ05Ĥ001Ĥst1Ĥex

5S D sW •pŴ 2 i ~sWEW 1L !

sW •pŴ 1 i ~sWEW 1L ! 2D
D . ~6!

In the general case for the semiconductor structures con
ered, the matrix elementsE andL are functions depending
on the coordinatez. Note that the HamiltonianĤ0 looks like
the one for the energy spectrum of the exciton ferromagn
within the framework of the mean-field approximation.22 It is
quite clear taking into account the above-mentioned anal
between these two problems.

After the transformation

Û5S isz 0

0 1D ,
Hamiltonian~6! has the form

Ĥ̃05ÛĤ0Û
215S D i p̂z1Ŵ1E

2 i p̂z1Ŵ1E 2D
D , ~7!

whereŴ5sW @pŴ •nW #1szL, andnW is a unit vector along the
z axis.

Since the interface states are of Tamm’s type, and
generated from the bulk states of the initial semiconducto
first of all we consider the energy spectrum of the homo
neous semiconductor with polarization and antiferromagn
ordering. We note that Hamiltonian~7! commutes with the
operator

Ŵ̃5S Ŵ 0

0 Ŵ
D , ~8!

so w and x wave-function components of the Hamiltonia

Ĥ̃0 can be selected in the form of the eigenfunctions of
Ŵ operator

Ŵw65W6w6,

whereW656AL21p'
2 , and

w65S 1

py2 ipx
L1W6

D w0
6 . ~9!

Here w0
6 is a normalized factor, andp' is a length of the

vector pW'5(px ,py,0), that is, p'
25px

21py
2 . After simple

calculations we obtain that the energy spectrum consist
the four spin-split energy branches

e1,2
1 5A~E1W6!21D21pz

2,
~10!

e1,2
2 52A~E1W6!21D21pz

2.
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56 2007INTERFACE STATES IN STRESSED SEMICONDUCTOR . . .
The branchese1,2
1 ande1,2

2 describe two spin-split conductio
and valence bands, respectively. Putting the wave funct
in the form of ~9! for the average value of the spin,

SW 65~w6!x6!!S sW 0

0 sW
D S w6

x6 D ,
after the normalization of the wave functions one obtains

SW 1,2
6 56

1

AL21p'
2 ~py ,2px ,L !. ~11!

Thus one can see that the polarization and antiferromagn
ordering split the Kramers spin degeneracy. Each of
branches of the conductione1,2

1 or the valencee1,2
2 bands is

characterized by the opposite directions of the average
valueSW . As follows from Eq.~11!, SW is directed along the
vector

IW5LnW 1@nW •pW'#. ~12!

III. INTERFACE STATES OF THE STRESSED
INVERTED CONTACT

Now let us consider the non-symmetry-inverted cont
with the axis along thez axis as an inhomogeneous semico
ductor structure, when, besides the coordinate dependen
the band gap, there is a coordinate dependence of the p
ization field. At first the antiferromagnetic ordering param
eter will be taken as a constant in both semiconductors. S
the gap center positions of the constituents are differen
the non-symmetry-inverted contact, the Hamiltonian must
clude a coordinate-dependent work functionV(z). To sim-
plify the analytical calculation, we determine the gap fun
tion D(z), the polarization functionE(z), and the work
functionV(z) by a single functionf (z), so that

D~z!5D0f ~z!,E~z!5E0f ~z!,V~z!5V0f ~z!, ~13!

where apparently the signs of the asymptotesf (z→6`) are
opposite in the inverted contact, andD0 , E0, and V0 are
constants. Two different cases may be considered:~1!
f (1`).0, and f (2`),0, and ~2! f (1`),0, and
f (2`).0.
The Hamiltonian of the system is

Ĥ5S D1V ip̂z1Ŵ1E

H.c. 2D1V
D . ~14!

Noting again that the HamiltonianĤ commutes with the op-

eratorŴ̃, Eq.~8!, we select the wave functions in the form
the eigenfunctions ofŴ operator. Then by means of the un
tary transformation

V̂5S cosQ 2sinQ

sinQ cosQ D , ~15!

where the angleQ is determined by the condition

D0cos2Q2E0sin2Q1V050, ~16!

the HamiltonianĤ is transformed to
ns
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t
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-

Ĥ̃5V̂21ĤV̂

5S 2W6sin2Q 2AE21D22V21W6cos2Q1 i p̂z

H.c. 2V1W6sin2Q
D .
~17!

It immediately follows from Eq.~17! that the Schro¨dinger
equation

~ Ĥ̃2e!S w̃6

x̃ 6D 50, ~18!

where

S w̃6

x̃ 6D 5V̂21S w6

x6 D
has a solution withx̃ 650. This is a zero mode. It is worth
noting that the same states for different particular cases h
been obtained in the Refs. 1, 2, and 6 by means of supers
metry quantum mechanics, and in terms of this they h
been called Weyl states.

At f (1`).0 and f (2`),0 there is the following so-
lution of Eq. ~18!:

e i
657

E0V02D0AE0
21D0

22V0
2

D0
21E0

2 Ap'
21L2, ~19!

the functionw̃6 satisfying the equation

@ ipz1W6~z!#w̃650, ~20!

where

W6~z!5AE0
21D0

22V0
2

3S f ~z!6Ap'
21L2

D0V01E0AE0
21D0

22V0
2

~D0
21E0

2!AE0
21D0

22V0
2 D .

This function plays the same role as the superpotential in
supersymmetry quantum mechanics method.2,6 Being a solu-
tion of the first order differential equation~20!, the functions
w̃6 are

w̃6~z!5w0
6expS 2

1

\v i
E
0

z

W6~z!dzD ,
wherew0

6 are constants. These functions are localized at
interface boundary, but at given asymptotes of thef (z) func-
tion they are normalized just under the conditio
W6(1`).0 andW6(2`),0. At u f (6`)u51 this leads
to

Ap'
21L2,

~D0
21E0

2!AE0
21D0

22V0
2

D0V01E0AE0
21D0

22V0
2
. ~21!

So statese i
6 are of the interface type, but the interface sta

spectrum cuts off at finite transverse momentum.
At the opposite asymptotes of the functionf (z) the inter-

face solutions are described by the expressions~19!–~21! by
replacingD0→2D0 andpz→2pz .
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It is useful to consider a situation when the paramete
the antiferromagnetic ordering is not constant in both se
conductors, this being determined by the same func
f (z), so thatL(z)5L1L0f (z) ~where L and L0 are con-
stants!. There is no way of finding an invariant of Hami
tonian ~14! and of solving the problem analytically in thi
case, but we can obtain a perturbative solution. To simp
analytical calculations, we set the work functionV(z) equal
to 0 ~or a constant!. After a unitary transformation

V̂5S Ĉ~v! Ŝ~v!

2Ŝ~v! Ĉ~v!D , ~22!
c
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where

Ĉ~v!5S cosv1 0

0 cosv2D , Ŝ~v!5S sinv1 0

0 sinv2D ,
v6 being determined by the equation

tan2v65
D0

E06L0
,

we obtain
Ĥ̃5S 2LszŜ~2v!2sin~v11v2!Ŵ i p̂z1 f ~z!Â1LszĈ~2v!1cos~v11v2!Ŵ

H.c. LszŜ~2v!1sin~v11v2!Ŵ
D . ~23!
di-
d.

he
-up.

hes
con-
Here

Â5S AD0
21~E01L0!

2 0

0 AD0
21~E02L0!

2D .
In the framework of perturbation theory with energy corre
tions to order p'

2 , we again obtain two solutions with
x50. Thus, the interface states are

e i
657Lsin2v67

p'
2 sin2~v11v2!

L~sin2v11sin2v2!
. ~24!

The wave functionsw6 are spin-up for the energy sta
e i

1 , and spin-down fore i
2 , satisfying the equation

S 2 i p̂z1 f ~z!A66Lcos2v6

7
p'
2 cos2~v11v2!

f ~z!~A22A1!2L~cos2v11cos2v2!
Dw650,

~25!

whereA1 andA2 are the upper and lower diagonal matr
elements of the matrixÂ. At the assumed asymptotes
function f (z), one can quite easily obtain conditions norm
izing the wave functionsw6. So the spectrum of the inter
face statese i

6 is again restricted. For the opposite asympto
f (z) the same interface states appear, but to normalize
wave function one has to assume thatw50. It is obvious that
at L050 the interface state energy spectrum obtained for
inverted contact with the variable antiferromagnetic order
tends to the one for the contact with the constant antife
magnetic ordering.

IV. A SPIN ANALYSIS OF THE INTERFACE STATES

Each interface state of the inverted contact with the c
stant antiferromagnetic ordering
-

-

s
he

e
g
-

-

C65S w̃6

0
D

is nondegenerate, and the average spin valueSW i
6 @being ob-

tained in the same way as Eq.~11!# is

SW i
6~z!5CexpS 2

2

\v i
E
0

z

W6~z!dzD 2

L6Ap'
21L2

3~py ,2px ,L !, ~26!

whereC is a constant determined by a normalizing con
tion. Here the first type off (z) asymptotes has been use
After integrating Eq.~26! @taken for the step functionf (z)
and atz50# over the electron momentump' for the given
symmetrical spectrum model, one obtains

^SW i
6~0!&56

AE0
21D0

22V0
2

2p\3v iv'
2 ~AL21p'max

2 2L !S 12
B2

3
~2L2

1p'max
2 1LAL21p'max

2 ! D ~0,0,L !, ~27!

wherep'max is set by Eq.~21!, and

B5
D0V01E0AE0

21D0
22V0

2

~D0
21E0

2!AE0
21D0

22V0
2
.

The average spins of the interfaceC1 andC2 states are
oppositely directed along thez axis.

As follows from Eq. ~19!, when f (1`).0 and
f (2`),0 under the conditionD0

2.V0
2, the energy level

e i
1 is situated higher thane i

2 , while under the condition
V0
2.D0

2 they change their positions. So the state with t
average spin-down is higher than the state with the spin
For the asymptotesf (1`),0 and f (2`).0, the statee i

2

with the spin down is higher than the statee i
1 with the spin

up in any case in point. Figures 1 and 2 show rough sketc
of the interface energy spectrum of the stressed inverted
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56 2009INTERFACE STATES IN STRESSED SEMICONDUCTOR . . .
tact with constant antiferromagnetic ordering for both type
of function f (z) asymptotes~where for the relations between
the parametersD0 , E0, and L0 the real above-mentioned
estimations have been used!. The solid lines correspond to
the bulk semiconductor bands of the constituents, while t
dashed lines correspond to the interface states. The arro
show the average spin direction relative to thez axis. From

FIG. 1. Rough sketch of the interface energy spectrum
stressed inverted contact with the constant antiferromagnetic ord
ing for the asymptotesf (1`).0 and f (2`),0 (D0

2.V0
2). The

solid lines show the energy branches of the constituents, and
dashed lines show the interface states. The arrows show the ave
spin direction.

FIG. 2. The same as in Fig. 1, but for the asymptote
f (1`),0 and f (2`).0.
s

e
ws

the figures we can see, that for the values of the model
rameters used, there is a quite real region of transverse
mentum where condition~21! is fulfilled, and so interface
states exist. Note that in line with the assumed heterojunc
geometry, the energy branches of the constituents are
same, but their spin directions are opposite. In contrast to
case of an unstressed inverted contact without antiferrom
netic ordering~see Fig. 3 from Ref. 2!, the interface state
spectrum of the stressed inverted contact with antiferrom
netic ordering is not linear inp' , there being a gap betwee
the electronlike and holelike states.

Comparing expression~10! for the energy levels of homo
geneous semiconductors, and Eq.~19! for interface hetero-
junction states, we note that the interface states are situ
nearer to the middle of the gap of the constituents. Thus i
the semiconductor heterojunctions the Fermi level~for ex-
ample by means of doping! lies in one of the two-
dimensional interface bands, then this leads to magnetic
dering in the interface plane. Being proportional to the va

^SW i
1& or ^SW i

2& @Eq. ~27!# in accord with which of the interface
statese i

1 or e i
2 , respectively, is occupied, the interface ma

netization will be directed along thez axis or opposite to it,
the one that is exponentially attenuated moving away fr
the interface plane. Apparently the interface magnetizatio
at a maximum if one of the interface bands is occupied
the other is empty, and it is equal to zero if both interfa
bands are completely occupied as the magnetization of
of them is directed along thez axis and the magnetization o
the other is opposite to it. In the intermediate case, when
of the interface bands is completely occupied and the othe
not, there is some uncompensated magnetization determ
by the difference betweenp'max and the Fermi momentum
pF , conditioned by relation~21! and by the Fermi energy
eF , respectively.

In the framework of our model we can obtain the value
the interface magnetization~calculated for simplicity at
z50) relative to the magnetization determined by the ba
states. After integratingS1,2

6 , Eq. ~11!, over the occupied
states, one obtains

M5
^Si

6~0!&

^S1,2
6 &

5
pAE0

21D0
2

pFv i

~12d!~d12!

3
, ~28!

where d5e i
6/e i

6(p'max)5E0L/(D0
21E0

2). Here we set
V050, and the Fermi energy is determined by the va
p'max, Eq. ~21!; i.e., the ideal situation is considered whe
the interface magnetization is at a maximum. It is obvio
that the relation of the interface magnetization to the ba
magnetization is conditioned by the ratio between the en
gies of the occupied interface states and band states~i.e.,
eF).

From Eq.~28! we note that the interface magnetization
equal to zero atd51, i.e., as follows from Eq.~21! at
p'max50. This is a quite trivial result because there are
interface states in this case. In the interval 0<d<1 the value
of the relative interface magnetizationM is a monotonically
decreasing function of the parameterd, that is obviously
caused by a decrease of the interface state fraction witd
increasing from 0 up to 1. The valueM is at a maximum at
d50, i.e., atE0 or L50. However, it is quite apparent from
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Eqs.~27! and~11! that atL50 there is neither any interfac
nor band magnetization, so thatM is an indeterminate value
For the caseE050, from Eq. ~10! we find the energy
branchese1

6 to be superimposed one2
6 ~for E050), so that

the energy statese6 become doubly degenerate with th
summary spin equal to zero. So relation~28! is true just in
the interval 0,d<1, where the pointd50 is ignored.

Now, using characteristic estimations for model para
eters, we find the value of the relative interface magnet
tionM , Eq. ~28!, to be on the order of 1; that is, the interfa
magnetization may be a real effect for the structures in po
Concerning the inverted contact with the variable antifer
magnetic ordering, we estimate the perturbation solution
the limit small p' to show the same peculiarities as in t
contact with constant antiferromagnetic ordering. Again e
interface state is nondegenerate. The spin of one of the
up relative to thez axis, but the spin of the other is down
Analytical calculations can be performed in the other lim
when the variation of the antiferromagnetic ordering is sm
~that is, the parameterL0 is small!. However, this does no
give any nontrivial results, and the main peculiarities of t
interface state spectrum remain the same.

The interface magnetization effect can occur even in
normal semiconductor heterojunction when the gaps of
initial semiconductors have the same signs. However, as
phasized in Sec. I, for the stressed semiconductor heteroj
tion with normal band arrangement the interface states
pear inside either the bulk valence or conduction bands
the original semiconductors, and they exist in at most a
stricted range of values of the transverse momentum. S
the case of the normal stressed semiconductor heterojun
with antiferromagnetic ordering, the effect of the interfa
magnetization might take place under more rigorous con
tions.

V. SUMMARY

We discussed in some detail the spectra for midgap st
bound to interfaces in stressed heterostructures made
materials with inverted bands and showing antiferromagn
ordering. Comparing these interface states with those of
stressed semiconductor heterojunction without antiferrom
netic ordering6 ~that corresponds toL50 in our model! or
with interface states arising in the simple inverted contac1,2

(E0 ,L50), one can see that in the case of the stressed
verted contact with antiferromagnetic ordering there is a
between the electronlike and holelike states~determined by
the parameter of the antiferromagnetic orderingL). More-
over, the spectrum of the interface states is not linear
p' .

The spin analysis of the interface states showed them
be spin split. Thus, if in semiconductor heterostructures
Fermi level~for example by means of doping! falls into one
of the interface bands, this then leads to magnetic orderin
the interface plane. In view of this the interface magneti
tion effect was discussed.

In this work the idealized system in the framework
some above approximations has been studied. Any corr
tion problems treated in the self-consistent approach h
been beyond our consideration. However, the specific ph
cal properties of the IV-VI narrow-gap semimagnetic sem
-
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conductors~used as model materials! such as small values o
the effective masses, very high dielectric constants, and
on ~resulting in strong screening of the electromagne
fields!, make us believe the electron correlation effect to
of no importance for the problems discussed. It is of spe
interest to consider another correlation effect caused by
exchange interaction between the interface state spins
ion spins of the magnetic layers. Due to a renormalization
the interface states resulting from this interaction, the int
face magnetization can be increased or decreased. A sim
effect was studied in our previous work,28 where the Ander-
son impurity state renormalization induced by interacti
with interface states in band-inverted semiconductor hete
junction was considered. The interface states being local
at the interface boundary, the renormalization effect w
shown to be of some consequence just when the impu
atom is spaced a distance less than 1–2 lattice cons
apart from the interface plane. So, analogously, as the
tance between magnetic layers in narrow-gap semimagn
semiconductors used to be larger than the above value
overlap of these interface states with the magnetic ions
have a rather negligible effect on our results.

Another question arises about the neglecting of the te
;k2 in Hamiltonian ~1!. They are diagonal terms of th
Dimmock model23 resulting from far-band corrections, an
are written ask2/2m ~wherem is a far-band mass!. A de-
tailed investigation of interface states in band-inverted se
conductor heterojunctions3 showed these far-band corre
tions to provide a modest curvature of the energy spectr
and to give an additional spectral cutoff, but showed
quantitative changes to be not very significant. In fact th
higher-order terms become important for largep' such that
p'.D0, the interface states existing just at

p'
2,4D0

2Smv2D0
D . ~29!

Thus, in the second approximation of the perturbat
theory, the condition restricting the range of the transve
momentum for the interface states in the stressed semi
ductor heterojunctions with the antiferromagnetic order
will be not so simple as Eq.~21!. However, taking into ac-
count the real relations between the parametersD0 , E0 , and
L used for our model materials, and the fact that for IV-
narrow-gap semiconductors the value ofmv2/D0 is on the
order of 5, after a trivial estimation we find relation~21! to
be more rigorous than Eq.~29!. Thus we can assume th
including of the far-band corrections should not change
essence of the matter for the problems under considerat

In conclusion, we should like to note that, while the
have been experimental works18,19 showing some interesting
magnetic effects in EuTe/PbTe superlattices which can
connected with interface magnetization, a direct observa
of the effect in point may be performed by means of cert
magneto-optical experiments. From the theoretical point
view at this moment, as a first step the simple model dev
oped by us fits the problem in question quite adequat
providing an opportunity to understand the physical sens
the phenomenon. Apparently for further progress the in
face magnetization effect discussed in this work needs to
considered by means of the self-consistent approach, trea
some correlation effects.
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