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Universal behavior of magnetoconductance due to weak localization in two dimensions
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Magnetoconductance due to weak localization is studied experimentally for different semiconductor hetero-
structures. We observe that, when presented as a function of the appropriately normalized magnetic field,
different samples show very similar high-field behavior. A theoretical description is developed that allows one
to describe in a consistent way both the high- and low-field limits. The theory predicts universal magnetic field
dependenceR?) of the conductivity correction for two-dimensional systems in the high-field limit. Low-
field magnetoconductance depends strongly on spin and phase relaxation processes. Comparison of the theory
with experiment confirms the universal behavior in high fields and allows one to estimate the spin and phase
relaxation times[S0163-1827)07024-0

. INTRODUCTION ductivity should be a universal function af=B/B,, . Until

recently this function was known only for<1, i.e., in the

Weak-field magnetoconductance is due to quantum cofmagnetic field range whei, ,B,<B<B;, which exists if
rections to the conductivitylo, arising from interference of the inequality(2) is valid. In this range the contributing paths

electron waves scattered along closed paths in opposite di;j| jnvolve many collisions and the diffusion approximation
rections. This interference is destroyed by the magnetic fielg,

because of the phase shift between the corresponding ampHoIds. The gquantum correction to conductivity in this mag-
o _ etic field range is well knowhto be proportional to Ix [for
tudes, which is equal to2®/d,, whered =BSis the mag- g prop [

netic flux through the are8 of a closed pathpy— mficle is the two-dimensiona{2D) casé. For higher magnetic fields,

the elementary flux quantum. This idea is the basis of th(\aNhenB becomes on the order of or greater tp, paths

theory of the weak localization magnetoconductahce. contributing to the quantum correction have dimensions on

To describe the magnetic field dependence of the quantuﬁ]?e order of the mean free palthr less, so that the diffusion

correction to conductivity three characteristic field values aréPProximation breaks down. However, unless the value of
usually introducedB,, B, andB,, where In(7,/7) is unrealistically high, a substantial part of the con-
@ o} T

ductivity correction changes in this magnetic field range.
fic hc hc Kawabata proposed a theory going beyond the diffusion
‘P:4eDT¢’ so— 4eDr’ Btr:4e Dr’ 1) approximation and not limited by the conditid@<B,,, as
) ) o . ) well as by the inequality2). This theory is often used, with
Here D=1%/27 is the diffusion coefficient] =ve7 is the  gyccess, to fit the experimental data BEB,. Though
mean free pathyg is the Fermi velocity, and, 75, and7,  kawabata's expression for magnetoconductance is basically
are the elastic scattering, the spin relaxation, and the phas@brrect it has the following drawbackga) it is over-
breaking times, respectively. If complicated, since magnetoconductivity is given as the dif-
ference between two diverging sums, representing B)

Te:Ts> T, @ and Ag(0), and an unphysical cutoff is introduced to avoid

as usually is the case, we haBg ,Bs;<B;. this divergence(b) it does not reveal the universal behavior
Since S~Dt is the average area of a closed path passedtB>B, Bgo.2

by a diffusing electron during timet, the quantities It was recently pointed out in Refs. 4 and 5 that Kawaba-

B,. Bso, and By define values of the magnetic field at ta's theory erroneously takes into account closed paths with
which the flux through the area of a closed path, passed by @ne and two collisions, which have zero area and do not
diffusing electron during the respective relaxation time, be-contribute to magnetoconductance, but give a seemingly di-
comes comparable t®,. The so-called “transport field” verging result for the quantum correcti¢in the weak local-
By is actually defined as field at whichnBI?=d,. ization limit A/l—0, N being the Fermi wavelengthThe
When the magnetic field becomes greater than tiith  universal function ofk=B/B,, describing the magnetic field
and Bg,, the phase-breaking and spin relaxation processedependence oo was found in Ref. 4. It was also shown
become irrelevant, since now only paths with the round-tripthat in the high-field limit §¢>1) the quantum correction
timet=®,/BD contribute, and this time is less thap and Ao (B) decreases as {¥, and that this behavior is deter-
7. The contribution of longer paths is killed by the randommined by triangular closed paths with dimensions much
phase difference introduced by the magnetic field. smaller than the mean free pdthActually these results are
A single parameter of the dimension of magnetic fieldhidden in Kawabata’'s formulas and could be extracted from
being left, B;,, the quantum correction to conductivity them after some manipulation.
should depend on magnetic field only through the ratio Apparently, no systematic experimental investigation of
B/By.* Thus, forB> B, .Bso the quantum correction to con- magnetoconductivity in the limiB>B, has been done so
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mfar. Some results can be found in Ref. 5. The universal le®llisions, that have zero area, should be neglected. The re-
havior of experimental data for different samples waslation between the function&N"1(r) andw™(r) is given
pointed out for the first time in Ref. 6. However, in the by the equation

absence of a theory valid both f&>B,, and B<B,, these
experimental results could not be adequately interpreted, , , . € , ,
Some experimental studies of the quantum correctionW(NH)(r):f dr’ P(r—r )eXﬁ{I%B(I’XI’ )W,
Ao(B) in a 2D electron gas were devoted to the determina- (5)
tion of the absolute value of the correctid(0) (see Ref.
7). ExperimentallyAc(0) is determined by the difference
between the values of conductivity f&>B,, andB=0. In exp(—r/l)
Ref. 7 experimental results were interpreted in the frame of WO (r)=P(r)=
the conventional diffusion approximation theory.

Precise experimental determination ®é(B) is difficult  The quantityP(r)d?r gives the probability for an electron
when another magnetotransport  phenomenon,  thground point.

Shubnikov—de Haas oscillations, starts to dominate and the Thysw(r) satisfies the equatién

small weak localization correction cannot be extracted from

conductivity measurements any more. Choosing a particular e

sample carrier density and mobility is necessary to overcome ~ W(r)= J d’r’ P(r—r ’)exp{i 7o Brxr’)
this difficulty.

The purpose of this work is to study experimentally the +W®(r). (7
magnetoconductance of 2D electrons in a wide magnetic ) ] (1) i 3) .
field range, covering both the low-fieldB&B,) and the EQquation(7) with W-(r)=P(r), instead ofW**(r), in the
high-field (B> B,,) limits, and to compare the data with the Might-hand side was first derived by Kawatfatsee also Ref.
theoretical predictions. We find that when presented as §- 1he difference is due to our neglecting paths with one
function of normalized magnetic fielk& B/B,,), different and two coII|§|ons, as explained in Refs. 4 ar]d 5 and above.
samples, indeed, show universal high-field behavior. We alsg The solution of Eq.(7) by the method first used by
show that the experimental results in the whole magneti(5"’“’"‘5‘batgl gives th4e universal functional dependence of
field range B>B, and B<B,) can be interpreted in the A(B) ONX=B/By:
frame of the same theory. )

Ac(B)=— Z:—ZﬁF(x), F(x)zxn§=‘,o

where

(6)

27l

W(r")

i
1-p,

®
Il. THEORETICAL BACKGROUND

It is convenient to use the expression for the quantum o
correction to the conductivity derived in Ref(See also Ref. Pn=5f dt exp(—st—t%/2)L(t?), 9)
9), which may be written as 0
wheres=(2/x)? andL, is then-th Laguerre polynomial.
For the low-field limit x<1) one obtains the result of the
diffusion approximatioh

eZ

Ao=—omF

F=2m?W(0), ©)
where W(r)d?r is the probability of finding an electron in F(x)=1.96-In(x), (10
the aread?r around the point after an arbitrary number of . L - .

collisions, provided the electron startedrat0. ThusW(0) while for the high-field limit ¢>1) Eq. (8) gives’
is the total probability for an electron to return to the origin. _
In the presence of magnetic fielty(0) should be under- F(X)_7'74/\&' (12)

stood as the quasiprobability of return, in which all paths arerhe function F(x) diverges logarithimically as goes to
weighted with a phase factor determined by the magnetigero. This happens because E(®—(9) do not take into

flux through the_ path art_aga. _ account the phase-breaking and spin-relaxation processes,
~ After Eq. (3) is established, one may consider the essenthus the results are valid f@>B,,,Bs,. F(X) is in fact a
tially classical problem of findingV(0). Thequantum me-  sum of termsP3,P? P35, . .., which give separate contribu-

chanics enters only through the phase factorions of closed paths with 3,4,5.. collisions. It may be
exp(2miBS®g), which should be attached to each path in theseen that in the high-field limit only triangular paths contrib-

presence of magnetic field. . __ute, which could be anticipated since the contribution of
It was shown in Refs. 4 and 5 that the quasiprobabilitymore complex paths with larger areas is destroyed by the
W(r) is given by a sum over the number of collisioNs high magnetic field. Moreover, &> B,,, the magnetic flux

. through the area of a typical triangle greatly excedds
Thus, at these high fields only very small triangl@gth
— (N) ) . . .
W(f)—NEZS WHEH(T), (4) dimensions much less thdn contribute. It was shown in
Ref. 4 that the asymptotB ~ Y2 law for x>1 is related to the
whereW™ is the contribution of paths with collisions; the  area distribution function for small triangles witB<I2,
terms withN= 1,2, corresponding to paths with one and twowhich was found to be proportional &2



1998 A. ZDUNIAK, M. I. DYAKONOV, AND W. KNAP 56

x=B/Btr
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7 FIG. 1. Calculated magnetic field dependence
//high field limit of the quantum correctiom\o for 7,=71s=2
7.74x-112 (solid line) together with low- and high-field as-
ymptotics (dashed lines(Ref. 4. The contribu-
tion of all paths involving an arbitrary number of
collisions N<Nax Npmax=3,4...,20, are also
presented.
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&
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Figure 1 presents results of numerical calculations of the o 5 5
quantum correctiom o(B), as given by Eqs(8) and (9) Pn:SJ dt expg —s(1+ B )t—t/2]L,(t%), (12
together with the low- and high-field asymptoticn addi- 0
tion, the calculated contributions of all paths involving anwhere,B¢:T/T =B, /B,. We denote by (x,3,) the func-

arbitrary - number  of ~ collisions N<Npa, f0r Nmax tion defined ag (x) in Eq. (8), but with P, modified accord-

=3,4,...,20 are presented. One can see that with increasi e Lo

magnetic field the contribution of shorter and shorter paths %ﬂg 10 Eq.(12). Thus, if spin relaxation is ignored,
destroyed until finally only triangular paths remain, which 5

determine the high-field behavior. &=0 the contribution Ag(B)=— e2 F(X,8,). (13)
of a path withN collisions to the quantity in Egs.(3) and 2mwh - Y

(8) is 1/(N—2).

It is easy to take into account the phase-breaking and The calculated field dependenciesiod(B), for different
spin-relaxation processes and thus to obtain a complete fowalues of the parametgt,, are presented in Fig. 2. There is
mula describing the quantum correction to conductivity notan obvious resemblance of the curve family in Fig. 2 to the
only in the high-field limit 8>B,,Bs,), as Eqs(8) and(9),  one in Fig. 1, which is natural since the phase-breaking pro-
but also in the low-field limit B<B,,By). If, for the mo-  cesses limit the number of collisions for paths contributing to
ment, we consider phase-breaking processes only, an addjuantum interference b\, 7,,/7. The smaller the value
tional factor exp¢-|r—r’|/I,;) should be introduced into the of S, the earlier the universal curve fgr, =0 is reached.
integrand of Eqs(5) and(7), wherel ,=vg7,=l7,/7. This  One can also see from Fig. 2 that for very small values of
leads to the following modification of the expression for B, the change ofAc in the range of validity of the diffusion
P, in Eq. (9): approximation B<B,,) may be comparable to, or even less

x=B/B,_
0.01 0.1 1 10 100 1000

FIG. 2. Calculated magnetic field dependen-
cies ofAc for different values of3,= 7/7,. Spin
relaxation is not taken into accounty& «).

Ao 2n2h je2
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D FIG. 3. Calculated magnetic field dependen-
- cies of Ao for 8,=0.025 and different values of
cfé 1-0 B/B: 0025 Bo/By - Curves 1-8 were calculated using Eg.
) 2-0005 ' (15), curves 1-8 were calculated by using the
2 3-0.01 HLN formula for the same values of parameters.
4-0.015
65-0.025
3 6-0.045
7-0.07
8-0.1
-4
than, its change beyond this range. Thus, even Sgr e? 1 1 1 Bg
=0.001, the variation of\¢ in the rangeB<0.5B, is less Ao(B)=— 5| VY| 5+ |-V |5+ —
: - . 27h 2 X 2 X
than half of its total variation. The reason for this is that the
relevant parameter is net, /7, but rather In¢,/7). In prac- 1 /1 B, 1 (1 Bg
tice this quantity is never very large. The zero-field value of WSt P st ] (@D

the functionF(x,8,) in Eq. (13) is
whereW is the di-gamma function. For largethe universal
1+, curve given by Eqs(8) and(9) is recovered.
B =In ' (14 The numerically calculated magnetic field dependencies
¢ of Ao for B, /B,=0.025 and different values of the param-
which, for 7,/7>1 is close to the value In(/7) derived in  eterBg,/B;, are presented in Fig. 3. For comparison the re-
the diffusion approximation. sults following from the HLN formula for same values of the
We now introduce spin relaxation. This may be done by gparameters are given. Large valuesxoére, of course, be-
simple generalization of the Hikami-Larkin-NagaokdLN)  yond the range of validity of the HLN theory. Within its
results!® As it is well known(see Refs. 1 and 1@he quan- range of validity k<1), the corresponding curves are close
tum correction may be split into a positive singlet part, whichto each other, and are more so the less the value of
is not influenced by spin relaxatidin the absence of mag- B,/B;. The difference in zero fieldx=0) is due to the
netic impuritie$, and the negative triplet part, which dependsdifference between the exact valg€0,8) =In(1+1/8) and
on the spin relaxation rate. In the 2D case, when the fluctuthe value In(18), which follows from the HLN formula.
ating magnetic field responsible for spin relaxation lies in theOne can see that even for rather small values Bof
2D plane, the two in-plane spin components relax with the=0.023,, (curves 8, 8) the HLN formula does not describe
same time constant;s, while the normal-to-the-plane spin the “antilocalization” minimum accurately enough. This,
component is destroyed two times faster. These considegegain, is related to the fact that the relevant parameters are
ations lead to the following formula, which accounts for thenot justr, /7, and 75/ but rather In¢,/7) and In/7).
phase-breaking and spin-relaxation processes and is appli- Some remarks are in order, concerning the notion of uni-
cable for arbitrary magnetic fieldéimited only by the con-  versality for the high-field behavior of the quantum correc-
dition w.7<<1, wherew, is the cyclotron frequengy tion Ao. It is universal in the sense that fé>B,, ,B,, and
for a given elastic scattering mechanisixo- depends on
1 1 magnetic field only through the parameset B/B,,. For the
Ao(B)=— 5 |F(X.Bs1) + 5F (X, Bs2) = 5 F (X, B,) | case of isotropic scatteringshort-range impurity potentigl
(15  this dependence was calculated in Ref. 4, and it is for this
case that the formulas given above were derived.X¥<81,

,
<41
.

F(0,8,)=In

2

where when the diffusion approximation is valid, the dependence

Ao~Inx is always the same, whatever is the elastic scatter-

B, Bso B,+2Bs B, ing mechanism, since the diffusion process may be charac-
ESFB—U’ 'BSZZB—u’ ¢" B, (16)  terized by a single parametex, or equivalently,B, . How-

ever for x=1, when the contributing paths have linear
The quantitiesB,, B, and By are defined by Eq(1), dimensions on the order df or less, this is no longer the
where s should be understood as the relaxation time for thecase, because now the geometry and area distribution of
in-plane spin component$:'2 For x=B/B,<1 Eq.(15) re-  small closed paths are strongly correlated to the angular de-
duces to the HLN formula: pendence of the scattering cross section. Thus, the shape of
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the Aa(x) curve forx=1 should depend on the nature of the TABLE I. Parameters of the samples.
elastic scattering and this dependence could, in principle;
give information about the scattering mechanism. Ngz M

In the region of universal behavior the magnetoconduc- (cm™)  (@en?V's) By (G) 7(P9 75 (P 7, (PY Xmax
tance is temperature independent, since the only relevant pa; 185<10°2 14300 32 06 19 21 22
rameter,7, does not depend on temperature for the case o> 110¢10°2 37000 79 15 29 59 34
impurity scattering of degenerate electrons. S3 1.15¢10°2 41000 6.2 1.7 27 77 39

D1 90r  250r

I1l. EXPERIMENT
) formed to establish the value b and the mobilityw. In all

Pseudomorphic Al fGay sgAS/INg 1558 ssAS/GaAs quan-  jnyestigated samples only the lowest electric subband is
tum wells are studied. They were grown by the moleculafpopulated.
beam epitaxy technigue. The two-dimensional electron gas is To calculate theB, parameter we used E@l). For the
formed in the 13-nm-thick InGaAs layer. All samples de case of a degenerate 2D electron gas the diffusion constant
doped with Si(doping densityN s=25x 10 cm™2). They  can be expressed as
have ALGa _,As spacer of thickness 2—6 nm. The samples
are Hall bars with geometry precisely defined by photoli- 1
thography and the etching process. They have a length of 1.0 )
mm and a width of 0.1 mm, and two current and four voltage
probes. The distance between voltage probes is 0.3 mm. Theherem is the effective mass ank = 27N is the Fermi
samples are characterized by independent luminescenosave vector. Thus, we can rewrite Ed) in the form
high-field transport, and cyclotron emission experiménts.

Reproducible and stable weak magnetic fields, necessary ec
for measurements of the weak localization magnetoconduc- Btr:W'
tance are realized in the following way. We use a system of
two superconducting coilé80 kG/80 kQ placed in the same TheB;, parameter derived from E@L9) is in the range from
cryostat. The constant field in one of the cdimmple coll 6 to 50 G for our samples. Mobility, carrier density, and
is compensated by the slowly tuned spread field of the otheB;, for a few samples, discussed in more detail in the follow-
one. Typically the constant magnetic field in the sample coiing paragraph, are listed in Table I.
is of the order of 50 G. The compensating coil field is tuned Figures 4a)—4(d) show an example of direct experimen-
in the range from 0 to 80 kG. The magnetic field applied total records of Hall and conductivity voltages as functions of
the sample is determined on the basis of measurements of tigagnetic field for one of our samples. Scales of vertical and
Hall voltages induced on the sample and known coil coeffi-horizontal axes of Figs.(d)—4(d) are subsequently magni-
cients. This way we can obtain in the sample space magnetféed by a factor of 10 in order to show the low-field behavior
fields from about—600 to +600 G. Small sample dimen- of conductivity. One can see how, by magnifying the scales
sions and the geometry of the coils ensure a practically uniby three orders of magnitude one comes from the
form magnetic field. Shubnikov—de Haas oscillations and the quantum Hall effect

To measure the conductivity as a function of applied mag{Fig. 4@)] to the subtle featurefrig. 4(d)] related to the
netic field the standard direct current method is used. A conantilocalization effectgsee Refs. 15 and 16Figures 4b)
stant current is passed through the sample and voltages baad 4c) show weak localization behavior, i.e., the conduc-
tween conductivity and Hall probes are measured. Specidance increases with increasing magnetic field.
care is taken to avoid any thermocouple voltage effects. A Two-dimensional conductivityr(B) was calculated on
high precision voltmeter allowing one to measure nVthe basis of measured voltage, current, and known sample
changes of mV signals is used to measure the conductivitgeometry. In order to compare with theory the results were
voltage. To avoid mechanical and temperature instabilitiespresented as(B) — o(0) in units €%/27%4) versus the pa-
the sample is not directly immersed in the liquid helium butrameterx=B/By,. In Fig. 5 we show results for one of the
is enclosed in the vacuum tight sample holder and cooled bgamples. Scales in Fig. 5 were chosen in order to make the
helium exchange gas under 50-mbar pressure. The constameak localization effect visible. One can see that positive
current applied to the sample does not exceeghADso that  magnetoconductivity is followed by Shubnikov—de Haas os-
there is no appreciable sample heating. More details aboutllations. Forx higher than 300, Shubnikov—de Haas oscil-
the experimental system are given in Ref. 14. lations dominate and weak localization correction to conduc-

After slow cooling (to 4.2 K) in the dark the samples tivity cannot be extracted from the measurements any more.
have carrier concentratioNg varying from 1.05x10% to  Generally Shubnikov—de Haas oscillations start at fields for
1.6x10'? cm2 lllumination by an infrared emitting diode which uB/c is around 1. On the other hand the theoretical
allows us to increase persistently the carrier concentration bgnodel presented above is valid faB/c much smaller than
about 20% of its initial value for each sample. This behaviorl. Therefore to avoid the influence of Shubnikov—de Haas
of the samples under infrared illumination is caused by metaescillations in the region of the validity of theory we limited
stable properties ofDX Si centers present in the the comparison between the theory and experiment to the
Al,Ga,_,Ga layer'® After each illumination Shubnikov—de fields for which uB/c is smaller than 0.1. This condition
Haas and zero field conductivity measurements are petmposes the maximal value aof for each samplexXyay

2

ik
il (18)

m

(19
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FIG. 4. Example of magnetoresistance measurements seen in different(ac@bsbnikov—de Haas oscillations and Hall voltads,
and (c) weak localization phenomena and Hall voltagd), “antilocalization minimum” and Hall voltage. The gap in the experimental
curves at magnetic fielet0.05 T is related to the change of the experimental system design for measurements at very low magnetic field.

=c/(10uBy). We mention here that the so-called quantumthis limits the carrier density to about X@0'? cm™2. Val-
lifetime 74, which defines the amplitude of Shubnikov—de ues ofx,,, obtained for Gdn, _,As quantum wells used in
Haas oscillations, for the studied,(Ba; _,As quantum wells  our experiments varied between 20 and(46e Table)l

was found to be about 10 times less thar This means that

we compare our experiments with the theory ir_l magnetic IV. RESULTS AND DISCUSSION
fields for whichw 74<0.01, wherew.=eB/mc. Using Eq.
(19) one obtains In Fig. 6(@) we show the measured magnetoconductivity

presented as a function of normalized magnetic field (
=B/By). Our results are presented together with previous
measurements done on heterojunctions by Dressélhaus
(dashed lines The universality manifests itself by the fact

One can see that high values X, can be obtained for 5 gifferent curves are almost parallel for B/B,, greater
samples with high mobility and carrier density. However, o4 1.

when increasing carrier density one should avoid the popu- e fitted the experimental data, using E#S) and cal-
lation of the second electron subband. For heterojunctionémaﬁng numerically the functioRi(x, 8) defined by Eqs(8)
and(12). We also used the recursion relation Ry, derived

in Ref. 2. Direct calculation becomes more and more difficult
for small values of, since to get reasonable accuracy, val-
ues of P,, for very highn are needed. The asymptotic for-
mula for P, atn>1 (see Refs. 2 and)3s

AN

Xmax™ " 10ec (20

Shubnikov- de Haas oscillations

Figure 5

Ao 2m2hje2

Po=[(1+p)2+(2n+1)x] "2 (21

weak localizatiol

Values of P, were calculated using E¢12) for increasing

n, until the difference between these values and the ones

given by Eq.(21) became less than 0.1%. For higheEg.

(21) was used.

oo Four examples of the fits are shown in Figb6 Values

of the fit parameters are given in Table I. One can see from

Fig. 6 that both low-field and high-field behavior is well
FIG. 5. Magnetoconductivity of one of the samples vs the pafeproduced. We can notice that fer-1 experimental data

rameterx. follow similar functional dependence approaching the theo-
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FIG. 6. (a) Magnetoconductivity of Gan, _,As quantum wells
(straight line$ and heterojunctionéRef. 6 (dashed lingspresented FIG. 7. (@ Same as in Fig. @) but presented in another way.
as a function of normalized magnetic fielth) Examples of fits by  Universality manifests itself by the fact that experimental curves
formula (15) for whole range of magnetic field. (solid and dashed lingdollow similar functional dependence ap-

rproaching the theoretically predicted behauioeavy ling. (b) Ex-

retically predicted universal behavior. On the other hand, fo amples of fits by Eq(15).

values of the parameter8 obtained from the fits for our
samples, the difference between all theoretical curvesfor rectly the value\a(0) and of theAos versus magnetic field
>10 is small and comparable with the experimental accudependence. We would like to stress that for all cases values
racy (see Fig. 3 Therefore in order to demonstrate clearly of Ac(0) depend not only on momentum and phase relax-
the universal behavior in high field, we present all experi-ation rates but also on the spin relaxation rate. The fitted
mental results in another way in FigaJ. In this figure every  values of the ratios,, /7 and 75/ are given in the table. We
experimental curve was shifted vertically by some constanfound that for our samples, /7 changes from 35 to 50 and
value. For each curve the shift was chosen in such a way that,/ 7 in the range from 15 to 35. Sincecan be determined

for x=Xmax €xperimental data coincide with the theoretical from zero field mobility and known effective magRef. 12

curve. we calculated that the values of, change in the range
One can see from Fig(&) that forx>1 all experimental 35-50 ps and in the range 15—35 ps.
curves approach the theoretical curve ®g=B;=0 in a The functional dependence dfo on magnetic field was

similar way. It is worth noting that from Fig.(&@ one can calculated for the simple case of isotropic scattering. In the
estimate the absolute value of the quantum correction to corabsence of a theory valid for an arbitrary scattering mecha-
ductivity Ao(0). Precise experimental determination of nism, we have compared our data with the existing theoret-
Ao(0) is difficult because it requires measurement ofical results for isotropic scattering, although a certain contri-
Ao (B) for x in the range from 100 to 100Gee Fig. 7a)].  bution of small-angle scattering by ionized impurities in the
As discussed earlier for such highanother magnetotrans- &doped layer should be present. We did not find any appre-
port phenomenon—the Shubnikov—de Haas oscillations—eiable disagreement between our data and the theory. This
dominates(see Fig. % and the weak localization correction may indicate that in our pseudomorphic samples short range
Ag cannot be extracted from conductivity measurements anisotropic alloy scattering is the dominating scattering mecha-
more. The absolute value of the correctitn(0) estimated  nism.
for our samples changed in the range from 1.6 to 2.3 while The theoretical curves reproduce quite well the general
for Dresselhaus results—in the range from 1.7 to 4.1—in theshape of the experimental curves both in the low- and high-
units (2m?#/e?). Generally higher values afo(0) are ob- field regions. However, the description of the region of the
tained for samples with longer phase relaxation times. antilocalization minimum, where spin relaxation effects are
Figure 1b) shows examples of the fits of experimental important, is not very accurate. The reason for this is that the
data by Eq.(15). The fitting parameters are, of course, theeffect of spin relaxation on quantum correction to conductiv-
same as those in Fig(l®). Theoretical curves reproduce cor- ity in GaAs heterostructures cannot be accurately described
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by a single parameter,.® More precise theoretical and ex- magnetoconductivity, due to so-called “hat diagrams,” ex-
perimental studies of spin effects in weak localization weredsts. The physical meaning of this contribution was recently
presented in Ref. 16. It was shown that anisotropic spin splitexplained in Ref. 20.
ting of the conduction band should be taken into account to The correction due to hat diagrams does not change the
describe accurately the antilocalization minimum. Considergyerall behavior ofAo(B). In the magnetic field range ex-
ation of these subtle spin effects is beyond the scope of thigerimentally investigated in this paper the correction only
work. We would like to stress, however, that the presented|ightly modifiesA o(B) as given by Eq(15), the difference
theory allows for an overall description of both the low- andhot exceeding 10%. We have checked that the values of the
high-field regions. spin and phase relaxation timgsarametersr,, and 7¢) de-

In summary, we have studied weak localization correcjyed by using the theory of Refs. 19 and 20 differ from
tions to the magnetoconductivity of a 2D electron gas. Athose obtained above by less than 5%, which is within ex-

theory describing both the low field, where closed paths withperimental error. Thus all the conclusions of this work re-
many collisions are involved, and the high-field region, main valid.

where paths with only a few collisions are important, has
been presented. The theoretically predicted universal behav-
ior of magnetoconductance in the high-field limit has been
experimentally confirmed.

Note added in proofWe come to know that the theory of One of the authorgM.D.) acknowledges partial support
weak localization magnetoresistance beyond the diffusiomf this work by the Russian Foundation for Fundamental
approximation was developed by Gasparyan and Ziizin. Research(Grant No. 96-02-17896and by the Swedish
They showed that aB=B,, an additional contribution to Royal Academy of Sciencg&rant No. 124D
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