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Universal behavior of magnetoconductance due to weak localization in two dimensions

A. Zduniak,* M. I. Dyakonov,† and W. Knap
Groupe d’Etude des Semiconducteurs, Universite´ Montepellier II, CNRS-URA 0357, 34095 Montpellier, France

~Received 21 March 1996; revised manuscript received 3 February 1997!

Magnetoconductance due to weak localization is studied experimentally for different semiconductor hetero-
structures. We observe that, when presented as a function of the appropriately normalized magnetic field,
different samples show very similar high-field behavior. A theoretical description is developed that allows one
to describe in a consistent way both the high- and low-field limits. The theory predicts universal magnetic field
dependence (B21/2) of the conductivity correction for two-dimensional systems in the high-field limit. Low-
field magnetoconductance depends strongly on spin and phase relaxation processes. Comparison of the theory
with experiment confirms the universal behavior in high fields and allows one to estimate the spin and phase
relaxation times.@S0163-1829~97!07024-0#
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I. INTRODUCTION

Weak-field magnetoconductance is due to quantum
rections to the conductivity,Ds, arising from interference o
electron waves scattered along closed paths in opposite
rections. This interference is destroyed by the magnetic fi
because of the phase shift between the corresponding am
tudes, which is equal to 2pF/F0, whereF5BS is the mag-
netic flux through the areaS of a closed path,F05p\c/e is
the elementary flux quantum. This idea is the basis of
theory of the weak localization magnetoconductance.1

To describe the magnetic field dependence of the quan
correction to conductivity three characteristic field values
usually introduced:Bw , Bso, andBtr , where

Bw5
\c

4eDtw
, Bso5

\c

4eDts
, Btr5

\c

4eDt
. ~1!

Here D5 l 2/2t is the diffusion coefficient,l5vFt is the
mean free path,vF is the Fermi velocity, andt, ts , andtw

are the elastic scattering, the spin relaxation, and the ph
breaking times, respectively. If

tw ,ts@t, ~2!

as usually is the case, we haveBw ,Bso!Btr .
SinceS;Dt is the average area of a closed path pas

by a diffusing electron during timet, the quantities
Bw , Bso, and Btr define values of the magnetic field
which the flux through the area of a closed path, passed
diffusing electron during the respective relaxation time, b
comes comparable toF0. The so-called ‘‘transport field’’
Btr is actually defined as field at which 2pBl25F0.

When the magnetic field becomes greater than bothBw

and Bso, the phase-breaking and spin relaxation proces
become irrelevant, since now only paths with the round-
time t&F0 /BD contribute, and this time is less thantw and
ts . The contribution of longer paths is killed by the rando
phase difference introduced by the magnetic field.

A single parameter of the dimension of magnetic fie
being left, Btr , the quantum correction to conductivit
should depend on magnetic field only through the ra
B/Btr .

1 Thus, forB@Bw ,Bso the quantum correction to con
560163-1829/97/56~4!/1996~8!/$10.00
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ductivity should be a universal function ofx5B/Btr . Until
recently this function was known only forx!1, i.e., in the
magnetic field range whereBw ,Bso!B!Btr , which exists if
the inequality~2! is valid. In this range the contributing path
still involve many collisions and the diffusion approximatio
holds. The quantum correction to conductivity in this ma
netic field range is well known1 to be proportional to lnx @for
the two-dimensional~2D! case#. For higher magnetic fields
whenB becomes on the order of or greater thanBtr , paths
contributing to the quantum correction have dimensions
the order of the mean free pathl or less, so that the diffusion
approximation breaks down. However, unless the value
ln(tw /t) is unrealistically high, a substantial part of the co
ductivity correction changes in this magnetic field range.

Kawabata2 proposed a theory going beyond the diffusio
approximation and not limited by the conditionB!Btr , as
well as by the inequality~2!. This theory is often used, with
success, to fit the experimental data forB*Btr . Though
Kawabata’s expression for magnetoconductance is basic
correct, it has the following drawbacks:~a! it is over-
complicated, since magnetoconductivity is given as the
ference between two diverging sums, representingDs(B)
andDs~0!, and an unphysical cutoff is introduced to avo
this divergence;~b! it does not reveal the universal behavi
at B@Bw ,Bso.

3

It was recently pointed out in Refs. 4 and 5 that Kawab
ta’s theory erroneously takes into account closed paths w
one and two collisions, which have zero area and do
contribute to magnetoconductance, but give a seemingly
verging result for the quantum correction~in the weak local-
ization limit l/ l→0, l being the Fermi wavelength!. The
universal function ofx5B/Btr describing the magnetic field
dependence ofDs was found in Ref. 4. It was also show
that in the high-field limit (x@1) the quantum correction
Ds(B) decreases as 1/Ax, and that this behavior is deter
mined by triangular closed paths with dimensions mu
smaller than the mean free pathl . Actually these results are
hidden in Kawabata’s formulas and could be extracted fr
them after some manipulation.

Apparently, no systematic experimental investigation
magnetoconductivity in the limitB@Btr has been done so
1996 © 1997 The American Physical Society
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56 1997UNIVERSAL BEHAVIOR OF MAGNETOCONDUCTANCE . . .
mfar. Some results can be found in Ref. 5. The universa
havior of experimental data for different samples w
pointed out for the first time in Ref. 6. However, in th
absence of a theory valid both forB@Btr andB!Btr these
experimental results could not be adequately interpre
Some experimental studies of the quantum correc
Ds(B) in a 2D electron gas were devoted to the determi
tion of the absolute value of the correctionDs~0! ~see Ref.
7!. ExperimentallyDs~0! is determined by the differenc
between the values of conductivity forB@Btr andB50. In
Ref. 7 experimental results were interpreted in the frame
the conventional diffusion approximation theory.

Precise experimental determination ofDs(B) is difficult
because very often the conditionB@Btr is fulfilled for fields
when another magnetotransport phenomenon,
Shubnikov–de Haas oscillations, starts to dominate and
small weak localization correction cannot be extracted fr
conductivity measurements any more. Choosing a partic
sample carrier density and mobility is necessary to overco
this difficulty.

The purpose of this work is to study experimentally t
magnetoconductance of 2D electrons in a wide magn
field range, covering both the low-field (B!Btr) and the
high-field (B@Btr) limits, and to compare the data with th
theoretical predictions. We find that when presented a
function of normalized magnetic field (x5B/Btr), different
samples, indeed, show universal high-field behavior. We a
show that the experimental results in the whole magn
field range (B@Btr and B!Btr) can be interpreted in the
frame of the same theory.

II. THEORETICAL BACKGROUND

It is convenient to use the expression for the quant
correction to the conductivity derived in Ref. 8~see also Ref.
9!, which may be written as

Ds52
e2

2p2\
F, F52p l 2W~0!, ~3!

whereW(r)d2r is the probability of finding an electron in
the aread2r around the pointr after an arbitrary number o
collisions, provided the electron started atr50. ThusW(0)
is the total probability for an electron to return to the orig
In the presence of magnetic field,W(0) should be under-
stood as the quasiprobability of return, in which all paths
weighted with a phase factor determined by the magn
flux through the path area.9

After Eq. ~3! is established, one may consider the ess
tially classical problem of findingW(0). Thequantum me-
chanics enters only through the phase fac
exp(2piBS/F0), which should be attached to each path in t
presence of magnetic field.

It was shown in Refs. 4 and 5 that the quasiprobabi
W(r) is given by a sum over the number of collisionsN:

W~r !5 (
N53

`

W~N!~r!, ~4!

whereW(N) is the contribution of paths withN collisions; the
terms withN51,2, corresponding to paths with one and tw
be-
s
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collisions, that have zero area, should be neglected. The
lation between the functionsW(N11)(r ) andW(N)(r ) is given
by the equation

W~N11!~r !5E d2r 8 P~r2r 8!expF i e\cB~r3r 8!GW~N!~r 8!,

~5!

where

W~1!~r !5P~r !5
exp~2r / l !

2prl
. ~6!

The quantityP(r )d2r gives the probability for an electron
starting from the origin to experience the first collisio
around pointr.

ThusW(r ) satisfies the equation4,5

W~r !5E d2r 8 P~r2r 8!expF i e\cB~r3r 8!GW~r 8!

1W~3!~r !. ~7!

Equation~7! with W(1)(r )5P(r ), instead ofW(3)(r ), in the
right-hand side was first derived by Kawabata2 ~see also Ref.
9!. The difference is due to our neglecting paths with o
and two collisions, as explained in Refs. 4 and 5 and abo

The solution of Eq.~7! by the method first used by
Kawabata2 gives the universal functional dependence
Ds(B) on x5B/Btr :

4

Ds~B!52
e2

2p2\
F~x!, F~x!5x(

n50

` Pn
3

12Pn
, ~8!

Pn5sE
0

`

dt exp~2st2t2/2!Ln~ t
2!, ~9!

wheres5(2/x)1/2 andLn is then-th Laguerre polynomial.
For the low-field limit (x!1) one obtains the result of th

diffusion approximation1

F~x!51.962 ln~x!, ~10!

while for the high-field limit (x@1) Eq. ~8! gives4

F~x!57.74/Ax. ~11!

The functionF(x) diverges logarithimically asx goes to
zero. This happens because Eqs.~7!–~9! do not take into
account the phase-breaking and spin-relaxation proces
thus the results are valid forB@Bw ,Bso. F(x) is in fact a
sum of termsPn

3,Pn
4,Pn

5, . . . , which give separate contribu
tions of closed paths with 3,4,5, . . . collisions. It may be
seen that in the high-field limit only triangular paths contri
ute, which could be anticipated since the contribution
more complex paths with larger areas is destroyed by
high magnetic field. Moreover, atB@Btr , the magnetic flux
through the area of a typical triangle greatly exceedsF0.
Thus, at these high fields only very small triangles~with
dimensions much less thanl! contribute. It was shown in
Ref. 4 that the asymptoticB21/2 law for x@1 is related to the
area distribution function for small triangles withS! l 2,
which was found to be proportional toS1/2.
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FIG. 1. Calculated magnetic field dependen
of the quantum correctionDs for tw5ts5`
~solid line! together with low- and high-field as
ymptotics ~dashed lines! ~Ref. 4!. The contribu-
tion of all paths involving an arbitrary number o
collisions N<Nmax Nmax53,4 . . .,20, are also
presented.
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Figure 1 presents results of numerical calculations of
quantum correctionDs(B), as given by Eqs.~8! and ~9!
together with the low- and high-field asymptotics.4 In addi-
tion, the calculated contributions of all paths involving
arbitrary number of collisions N<Nmax, for Nmax
53,4, . . . ,20 are presented. One can see that with increa
magnetic field the contribution of shorter and shorter path
destroyed until finally only triangular paths remain, whi
determine the high-field behavior. AtB50 the contribution
of a path withN collisions to the quantityF in Eqs.~3! and
~8! is 1/(N22).

It is easy to take into account the phase-breaking
spin-relaxation processes and thus to obtain a complete
mula describing the quantum correction to conductivity n
only in the high-field limit (B@Bw ,Bso), as Eqs.~8! and~9!,
but also in the low-field limit (B&Bw ,Bso). If, for the mo-
ment, we consider phase-breaking processes only, an a
tional factor exp(2ur2r 8u/ l w) should be introduced into th
integrand of Eqs.~5! and ~7!, wherel w5vFtw5 l tw /t. This
leads to the following modification of the expression f
Pn in Eq. ~9!:
e

ng
is

d
r-
t

di-

Pn5sE
0

`

dt exp@2s~11bw!t2t2/2#Ln~ t
2!, ~12!

wherebw5t/tw5Bw /Btr . We denote byF(x,bw) the func-
tion defined asF(x) in Eq. ~8!, but withPn modified accord-
ing to Eq.~12!. Thus, if spin relaxation is ignored,

Ds~B!52
e2

2p2\
F~x,bw!. ~13!

The calculated field dependencies ofDs(B), for different
values of the parameterbw , are presented in Fig. 2. There
an obvious resemblance of the curve family in Fig. 2 to t
one in Fig. 1, which is natural since the phase-breaking p
cesses limit the number of collisions for paths contributing
quantum interference byNmax;tw /t. The smaller the value
of bw , the earlier the universal curve forbw50 is reached.
One can also see from Fig. 2 that for very small values
bw the change ofDs in the range of validity of the diffusion
approximation (B!Btr) may be comparable to, or even le
n-
FIG. 2. Calculated magnetic field depende
cies ofDs for different values ofbw5t/tw . Spin
relaxation is not taken into account (ts5`).
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FIG. 3. Calculated magnetic field depende
cies ofDs for bw50.025 and different values o
Bso/Btr . Curves 1–8 were calculated using E
~15!, curves 18–88 were calculated by using the
HLN formula for the same values of parameter
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than, its change beyond this range. Thus, even forbw

50.001, the variation ofDs in the rangeB,0.5Btr is less
than half of its total variation. The reason for this is that t
relevant parameter is nottw /t, but rather ln(tw /t). In prac-
tice this quantity is never very large. The zero-field value
the functionF(x,bw) in Eq. ~13! is

F~0,bw!5 lnS 11bw

bw
D5 lnS tw

t
11D , ~14!

which, for tw /t@1 is close to the value ln(tw /t) derived in
the diffusion approximation.

We now introduce spin relaxation. This may be done b
simple generalization of the Hikami-Larkin-Nagaoka~HLN!
results.10 As it is well known~see Refs. 1 and 10! the quan-
tum correction may be split into a positive singlet part, whi
is not influenced by spin relaxation~in the absence of mag
netic impurities!, and the negative triplet part, which depen
on the spin relaxation rate. In the 2D case, when the flu
ating magnetic field responsible for spin relaxation lies in
2D plane, the two in-plane spin components relax with
same time constant,ts , while the normal-to-the-plane spi
component is destroyed two times faster. These consi
ations lead to the following formula, which accounts for t
phase-breaking and spin-relaxation processes and is a
cable for arbitrary magnetic fields~limited only by the con-
dition vct!1, wherevc is the cyclotron frequency!:

Ds~B!52
e2

2p2\ FF~x,bs1!1
1

2
F~x,bs2!2

1

2
F~x,bw!G ,

~15!

where

bs15
bw1Bso

Btr
, bs25

Bw12Bso

Btr
, bw5

Bw

Btr
. ~16!

The quantitiesBw , Bso, and Btr are defined by Eq.~1!,
wherets should be understood as the relaxation time for
in-plane spin components.11,12 For x5B/Btr!1 Eq. ~15! re-
duces to the HLN formula:
f

a

-
e
e

r-

li-

e

Ds~B!52
e2

2p2\ FCS 121
1

xD2CS 121
bs1

x D
1
1

2
CS 121

bw

x D2
1

2
CS 121

bs2

x D G , ~17!

whereC is the di-gamma function. For largex the universal
curve given by Eqs.~8! and ~9! is recovered.

The numerically calculated magnetic field dependenc
of Ds for Bw /Btr50.025 and different values of the param
eterBso/Btr are presented in Fig. 3. For comparison the
sults following from the HLN formula for same values of th
parameters are given. Large values ofx are, of course, be-
yond the range of validity of the HLN theory. Within it
range of validity (x!1), the corresponding curves are clo
to each other, and are more so the less the value
Bso/Btr . The difference in zero field (x50) is due to the
difference between the exact valueF(0,b)5 ln(111/b) and
the value ln(1/b), which follows from the HLN formula.
One can see that even for rather small values ofBw

50.025Btr ~curves 8, 88! the HLN formula does not describ
the ‘‘antilocalization’’ minimum accurately enough. This
again, is related to the fact that the relevant parameters
not justtw /t, andts /t but rather ln(tw /t) and ln(ts/t).

Some remarks are in order, concerning the notion of u
versality for the high-field behavior of the quantum corre
tion Ds. It is universal in the sense that forB@Bw ,Bso and
for a given elastic scattering mechanismDs depends on
magnetic field only through the parameterx5B/Btr . For the
case of isotropic scattering~short-range impurity potential!
this dependence was calculated in Ref. 4, and it is for
case that the formulas given above were derived. Forx!1,
when the diffusion approximation is valid, the dependen
Ds; lnx is always the same, whatever is the elastic scat
ing mechanism, since the diffusion process may be cha
terized by a single parameterD, or equivalently,Btr . How-
ever for x*1, when the contributing paths have line
dimensions on the order ofl or less, this is no longer the
case, because now the geometry and area distributio
small closed paths are strongly correlated to the angular
pendence of the scattering cross section. Thus, the shap
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theDs(x) curve forx*1 should depend on the nature of th
elastic scattering and this dependence could, in princi
give information about the scattering mechanism.

In the region of universal behavior the magnetocond
tance is temperature independent, since the only relevan
rameter,t, does not depend on temperature for the case
impurity scattering of degenerate electrons.

III. EXPERIMENT

Pseudomorphic Al0.32Ga0.68As/In0.15Ga0.85As/GaAs quan-
tum wells are studied. They were grown by the molecu
beam epitaxy technique. The two-dimensional electron ga
formed in the 13-nm-thick InGaAs layer. All samples ared
doped with Si~doping densityNd52531012 cm22). They
have AlxGa12xAs spacer of thickness 2–6 nm. The samp
are Hall bars with geometry precisely defined by photo
thography and the etching process. They have a length o
mm and a width of 0.1 mm, and two current and four volta
probes. The distance between voltage probes is 0.3 mm.
samples are characterized by independent luminesce
high-field transport, and cyclotron emission experiments.13

Reproducible and stable weak magnetic fields, neces
for measurements of the weak localization magnetocond
tance are realized in the following way. We use a system
two superconducting coils~80 kG/80 kG! placed in the same
cryostat. The constant field in one of the coils~sample coil!
is compensated by the slowly tuned spread field of the o
one. Typically the constant magnetic field in the sample c
is of the order of 50 G. The compensating coil field is tun
in the range from 0 to 80 kG. The magnetic field applied
the sample is determined on the basis of measurements o
Hall voltages induced on the sample and known coil coe
cients. This way we can obtain in the sample space magn
fields from about2600 to1600 G. Small sample dimen
sions and the geometry of the coils ensure a practically
form magnetic field.

To measure the conductivity as a function of applied m
netic field the standard direct current method is used. A c
stant current is passed through the sample and voltages
tween conductivity and Hall probes are measured. Spe
care is taken to avoid any thermocouple voltage effects
high precision voltmeter allowing one to measure n
changes of mV signals is used to measure the conduct
voltage. To avoid mechanical and temperature instabilit
the sample is not directly immersed in the liquid helium b
is enclosed in the vacuum tight sample holder and cooled
helium exchange gas under 50-mbar pressure. The con
current applied to the sample does not exceed 10mA, so that
there is no appreciable sample heating. More details ab
the experimental system are given in Ref. 14.

After slow cooling ~to 4.2 K! in the dark the sample
have carrier concentrationNs varying from 1.0531012 to
1.631012 cm22. Illumination by an infrared emitting diode
allows us to increase persistently the carrier concentration
about 20% of its initial value for each sample. This behav
of the samples under infrared illumination is caused by me
stable properties ofDX Si centers present in th
Al xGa12xGa layer.13 After each illumination Shubnikov–de
Haas and zero field conductivity measurements are
e,
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formed to establish the value ofNs and the mobilitym. In all
investigated samples only the lowest electric subband
populated.

To calculate theBtr parameter we used Eq.~1!. For the
case of a degenerate 2D electron gas the diffusion cons
can be expressed as

D5
1

2 S \kf
m D 2t, ~18!

wherem is the effective mass andkf5A2pNs is the Fermi
wave vector. Thus, we can rewrite Eq.~1! in the form

Btr5
ec

4p\Nsm
2 . ~19!

TheBtr parameter derived from Eq.~19! is in the range from
6 to 50 G for our samples. Mobility, carrier density, an
Btr for a few samples, discussed in more detail in the follo
ing paragraph, are listed in Table I.

Figures 4~a!–4~d! show an example of direct experimen
tal records of Hall and conductivity voltages as functions
magnetic field for one of our samples. Scales of vertical a
horizontal axes of Figs. 4~a!–4~d! are subsequently magn
fied by a factor of 10 in order to show the low-field behavi
of conductivity. One can see how, by magnifying the sca
by three orders of magnitude one comes from
Shubnikov–de Haas oscillations and the quantum Hall ef
@Fig. 4~a!# to the subtle features@Fig. 4~d!# related to the
antilocalization effects~see Refs. 15 and 16!. Figures 4~b!
and 4~c! show weak localization behavior, i.e., the condu
tance increases with increasing magnetic field.

Two-dimensional conductivitys(B) was calculated on
the basis of measured voltage, current, and known sam
geometry. In order to compare with theory the results w
presented ass(B)2s(0) in units (e2/2p2\) versus the pa-
rameterx5B/Btr . In Fig. 5 we show results for one of th
samples. Scales in Fig. 5 were chosen in order to make
weak localization effect visible. One can see that posit
magnetoconductivity is followed by Shubnikov–de Haas
cillations. Forx higher than 300, Shubnikov–de Haas osc
lations dominate and weak localization correction to cond
tivity cannot be extracted from the measurements any m
Generally Shubnikov–de Haas oscillations start at fields
which mB/c is around 1. On the other hand the theoretic
model presented above is valid formB/c much smaller than
1. Therefore to avoid the influence of Shubnikov–de Ha
oscillations in the region of the validity of theory we limite
the comparison between the theory and experiment to
fields for whichmB/c is smaller than 0.1. This condition
imposes the maximal value ofx for each samplexmax

TABLE I. Parameters of the samples.

Ns

(cm22)
m

~cm2/V s! Btr ~G! t ~ps! ts ~ps! tw ~ps! xmax

S1 1.85310212 14 300 32 0.6 19 21 22
S2 1.10310212 37 000 7.9 1.5 29 59 34
S3 1.15310212 41 000 6.2 1.7 27 77 39
D1 90t 250t
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FIG. 4. Example of magnetoresistance measurements seen in different scales~a! Shubnikov–de Haas oscillations and Hall voltage,~b!
and ~c! weak localization phenomena and Hall voltage,~d! ‘‘antilocalization minimum’’ and Hall voltage. The gap in the experimen
curves at magnetic field;0.05 T is related to the change of the experimental system design for measurements at very low magne
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5c/(10mBtr). We mention here that the so-called quantu
lifetime tq , which defines the amplitude of Shubnikov–d
Haas oscillations, for the studied InxGa12xAs quantum wells
was found to be about 10 times less thant.17 This means that
we compare our experiments with the theory in magne
fields for whichvctq,0.01, wherevc5eB/mc. Using Eq.
~19! one obtains

xmax5
4p\Nsm

10ec
. ~20!

One can see that high values ofxmax can be obtained for
samples with high mobility and carrier density. Howev
when increasing carrier density one should avoid the po
lation of the second electron subband. For heterojuncti

FIG. 5. Magnetoconductivity of one of the samples vs the
rameterx.
c

,
u-
s

this limits the carrier density to about 0.631012 cm22. Val-
ues ofxmax obtained for GaxIn12xAs quantum wells used in
our experiments varied between 20 and 40~see Table I!.

IV. RESULTS AND DISCUSSION

In Fig. 6~a! we show the measured magnetoconductiv
presented as a function of normalized magnetic fieldx
5B/Btr). Our results are presented together with previo
measurements done on heterojunctions by Dresselh6

~dashed lines!. The universality manifests itself by the fac
that different curves are almost parallel forx5B/Btr greater
than 1.

We fitted the experimental data, using Eq.~15! and cal-
culating numerically the functionF(x,b) defined by Eqs.~8!
and~12!. We also used the recursion relation forPn , derived
in Ref. 2. Direct calculation becomes more and more diffic
for small values ofx, since to get reasonable accuracy, v
ues ofPn for very highn are needed. The asymptotic fo
mula forPn at n@1 ~see Refs. 2 and 5! is

Pn>@~11b!21~2n11!x#21/2. ~21!

Values ofPn were calculated using Eq.~12! for increasing
n, until the difference between these values and the o
given by Eq.~21! became less than 0.1%. For highern Eq.
~21! was used.

Four examples of the fits are shown in Fig. 6~b!. Values
of the fit parameters are given in Table I. One can see fr
Fig. 6 that both low-field and high-field behavior is we
reproduced. We can notice that forx.1 experimental data
follow similar functional dependence approaching the th
-
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retically predicted universal behavior. On the other hand,
values of the parametersb obtained from the fits for our
samples, the difference between all theoretical curves fox
.10 is small and comparable with the experimental ac
racy ~see Fig. 3!. Therefore in order to demonstrate clear
the universal behavior in high field, we present all expe
mental results in another way in Fig. 7~a!. In this figure every
experimental curve was shifted vertically by some const
value. For each curve the shift was chosen in such a way
for x5xmax experimental data coincide with the theoretic
curve.

One can see from Fig. 7~a! that forx.1 all experimental
curves approach the theoretical curve forBw5Bs50 in a
similar way. It is worth noting that from Fig. 7~a! one can
estimate the absolute value of the quantum correction to c
ductivity Ds~0!. Precise experimental determination
Ds~0! is difficult because it requires measurement
Ds(B) for x in the range from 100 to 1000@see Fig. 7~a!#.
As discussed earlier for such highx another magnetotrans
port phenomenon—the Shubnikov–de Haas oscillation
dominates~see Fig. 5! and the weak localization correctio
Ds cannot be extracted from conductivity measurements
more. The absolute value of the correctionDs~0! estimated
for our samples changed in the range from 1.6 to 2.3 w
for Dresselhaus results—in the range from 1.7 to 4.1—in
units (2p2\/e2). Generally higher values ofDs~0! are ob-
tained for samples with longer phase relaxation times.

Figure 7~b! shows examples of the fits of experimen
data by Eq.~15!. The fitting parameters are, of course, t
same as those in Fig. 6~b!. Theoretical curves reproduce co

FIG. 6. ~a! Magnetoconductivity of GaxIn12xAs quantum wells
~straight lines! and heterojunctions~Ref. 6! ~dashed lines! presented
as a function of normalized magnetic field.~b! Examples of fits by
formula ~15! for whole range of magnetic field.
r
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e
e
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rectly the valuesDs~0! and of theDs versus magnetic field
dependence. We would like to stress that for all cases va
of Ds~0! depend not only on momentum and phase rel
ation rates but also on the spin relaxation rate. The fit
values of the ratiostw /t andts /t are given in the table. We
found that for our samplestw /t changes from 35 to 50 an
ts /t in the range from 15 to 35. Sincet can be determined
from zero field mobility and known effective mass~Ref. 12!
we calculated that the values oftw change in the range
35–50 ps andts in the range 15–35 ps.

The functional dependence ofDs on magnetic field was
calculated for the simple case of isotropic scattering. In
absence of a theory valid for an arbitrary scattering mec
nism, we have compared our data with the existing theo
ical results for isotropic scattering, although a certain con
bution of small-angle scattering by ionized impurities in t
d-doped layer should be present. We did not find any app
ciable disagreement between our data and the theory.
may indicate that in our pseudomorphic samples short ra
isotropic alloy scattering is the dominating scattering mec
nism.

The theoretical curves reproduce quite well the gene
shape of the experimental curves both in the low- and hi
field regions. However, the description of the region of t
antilocalization minimum, where spin relaxation effects a
important, is not very accurate. The reason for this is that
effect of spin relaxation on quantum correction to conduct
ity in GaAs heterostructures cannot be accurately descr

FIG. 7. ~a! Same as in Fig. 6~a! but presented in another way
Universality manifests itself by the fact that experimental curv
~solid and dashed lines! follow similar functional dependence ap
proaching the theoretically predicted behavior~heavy line!. ~b! Ex-
amples of fits by Eq.~15!.
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by a single parameterts .
18 More precise theoretical and ex

perimental studies of spin effects in weak localization w
presented in Ref. 16. It was shown that anisotropic spin s
ting of the conduction band should be taken into accoun
describe accurately the antilocalization minimum. Consid
ation of these subtle spin effects is beyond the scope of
work. We would like to stress, however, that the presen
theory allows for an overall description of both the low- a
high-field regions.

In summary, we have studied weak localization corr
tions to the magnetoconductivity of a 2D electron gas.
theory describing both the low field, where closed paths w
many collisions are involved, and the high-field regio
where paths with only a few collisions are important, h
been presented. The theoretically predicted universal be
ior of magnetoconductance in the high-field limit has be
experimentally confirmed.

Note added in proof.We come to know that the theory o
weak localization magnetoresistance beyond the diffus
approximation was developed by Gasparyan and Zuzi19

They showed that atB>Btr an additional contribution to
rs

ut
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n

magnetoconductivity, due to so-called ‘‘hat diagrams,’’ e
ists. The physical meaning of this contribution was recen
explained in Ref. 20.

The correction due to hat diagrams does not change
overall behavior ofDs(B). In the magnetic field range ex
perimentally investigated in this paper the correction o
slightly modifiesDs(B) as given by Eq.~15!, the difference
not exceeding 10%. We have checked that the values of
spin and phase relaxation times~parameterstf and ts) de-
rived by using the theory of Refs. 19 and 20 differ fro
those obtained above by less than 5%, which is within
perimental error. Thus all the conclusions of this work r
main valid.
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