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Electric-field effect on the transmittivity of aperiodic Kronig-Penney crystals
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We describe the effect of a static and uniform electric field on the electronic transport properties of one-
dimensional periodic and deterministic aperiodic systems described by the Kronig-Penney model. We study the
crystal transmittivity as a function of the length of the sample and of the field strength. In the periodic case we
interpret the results exploiting the tilted band scheme and point out regions with a more than exponential
decreasing rate of transmittivity. In the case of an incommensurate slowly varying potential we interpret the
fine structure of the transmittivity by means of a continuous approximation. In the pseudorandom case we
confirm the delocalization effect of the field and we compare the results with the purely random case.
[S0163-18297)05727-3

[. INTRODUCTION in particular the metal-insulator transition and the power-law
localization of a part of the spectruff.

The electronic and transport properties of one- The Hamiltonian for the Kronig-Penney crystal in the
dimensional systems under an applied electric field hav@resence of an electric field can be written in the fdRy-
been deeply studied both for their theoretical interest and foflberg units are adopted
applicative aspects. It is now clear that the spectrum of a 42

eriodic single band system in the presence of field is com- _
Eosed of disgcrete eigezvaluéﬁtark Ia?:lde).1 In the case of a ="ae” En: Vo(x—na)—fx, @)
multiband system, several analytical and numerical contribu- . . : .
tion have a)s/sessed the possib)iﬁty of interband tunneling o\there.V“ IS th_e law asglgned to the he|ght§ of héunction
the electron with enhancement of the transport, induced b _oten'ual barngrs and is the constant spacing between them
resonances among states belonging to different laddérs. in the following we choosea as the unit of length f

The presence of disorder in the system has further addeﬁe'_:’ Whgreeflshthe r_1f10du|u|s of.thf('a :adle\c;\t/rlc chargi aﬁc:]
interest to this topic: one of the most interesting results id"€ INtensity of the uniform electric field. We remember that,

that the electric field may delocalize the states of the disor??Ne€nf=0 and in the simplest case of periodic distribution

dered Kronig-Penney crystal changing the wave-function de®f potential barriers, i.e., whewi,=V, for anyn, the con-
cay from exponential to power law, up to the possibility of dition for the presence of allowed energy bands is giveit by
extended states* ,

On the other hand, less known is the effect of electric field cog VE)+ Vosin( VE) <1 @)
on the spectral properties of systems that can be considered 2\E
intermediate between the purely periodic and the purely ran- . L o
dom case. These systems are defined by the peculiar form of!iS relation is satisfied for an infinite number of energy
their potential; interesting and well-studied examples ardntervals W_hose width mc_r_eases_for increasing energy. If the
given by the incommensurate potentifigyy the potentials délta functions have positive heightg, the right border of
defined in terms of inflation rulé€,and by the hierarchical themth allogved Sneray band is at the poteTtlaI-lndependent
potentialsi”-18 For them, in general, the character of the POSitionsE(Y=m?x?, while the left bordeE;’ can be ob-
states and the corresponding transport properties in the affined from
sence of the electric fields according to the natatesolutely
continuous or singularly continuousf the spectrum are Vosin(VER)

! : S /E(L))+—=(—l)m+l, (3)
now well defined. The effect of an applied electric field has cos VEm =0
. . . . . . m

been discussed in the case of one-dimensional hierarchical
modeld® and to prove the existence of the Wannier-StarkFor instance, in the case of a Kronig-Penney periodic model
ladders in one-dimensional quasiperiodic systém®&y  whereV,=V,=5 the spectrum begins with a gap that ends
means of tight-binding Hamiltonians, field-induced localiza-at E~ 3.8, and the second gap is bound by the energy values
tion has also been proved for Fibonacci and Thue-Mors&~9.86 andE~17.8. In the case of negative potential bar-
lattices?* and for incommensurate potentiafs. riers, the condition of the left and right borders is reversed.

The purpose of this paper is to analyze the effect of a These simple considerations, valid for the periodic sys-
static and uniform electric field on the localization and tems, cannot be used when the law defining the potential
transport properties of one-dimensional incommensurate gtrengthsV,, has a more complex form, for instance, when
pseudorandom systems described by means of the Kronighe heights assume random values. In this case it can be
Penney model. Several interesting properties have been paonvenient to exploit a Poincammag’ that provides the
in evidence for this aperiodic model in the absence of fieldfransfer matrix for the wave functions of the Hamiltonidn

0163-1829/97/5@1/1981(6)/$10.00 56 1981 © 1997 The American Physical Society



1982 RICCARDO FARCHIONI AND GIUSEPPE GROSSO 56

calculated on three consecutivefunction barriers. In the and thenth delta function as a plane wave of the form
presence of an electric field, the ladder approximation is geng(x) = Aek(M*+Be~k(Mx_ The effect of the electric field is

erally adopted, which consists in substituting the potentiato insert in the wave vectde a dependence from the number

term fx in the Hamiltonian(1) by a step potential that varies of parrier n of the form k,=E+fn. The corresponding
by the constant value-f at each siten and is constant at ansfer matrix involvingg(x=n—1), ¥(x=n), and y(x

adjacent sites; this allows one to take the wave function of_ 1) is given by
the electron traveling in the system between the-{)th

kn Sin(kn-kl) Sin(kn+1) kn Sin(km—l)
cogk + ——————cogk,)+V + -
Tomea=| SO TR iy ORI TV T TR Teink) | @
1 0

The total transmittivity of an incoming free electron throughing transmittivity of the sample can be inferred. In Sec. IlI
a crystal of lengtiN can then be calculated by means of thewe focus on incommensurate Kronig-Penney models and we
expressiof give a continuous approximation to predict regions of al-
_ ) lowed and forbidden zones for the electronic propagation. In
T _ﬁ lexp(2iky) — 1 ) Sec. IV we handle the case of the pseudorandom Kronig-
N Ky [Cns2—Cnsg eXp(—iky)[? Penney model and compare it with the behavior of the purely
random potential. Section V contains the conclusions.

where we have indicatech,= ¢(x=N). The transfer matrix
written above can be associated to the discrete tight-binding
equation Il. THE PERIODIC KRONIG-PENNEY MODEL
IN AN ELECTRIC FIELD
thn+1(E)Cnrattnn-1(E)Chos+an(E)ca=Ec,, (6) . . : -
et it it " " Let us consider a periodic Kronig-Penney potential with

where delta functions with positive heightg,. An energy-site rep-
resentation of the bands of the system can be realized; in the
an(E) simple case withf =0 this can be done by plotting the al-
, lowed regions by horizontal strips with bordeE") and
V,E sin(k,41)/k, ER . i !
=— g : , m~ Separated by horizontal strips, corresponding to the
CogKn+1) + (Kn/Kn+1)[Sin(kn+1)/sin(ky) Jcodky) gaps, where the propagation is forbidden. In this case the
(7a) energy of the incoming electron is contained in an allowed or
t (E) in a forbidden region for the entire length of the sample, and
n.n+1 correspondingly the transmittivity is respectively oscillating
E or exponentially decreasing.
= _ i , When a static uniform electric field is superimposed to the
coKn+1) + (Kn/Kn+ 1) [SiN(Kn1)/siN(ky) Jeog ky) system, the horizontal strips of the cdse0 are tilted with
(7b) negative slope equal to the field intensity® The borders of
t (E) the allowed bands as functions of the lendttof the sample
-t are given by the relationg{-)— fN and E{Y — fN. We can
E(kn—1/kq)sin(k,)/sin(k, 1) see(Fig. 1, inset that that in this case, for any given energy
= . - . E, for increasing length of the sample, the particle encoun-
coskpn) + (kn—1/Kn)[sin(kn)/sin(kn 1) JcOLKy—1) 7 ters an alternation of allowed and forbidden zones; this is the
(70 origin of the complete localization of the spectrum. When we
The effective tight-binding equatio(6) can describe situa- plot the quantity—In Ty as a function of the lengtN, the
tions with different values of the “forward” and “back- regions of decrease of the transmittivity correspond to jumps
ward” hopping interactiong7b) and (70). The transfer ma- in the plots. From the positions d&{-) and EX and the
trix (4) and the expressiofb) provide an accurate numerical slope— f of the strips, the starting and ending points of the
technique to study the transmission properties of incommerpscillating parts and of these jumps can be exactly predicted.
surate and pseudorandom Kronig-Penney potentials under g@or a given energ§ the regions corresponding to the jumps
applied electric field. Moreover, the tight-binding Ef) al-  have as border points:
lows us to obtain an intuitive prediction of the results, ex-
ploiting the analytic form and a suitable real-space picture of s o R
the potential. n() = m'a"+E nl) = Em +E 8a)
This paper is organized as follows. In Sec. Il we consider - fo R £
the periodic Kronig-Penney model and show that from a suit-
able real-space scheme the regions of oscillating or decreagile for the oscillatory regions we have
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N N modulated incommensurately with respect to their constant
2600 - spacing, according to the law

2200 o V,=\ cog2ma|n|?). 9

1800 — E=4 - « is an irrational number and<Qv<1, so as to realize an
- asymptotic slow variation o¥/,. It is well knowrt® that a

lEzMOO— B one-dimensional tight-binding Hamiltonian with site ener-
T 1200 B giesa,=V, and hopping interactiong,=1 presents, foi
10007 i <2, two symmetrical mobility edges &=+ (2—\) that
222: separate extended states at the center of the spectrum from
400 -
200 [ A S W I +\[. To interpret the presence of mobility edges in the spec-

localized states in its two lateral part@—\|<|E|<|2

—————————————————r trum, for f=0, it has been found convenient to introduce a
0 2500 5000 7500 10000 continuous approximatihwith a pictorial representation of
N the allowed and forbidden regions of the lattice in the real
space. This is realized superimposing the poteMjalo the
FIG. 1. Behavior of—InTy as a function ofN for the periodic _band of the lattice with/,=0, which extepds in th_e er_1ergy
Kronig-Penney potential when the height of the barriers is 5; thdnterval —2<E=2. From the result of this operation it can
electric field strength i$ =0.005 and the two energies ae=4, D€ observed that the energies of the inteiigad |2—\| are

E=10. In the inset the tilted band scheme is reproduced, and thallowed throughout the entire lattice, and this explains the

two energies considered are indicated with broken lines. presence of extended states in the corresponding part of the
spectrum of the system. F{2 — \|<|E|<|2+\| there is an
EO4E (m+1)272+E alternation of allowed and forbidden regions of the lattice
no=—"_— nO= (8b)  with corresponding localization of the eigenstates of the

L f spectrum. It can be also observed that the behavior of the

transmittivity as a function of the length of the system for

WZ.ShOWt n F'gh L t?ﬁ t;]ehamor ﬁf:n'l;;\, Iltn ? S'T.ple %—)\|<|E|<|2+)\| is alternatively oscillating and decreas-
pre]no IC SYS eIT V5V ertej: Oeoozlgf S t?N g.ﬁe atunc lons ar g with a global exponentially decreasing envelope.
chosen equal to > an JUo, Tor two different energies The “continuous approximation” can be applied also

E; in the inset the corresponding tilted band scheme is e hen we map the Kronig-Penney incommensurate potential
resented. In this picture we can clearly distinguish the "®nto a tight binding equation of the forrt6), by means of
gions where—InTy shows oscillatory behavior separated by Egs. (7). We can see that at a given enérﬁythe curves
the regions where-InTy sh_ows a steep Increase. These re'deIimiting the allowed energy regions in the real space are
gions correspondsee the insgtto the intervals where the given by the functionsa,(E)* 2t(E), where a,(E) and
energieshorizontal broken lineslie in allowed and forbid- t(E) are obtained by putt?n@zo in Eq’s.(7). It isnthus easy

den ZONes, resp_ect_|vely. We_can _observe that Ty has_a ._to control if the energ¥ lies in the allowed zone throughout
nonlinear pehawor In the regions just beyond the beglnnmqhe entire lattice, or if it penetrates the allowed zones only for
Of. thg gap; correspondingly, the decrgase law for the transa'tlternating intervals. In the absence of the electric field the
mittivity 1s of th.e typeT ~exp(—aN’) with B> 1. The_: NON- " allowed zone is a region delimited by two cosinusoids sepa-
linearity in the jumps of-InTy has been observed in disor- rated by 2(E).

dered system&*® and defined as a form of  \hen the electric field is switched on, the Hamiltonian in
superlocalization, but Fig. 1 shows that it is present also incq. (6) has different “forward” and “backward” hopping
periodic systems _and that ifc is a very general effect qf thQnteractionstnml(E) andt, ,_,(E). In this case we have
electric field. For instance, in the cae=10 the transmit-  found that the allowed energy zones of the lattice in the real

tivity decreases faster that exponentially for samples ofpace scheme are delimited by the functions
length N=<1000. This result is more evident for well-

separated bands. In fact, in the case of a single band we soon Ff)(E):an(E)iZ\/tn,n+1(E)tn,n—1(E)- (10)
realize that, due to the slope of the allowed band, the dis-

tance of the given energg from the band as a function of It is easy to understand from expressid®) that when the
the |ength of the Samp|e increases, determining the mor@lectric field is present the allowed band in the real space no
than exponential decrease of transmittiflyThis effect longer has the simple form delimited by two shifted cosinu-
does not occur in the absence of electric field because $0ids. The typical structure of the allowed region as a func-
forbidden energy has in real space a constant distance froffpn of the sample length is shown in the inset of Figa)2

the allowed band and therefore the transmittivity has a conwhereA=5, 2ra=0.2, v=0.7, f=0.001, and calculated at
stant exponential decreasing rate. E=9.5. We can see that it is made by the alternation of

broad and narrow regions with superimposed oscillations at
the borders due to the form @f,(E). The corresponding
behavior of—InTy as a function oN [globally shown in Fig.
2(a)] is alternatively oscillating in the intervals of the system
We investigate now the transmission properties of awhere the chosen ener@yis inside the allowed regiofi.e.,
Kronig-Penney model where the heights of the barriers ara&vhen it presents broad par@nd increasing when the energy

IIl. INCOMMENSURATE SLOWLY VARYING
KRONIG-PENNEY MODEL IN AN ELECTRIC FIELD
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FIG. 3. (a) Behavior of—InTy in the case of barriers of arbitrary
sign [potential (9)] for Vy=1, 27a=0.2, v=2.5, E=5, for f=0
[plot (1)] andf=0.01[plot (3)] and in the case of positive heights
[potential (11)] for V=1, 27ra=0.2, v=2.5, E=5, andf=0.01

T T T T [plot (2)]. The jumps in the plot start in the positions indicated by
¢ 800 “;\,M 1800 2000 the arrows in the partb) of the figure.(b) Representation of the
upper E*) and lower £~) borders of the allowed region calcu-
lated for the data corresponding to the p{@} in (a). The points

FIG. 2. (a) Behavior of—InTy as a function oN in the slowly  \yhere E touches the borders of the baficorresponding to the
varying aperiodic Kronig-Penney modedotential(9)], for Vo=5,  jumps of plot(2) in (a)] are indicated by arrows.
27a=0.2, v=0.7, f=0.005, andE=9.5. The upper E*) and
lower (F~) borders of the allowed region calculated for the same
set of values are reported in the ins@f) Detail of (a), where the
comparison between the behavior-efnTy and the position of the
energy with respect to the uppef {) and lower £~) borders of
the allowed region is emphasized.

(9), with »>2. In this case, in fact, for increasing the
potential soon becomes rapidly changing so as to simulate a
true random potentiaf independently of the values of As

in the random case, fof=0 the spectrum of the tight-
binding pseudorandom lattice is composed entirely by expo-

: . . . nentially localized states but for the points Bf,=m?m2.
is outside the allowed region. The wavy bordersii(E) We have found that the plots of the Lyapunov exponent

cause the presence of the fine structure of narrow plateaus YE) (inverse localization lengihfor infinite systems, as a
each interval of jumps for-InTy . From Fig. 2b) we see that function of the energyE, in the two cases show éimilar
the generalization of the continuous approximation for the,.havior: that is, a decréasing envelope with minima in cor-
Kronig-Penney model in the presence of an electric fiel espondence witk,,=m?w2. We have verified also that the
gives a very accurate prediction of the behavior of the transg e correspondirTg tp(E) for the pseudorandom case lies
mittivity as a function of the length of the system also in thealways above the curve for the random case, indicating a
finest structures of the plot. It can be verified that for nostronger localization. '

energy value the behavior of the transmittivity is oscillating When an electric field is superimposed to a one-

for the entire Ien_gth O.f an i”f".“‘e sample. This is b.ecguse theimensional disordered system, one of the most surprising
chosen energ in this case is never completely inside the results is the delocalization of its eigenstates, which mani-

Yests through a transition from exponential localization to a
N X ; Sveaker form of localizatior{power-law form and then, for
complet_e chahzatlon of the spectrum, as it does in the CaSfligher values of the field, to an extended state regime. This
of a periodic system. fact has been shown analyticatfand numerically by study-
ing the transmittivity of finite sampl&€S1~*3and going be-
yond the ladder approximation considering Airy functions
instead of plane waves between adjacent barfi&rs3
Recently a difference in the transmission of a disordered
The pseudorandom Kronig-Penney model is defined belectrified chain has been obseretfin the case of random
potential barriersv,, assigned according to the expressionbarriers of fixed sign, with respect to the case of barriers with

IV. THE PSEUDORANDOM KRONIG-PENNEY CRYSTAL
IN AN ELECTRIC FIELD
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arbitrary sign. It is therefore convenient to start considering aandom and the random distribution of the heigtits(with

pseudorandom law for the barrier heights in the form the same spread of values in the two casém the same
, values of energye and fieldf, we have observed that the
Vi =V[1+cog2ma|n|")], (1) plateaus of-InTy/InN are higher in the pseudorandom case,

where a is an irrational number and>2: in this case the indicating a stronger localization, coherently with the higher
barriers all have positive signs. In Fig(@3 plot (1) shows values of the Lyapunov exponent for .the same cases found
the behavior of—InTy for potential valuesV,=1, 27a _for f=0. As a consequence, the transmon fror_n the decreas-
=0.2,v=2.5, andE=5, f=0.01; we can see that it presents N9 to the oscillating pehawor ofy is regched in th(—;- pseu-
jumps similar to the ones observed in the periodic Kronig-dorandom case for higher valuesfoffor instance, if in Eq.
Penney model and in the slowly varying aperiodic case(9 A=Vo=1, 2ma=0.2,»=2.5, andE=5 the transition is
Moreover we observe that the position of the jumps can b&bserved forf ~2, while for a random potential with spread
predicted again by using a representation in real space for tHf height in the interval {-1,1) this threshold is reached for
allowed zonegsee Fig. 8)], as can be verified by compar- f~1.2.
ing the position of the jumps with the points where the cho-
sen energ\E crosses the border of the allowed zones. We
can observe also that these borders oscillate too rapidly to \we have investigated the effect of a static, uniform elec-
allow the detection of steps along the jumps-oinTy as in  tric field on the electronic transport of a one-dimensional
the slowly varying case. Kronig-Penney system with potential barriers distributed

In the case of the potenti&d) with barriers of arbitrary  poth periodically and according to a deterministic aperiodic
sign, the jumps of-InTy disappear, as can be seen in thejaw. We have shown that, to interpret the transmittivity it can
plot (3) of Fig. 3(a), in this case the behavior of InTy is  be useful to exploit a continuous representation in real space
very different from the casé=0 [curve(1)] and it is typical  for the energetically allowed zones of the system. This
of a regime of power-law localization of eigenstates, similarmethod can be also extended to the pseudorandom case when
to what was found in the case of the random potential. Wehe barriers are of the same sign and jumps in the plot of
have calculated the height of the plateau reached by the |nT, are visible. When the barriers have arbitrary signs,
quantity —InTy/InN (which is an estimate of the power of the results found for disordered systems are confirmed: the
decay of the wave functidf) for various values oE, Vo,  transmittivity of the system decreases following a power law
andf, and we have verified that it scales aé a$ a function and, once a threshold value of the field is overcome, a tran-
of the field strengttf, as predicted in Ref. 8. Moreover we sition toward an oscillating behavior of the transmittivity is
have found that-InTy/InN varies asv3 as a function of the  observed. This threshold for the field strength is higher in the
amplitude of the potential,; these behaviors break down in pseudorandom case than in the corresponding random one,
the proximity of the transition of the wave functions toward indicating a more localizing character of the pseudorandom
the extended regime. Comparing the results of the pseudgotential.
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