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Electric-field effect on the transmittivity of aperiodic Kronig-Penney crystals

Riccardo Farchioni and Giuseppe Grosso
Dipartimento di Fisica, Universita` di Pisa and INFM, piazza Torricelli n.2, 56126 Pisa, Italy

~Received 3 March 1997!

We describe the effect of a static and uniform electric field on the electronic transport properties of one-
dimensional periodic and deterministic aperiodic systems described by the Kronig-Penney model. We study the
crystal transmittivity as a function of the length of the sample and of the field strength. In the periodic case we
interpret the results exploiting the tilted band scheme and point out regions with a more than exponential
decreasing rate of transmittivity. In the case of an incommensurate slowly varying potential we interpret the
fine structure of the transmittivity by means of a continuous approximation. In the pseudorandom case we
confirm the delocalization effect of the field and we compare the results with the purely random case.
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I. INTRODUCTION

The electronic and transport properties of on
dimensional systems under an applied electric field h
been deeply studied both for their theoretical interest and
applicative aspects. It is now clear that the spectrum o
periodic single band system in the presence of field is co
posed of discrete eigenvalues~Stark ladder!.1 In the case of a
multiband system, several analytical and numerical contri
tion have assessed the possibility of interband tunneling
the electron with enhancement of the transport, induced
resonances among states belonging to different ladder2–4

The presence of disorder in the system has further ad
interest to this topic: one of the most interesting results
that the electric field may delocalize the states of the dis
dered Kronig-Penney crystal changing the wave-function
cay from exponential to power law, up to the possibility
extended states.5–14

On the other hand, less known is the effect of electric fi
on the spectral properties of systems that can be consid
intermediate between the purely periodic and the purely r
dom case. These systems are defined by the peculiar for
their potential; interesting and well-studied examples
given by the incommensurate potentials,15 by the potentials
defined in terms of inflation rules,16 and by the hierarchica
potentials.17,18 For them, in general, the character of t
states and the corresponding transport properties in the
sence of the electric fields according to the nature~absolutely
continuous or singularly continuous! of the spectrum are
now well defined. The effect of an applied electric field h
been discussed in the case of one-dimensional hierarc
models19 and to prove the existence of the Wannier-Sta
ladders in one-dimensional quasiperiodic systems.20 By
means of tight-binding Hamiltonians, field-induced localiz
tion has also been proved for Fibonacci and Thue-Mo
lattices,21 and for incommensurate potentials.22

The purpose of this paper is to analyze the effect o
static and uniform electric fieldf on the localization and
transport properties of one-dimensional incommensurate
pseudorandom systems described by means of the Kro
Penney model. Several interesting properties have been
in evidence for this aperiodic model in the absence of fie
560163-1829/97/56~4!/1981~6!/$10.00
-
e
r
a
-

-
of
y

ed
s
r-
-

d
ed
n-
of
e

b-

s
al

k

-
e

a

or
ig-
ut
,

in particular the metal-insulator transition and the power-l
localization of a part of the spectrum.23

The Hamiltonian for the Kronig-Penney crystal in th
presence of an electric field can be written in the form~Ry-
dberg units are adopted!

H52
d2

dx2 1(
n

Vnd~x2na!2 f x, ~1!

whereVn is the law assigned to the heights of thed-function
potential barriers anda is the constant spacing between the
~in the following we choosea as the unit of length!; f
5eF, wheree is the modulus of the electric charge andF
the intensity of the uniform electric field. We remember th
when f 50 and in the simplest case of periodic distributio
of potential barriers, i.e., whenVn5V0 for any n, the con-
dition for the presence of allowed energy bands is given b24

cos~AE!1
V0sin~AE!

2AE
<1. ~2!

This relation is satisfied for an infinite number of ener
intervals whose width increases for increasing energy. If
delta functions have positive heightsV0 , the right border of
the mth allowed energy band is at the potential-independ
positionsEm

(R)5m2p2, while the left borderEm
(L) can be ob-

tained from

cos~AEm
~L !!1

V0sin~AEm
~L !!

2AEm
~L !

5~21!m11. ~3!

For instance, in the case of a Kronig-Penney periodic mo
whereVn5V055 the spectrum begins with a gap that en
at E;3.8, and the second gap is bound by the energy va
E;9.86 andE;17.8. In the case of negative potential ba
riers, the condition of the left and right borders is reverse

These simple considerations, valid for the periodic s
tems, cannot be used when the law defining the poten
strengthsVn has a more complex form, for instance, wh
the heights assume random values. In this case it can
convenient to exploit a Poincare´ map25 that provides the
transfer matrix for the wave functions of the Hamiltonian~1!
1981 © 1997 The American Physical Society
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1982 56RICCARDO FARCHIONI AND GIUSEPPE GROSSO
calculated on three consecutived-function barriers. In the
presence of an electric field, the ladder approximation is g
erally adopted, which consists in substituting the poten
term f x in the Hamiltonian~1! by a step potential that varie
by the constant value2 f at each siten and is constant a
adjacent sites; this allows one to take the wave function
the electron traveling in the system between the (n21)th
gh
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and thenth delta function as a plane wave of the for
c(x)5Aeik(n)x1Be2 ik(n)x. The effect of the electric field is
to insert in the wave vectork a dependence from the numb
of barrier n of the form kn5AE1 f n. The corresponding
transfer matrix involvingc(x5n21), c(x5n), and c(x
5n11) is given by6
Tn,n115S cos~kn11!1
kn

kn11

sin~kn11!

sin~kn!
cos~kn!1Vn

sin~kn11!

kn11

1

1
kn

kn11

sin~kn11!

sin~kn!

0
D . ~4!
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The total transmittivity of an incoming free electron throu
a crystal of lengthN can then be calculated by means of t
expression6

TN5
k0

kN

uexp~2ikN!21u2

ucN122cN13 exp~2 ikN!u2
, ~5!

where we have indicatedcN5c(x5N). The transfer matrix
written above can be associated to the discrete tight-bind
equation

tn,n11~E!cn111tn,n21~E!cn211an~E!cn5Ecn , ~6!

where

an~E!

52
VnE sin~kn11!/kn

cos~kn11!1~kn /kn11!@sin~kn11!/sin~kn!#cos~kn!
,

~7a!

tn,n11~E!

5
E

cos~kn11!1~kn /kn11!@sin~kn11!/sin~kn!#cos~kn!
,

~7b!

tn,n21~E!

5
E~kn21 /kn!sin~kn!/sin~kn21!

cos~kn!1~kn21 /kn!@sin~kn!/sin~kn21!#cos~kn21!
.

~7c!

The effective tight-binding equation~6! can describe situa
tions with different values of the ‘‘forward’’ and ‘‘back-
ward’’ hopping interactions~7b! and ~7c!. The transfer ma-
trix ~4! and the expression~5! provide an accurate numerica
technique to study the transmission properties of incomm
surate and pseudorandom Kronig-Penney potentials unde
applied electric field. Moreover, the tight-binding Eq.~6! al-
lows us to obtain an intuitive prediction of the results, e
ploiting the analytic form and a suitable real-space picture
the potential.

This paper is organized as follows. In Sec. II we consi
the periodic Kronig-Penney model and show that from a s
able real-space scheme the regions of oscillating or decr
g

n-
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-
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r
t-
s-

ing transmittivity of the sample can be inferred. In Sec.
we focus on incommensurate Kronig-Penney models and
give a continuous approximation to predict regions of
lowed and forbidden zones for the electronic propagation
Sec. IV we handle the case of the pseudorandom Kron
Penney model and compare it with the behavior of the pur
random potential. Section V contains the conclusions.

II. THE PERIODIC KRONIG-PENNEY MODEL
IN AN ELECTRIC FIELD

Let us consider a periodic Kronig-Penney potential w
delta functions with positive heightsV0 . An energy-site rep-
resentation of the bands of the system can be realized; in
simple case withf 50 this can be done by plotting the a
lowed regions by horizontal strips with bordersEm

(L) and
Em

(R) separated by horizontal strips, corresponding to
gaps, where the propagation is forbidden. In this case
energy of the incoming electron is contained in an allowed
in a forbidden region for the entire length of the sample, a
correspondingly the transmittivity is respectively oscillatin
or exponentially decreasing.

When a static uniform electric field is superimposed to
system, the horizontal strips of the casef 50 are tilted with
negative slope equal to the field intensityf .26 The borders of
the allowed bands as functions of the lengthN of the sample
are given by the relationsEm

(L)2 f N andEm
(R)2 f N. We can

see~Fig. 1, inset! that that in this case, for any given energ
E, for increasing length of the sample, the particle enco
ters an alternation of allowed and forbidden zones; this is
origin of the complete localization of the spectrum. When
plot the quantity2 ln TN as a function of the lengthN, the
regions of decrease of the transmittivity correspond to jum
in the plots. From the positions ofEm

(L) and Em
(R) and the

slope2 f of the strips, the starting and ending points of t
oscillating parts and of these jumps can be exactly predic
For a given energyE the regions corresponding to the jump
have as border points:

nL
~ j !5

m2p21E

f
, nR

~ j !5
Em

~R!1E

f
, ~8a!

while for the oscillatory regions we have
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56 1983ELECTRIC-FIELD EFFECT ON THE TRANSMITTIVITY . . .
nL
~o!5

Em
~o!1E

f
, nR

~0!5
~m11!2p21E

f
. ~8b!

We show in Fig. 1 the behavior of2 lnTN in a simple
periodic system, where the heights of the delta functions
chosen equal to 5 andf 50.005, for two different energies
E; in the inset the corresponding tilted band scheme is r
resented. In this picture we can clearly distinguish the
gions where2 lnTN shows oscillatory behavior separated b
the regions where2 lnTN shows a steep increase. These r
gions correspond~see the inset! to the intervals where the
energies~horizontal broken lines! lie in allowed and forbid-
den zones, respectively. We can observe that2 lnTN has a
nonlinear behavior in the regions just beyond the beginn
of the gap; correspondingly, the decrease law for the tra
mittivity is of the typeT;exp(2aNb) with b.1. The non-
linearity in the jumps of2 lnTN has been observed in disor
dered systems,27,28 and defined as a form of
superlocalization, but Fig. 1 shows that it is present also
periodic systems and that it is a very general effect of t
electric field. For instance, in the caseE510 the transmit-
tivity decreases faster that exponentially for samples
length N&1000. This result is more evident for well
separated bands. In fact, in the case of a single band we s
realize that, due to the slope of the allowed band, the d
tance of the given energyE from the band as a function o
the length of the sample increases, determining the m
than exponential decrease of transmittivity.29 This effect
does not occur in the absence of electric field becaus
forbidden energy has in real space a constant distance f
the allowed band and therefore the transmittivity has a c
stant exponential decreasing rate.

III. INCOMMENSURATE SLOWLY VARYING
KRONIG-PENNEY MODEL IN AN ELECTRIC FIELD

We investigate now the transmission properties of
Kronig-Penney model where the heights of the barriers

FIG. 1. Behavior of2 lnTN as a function ofN for the periodic
Kronig-Penney potential when the height of the barriers is 5;
electric field strength isf 50.005 and the two energies areE54,
E510. In the inset the tilted band scheme is reproduced, and
two energies considered are indicated with broken lines.
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modulated incommensurately with respect to their cons
spacing, according to the law

Vn5l cos~2paunun!. ~9!

a is an irrational number and 0,n,1, so as to realize an
asymptotic slow variation ofVn . It is well known30 that a
one-dimensional tight-binding Hamiltonian with site ene
gies an5Vn and hopping interactionstn51 presents, forl
<2, two symmetrical mobility edges atE56(22l) that
separate extended states at the center of the spectrum
localized states in its two lateral partsu22lu,uEu,u2
1lu. To interpret the presence of mobility edges in the sp
trum, for f 50, it has been found convenient to introduce
continuous approximation31 with a pictorial representation o
the allowed and forbidden regions of the lattice in the r
space. This is realized superimposing the potentialVn to the
band of the lattice withVn50, which extends in the energ
interval 22<E<2. From the result of this operation it ca
be observed that the energies of the intervalE<u22lu are
allowed throughout the entire lattice, and this explains
presence of extended states in the corresponding part o
spectrum of the system. Foru22lu,uEu,u21lu there is an
alternation of allowed and forbidden regions of the latti
with corresponding localization of the eigenstates of
spectrum. It can be also observed that the behavior of
transmittivity as a function of the length of the system f
u22lu,uEu,u21lu is alternatively oscillating and decrea
ing with a global exponentially decreasing envelope.

The ‘‘continuous approximation’’ can be applied als
when we map the Kronig-Penney incommensurate poten
into a tight binding equation of the form~6!, by means of
Eqs. ~7!. We can see that at a given energyE the curves
delimiting the allowed energy regions in the real space
given by the functionsan(E)62t(E), where an(E) and
t(E) are obtained by puttingf 50 in Eqs.~7!. It is thus easy
to control if the energyE lies in the allowed zone throughou
the entire lattice, or if it penetrates the allowed zones only
alternating intervals. In the absence of the electric field
allowed zone is a region delimited by two cosinusoids se
rated by 2t(E).

When the electric field is switched on, the Hamiltonian
Eq. ~6! has different ‘‘forward’’ and ‘‘backward’’ hopping
interactionstn,n11(E) and tn,n21(E). In this case we have
found that the allowed energy zones of the lattice in the r
space scheme are delimited by the functions

Fn
~6 !~E!5an~E!62Atn,n11~E!tn,n21~E!. ~10!

It is easy to understand from expression~10! that when the
electric field is present the allowed band in the real space
longer has the simple form delimited by two shifted cosin
soids. The typical structure of the allowed region as a fu
tion of the sample length is shown in the inset of Fig. 2~a!,
wherel55, 2pa50.2, n50.7, f 50.001, and calculated a
E59.5. We can see that it is made by the alternation
broad and narrow regions with superimposed oscillations
the borders due to the form ofan(E). The corresponding
behavior of2 lnTN as a function ofN @globally shown in Fig.
2~a!# is alternatively oscillating in the intervals of the syste
where the chosen energyE is inside the allowed region~i.e.,
when it presents broad parts! and increasing when the energ
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is outside the allowed region. The wavy borders ofFn
6(E)

cause the presence of the fine structure of narrow plateau
each interval of jumps for2 lnTN . From Fig. 2~b! we see that
the generalization of the continuous approximation for th
Kronig-Penney model in the presence of an electric fie
gives a very accurate prediction of the behavior of the tran
mittivity as a function of the length of the system also in th
finest structures of the plot. It can be verified that for n
energy value the behavior of the transmittivity is oscillatin
for the entire length of an infinite sample. This is because t
chosen energyE in this case is never completely inside th
allowed band zone, and it indicates that the electric field
the incommensurate slowly varying model provokes th
complete localization of the spectrum, as it does in the ca
of a periodic system.

IV. THE PSEUDORANDOM KRONIG-PENNEY CRYSTAL
IN AN ELECTRIC FIELD

The pseudorandom Kronig-Penney model is defined
potential barriersVn assigned according to the expressio

FIG. 2. ~a! Behavior of2 lnTN as a function ofN in the slowly
varying aperiodic Kronig-Penney model@potential~9!#, for V055,
2pa50.2, n50.7, f 50.005, andE59.5. The upper (F1) and
lower (F2) borders of the allowed region calculated for the sam
set of values are reported in the inset.~b! Detail of ~a!, where the
comparison between the behavior of2 lnTN and the position of the
energy with respect to the upper (F1) and lower (F2) borders of
the allowed region is emphasized.
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~9!, with n.2. In this case, in fact, for increasingn the
potential soon becomes rapidly changing so as to simulate
true random potential,32 independently of the values ofa. As
in the random case, forf 50 the spectrum of the tight-
binding pseudorandom lattice is composed entirely by exp
nentially localized states but for the points atEm5m2p2.
We have found that the plots of the Lyapunov exponen
g(E) ~inverse localization length! for infinite systems, as a
function of the energyE, in the two cases show similar
behavior: that is, a decreasing envelope with minima in co
respondence withEm5m2p2. We have verified also that the
curve corresponding tog(E) for the pseudorandom case lies
always above the curve for the random case, indicating
stronger localization.

When an electric field is superimposed to a one
dimensional disordered system, one of the most surprisi
results is the delocalization of its eigenstates, which man
fests through a transition from exponential localization to
weaker form of localization~power-law form! and then, for
higher values of the fieldf , to an extended state regime. This
fact has been shown analytically5,8 and numerically by study-
ing the transmittivity of finite samples6,9,11–13and going be-
yond the ladder approximation considering Airy function
instead of plane waves between adjacent barriers.9,12,13

Recently a difference in the transmission of a disordere
electrified chain has been observed27,28 in the case of random
barriers of fixed sign, with respect to the case of barriers wi

FIG. 3. ~a! Behavior of2 lnTN in the case of barriers of arbitrary
sign @potential~9!# for V051, 2pa50.2, n52.5, E55, for f 50
@plot ~1!# and f 50.01 @plot ~3!# and in the case of positive heights
@potential ~11!# for V051, 2pa50.2, n52.5, E55, and f 50.01
@plot ~2!#. The jumps in the plot start in the positions indicated by
the arrows in the part~b! of the figure.~b! Representation of the
upper (F1) and lower (F2) borders of the allowed region calcu-
lated for the data corresponding to the plot~2! in ~a!. The points
where E touches the borders of the band@corresponding to the
jumps of plot~2! in ~a!# are indicated by arrows.
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arbitrary sign. It is therefore convenient to start considerin
pseudorandom law for the barrier heights in the form

Vn5V0@11cos~2paunun!#, ~11!

wherea is an irrational number andn.2; in this case the
barriers all have positive signs. In Fig. 3~a!, plot ~1! shows
the behavior of2 lnTN for potential valuesV051, 2pa
50.2, n52.5, andE55, f 50.01; we can see that it presen
jumps similar to the ones observed in the periodic Kron
Penney model and in the slowly varying aperiodic ca
Moreover we observe that the position of the jumps can
predicted again by using a representation in real space fo
allowed zones@see Fig. 3~b!#, as can be verified by compa
ing the position of the jumps with the points where the ch
sen energyE crosses the border of the allowed zones. W
can observe also that these borders oscillate too rapidl
allow the detection of steps along the jumps of2 lnTN as in
the slowly varying case.

In the case of the potential~9! with barriers of arbitrary
sign, the jumps of2 lnTN disappear, as can be seen in t
plot ~3! of Fig. 3~a!, in this case the behavior of2 lnTN is
very different from the casef 50 @curve~1!# and it is typical
of a regime of power-law localization of eigenstates, simi
to what was found in the case of the random potential.
have calculated the height of the plateau reached by
quantity 2 lnTN /lnN ~which is an estimate of the power o
decay of the wave function23! for various values ofE, V0 ,
and f , and we have verified that it scales as 1/f as a function
of the field strengthf , as predicted in Ref. 8. Moreover w
have found that2 lnTN /lnN varies asV0

2 as a function of the
amplitude of the potentialV0 ; these behaviors break down
the proximity of the transition of the wave functions towa
the extended regime. Comparing the results of the pseu
s.
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to
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e

o-

random and the random distribution of the heightsVn ~with
the same spread of values in the two cases!, for the same
values of energyE and field f , we have observed that th
plateaus of2 lnTN /lnN are higher in the pseudorandom cas
indicating a stronger localization, coherently with the high
values of the Lyapunov exponent for the same cases fo
for f 50. As a consequence, the transition from the decre
ing to the oscillating behavior ofTN is reached in the pseu
dorandom case for higher values off : for instance, if in Eq.
~9! l5V051, 2pa50.2, n52.5, andE55 the transition is
observed forf ;2, while for a random potential with sprea
of height in the interval (21,1) this threshold is reached fo
f ;1.2.

V. CONCLUSIONS

We have investigated the effect of a static, uniform ele
tric field on the electronic transport of a one-dimension
Kronig-Penney system with potential barriers distribut
both periodically and according to a deterministic aperio
law. We have shown that, to interpret the transmittivity it c
be useful to exploit a continuous representation in real sp
for the energetically allowed zones of the system. T
method can be also extended to the pseudorandom case
the barriers are of the same sign and jumps in the plo
2 lnTN are visible. When the barriers have arbitrary sig
the results found for disordered systems are confirmed:
transmittivity of the system decreases following a power l
and, once a threshold value of the field is overcome, a tr
sition toward an oscillating behavior of the transmittivity
observed. This threshold for the field strength is higher in
pseudorandom case than in the corresponding random
indicating a more localizing character of the pseudorand
potential.
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