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Single-electron tunneling at high temperature
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~Received 17 December 1996; revised manuscript received 5 March 1997!

The electromagnetic environment in which a small tunnel junction circuit is embedded plays a crucial role
in its transport properties. Although the theory of single-electron tunneling is well established, few analytical
results are known. We use a real-time formulation to obtain new predictions for the high-temperature conduc-
tance of single- and double-junction systems in series with a resistor. We discuss the implications of our results
for recently proposed metrological thermometry based on Coulomb blockade of single-electron tunneling.
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I. INTRODUCTION

For tunnel junctions with tunnel resistance much grea
than the quantum of resistanceRK5h/e2'25.8 kV, the con-
duction electrons in the electrodes are well localized on
ther side of the junction. The conduction mechanism in th
junctions consists of uncorrelated single-electron tun
events that can be considered to occur instantaneously.
single-electron tunneling regime has been reviewed in R
1–3. When such a tunnel event occurs, one electron ch
flows through the circuit connected in series with the jun
tion where it may excite electromagnetic modes. Thus
principle, single-electron tunneling is an ‘‘inelastic’’ proce
in the sense that part of the electrostatic energy dissipate
the tunnel event is transferred to the electromagnetic e
ronment and not to the quasiparticle degrees of freedom
the electrodes. Inelastic processes are revealed by nonlin
ties in the current-voltage characteristic of the junction. T
theory of single-electron tunneling has been worked ou
the case of an arbitrary linear electromagne
environment.4,5 It relates the tunneling rates to the enviro
ment impedance through a series of integral transfor
Schematically, this treatment shows that inelastic proce
are relevant only when the impedance of the environmen
larger thanRK over a sufficiently large frequency range a
that tunneling is elastic in all other circumstances. The la
situation prevails in most experiments since the typical
pedance of connecting leads is always of the order of
vacuum impedanceZ05Am0 /e0'377V at microwave fre-
quencies. Only few experiments have been conducted in
inelastic tunneling regime because the fabrication of a c
trolled high-impedance environment is difficult.6–8 These ex-
periments only checked the predictions of the theory at
temperatures,9,10where the reduction of the conductance d
to the environment is most pronounced. At hig
temperatures, analytical predictions and tests of the the
are presently lacking. In particular, it appeared recently t
detailed understanding of this high temperature regime
important since linear arrays of small junctions have be
proposed for metrological thermometry~see Ref. 11 for a
review!.

In this paper, we use the time-domain formulation of t
theory of single-electron tunneling12 to obtain high-
temperature systematic expansions for the conductanc
560163-1829/97/56~4!/1848~6!/$10.00
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single- and double-junction systems connected to an Oh
environment.

II. TRANSPORT PROPERTIES OF A SINGLE
JUNCTION 1 ENVIRONMENT

In this section, we make the link between the initi
energy-domain formulation of the theory of single-electr
tunneling of Refs. 4, 5, and 9 and the time-domain formu
tion of Refs. 12 and 13. We give explicit formulas for th
calculation of transport quantities in the time-domain form
lation and discuss their advantages.

The generic circuit displaying Coulomb blockade of tu
neling consists of a tunnel junction in series with an arbitra
external impedanceZext(v), as depicted in Fig. 1. The tunne
junction itself can be decomposed into the parallel combi
tion of two functional elements: a capacitor characterized
its capacitanceC and a pure tunnel element characterized
its tunnel resistanceRT assumed much larger thanRK . It is
then apparent that the only relevant impedanceZ(v) for the
tunnel process is the parallel combination ofZext and C.
Furthermore, it is assumed thatRT@Zext(v), so that the volt-
age drop occurs across the junction, and the electrostatic
ergy change in a tunnel event isDE5eV. The theory
of single-electron tunneling relates the tunneli

FIG. 1. ~a! The generic circuit displaying single-electron tunne
ing in the presence of an arbitrary environment consists of a tun
junction in series with an arbitrary impedanceZext(v), and biased
with a voltage sourceVext . ~b! The tunnel junction is separated int
two functional elements: a capacitor with capacitanceC, and a pure
tunnel element represented by the double T symbol. This desc
tion of the system can be transformed to~c!, using The´venin’s
theorem. The only relevant impedance for the tunneling proces
Z(v), the parallel combination ofC andZext(v).
1848 © 1997 The American Physical Society
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56 1849SINGLE-ELECTRON TUNNELING AT HIGH TEMPERATURE
rates through the junction to the equilibrium correlati
function J(t)5^@w(t)2w(0)#w(0)& of the phasew(t)
5*2`

t dt8e@U(t8)2V#/\ across the total impedanceZ(v) at
temperatureT. More precisely, the tunneling rateG(DE)
through the junction, for a global change in the electrosta
energyDE, is given by the convolution product:

G~DE!5
1

e2RT
E

2`

1`

g~e!P~e2DE!de5
1

e2RT
g* P~DE!,

~1!

where ‘‘*’’ denotes convolution,g(E)5E/(12e2bE), with
b51/kBT, and where the functionP(E) denotes the Fourie
transform of expJ(t):

P~E!5E
2`

1`

expFJ~ t !1
iEt

\ G dt

2p\
. ~2!

The interpretation of Eq.~1! is the following:g(E)/RTe
2 is

the probability per unit time that a tunnel event converts
energyE into quasiparticle excitations in the electrodes. O
the other hand,P(E) is the probability that the electromag
netic environment absorbs an energyE during the tunneling
process. The convolution product structure reflects the
that all possible partitions of the available energy into el
tromagnetic excitations~‘‘photons’’! and quasiparticle exci
tations contribute to the tunneling rate. Finally, the pha
correlation functionJ(t) is itself related to the dissipativ
part of the impedanceZ(v) by the quantum fluctuation
dissipation theorem:

J~ t !52E
2`

1`ReZ~v!

RK

e2 ivt21

12e2b\v

dv

v
. ~3!

Although the above theory formally solves the problem
calculating the rateG(DE), the multiple embedding of inte
gral equations hinders analytical calculations and com
cates numerical evaluations. Indeed, the explicit depende
of the rate on the impedance has only been obtained for
low-energy, low-impedance regime.10 In other cases, one
must resort to numerical evaluations that are mainly p
formed using fast Fourier transform. An alternate numeri
approach circumvents the Fourier transformations~2! and
~3!: the functionP(E) is obtained by solving the inhomoge
neous integral Minnhagen equation,15 which directly con-
nectsP(E) to the impedanceZ(v).

An alternate formulation of the theory was proposed
Ref. 12. In this formulation the rateG(E) is directly related
to the phase correlation functionJ(t), without going through
the determination ofP(E). This approach isa priori attrac-
tive becauseJ(t) is more amenable to analytical calculatio
thanP(E). The link between the two formulations is mad
by noticing that any convolution productg* f (E) with a
function f (E) such as the one in Eq.~1! can be expressed b
the time domain integral:

g* f ~E!5E
2`

1`

g̃~ t ! f̃ ~ t !eiEt/\
dt

2p\
, ~4!

where f̃ (t) andg̃ (t) are the respective inverse Fourier tran
form of f andg. The expression ofg̃ (t) is12
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n

ct
-

e

f

i-
ce
he

r-
l

-

g̃ ~ t !5 ip\2
d

dt
d~ t !2

p2

b2csch
2

pt

\b
.

Assuming thatf8 (t)5(d/dt) f̃ (t) is continuous att50, Eq.
~4! becomes

g* f ~E!5 f8 ~0!S 1b 1
E

2 D
2
i\

2
f8 ~0!2

p

2bE2`

1` dt

\b
$ f̃ ~ t !eiEt/\

2 f̃ ~0!%csch2
pt

\b
. ~5!

The tunneling rate through the tunnel element is determi
by applying this result to Eq.~1! with f (DE)5P(DE). One
gets, using symmetry properties ofJ(t) ~Ref. 9!,

G~E!5
1

e2RT
H 1b 1

E2EC

2
2

p

bE0
1` dt

\b
$Re exp@J~ t !

1 iEt/\#21%csch2
pt

\bJ , ~6!

whereEC5 i\ J̇(0) is the charging energy of the junction i
its environment @see Eq. ~66! of Ref. 9#. The current
I (V)5e@G(eV)2G(2eV)# flowing through the junction in
response to an applied voltageV is readily obtained from the
above result, as well as the differential conductance, whic
written as

G~V!5
dI~V!

dV
5

1

RT
F112E

0

1` dt

\b

pt

\b
ImeJ~ t !

3cos
eVt

\
csch2

pt

\bG . ~7!

The above time-domain formulas coincide with Kubo fo
mulas for the composite system formed by the electrodes
the electromagnetic environment. The functionsg̃ (t) and
expJ(t) are real-time representations of retarded Green fu
tions for the electrons and for the charge translation oper
eiw. These Green functions, evaluated with the unpertur
density matrix in the absence of tunneling, can only descr
weak-tunneling situations. Strong-tunneling correctio
could be incorporated using better approximations of
Green functions. Finally, the time-domain formulas giv
above for the rate and the conductance require one less
gration stage than the equivalent energy-domain formu
and are thus well suited for making numerical evaluations
already noticed in Ref. 12. We now apply the time-doma
formulation to derive analytical results for single- an
double-junction systems placed in an Ohmic environmen

III. CONDUCTANCE OF A SINGLE JUNCTION PLACED
IN AN OHMIC ENVIRONMENT

We assume here thatZext(v)5R so that the real part o
the impedance seen by the pure tunnel element
ReZ(v)5R/@11(RCv)2#. The integration~3! leading to
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1850 56P. JOYEZ AND D. ESTEVE
FIG. 2. Differential conductance of a weakl
conducting tunnel junction in series with a resi
tor, for different values of the resistanceR and
different temperatures. The curves are labeled
the ratiokBT/EC . Coulomb blockade of tunnel-
ing manifests itself as a dip atV50. For a given
resistance, the dip gets deeper as the tempera
is reduced, and for a given temperature, the d
gets deeper whenR increases~note the enlarged
vertical scale of the top panels!. For resistances
R@RK , a finite gap develops at low temperatu
~bottom right!. For low resistances, a singularit
develops atV50, and the conductance eventu
ally reaches 0 atT50 ~Ref. 10!. See also Fig. 3.
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J(t) can be performed exactly:16

J~ t !5
pR

RK
H @12exp~2vCutu!#S cotb\vC

2
2 i D2

2utu
\b

12(
n51

1` vC
2 @12exp~2vnutu!#
2pn~vn

22vc
2! J , ~8!

where vn52pn/\b are the Matsubara frequencies a
vc51/RC is the cutoff frequency ofZ(v). This phase cor-
relation function is identical to the correlation function f
the position of a quantum particle coupled to an Ohmic ba
The infinite sum can further be expressed using spe
functions:17

2(
n51

1` vC
2 @12exp~2vnt !#

2pn~vn
22vc

2!

52
1

pF2g1C~2x!1C~x!12ln~12y!1
y

11x

3 2F1~1,11x,21x,y!1
y

12x 2F1~1,12x,22x,y!G ,
whereg is here Euler’s constant,C is the logarithmic de-
rivative of the Gamma function,2F1 is the hypergeometric
function, y5exp(22pt/\b), and x5bECRK/2p2R. Since
J(t) is known exactly for this impedance, the calculations
G, I (V), or G(V), only require one to evaluate a single i
tegral. In Fig. 2, we used Eq.~7! to evaluate the differentia
conductanceG(V), for different values of the resistanceR
and temperatureT. The dip atV50 is called the Coulomb
zero bias anomaly. A finite Coulomb gap is recovered at l
temperature only forR@RK . In Fig. 3, we plot the zero-
voltage conductance of the system for different temperatu
and different values of the resistanceR. For the sake of com-
parison, we also plot the predictions obtained using the
.
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proximate expression ofP(E) obtained in Ref. 10, which is
valid at low energies and for low impedances. We see,
expected, that both calculations agree at low temperature
that the temperature range in which the approximation
valid increases asR is decreased. AlthoughG(0) vanishes at
T50 for any resistance, this effect is unobservable in pr
tice for small resistances since one then findsG(0)
}T2R/RK whenT→0.

We now apply the time-domain formulation to determi
the high-temperature expansion of the zero-voltage cond
tance. This expansion is systematically obtained by inject
a small-time high-temperature expansion of expJ(t) into Eq.
~7!. Up to the second order inbEC , one gets

FIG. 3. Zero-voltage conductance of a weakly conducting tun
junction in series with a resistanceR, as a function of temperature
for different values of the resistance. The curves are labeled by
value of R/RK . The right panel completes the coverage of t
whole temperature range by taking not the temperature as the
zontal coordinate, but its inverse. The predictions of Eq.~7! using
Eq. ~8! ~full lines! are compared with those made using the appro
mateP(E) of Ref. 10~dashes!. In the caseR/RK510, the approxi-
mation deviates already at very low temperature and was not plo
here, for the sake of clarity.



of
te

al

nn

v
b
i

rg
-
th
he
nt

n
itor
he
y
f
nces
ge

e,

,
se
netic
the
es-
on-

ated
ing

ra-

ag

56 1851SINGLE-ELECTRON TUNNELING AT HIGH TEMPERATURE
RTG~0!512
bEC

3
1~bEC!2S 1151

3z~3!RK

2p4R D
1O„~bEC!3…, ~9!

where z is the Riemann zeta function. Determination
higher orders requires numerical evaluations of definite in
grals. This expansion is valid in the inverse temperatureb
range defined by (RK /R)(bEC)

2!1; this range vanishes in
the limit R→0. In this limit, one directly findsRTG(0)51
by settingJ(t)50 in Eq. ~7!. Thus,G(0) is a nonanalytic
function ofR, atb5R50. Recently, using the path-integr
formalism, Wang, Go¨ppert, and Grabert18 calculated the
high-temperature expansion of the conductance of a tu
junction of arbitrary tunnel resistanceRT in series with an
arbitrary resistanceR. In the weak-tunneling limit
RT@R,RK , their result coincides with Eq.~9!.

We now address the effect of the electromagnetic en
ronment on a double-junction system, in which Coulom
blockade is already present in the absence of any series
pedance.

IV. INFLUENCE OF THE ELECTROMAGNETIC
ENVIRONMENT ON THE CONDUCTANCE
OF A SINGLE-ELECTRON TRANSISTOR

The single-electron transistor~SET!, whose circuit is
shown in Fig. 4, was first operated by Fulton and Dolan.19 It
consists of two tunnel junctions with tunnel resistances la
compared toRK , connected in series with an arbitrary im
pedance. Effects of the electromagnetic environment on
SET have been reported in Ref. 20. The theory we use
neglects the possibility of simultaneous tunnel eve

FIG. 4. Single-electron transistor with an arbitrary electrom
netic environment described by the impedanceZext8 (v).
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~‘‘cotunneling’’21,22!: when tunneling occurs through a give
junction, the other junction is treated as a passive capac
contributing to the electromagnetic environment of t
former junction. The charging energ
EC5e2/2(C11C21Cg) is now the electrostatic energy o
one electron on the island. In the case where the capacita
C1 andC2 of the two junctions are equal, the zero-volta
conductance of the SET is given by12,23,24

G~ng!

G0
5 (

n52`

1`

p~n!
b

2
@g* P~En112En!

1g* P~En212En!#. ~10!

Here, ng5CgVg /e is the dimensionless gate charg
En5EC(n2ng)

2 is the electrostatic energy withn excess
electrons on the island, p(n)5exp(2bEn)/
(m52`

1` exp(2bEm) is the probability of this configuration
andG051/(RT11RT2) is the series conductance. In the ca
when the two capacitances are unequal, the electromag
environment seen by the two tunnel elements differ and
expression is slightly more complicated. The above expr
sion for the conductance can be used directly, with the c
volution products evaluated using Eq.~6!. At high tempera-
ture, however, many charge states of the island are popul
and an alternate formulation is more convenient. First, us
Poisson’s resummation formula, we transform Eq.~10! into a
ratio of Fourier series that converge rapidly at high tempe
ture:

G~ng!

G0
5

h012(
k51

1`

cos~2pkng!hk

112(
k51

1`

cos~2pkng!exp~2p2k2/bEC!

,

~11!
where

hk5
b2

A4pbEC
S g* P* H exp2 bE2

4EC
cos

pkE

EC
J D ~2EC!.

Applying Eq. ~5! yields

hk5expS 2
p2k2

bEC
D @12bEC2I k#,

with

-

essed at
I k5pE
0

1` dt

\bHReexpS J~ t !2
ECt

2

b\2 2
iECt

\ D coshS 2pkt

\b D21J csch2 pt

\b
,

so that finally

G~ng!

G0
512bEC2

I 012(
k51

1`

cos~2pkng!exp~2p2k2/bEC!I k

112(
k51

1`

cos~2pkng!exp~2p2k2/bEC!

. ~12!

This expression for the conductance shows that the gate charge modulation of the SET is exponentially suppr
temperatures such thatbEC,1. In this regime, the conductance is
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G

G0
'12bEC2I 0512bEC2pE

0

1` dt

\bHReexpS J~ t !2
ECt

2

b\2 2
iECt

\ D21J csch2 pt

\b
. ~13!
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As in the single-junction case, a high-temperature expan
of this conductance can be obtained by injecting a short-t
high-temperature expansion forJ(t) in this expression. For
the sake of the comparison with the case of the single ju
tion, we will now further assume that the impe
anceZext8 (v) is an Ohmic resistanceR8, and thatCg!C1

5C25C/2. The environment seen from each tunnel elem
is then described by

ReZ8~v!5
R8/4

11@~R8/4!Cv#2
,

which is the same quantity as appears in the case of
single junction connected to a resistorR, provided that
R854R. Thus, in the present case,J(t) is also given by Eq.
~8!, substitutingR with R8/4.

In Fig. 5, we plot calculations of the maximum and min
mum conductance of the SET for different values of the
sistance connected in series with it, for all temperatures.
results, which reproduce known low-temperature results,12,24

show in particular that even a small environmental resista
causes, at all temperatures, a noticeable reduction from
conductance of a SET with zero-impedance environment
high temperature Eq.~13! can be expanded in the same w
as done for the single junction:

G

G0
512

2

3
bEC1~bEC!2F 16010.286•••

RK

R8

10.135•••SRK

R8 D
2G1O„~bEC!3….

FIG. 5. Zero-voltage conductance of a weakly conducting S
in series with a resistanceR8, as a function of temperature, fo
different values of the resistance. The curves are labeled by
value ofR8/RK . As in Fig. 3, both panels encompass the compl
temperature range. The gate charge modulation of the SET is
ply rendered here by plotting the maximum and minimum cond
tance of the SET in the left panel.
n
e
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t
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In the case whereR850, the expansion can also be pe
formed, and one finds

G

G0
512

1

3
bEC1

1

15
~bEC!21O„~bEC!3…. ~14!

Note the change in thebEC coefficient, clearly showing tha
G is a nonanalytic function ofR8, at b5R850, as previ-
ously seen for the single junction. The latter expansion~14!
is identical to the expansion~9! where the limitR→1` is
taken. This is not a mere coincidence since one can ind
prove a rigorous equality between the limit of Eq.~7! when
R→1` and the nonmodulating parth0 of Eq. ~11! when
R850. Thus, at high temperature, the conductance o
single junction in series with a large resistanceR@RK coin-
cides with the conductance of a symmetric SET with sa
series tunnel resistance and charging energy, but with
resistance in series.

In Fig. 6, we plotted on the same graph the conducta
of a single junction in series with a resistanceR and the
conductance of a SET in series with a resistanceR8, for

T

he
e
m-
-

FIG. 6. Normalized high-temperature zero-voltage conducta
of a single junction (G051/RT) in series with a resistanceR, and of
a SET @G051/(RT21RT1)# in series with a resistanceR8, as a
function of the dimensionless inverse temperaturebEC . The curves
are labeled by the value ofR/RK or R8/RK . In this temperature
domain the SET has no gate charge modulation. At finite temp
ture, the conductance is reduced even by a small resistance i
ries. Note also that for small resistances the relative reduction w
respect to theR5R850 value depends weakly on temperature a
is the same for the junction and for the SET, providedR854R in
order to take into account the capacitive division occurring in
SET ~see text!. For large values of the resistances~but still
R,R8!1/G0), the effect saturates for both the junction and the SE
At high temperature, an asymmetric junction1 resistance system
(RT@R) is found equivalent to a symmetric SET with same ser
tunnel resistance and charging energy, but with no resistanc
series.
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56 1853SINGLE-ELECTRON TUNNELING AT HIGH TEMPERATURE
different values of the resistances and as a function of t
perature, in the regime where there is no modulation with
gate voltage of the SET (bEC,1). For resistancesR and
R8 providing the same dissipation~i.e., with R854R), the
relative reduction of conductance with respect to
R5R850 case is nearly the same for the single- and dou
junction system, and depends weakly on temperature
small resistancesR,R8!RK . This relative reduction of con
ductance is of the order of 1%, for environmental impe
ances of the order of the vacuum impedanceZ0, which are
typical for nanofabricated circuits at high frequencies. F
larger values of the resistances~but still smaller than the
tunnel resistance!, the conductance reaches an asympto
curve in both the case of the single junction and of the S
In the case of the single junction, the conductance reac
that of a bare SET, as shown above.

We now discuss the implications of our results for t
proposal of Pekolaet al. to use tunnel junction arrays fo
metrological thermometry.14 These authors have shown th
the voltage half-width half-depth of the Coulomb zero-b
anomaly of a bare SET isV1/2.5.44 kBT/e for kBT@EC ,
thus providing aprimary thermometer. This thermometer is
restricted to the temperature range in which the conducta
is reduced by at most a few percent. Our results indicate
typical environmental impedances yield large corrections
the reduction of the zero-voltage conductance in this te
perature range. For instance, atbEC50.1, the conductance
n
b,
3

-

r,

D.

ev

.
s.
-
e

e
-
or

-

r

c
.
es

ce
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o
-

of a bare SET is reduced by 3.3%. An additional series
sistance ofR85400 V'Z0 yields an extra reduction o
0.65%, and certainly also affects the voltage width of t
Coulomb zero-bias anomaly. Practical realization of a SE
based primary thermometer thus requires one to place
SET in a specially designed low-impedance electromagn
environment.

V. CONCLUSION

Using the real-time formalism of single-electron tunne
ing, we have shown how single-electron charging effe
vanish at high temperature in the case of single and dou
junctions placed in an electromagnetic environment. W
have found that moderate environmental resistances ap
ciably modify Coulomb blockade, even at high temperatu
In the case of resistancesR!RK , the relative reduction of
conductance depends weakly on temperature up
kBT'ECARK /R. This effect is of particular importance fo
metrological thermometry based on Coulomb blockade
single-electron tunneling.
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