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Single-electron tunneling at high temperature
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The electromagnetic environment in which a small tunnel junction circuit is embedded plays a crucial role
in its transport properties. Although the theory of single-electron tunneling is well established, few analytical
results are known. We use a real-time formulation to obtain new predictions for the high-temperature conduc-
tance of single- and double-junction systems in series with a resistor. We discuss the implications of our results
for recently proposed metrological thermometry based on Coulomb blockade of single-electron tunneling.
[S0163-182697)06928-3

I. INTRODUCTION single- and double-junction systems connected to an Ohmic
environment.

For tunnel junctions with tunnel resistance much greater
than the quantum of resistanBg = h/e?~25.8 K, the con- Il. TRANSPORT PROPERTIES OF A SINGLE
duction electrons in the electrodes are well localized on ei- JUNCTION + ENVIRONMENT
ther side of the junction. The conduction mechanism in these
junctions consists of uncorrelated single-electron tunnel In this section, we make the link between the initial
events that can be considered to occur instantaneously. Thiergy-domain formulation of the theory of single-electron
single-electron tunneling regime has been reviewed in Refdunneling of Refs. 4, 5, and 9 and the time-domain formula-
1-3. When such a tunnel event occurs, one electron chard®n of Refs. 12 and 13. We give explicit formulas for the
flows through the circuit connected in series with the junc-calculation of transport quantities in the time-domain formu-
tion where it may excite electromagnetic modes. Thus, iration and discuss their advantages.
principle, single-electron tunneling is an “inelastic” process ~ The generic circuit displaying Coulomb blockade of tun-
in the sense that part of the electrostatic energy dissipated ieling consists of a tunnel junction in series with an arbitrary
the tunnel event is transferred to the electromagnetic enviexternal impedancg,,(w), as depicted in Fig. 1. The tunnel
ronment and not to the quasiparticle degrees of freedom ifunction itself can be decomposed into the parallel combina-
the electrodes. Inelastic processes are revealed by nonlineation of two functional elements: a capacitor characterized by
ties in the current-voltage characteristic of the junction. Thets capacitanc€ and a pure tunnel element characterized by
theory of single-electron tunneling has been worked out irts tunnel resistancB; assumed much larger thdy . It is
the case of an arbitrary linear electromagneticthen apparent that the only relevant impedaz¢e) for the
environment'® It relates the tunneling rates to the environ- tunnel process is the parallel combination &, and C.
ment impedance through a series of integral transformg-urthermore, it is assumed thaf>Z.,( w), so that the volt-
Schematically, this treatment shows that inelastic processexge drop occurs across the junction, and the electrostatic en-
are relevant only when the impedance of the environment isrgy change in a tunnel event BSE=eV. The theory
larger thanRy over a sufficiently large frequency range andof  single-electron tunneling relates the tunneling
that tunneling is elastic in all other circumstances. The latter

situation prevails in most experiments since the typical im- g) b) c)

pedance of connecting leads is always of the order of the

vacuum impedanc&,= o/ €o~377Q at microwave fre- @ Zoy(®) @ Zox{®) Z(w)
guencies. Only few experiments have been conducted in the

inelastic tunneling regime because the fabrication of a con- R.C C uU(t)
trolled high-impedance environment is difficfii® These ex- T —‘I I— I —

periments only checked the predictions of the theory at low
temperature$;:® where the reduction of the conductance due I R
to the environment is most pronounced. At high- Rr T
temperatures, ana.llytlcal predmﬂons and tests of the theory FIG. 1. (a) The generic circuit displaying single-electron tunnel-
are presently 'aCk'”Q- In partl_cula_r, it appeared recent_ly th%g in the presence of an arbitrary environment consists of a tunnel
detailed understanding of this high temperature regime i§nction in series with an arbitrary impedanZg (), and biased
important since linear arrays of small junctions have beefyit, 4 voltage sourc¥,,,. (b) The tunnel junction is separated into
proposed for metrological thermometftgee Ref. 11 for a o functional elements: a capacitor with capacitaGs@and a pure
review. tunnel element represented by the double T symbol. This descrip-

In this paper, we use the time-domain formulation of thetion of the system can be transformed (@, using ThHeenin’s
theory of single-electron tunnelifg to obtain high-  theorem. The only relevant impedance for the tunneling process is
temperature systematic expansions for the conductance @{w), the parallel combination of and Z.(w).
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rates through the junction to the equilibrium correlation _ . ,d 2 at
function J(t)={([¢(t)— ¢(0)]®(0)) of the phase ¢(t) y(t)=inh 55('()—52030"?@-
=[' _dt’e[U(t")—V]/A across the total impedanZéw) at 4
temperatureT. More precisely, the tunneling ratE(AE)  Assuming thatf(t)=(d/dt) T (t) is continuous at=0, Eq.
energyAE, is given by the convolution product:

+e y*{(E)=f(0)

D _% F(O)— 21j+w:—t{?(t)eiEt/h

where “*” denotes convolution,y(E)=E/(1— e #F), with Bl--hB

+

N[ m

|-

through the junction, for a global change in the electrostatiq4) becomes
FAE—lf P AEd—l *P(AE )
(AB)= g | WOP(e=AE)de= zo-y* P(AE),

B=1/kgT, and where the functioR(E) denotes the Fourier _ at
transform of exp(t): - f(O)}CSCHﬁ- 5
e iEt] dt The tunneling rate through the tunnel element is determined
P(E)= f » EXP[J(U* 7}_2% : @ by applying this result to Eq(1) with f(AE)=P(AE). One

gets, using symmetry properties &ft) (Ref. 9,
The interpretation of Eq(1) is the following: y(E)/R;e? is
the probability per unit time that a tunnel event converts an 1 [ 1 E-Ec = (+=dt
energyE into quasiparticle excitations in the electrodes. On I'(E)= e?R 1E+ 2 B iB

T 0

the other handP(E) is the probability that the electromag-
netic environment absorbs an eneigyuring the tunneling . art
process. The convolution product structure reflects the fact +'Et/ﬁ]_1}CSCHﬁ}' (©)
that all possible partitions of the available energy into elec-
tromagnetic excitationg‘photons”) and quasiparticle exci- whereE.=i%J(0) is the charging energy of the junction in
tations contribute to the tunneling rate. Finally, the phasets environment[see Eq.(66) of Ref. 9. The current
correlation functionJ(t) is itself related to the dissipative |(Vv)=¢[T'(eV)—TI'(—eV)] flowing through the junction in
part of the impedanc&(w) by the quantum fluctuation- response to an applied voltayes readily obtained from the

{Re expJ(t)

dissipation theorem: above result, as well as the differential conductance, which is
. written as
+oReZ(w) e '“'—1 dw
J(U:Zf_w Re 1-e P ¢4 ) di(v) 1 cedt at
G(V):W:R_ 0 ﬁﬁlme
Although the above theory formally solves the problem of T
calculating the ratd’(AE), the multiple embedding of inte- eVt at
gral equations hinders analytical calculations and compli- XCOS—ﬁ CSCH@ . (7)

cates numerical evaluations. Indeed, the explicit dependence
of the rate on the impedance has only been obtained for the The above time-domain formulas coincide with Kubo for-

low-energy, low-impedance regini&.in other cases, one mias for the composite system formed by the electrodes and
must resort to numerical evaluations that are mainly per-

formed using fast Fourier transform. An alternate numericafhe etlectromaiq?enc envwonr?etnt. Th]? fltm?%?g) andf
approach circumvents the Fourier transformatid®s and expl(t) are real-time representations of retarded Green func-

(3): the functionP(E) is obtained by solving the inhomoge- tions for the electrons and for the charge translation operator

neous integral Minnhagen equatiShwhich directly con- e'¢. These Green functions, evaluated with the unperturbed
nectsP(E) to the impedancé () density matrix in the absence of tunneling, can only describe

An alternate formulation of the theory was proposed mweak—tunn_eling situations_,. Strong—tunneling _corrections
Ref. 12. In this formulation the ratg(E) is directly related could be incorporated using better approximations of the

to the phase correlation functiaiit), without going through Green functions. Finally, the time-domain f_ormulas given
the determination oP(E). This approach is priori attrac- aboye for the rate and the c_onductance require one less inte-
tive becausd(t) is more amenable to analytical calculations gre(ljtlon s:]age th"an Fh% equwa:(gnt energy—d?mmln fqrmulas,
than P(E). The link between the two formulations is made and are thus well suite for making numerica evaluations, as
by noticing that any convolution producg* f(E) with a already noticed in Ref. 12. We now apply the time-domain

. : formulation to derive analytical results for single- and
funct_|onf(E) Sl.JCh as the. one in E¢1) can be expressed by double-junction systems placed in an Ohmic environment.
the time domain integral:

+ [ll. CONDUCTANCE OF A SINGLE JUNCTION PLACED

_ . dt
y(t) T (t)e'E" — 4 IN AN OHMIC ENVIRONMENT

y ()= | aly

— - o . We assume here tha,(w)=R so that the real part of
wheref (t) andy(t) are the respective inverse Fourier trans-the impedance seen by the pure tunnel element is
form of f and y. The expression of(t) is*? ReZ(w)=R/[1+(RCw)?]. The integration(3) leading to
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eV/E. eV/E,
- 10
1.00
FIG. 2. Differential conductance of a weakly

{o7s conducting tunnel junction in series with a resis-

' - tor, for different values of the resistanée and

_'c) different temperatures. The curves are labeled by

{050 2 the ratiokgT/E . Coulomb blockade of tunnel-

ing manifests itself as a dip &=0. For a given
resistance, the dip gets deeper as the temperature
0.25 is reduced, and for a given temperature, the dip

1.00 gets deeper wheR increasegnote the enlarged
lo7s vertical scale of the top pangld-or resistances
’ R>R, a finite gap develops at low temperature
{o.50 P (bottom righy. For low resistances, a singularity
jo develops atv=0, and the conductance eventu-
loos & ally reaches 0 at =0 (Ref. 10. See also Fig. 3.
40.00
10
J(t) can be performed exactly: proximate expression d?(E) obtained in Ref. 10, which is

valid at low energies and for low impedances. We see, as
expected, that both calculations agree at low temperature and

~ @R Bhoc | 2|t that the temperature range in which the approximation is
W= Re [1—exp(— wclt])]| cot———i |- B valid increases aR is decreased. AlthougB(0) vanishes at
T=0 for any resistance, this effect is unobservable in prac-
2§ wi[1—exp — wplt])] tice for small resistances since one then fin@40)
2R/R
& 2m(02-0d) |’ (8  «T?RRc whenT—0.

We now apply the time-domain formulation to determine
the high-temperature expansion of the zero-voltage conduc-
where w,=27n/AB are the Matsubara frequencies andtance. This expansion is systematically obtained by injecting
w.=1/RC is the cutoff frequency oZ(w). This phase cor- a small-time high-temperature expansion of #Kpinto Eq.
relation function is identical to the correlation function for (7). Up to the second order iBE., one gets
the position of a quantum particle coupled to an Ohmic bath.

The infinite sum can further be expressed using special
functions?’

10— |

0.8
= wi[1—exp — wpt)]

n=1 ZWn(wﬁ—wE)

1 y
== 2y + V(=) TV () +2In(1-y) +

X 5F1(1,1+X,2+X,y) + :I.Z_x oF1(1,1-X%,2—X,y) 02r /

where v is here Euler's constan® is the logarithmic de- 0.0 . . . L ' L L
rivative of the Gamma function;F, is the hypergeometric 00 02 04 06 08 10 08 06 04 02 00
function, y=exp(2nt/A8), and x=BEcR«/27?R. Since kgT/Ec Ec/ksT

J(t) is known exactly for this impedance, the calculations of
I', I(V), or G(V), only require one to evaluate a single in-
tegral. In Fig. 2, we use_d E7) to evaluate the dlfferentlal for different values of the resistance. The curves are labeled by the
conductances(V), for dlfferent valqes of the resistanée value of R/R¢. The right panel completes the coverage of the
and temperaturé. The_ d}D atv=0 is Ca”?d the Coulomb  \yhole temperature range by taking not the temperature as the hori-
zero bias anomaly. A finite Coulomb gap is recovered at loWsgntal coordinate, but its inverse. The predictions of &g.using
temperature only foR>Ry. In Fig. 3, we plot the zero- Eq.(8) (full lines) are compared with those made using the approxi-
voltage conductance of the system for different temperaturesateP(E) of Ref. 10(dashes In the caséR/Ry = 10, the approxi-
and different values of the resistariReFor the sake of com- mation deviates already at very low temperature and was not plotted
parison, we also plot the predictions obtained using the aphere, for the sake of clarity.

FIG. 3. Zero-voltage conductance of a weakly conducting tunnel
junction in series with a resistan&® as a function of temperature,
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(“cotunneling”?1?3: when tunneling occurs through a given

Island 1 junction, the other junction is treated as a passive capacitor
ext{®) contributing to the electromagnetic environment of the
! —_— former junction. The charging energy
_Q ] R
Cr.Rrr- Cy C2Rm Ec=e%/2(C,+Cy+ Cg) is now the electrostatic energy of
@ @ one electron on the island. In the case where the capacitances
C, andC, of the two junctions are equal, the zero-voltage

conductance of the SET is givenBy7>%
FIG. 4. Single-electron transistor with an arbitrary electromag- +o

ic onvi - i G(ng) B
netic environment described by the impeda#@¢g(w). GOG - Z p(”)g[?’* P(Eps1—Eyp)
E 1 3¢3)R
RTG(O)=1—%+(BEC)2<1—5+%> +9*P(Eq-1—Ep)]. 10
Here, ng=C4V,/e is the dimensionless gate charge,
+0((BEc)?), (9 E,=Ec(n—ng)? is the electrostatic energy with excess
where ¢ is the Riemann zeta function. Determination of electrons on the island, - p(n) =exp(-BEn)/

+ o . ™ . . .

higher orders requires numerical evaluations of definite inte=m=-=€XP(— BEn) i the proba_knhty of this configuration,
grals. This expansion is valid in the inverse temperagire 2NdGo=1/(Rr1+Rr) is the series conductance. In the case
range defined byRy /R)(BE.)2<1; this range vanishes in when the two capacitances are unequal, the electromagnetic
the limit R—0. In t}r(ns limit. one di,rectly findR,G(0)=1 environment seen by the two tunnel elements differ and the
by settingJ(t)=0 in Eq. (7). Thus,G(0) is a nonanalytic EXPression 1s slightly more compllcated.' The abqve expres-
function of R, at 8=R=0. Recently, using the path-integral SI°" for the conductance can be used directly, with the con-
formalism, Wang, Gppert, and Grabett calculated the volution products evaluated using E®). A'_[ high tempera-
high-temperature expansion of the conductance of a tunndyre. however, many char_ge states of the |sla_nd are pop“"?‘ted
junction of arbitrary tunnel resistand®; in series with an and an alternate formulation is more convenient. First, using
arbitrary resistanceR. In the weak-tunneling limit Poisson’s resummation formula, we transform 8d) into a

Ry>R,Ry , their result coincides with Eq9). ratio of Fourier series that converge rapidly at high tempera-

We now address the effect of the electromagnetic envizure:

+
ronment on a double-junction system, in which Coulomb
blockade is already present in the absence of any series im- G(ng) h°+2;<§=:1 cos2amkng) hy
pedance. = o ;

1+2, cog2mkng)exp — w2k BE¢)
k=1

IV. INFLUENCE OF THE ELECTROMAGNETIC
ENVIRONMENT ON THE CONDUCTANCE (13)

OF A SINGLE-ELECTRON TRANSISTOR where
, : N B E> wkE
The single-electron transistofSET), whose circuit is hy=——— y*P*{ exp— —cos— |(—E¢).
shown in Fig. 4, was first operated by Fulton and Ddfah. - VAmBEc\ 4Ec Ec
consists of two tunnel junctions with tunnel resistances largé\PPlying Eq. (5) yields
compared tdRx, connected in series with an arbitrary im- m2K2
pedance. Effects of the electromagnetic environment on the hy=exp — ?)[1—ﬂEc— I,
SET have been reported in Ref. 20. The theory we use here BEc
neglects the possibility of simultaneous tunnel eventswith
|
L fﬂc dt R I Ect? iEct 27kt N t
K=T o ﬁ eex ()—ﬁ—ﬁZ—T Cos ﬁ,B —1iCSC %,
so that finally
+ oo
) lo+22, cog2mkng)exp — w2k BEc) I
k=1
G =1-BEc——= : (12
0

1+22, cog2mkng)exp(— m2k? BEc)
k=1

This expression for the conductance shows that the gate charge modulation of the SET is exponentially suppressed at
temperatures such th@E-<1. In this regime, the conductance is
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S 1 BE.—1,=1-8E rwdtR péJ Ect? TEct) | qen™ 13
G~ “BEclo=1=pEcmm | np| Ree (t)—IB—ﬁZ—T ~ljeschirs. (13

As in the single-junction case, a high-temperature expansiom the case wher&’ =0, the expansion can also be per-
of this conductance can be obtained by injecting a short-timéormed, and one finds

high-temperature expansion fdft) in this expression. For

the sake of the comparison with the case of the single junc- G 1 1 ) .

tion, we will now further assume that the imped- G_Ozl_ 3BEct 15(BEC)"TO((BEC)Y). (14
anceZ/,(w) is an Ohmic resistancR’, and thatC,<C;

=C,=C/2. The environment seen from each tunnel elemeniote the change in th8E coefficient, clearly showing that

is then described by G is a nonanalytic function oR’, at 3=R’=0, as previ-

ously seen for the single junction. The latter expangibf)

REZ' ()= R'/4 is identical to the expansiof®) where the limitR— + o is
1+[(R'/4)Cw]?’ taken. This is not a mere coincidence since one can indeed

prove a rigorous equality between the limit of E@) when

which is the same quantity as appears in the case of thR_)+oc and the nonmodu|ating paho of Eq. (]_1) when
single junction connected to a resist®, provided that R’=0. Thus, at high temperature, the conductance of a
R’=4R. Thus, in the present casit) is also given by Ed.  single junction in series with a large resistafite R coin-
(8), substitutingR with R'/4. cides with the conductance of a symmetric SET with same

In Fig. 5, we plot calculations of the maximum and mini- series tunnel resistance and charging energy, but with no
mum conductance of the SET for different values of the reyesjstance in series.
sistance connected in series with it, for all temperatures. The | Fig. 6, we plotted on the same graph the conductance
results, which reproduce known low-temperature restiftS, of a single junction in series with a resistanBeand the
show in particular that even a small environmental resistancgonductance of a SET in series with a resistaRée for
causes, at all temperatures, a noticeable reduction from the
conductance of a SET with zero-impedance environment. At 44
high temperature Eq13) can be expanded in the same way
as done for the single junction:

C 1= 2 BEc+(BE] = +0.286 - 0.9
—=1-= + —+0. o= 9
Re|? ©
+0.135 .- R +0((BEc)?). O [— Junction+R e
& gl {‘Junction+R>>F¥K S
— lBare SET s
o = | SET+R
-------- SET+R>>R,
0.8
0'7 n 1 L 1 1 n 1 "
"""""" 0.0 0.1 0.2 0.3 0.4 0.5
0.6 BE
o °
] FIG. 6. Normalized high-temperature zero-voltage conductance
0.4 of a single junction Go=1/R) in series with a resistand®, and of
a SET[Gy=1/(Rr,+Ryp)] in series with a resistancB’, as a
0.2 function of the dimensionless inverse temperafieg. . The curves
’ are labeled by the value ®®/Ry¢ or R'/Rg . In this temperature
- domain the SET has no gate charge modulation. At finite tempera-
0.0 L ! L L ! L P ture, the conductance is reduced even by a small resistance in se-
00 02 04 06 08 10 08 06 04 02 00 ries. Note also that for small resistances the relative reduction with

KgT/Eq Ec/kgT respect to th&k=R’ =0 value depends weakly on temperature and
is the same for the junction and for the SET, provid®d=4R in
FIG. 5. Zero-voltage conductance of a weakly conducting SETorder to take into account the capacitive division occurring in the
in series with a resistancB’, as a function of temperature, for SET (see text For large values of the resistancésut still
different values of the resistance. The curves are labeled by thR,R'<1/Gy), the effect saturates for both the junction and the SET.
value of R'/Ry . As in Fig. 3, both panels encompass the completeAt high temperature, an asymmetric junctienresistance system
temperature range. The gate charge modulation of the SET is sin{R>R) is found equivalent to a symmetric SET with same series
ply rendered here by plotting the maximum and minimum conduc-+tunnel resistance and charging energy, but with no resistance in
tance of the SET in the left panel. series.
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different values of the resistances and as a function of temsf a bare SET is reduced by 3.3%. An additional series re-
perature, in the regime where there is no modulation with thesistance ofR’=400 ~Z, yields an extra reduction of
gate voltage of the SETBE-<1). For resistanceR and 0.65%, and certainly also affects the voltage width of the
R’ providing the same dissipatiafie., with R’'=4R), the = Coulomb zero-bias anomaly. Practical realization of a SET-
relative reduction of conductance with respect to thebased primary thermometer thus requires one to place the
R=R’=0 case is nearly the same for the single- and doubleSET in a specially designed low-impedance electromagnetic
junction system, and depends weakly on temperature foenvironment.
small resistanceR,R’ <Ry . This relative reduction of con-
ductance is of the order of 1%, fqr environmenfcal imped- V. CONCLUSION
ances of the order of the vacuum impeda@ge which are
typical for nanofabricated circuits at high frequencies. For Using the real-time formalism of single-electron tunnel-
larger values of the resistancélsut still smaller than the ing, we have shown how single-electron charging effects
tunnel resistange the conductance reaches an asymptoticvanish at high temperature in the case of single and double
curve in both the case of the single junction and of the SETjunctions placed in an electromagnetic environment. We
In the case of the single junction, the conductance reachdsave found that moderate environmental resistances appre-
that of a bare SET, as shown above. ciably modify Coulomb blockade, even at high temperature.
We now discuss the implications of our results for theln the case of resistancé®<Ry, the relative reduction of
proposal of Pekolat al. to use tunnel junction arrays for conductance depends weakly on temperature up to
metrological thermometr}: These authors have shown that kyT~E:\Rx/R. This effect is of particular importance for
the voltage half-width half-depth of the Coulomb zero-biasmetrological thermometry based on Coulomb blockade of

anomaly of a bare SET ¥,,,~=5.44 kgT/e for kgT>E, single-electron tunneling.
thus providing gprimary thermometerThis thermometer is
restricted to the temperature range in which the conductance ACKNOWLEDGMENTS

is reduced by at most a few percent. Our results indicate that

typical environmental impedances yield large corrections to The authors gratefully acknowledge stimulating discus-
the reduction of the zero-voltage conductance in this temsions with M. Devoret, G. Gupert, H. Grabert, and X.
perature range. For instance, 2E-=0.1, the conductance Wang.
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