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Spin-Peierls vs Peierls distortions in a family of conjugated polymers
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Distortions in a family of conjugated polymers are studied using two complementary approaches: within a
many-body valence bond approach using a transfer-matrix technique to treat the Heisenberg model of the
systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest
neighbors. The computations indicate that both methods predict the presence or absence of the same distortions
in most of the polymers studied.@S0163-1829~97!08228-3#
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I. INTRODUCTION

The recent discovery of the first inorganic spin-Peie
material, CuGeO3,

1 has engendered a renewed interest
spin-Peierls systems, i.e., systems which present a struc
distortion below the spin-Peierls temperature due to resid
magnetoelastic couplings stabilizing the ground state,
analogy to Peierls distortion2 associated with an electron
soft-phonon instability opening a band gap at the Fe
level. Recent experiments3 suggest that this is not an isolate
case, and the pronounced decrease of susceptib
observed4 in a8-NaV2O5 is also due to a spin-Peierls tran
sition.

The spin-Peierls transition was first observed in predo
nantly organic compounds as TTFCuBDT,5 TTF-TCNQ,6

~TMTSF! 2PF6,
7 or TTF-AuBDT.8 Theoretically, it has been

studied~see for instance Refs. 9–14, and references ther!
as a geometrical symmetry breaking for the lowest eigens
of a Heisenberg Hamiltonian. Peierls and spin-Peierls p
nomena are still a subject of discussion for many other po
mers, since if a deviation occurs that lowers the chain’s sy
metry, then different symmetry-equivalent distorted grou
states may arise which correspond to different thermo
namic phases and, at sufficiently low temperature, the po
bility of solitonic excitations and/or conduction could arise15

Furthermore, it has been argued16 that under similar struc-
tural circumstances a Peierls distortion is predicted for
simple Hückel tight-binding model ofp-network strips if
and only if a spin-Peierls distortion is also predicted fro
valence bond~VB! theory ~or the formally equivalents5 1

2

Heisenberg model! at the simple resonance theoretic lev
At this level of approximation the VB wave functions a
restricted to equally weighted superpositions of special co
lent VB singlet states, i.e., of Kekule´ structures,17 where ev-
ery p electron is coupled to a singlet state with one of th
nearest neighbors. These Kekule´ structures may be parti
tioned into long-range-ordered spin-pairing phases,
lowest-lying phase corresponding to the highest count
560163-1829/97/56~4!/1751~11!/$10.00
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Kekulé structures contributing to it. Within this approach,
spin-Peierls distortion is predicted if there are tw
maximum-cardinality-degenerate Kekule´ phases~see Ref.
18, and references therein!. Then this correspondence be
tween Peierls and spin-Peierls instabilities implies tha
zero-width band gap for ap-network polymer is predicted if
and only if there are two such cardinality-degenerate Kek´
phases. The question then arises as to whether this c
spondence is maintained when going beyond the reson
theoretic approximation.

For instance, the dimerization in polyacetylene has tra
tionally been interpreted in terms of band theory19,20 as a
Peierls distortion. Recently, however, this dimerization h

FIG. 1. Polymer systems. Fragments of~a! Polyaceacene
~PAA!, ~b! poly~benz@m,n#!anthracene~PBA!, and~c! polyperylene
~PPR!. The region between the vertical dashed lines defines the
cell of PPR, while for PAA and PBA the reduced unit cell is inste
identified.
1751 © 1997 The American Physical Society
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FIG. 2. Symmetry elements for~a! PAA, ~b! PBA, and~c! PPR.
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also been successfully explained21 with a Heisenberg-like
Hamiltonian model22 as a spin-Peierls distortion, using bo
cluster-expanded wave functions and perturbation the
This cluster-expanded many-body treatment of distorti
has also been applied to the polyacene polymer,23 which ear-
lier has been extensively studied from the independe
particle point of view, since it exhibits an accidental zer
width band gap at a simple tight-binding level~see Refs. 23
and 24, and references therein!, and a new quasidegenerac
has been predicted.

The comparison between the independent-particle
many-body VB treatments for degeneracy and symme
breaking in polymers deserves further analysis. It is our p
pose here to investigate the ground-state symmetries and
generacies for several conjugated polymers using bot
simple many-body VB framework and a simple tight-bindi
model. The rationale for these simplest models~with just
nearest-neighbor interactions! is that they reveal distortive
responses which qualitative dominate over the otherwise
monic responses~e.g., associated with thes electrons!. That
is, these simplest models should reveal dominant qualita
y.
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features, which should persist independently of parame
ization.

The polymers we focus our attention on are: polyaceac
~PAA!, poly~benz@m,n#!anthracene~PBA!, and polyperylene
~PPR! ~Fig. 1!. All these systems exhibit a zero-width ban
gap at the simplest tight-binding level. So far, very few e
perimental results are available. Only PBA~Ref. 25! and
PPR~Ref. 26! have already been synthesized. Theoretica
PPR has been treated from the independent-particle poin
view,27,28 and also using the valence effective Hamiltoni
technique,29 while as far as we know PBA has not bee

TABLE I. Number of sites in the unit cell~uc! and in the re-
duced unit cell~ruc!, and symmetry operations in the space gro
not including primitive translations.

Polymer Sites in uc Sites in ruc Symmetries

PAA 6 3 i ,sh ,C2a ,C2b ,sv ,Cs

PBA 14 7 i ,sh ,C2 ,Csa ,Csb

PPR 10 i ,sh ,C2a ,C2b ,C2c ,sv1 ,sv2
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FIG. 3. PAA analysis.~a! Unit cell and re-
duced unit cell.~b! Labels associated with bonds
~c! Symmetry elements chosen to label disto
tions: the screw axisCs and the vertical plane
sv .
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previously treated. PAA has been discussed in the literat
mostly from an independent-particle point of view,28,30–33

and less frequently from a resonance-theoretic approach15,16

though it has not yet been synthesized. PAA can be s
together with polyacetylene and polyacene, as the first m
bers of a family of poly-trans-polyacetylenes, graphite be
the final member of the family. All these can be thought of
special cases of ladder materials,34 as already pointed out in
Refs. 15, 32, and 33.

Within the many-body VB framework, we will conside
the antiferromagnetically signed spin-1

2 Heisenberg mode
~for more general derivations of this model than those ba
on degenerate perturbation expansions see, for insta
Refs. 22 and 35, and references therein!. Adequate many-
body wave-function Ansätze provide variational upper
bounds to the ground-state energy. Two different kinds
variational localized-site cluster expandedAnsätzehave been
considered: first aresonatingVB ~RVB! Ansatz, where the
trial wave function is a weighted superposition over all s
glets constructed as products of singlet pairs each involv
two ~not necessarily nearest-neighbor! sites at a time; and
second aNéel-state-based Ansatz, where a Ne´el state is the
zeroth-order wave function from which the trial wav
function is generated. We evaluate the matrix elements
each Ansatz with a transfer-matrix technique introduce
previously.21,23,36–39For the tight-binding band theory calcu
lations we consider the so-called translationally adap
Hückel model limited to nearest neighbors.

This paper is organized as follows: in Sec. II the descr
tion of the polymers, their symmetries, and relevant dist
tions are given. In Sec. III we introduce briefly the trans
tionally adapted Hu¨ckel model. In Sec. IV a description o
the VB method is given in terms of the Heisenberg Ham
e,
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tonian, and trial wave functions are presented. Also, the te
nique to compute the physical magnitudes based on a tr
fer matrix is introduced and applied to obtain the groun
state energy of the systems. Results are presented
discussed in Sec. V. Finally, our conclusions can be found
Sec. VI.

II. DESCRIPTION OF THE POLYMERS
AND THEIR SYMMETRIES

The systems studied are polymeric strips of finite wid
and infinite length (L→`) ~see Fig. 1!. They are constructed
with fused benzene rings, and can be seen as cut from
two-dimensional graphite or honeycomb lattice. Each site
the lattice is taken to represent ansp2-hybridized carbon
atom with onep orbital perpendicular to the plane of th
lattice and with onep electron per site. These strips a
presumed to betranslationally symmetricalongL, with pe-
riodic boundary conditions, so that the strips may be divid
into unit cells or eventuallyreduced unit cells, when the
space groupof the strip contains operations involving glid
reflections. Thespace groupof the strips include, along with
the primitive translation, rotationsCn , reflectionss, and
combination of rotations and reflections~improper rotations!,
coordinate inversioni , and screw rotations and glide refle
tionsCs , i.e., a combination of an improper twofold rotatio
or reflection with a nonprimitive translation of half a unit ce
which by themselves do not leave the lattice invariant~see
for instance Fig. 2 and Table I!.

Of special interest are minimal subsets of symmetry
erations, whose removal lead to~i! a band gap opening at th
Fermi level, when analyzed from the band-theoretic point
view; and~ii ! the lifting of the degeneracy of Kekule´ phases,
xis
FIG. 4. PBA analysis.~a! Unit cell and re-
duced unit cell.~b! Bond labels.~c! Symmetry
elements chosen to label distortions: a screw a
Cs and a vertical planesv .
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if seen from the resonance-theoretic treatment. If a zero
occurs atk5p ~as is frequently the case for benzenoid po
mers! then such a minimal subset will be so as to no m
than double the size of a unit cell.

When a symmetry is broken, there is a distortion para
eterD l associated to the stretching or shortening of the b
l , with bonds numbered as in Figs. 3, 4, and 5. Two symm
try elements are chosen to label the interesting distortions
every polymer as shown in Tables II, III, and IV, whe
appropriate constraints onD l , imposed by the different sym
metry breakings, are also shown. The distortions are cla
fied as to symmetric~11! or antisymmetric~21! with re-
spect to these two selected symmetry elements.

The PAA polymer is formed by benzene rings shari
four consecutive edges with neighboring rings as shown
Fig. 1~a!. It can also be seen as a trimer of nondimeriz
parallel all-trans polyacetylene chains. The six-site unit c
can be broken into two three-site reduced unit cells, defi
as the region between dashed lines in Fig. 1~a!. In the band
picture, there is a half-filled band and, consequently, azero-
width band gapis predicted, regardless of distortions whic
preserve the glide-reflection symmetry. In the simplest
picture, i.e., resonance theory, there are two maximu
cardinality degenerate Kekule´ phases. For instance, definin
M as the number of ‘‘double bonds’’ crossed by an obliq
line ~see Fig. 6!, there are two Kekule´ phasesM5even
equivalent to twoM5 odd which do not mix because of th
cyclic boundary conditions of the strip and they are deg
erate since they each contain essentially a single Ke´
structure. A distortion that could open the band gap at

TABLE II. Distortions considered for the PAA strip. ForB
distortions we identify subcasesB1 for D1.0 andD250, andB2

for D150 andD2.0. ForC distortions we identify subcasesC1 for
D1.0 andD050,C2 for D150 andD0.0, andC3 for D1.0 and
D0,0.

Distortion Cs sv Restrictions onD l

A 11 21 D05D 0̄5D25D 2̄50
D15D 1̄52D1852D 1̄8

B 21 11 D05D 0̄50
D152D 1̄52D185D 1̄8

D252D 2̄

C 21 21 D152D 1̄5D1852D 1̄8
D25D 2̄50
D052D 0̄

FIG. 5. PPR analysis.~a! Unit cell. ~b! Bond labels.~c! Sym-
metry elements chosen to label distortions: a two-fold rotation a
C2 perpendicular to the molecular plane, and a vertical planesv .
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Fermi level and lift the degeneracy of the Kekule´ phases
requires the destruction of the glide-reflection symmet
The distortions to be considered are then those which
antisymmetricwith respect to interchange of the two reduc
unit cells in a new unit cell.

PBA is formed by a polyacene strip where added benz
rings have been, top and bottom, alternatively fused on@see
Fig. 1~b!#. A reduced unit cell can be defined for this syste
between the dashed lines in Fig. 1~b!, with two seven-site
reduced unit cells per unit cell. It is a half-filled band syste
and, like PAA, a zero-width band gap is predicted. Re
nance theory, following Ref. 16, predicts two maximum
cardinality degenerate Kekule´ phases. As in the PAA poly-
mer, the interesting distortions that could open the band
and lift the degeneracy are those that areantisymmetricun-
der operations which interchange the two types of redu
unit cells.

The PPR polymer is formed by fused benzene rings
drawn in Fig. 1~c!. The unit cell containing ten sites is de
fined between the dashed lines in the graph, and there i
smaller reduced unit cell for this system. The space grou
generated by the point groupD2h and the translation opera
tions along the strip@see Table I and Fig. 2~c!#. Differently
from the rest of the polymers here, there is no glid
reflection symmetry operation for PPR. Furthermore, it do
not have an odd number ofp electrons per reduced unit cel
so that it does not correspond to a half-filled band syste
Nevertheless, there is an accidental degeneracy at the Hu¨ckel
level of approximation, so that it has a zero-width band g
anyway ~see Sec. III!. Correspondingly, resonance theo
predicts two maximum-cardinality degenerate Keku´
phases.16 A totally symmetricdistortion will also be consid-
ered for this system~see Table IV!.

III. TRANSLATIONALLY ADAPTED HU ¨ CKEL MODEL

The Hückel model is the simplest tight-binding model:

HHuck5 (
^ni,mj&,s

bni,mj~cnis
1 cmjs1cmjs

1 cnis!. ~1!

cnis
1 (cnis) are the creation~annihilation! electron operators
on sitei of unit cell n with spins andbni,mj is the ‘‘Hückel
resonance integral’’~or hopping integral! between sitesi and
j in unit cellsn andm, respectively.̂ ni,mj& indicates that
the sum is restricted to nearest neighbors. Considering
translational invariance symmetry of the system, we can
fine translationally symmetry adapted states

TABLE III. Distortions considered for the PBA strip. All pos
sibleD i , i51, 2, 3, and 4, are assumed to be mutually independ
For A distortions we identify subcases:A1 for D1.0 and
D25D35D450, andA2 for D15D250, D3.0, andD4,0. For
C distortions we identify subcasesC1 for D1.0, and the rest equa
to zero, andC2 for D15D250, D3.0, andD4,0.

Distortion Cs sv Restrictions on D l

A 11 21 D i5D ī 52D i 852D ī 8
B 21 11 D i52D ī 52D i 85D ī 8
C 21 21 D i52D ī 5D i 852D ī 8

is
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u j ;k&[
1

AL(
n51

L

eiknun, j &, k5
2pnk
L

,

nk50,1, . . . ,L21. ~2!

The matrix elements of the Hamiltonian between these n
states are

^ j ;kuHu i ;k8&5dkk8 (
^ni,mj&

e2 ik~n2m!bni,mj . ~3!

Diagonalizing the Hamiltonian matrix elements, the ene
bands«(k) are finally obtained.

Symmetry breaking can be considered takingbni,mj as

bni,mj5b~11Dni,mj!, ~4!

where Dni,mj (uDni,mju!1) is the distortion parameter, a
introduced in Sec. II, that measures the strength of the
tortion between sitesni andmj.

IV. VALENCE BOND METHOD

Within the VB picture we attempt here to go beyond res
nance theory when solving the Heisenberg Hamiltonian:

HHeis5 (
^ni,mj&

Jni,mjSW niSWmj ~5!

Jni,mj is the ‘‘exchange integral’’ between nearest-neighb
sitesni, andmj andSW ni denotes the spin operator for on
electron on siteni.

Jni,mj5J~11Dni,mj!, ~6!

with Dni,mj being the distortion parameter associated w
the bond between sitesni andmj when there is a symmetr
breaking.

While solving the Hu¨ckel model is an easy task, solvin
the Heisenberg Hamiltonian is in general a nontrivial pro
lem. In order to obtain, along with the appropriate appro
mate wave functions, good variational upper bounds to
ground-state energy of this model,E(D), for the polymer
systems, we consider two different types of cluster-expan
Ansätzethat depend on variational parameters, each of wh
describes thelocal features of the system. Since our pol
mers are bipartite systems with total spin zero, we have c
sidered aNéel-state-based Ansatzand a RVBAnsatz. These

TABLE IV. Distortions considered for the PPR strip, whe
j51, 2, and 3 andi51, 2, 3, and 4. ForC distortions we identify
subcasesC1 for D15D450, D2.0 and D3.0, and C2 for
D15D450, D2,0 andD3.0. ForD distortions we identify sub-
caseD1 for D15D250, D3.0 andD4.0.

Distortion C2 sv Restrictions on D l

A 11 21 D j5D j̄ 52D j 852D j 8̄
D45D4850

B 21 11 D j5D j̄ 52D j 85D j 8̄
D45D4850

C 21 21 D i52D ī 5D i 852D ī 8
D 11 11 D i5D ī 5D i 85D ī 8
w
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Ansätzewere introduced in Ref. 23 and we shall make her
brief description of them. RelatedAnsätze have also been
successfully considered by other authors40,41 when solving
the s5 1

2 Heisenberg Hamiltonian for the square lattice.

A. Néel-state-basedAnsatz„NSBA…

The cluster expanded wave-functionAnsatzin this section
is based upon the Ne´el state as a zeroth-order wave-functio

uFN&5)
i

iPA

a~ i !)
j

jPB

b~ j !, ~7!

whereA andB denote the two sets of sites such that ea
member of one set is a nearest neighbor solely to~some!
sites of the other set, anda( i ) @b( i )# indicate that the spin of
the electron on sitei is 11/2 (2 1

2!. A lowering of the en-
ergy, with respect to that of the Ne´el state, occurs for an
Ansatzdefined within a subspace spanned byuFN& and the
states obtained when applying touFN& the XY terms,
Sni

6Smj
7 , of the Heisenberg operator, an arbitrary number

times in an ‘‘unlinked’’ way. These additional states whic
are to be mixed with the Ne´el state can be generated in term
of the nearest-neighbor pair excitation operator

P[(
ni

PA

(
mj

^ni,mj&

xni,mjSni
2Smj

1 , ~8!

where thexni,mj are scalars to be optimized, andSni
1 and

Sni
2 are spin raising and lowering operators on siteni

Sni
6[Sni

x 6 iSni
y ~9!

From that, the Ne´el-state-based wave-functionAnsatz
~NSBA! will be a cluster-expansion in terms ofP excitations
acting on the Ne´el state,

uCN&5UePuFN&, ~10!

whereU indicates that only unlinked terms are to be retain
from the Taylor-series expansion. That is,uCN& is a wave-
function where the Ne´el state is mixed with states that diffe
from it by an arbitrary number of couples of disjoint pairs
neighboring spins that have been flipped, each state in

FIG. 6. Representation of the different nonmixing Keku´
phases of PAA, each one containing essentially one Kekule´ struc-
ture.
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superposition being weighted by the product of the va
tional parameters associated to the flips in that state.

B. Resonating valence bondAnsätze

In this approach we start with a one-bond-range R
~1BR-RVB!, that plays the fundamental zeroth-order role
the more elaborated three-bond-range RVB~3BR-RVB! An-
satzin the following.

1. One-bond-range RVB Ansatz

A 1BR-RVB uC1& is a weighted superposition of Kekul´
states, i.e., nearest-neighbor VB states, where every sitni
is spin paired to one of its neighborsmj. It can be written as

uC1&5U0)
ni

PA

(
mj

^ni,mj&

xni,mj~ I2Sni
2Smj

1 !uFN&. ~11!

I is the identity operator,U0 indicates that the terms to b
retained are those where each site appears once and
once, and the weighting factor of a Kekule´ state inC1 is a
product of variational parametersxni,mj associated with the
singlet pairsni,mj in the Kekuléstate considered.

2. Three-bond-range RVB Ansatz

The 3BR-RVB is a weighted superposition of all the V
structures within a phase with each spin-pairing betweeA
andB sublattice sites separated by no more than three bo
In the usual form for cluster-expanded wave functions
may be viewed as generated from the 1BR-RVB as follo
TheXY terms,Sni

6Smj
7 , of the Heisenberg Hamiltonian actin

on the 1BR-RVB wave function of Eq.~11! yield ‘‘long-
bonded’’ states with pairings among three-bond dist
neighbors, along with ‘‘neighbor-bonded’’ states already
C1. These ‘‘long-bonded’’ states can be directly genera
by the ‘‘recoupling’’ of two neighboring bond singlets i
C1 ~see Ref. 23!. We may denote byq̂e f the operator related
to such a recoupling between two bond singletse and f .
From uC1& we may build the 3BR-RVB allowing an arbi
trary number of recouplings of two simply neighborin
bond-singlets, i.e., unlinked pairs with one and only one
in a pair being a nearest neighbor to a site in the other p
Then the overall 3BR-RVB excitation operator above t
1BR-RVB wave-function might be viewed to be

Q5 (
^e, f &

xe fq̂e f , ~12!

with xe f being variational parameters, and where^e, f & indi-
cates that the sum is restricted to simply neighboring bo
singlets. The correspondingAnsatzwould then be

uC3&5UeQuC1&, ~13!

where againU indicates that only unlinked terms are to b
retained. That is, in the Taylor-series expansion ofeQ one
retains only products ofq̂e f such that no pair index (e or
f ) shares any vertices with another pair index in the prod
And Q andC1 are to be optimized simultaneously.
-
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nly
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it
:

t

d

e
ir.

-

t.

C. Expectation-value calculations by the transfer-matrix
technique

The ground-state energy

E~C!5
^CuHuC&

^CuC&
~14!

is computed as a function of variational parameters for e
of the above-introducedAnsätzeassuming translational sym
metry and cyclic boundary conditions alongL. The way our
Ansätze are chosen allows us to deal with the systems
cally, so that one can define a transfer matrix23 that describes
the local features and reduces the computation of Eq.~14! to
products of ‘‘small’’ matrices.21,23,36–39,42Let us suppose
there are imaginary vertical lines cutting the strip on trans
tionally equivalent positions~including improper transla-
tions!. We can define theAnsatz-dependent ‘‘local states’’
according to every possible local spin-pairing–spin-flip p
tern around a given position determined by one of the ima
nary vertical lines, and ultimately use this to compu
^CuC&. Thus these local states contain the contributio
from both thebra and theket. From the assumed transla
tional symmetry, local states in every position are to be
same. Now, labeling these local states byet and t ranging
over the whole set of local states, we let the transfer-ma
element

Tts[~etuTues! ~15!

denote a weighted sum over the various ways a local s
es may succeed a local stateet . The weight of every contri-
bution is obtained by considering the variational parame
associated to the wayet evolves toes , and, eventually, ad-
ditional factors coming from Pauling’s superposition rules43

The overlap is then evaluated in terms of theT matrix:

^CuC&5trTL. ~16!

For L→`, the largest eigenvalueL of T dominates, and the
overlap reduces to

^CuC&.LL. ~17!

The Hamiltonian expectation value overuC& can be ob-
tained in a similar way introducing a ‘‘connection’’ matri
C, defined according to

^CuHuC&5JL^Cu (
^ni,mj&

per cell

SW niSWmjuC&5JLtr$TL2cC%,

~18!

where c measures the range of the interaction within t
Ansatz. In our case,c52, and the matrix element

Cts5~etuCues! ~19!

is a weighted sum over the various ways a local statees may
succeed a local stateet afterc transfer-matrix-steps when th
Hamiltonian operators per unit cell are present. In the lo
length limit, Eq.~14! reduces to

E5
1

L2

~L,l uCuL,r !

~L,l uL,r !
, ~20!
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where (L,l u and uL,r ) are left and right eigenvectors corre
sponding to the maximum eigenvalueL of T. This expres-
sion is a function of the variational parameters associa
with C, and an upper bound to the exact ground-state ene
is obtained. Implementation of a suitable numerical optim
zation yields the best upper bound. The energy expres
~20! can be readily generalized when considering poss
distortions. The connection matrix per unit cell can be u
derstood as a sum of matricesCni,mj , each one concerning
two-body interactions between neighboring sitesni and
mj, weighted by the factor 11Dni,mj that modifies its inter-
action strength. Then

C5 1
2(

i

Pn

(
mj

^ni,mj&

~11Dni,mj!Cni,mj , ~21!

and the energy expectation evaluation is reduced to s
‘‘simple’’ matrix manipulations.

V. RESULTS AND DISCUSSION

Computations based on band theory at a Hu¨ckel tight-
binding level of approximation~see Sec. III!, and within VB
theory with the cluster-expanded 1BR-RVBAnsatz and
NSBA ~see Sec. IV! were carried out for all polymer system
here described. For the PAA, the 3BR-RVB has also b
used. In this case the 1BR-RVBAnsatzcontains only one
Kekulé structure, so it is especially appropriate to use
3BR-RVB wave function and go beyond a single Keku´-
structure approximation. This circumstance differs from
rest of the polymers, where the number of Kekule´ structures
in the corresponding 1BR-RVB is large. The different V
upper bounds to the energy of the undistorted polymers
presented in Table V, together with that for polyacetyle
The lowest upper bound to the ground-state energy for
undistorted system is given by the NSBA.

A. PAA

The highest occupied Hu¨ckel tight-binding band and the
lowest unoccupied band cross atk5p. Taking into account
the perturbationDni,mj in the Hückel resonance integra
bni,mj5b(11Dni,mj), only thetotally antisymmetricdistor-

TABLE V. Ground-state Heisenberg energy per site inJ units
for the family ofp-network polymers studied. PA stands for pol
acetylene. The first row corresponds to the energy obtained w
single KekuléstructureuK&. uC1& stands for the 1BR-RVBAnsatz
of Eq. ~11!, uC3& is the 3BR-RVBAnsatzof Eq. ~13!, uFN& is the
Néel state, anduCN& the Néel-state-basedAnsatzof Eq. ~10!. The
last row corresponds to the exact ground-state energy whic
known only for the 1D case.

E/JN PA PAA PBA PPR

uK& 20.37500 20.37500 20.37500 20.37500
uC1& 20.37500 20.37500 20.4339~3! 20.4435~2!

uC3& 20.41100 20.4539~5!

uFN& 20.25000 20.333~3! 20.3214~3! 20.32500
uCN& 20.4279~1! 20.4941~0! 20.4906~2!

exact 20.4431~5!
d
gy
-
on
le
-

e

n

e

e

re
.
e

tion with respect toCs andsv labeled asC3 ~see Table II!
opens a gap atk5p. But the leading term of the energ
loweringnE versusD is ;D2, as it is the positive phonon
energy contribution to be added. Thus band theory at
low level of approximation predicts neither the presence
absence of aC3 distortion for this system, the result depen
ing on the final balance between these two contributions
the energy. Nevertheless, if interactions with more dist
p centers are included, although small, linear terms inD are
argued to arise,16 and then the distortion is favored.

Still, within band theory, this system has also been st
ied by other authors at different levels of approximatio
Kertesz31 and Tanaka32 suggest a totally antisymmetric dis
tortion, though leading to a quadratic small gap that could
suppressed by interchain interactions. The tight-binding s
consistent-field molecular-orbital method at the level
CNDO/2 ~complete neglect of differential overlap! calcula-
tions suggests that the Peierls distortion does not take p
so one can expectmetallicbehavior,30 while Bozović28 com-
bining tight-binding calculations with group-theoretical arg
ments predicts distortions of typeB ~see Table II! as favored.
Therefore, within band theory, predictions about the open
or not of a band gap at the Fermi level, or the distorti
driving it, depend crucially on the level of approximation.

Let us consider now the many-body VB method. T
ground state energy has been obtained using the NSBA
both the 1BR- and the 3BR-RVBAnsätze of Sec. IV, as a
function of D for the different distortionsA, B1, B2, C1,
C2, andC3 ~see Table II!. Transfer and connection matrice
of dimensions 14314 ~for the NSBA! and 60360 ~for the
3BR-RVBAnsatz! were needed in order to carry out comp
tations. The energy for the different distortions when t
NSBA is used has been plotted as a function ofD in Fig.
7~a!, while results obtained with the 3BR-RVBAnsatzare
presented in Fig. 7~b!. Plots from the 1BR-RVBAnsatzare
not given, since they are qualitatively identical to those fro
the 3BR-RVB ones. Comparing NSBA and RVBAnsätze, it
can be seen that the ordering ofnE for the different distor-
tions is the same in any case, the strongest lowering co
sponding to theC3 distortion.

Nevertheless, while the energy response toA, B andC
distortions is linear for the RVBAnsätze, clearly predicting a
C3 distorted ground-state, in the NSBA case they still go
;D2. Fitting the results in a parabolic curve, it is obtain
that nE;21.923D2. Again a distortion is not clearly pre
dicted with our NSBA. A comparison of the coefficien
coming from this term and those from the phonon ene
should be made in order to decide whether thisAnsatzis able
to predict or not to predict aC3 distortion. This ambiguity of
prediction in some sense rationalizes earlier contradictory
sults: via the numerical band theory of Yamabeet al.,30 pre-
dicting an undistorted ground-state, and via band–gro
theoretic considerations by Bozovic´,28 predicting a B
distortion.

Although the RVB ground-state energy is higher than
NSBA, its predictions on ground-state instabilities are ba
upon the known global-singlet character of the ground s
along with its local-singlet character, leading to asympto
cally orthogonal and noninteracting phases responding
sentially independently to distortions. Relaxation of th
local-singlet character would imply the inclusion of pairin
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between distant sites, leading to undesirable long-range
relations of the type in the Ne´el state. Then we expect
C3 distorted ground state as predicted by RVB. Furthermo
NSBA at this lower level, with only two-site excitations
does not always seem sensitive to instabilities as at hig
order, such as for polyacetylene;21 then we expect that the
distortion could also be clearly predicted when going to
higher-order NSBA. Also, it can be argued that inclusion
slightly longer-range interactions~as between next-neare
neighbors! in the Hamiltonian will increase the ‘‘frustration’
and the NSBA energy, whereas the RVB expectations
change but little. Thus there is a tendency to invert the
ergy ordering of these states. Still another argument favo
RVB predictions is that the NSBA is not a pure singlet,
the ground state is known to be. Also the RVB typeAnsatz
accords more closely to a classical organic chemical view
these polymers.

FIG. 7. Energy as a function of the distortion parameterD in
PAA ~a! when the Ne´el-state-basedAnsatzuCN& is considered,~b!
when the 3BR-RVBAnsatzuC3& is considered. The curves corre
spond to the different distortions given in Table II: (h) B1, (n)
B2, (L) C2, (s) A, (d) C1, and (j) C3.
r-

e,

er

a
f

ll
-
g
s

f

B. PBA

The lowest occupied Hu¨ckel tight-binding band and the
highest unoccupied one cross atk5p, so it is a zero-width
band-gap system. From all the possible distortions con
ered in Table III, only thetotally antisymmetricdistortions
C1 andC2 open a gap with an energy dependence linea
D. Therefore, band theory predicts that the system will d
tort. In the VB picture the possible distortions in PBA ha
been studied with the 1BR-RVBAnsatz. For this system we
only carried out calculations with thisAnsatzfor two rea-
sons:~i! the 1BR-RVBAnsatzalready gives a good uppe
bound to the ground-state energy because there is mixin
Kekuléstates, and~ii ! the dimension of the transfer and co
nection matrices for the 3BR-RVB and the Ne´el-state-based
Ansätze grow substantially with respect to the 1BR-RV
one. In Fig. 8 the energy of the 1BR-RVBAnsatzis plotted
as a function ofD for the distortionsA1, A2, C1, andC2
classified in Table III. The most favored distortions are t
totally antisymmetriconesC1 andC2, in particularC1 with a
dependence;D. This result agrees with the prediction
given from band theory, concluding that complementary
proaches lead to the same kind of distortions for this syst

C. PPR

PPR is not a half-filled band system but the Hu¨ckel model
predicts an accidental zero-width band gap atk50. A, B,
C andD distortions~see Table IV! have been considered
The distortionsC1 andC2 open a gap atk50 weakly, with
an energy dependencenE;D2. But the totally symmetric
distortion D1 opens a band gap with an energy respon
linear inD. This result agrees with the predictions given
Bozović28 and Tanakaet al.27 In Fig. 9~a! the Néel-state-
based energy obtained, using 535 transfer and connection
matrices, is plotted as a function ofD for various possible
distortions~see Table IV!. Clearly thetotally symmetricdis-
tortion, D1 is favored with a linear energy dependence

FIG. 8. Energy as a function of the distortion parameterD in
PBA when the 1BR-RVBAnsatzuC1& is considered. The curve
correspond to the different distortions given in Table III: (s) A1,
(h) A2, (n) C2, and (L) C1.
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D. Also in Fig. 9~b! the 1BR-RVB energy is plotted for th
various distortions as a function ofD and results agree with
the NSBA energy, namely that theD1 distortion is the most
favored one with a linear dependence inD. As in PBA, the
1BR-RVB Ansatzalready gives a good upper bound due
the mixing of Kekuléstates.

Band theory and the many-body VB method predict
same distortional behavior for this system, i.e., the system
unstable to atotally symmetric D1 distortion. Some evidence
exists for polyperylene synthesis,26 but further experimenta
information on the structure~and properties! of this system is
still needed.

VI. CONCLUSIONS

We have presented, both with the simple Hu¨ckel tight-
binding band theory and with a Heisenberg model Ham
tonian ~or, equivalently, the VB model!, a study of the

FIG. 9. Energy as a function of the distortion parameterD in
PPR:~a! when the Ne´el-state-basedAnsatzuCN& is considered;~b!
when the 1BR-RVBAnsatzuC1& is considered. The curves corre
spond to the different distortions given in Table IV: (n) C1, (h)
C2, and (L) D1.
e
is

-

ground-state nature of a family of polymers: polyaceace
poly~benz@m,n#anthracene!, and polyperylene. We have fo
cused our attention on correspondences between Peierls
spin-Peierls instabilities predictions, when analyzed fro
these two complementary approaches.

Upper bounds to the energy of the Heisenberg mode
each case have been obtained with two alternative localiz
site cluster-expanded wave functions, i.e., RVB-typeAn-
sätzeand a Ne´el-basedAnsatz. We have shown that simple
expressions of the physical magnitudes we were intereste
were easily obtained by using the transfer-matrix techniq
of Ref. 23.

From our results, it is concluded that the RVB wave fun
tions considered, which are restricted to 1BR type for all
systems other than PAA, do not give our best upper boun
the ground-state energy of the undistorted systems. Ne
theless, they are relevant for studying such phenomena a
spin-Peierls instabilityand elementary excitations such
hole excitations or excitonic excitations, as already poin
out.38 Moreover the RVBAnsätzehave a global-singlet char
acter and a local-singlet character, precluding long-range
der of the type of the Ne´el state, and generally improve rela
tive to Néel-basedAnsätze upon inclusion of higher-orde
~frustrative! terms in an elaborated Heisenberg model.

The Néel-state-basedAnsatzgives a fairly good upper
bound to the ground-state energy for all the systems con
ered. For the nearest-neighbor model considered, thisAnsatz
always yields lower energy than the RVB ones for und
torted systems. We have shown that, with such a sim
Néel-state-based wave function, the corresponding energ
notably lower than the energy of the Ne´el state, while com-
putations remain fairly simple. The Ne´el-state-basedAnsatz
predicts, for the polymers studied, the same distortions as
RVB description, except for the case of polyaceacene wh
this Ansatz in our current simple considerations does n
show whether the distortion is going to take place or n
although the strongest lowering of the energy also co
spond to atotally antisymmetricdistortion.

From the Heisenberg Hamiltonian, or equivalently fro
the VB model, we have obtained the following:

~1! PAA shows atotally antisymmetricdistortion from the
RVB, while the NSBA is not conclusive, depending on t
balance between electronic energy lowering and the pho
energy contribution.

~2! PBA shows atotally antisymmetricdistortion.
~3! PPR is unstable to atotally symmetricdistortion.
Within the band-theoretic picture, the Hu¨ckel tight-

binding model has been studied for all the same polym
Results obtained for ourp-network system are as follows:

~1! PAA could show atotally antisymmetricdistortion at
a simple Hu¨ckel level, depending on the balance betwe
electronic energy lowering and the phonon energy contri
tion. Other approximations already in the literature28,30 yield
contradictory results.

~2! PBA shows atotally antisymmetricdistortion.
~3! PPR shows atotally symmetricdistortion.
Comparing band theory and the Heisenberg model res

it can be concluded that predictions of these two mod
based on opposite~or complementary! limits seem to lead to
similar consequences under similar structural circumstan
i.e., both approaches predict the presence or absence o
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same instability to symmetry for the polymers. It is to
noted that the band-theoretic results depend crucially on
level of approximation, as it is observed in the study of po
aceacene, where this picture at different levels of approxi
tion gives rise to different predictions. On the other hand,
Heisenberg model has proven to give predictions consis
from one level to another. Even in the case of PAA, wh
NSBA cannot make a clear prediction as it happens w
band theory at its lower level, NSBA still shows the stro
gest lowering of the energy for the very same distortion s
gested by RVB. Since the NSBA at this lower level, wi
only two-site excitations, does not always seems so sens
to instabilities as at higher orders, such as happens
polyacetylene.21 That is, the distortion sometimes seems
only occur with a higher order NSBA, in agreement wi
RVB results. Therefore, it seems that the VB model, wh
includes correlation explicitly, gives a good description
these benzenoid systems, predicting spin-Peierls distort
whenever a Peierls distortion is also predicted. These res
modify earlier suggestions~see Ref. 44! that inclusion of
correlationa posteriori, as a perturbation, diminishes the di
tortion. That is, we find any diminishment does not go
zero in the~strong correlation! Heisenberg-model limit, and
indeed the RVB results indicate a stronger response to
tortions ~at least at the undistorted point on the potenti
energy hypersurface!.

It has been shown that this treatment is computation
feasible especially for quasi-one-dimensional systems wh
the transfer-matrix technique proves to be a powerful too
computation. It is important to note that the results are
veloped in terms of quantities which remain finite as the s
length goes to infinity. It is of some interest to compare
computational effort involved in the tight-binding approa
versus that involved in our transfer-matrix cluster-expans
approach~for either RVB or Néel-state-based wave func
tions!. The matricesH(k) of Eq. ~3! andT of Eq. ~15! arise
in these respective approaches and are both finite inde
, P
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dently ofL→`. Both types are to be diagonalized, but the
are some differences:

~1! Typically T increases in size much more rapidly wi
unit-cell ‘‘width’’ than doesH(k) ~though these behavior
are reversed if the unit-cell ‘‘length’’ is considered instead!.

~2! The total energy requires sampling many of t
L→` H(k) matrices~varying smoothly with wave vecto
k), whereas for given parameters there is but oneT matrix to
treat.

~3! The optimal total energy for the cluster expansio
entails treatingT matrices for numerous variational param
eter values whereas there is not much repetition with
H(k).

Notably if one goes beyond the tight-binding method
Hartree-Fock ~or density-functional! approaches this las
noted difference no longer occurs. Evidently the compu
tional effort via either SCF or our cluster expansion
roughly comparable~at least for linear polymers with mod
estly sized unit cells!.

The analysis carried out in this paper would require e
perimental testing. Though the synthesis of some of the s
tems considered, like PAA, seems quite difficult to achie
there are hopes in this direction. Finally, some aspects of
treatment are not restricted only to the model Hamilton
and the ground-stateAnsätzepresented, but can be applied
any system with effective short-range interactions if d
scribed by a localized-site cluster expanded ground-s
wave function.
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28 I. Bozović, Phys. Rev. B32, 8136~1985!.
29 J. L. Bredas and R. H. Baughman, J. Chem. Phys.83, 1316

~1985!.
30 T. Yamabe, K. Tanaka, K. Ohzeki, and S. Yata, Solid St

Commun.44, 823 ~1982!.
31 M. Kertesz and R. Hoffmann, Solid State Commun.47, 97

~1983!.
32 K. Tanaka, S. Yamashita, H. Yamabe, and T. Yamabe, Sy

Met. 17, 143 ~1987!.
33 D. J. Klein, Chem. Phys. Lett.217, 261 ~1994!.
34 E. Dagotto and T. M. Rice, Science271, 618 ~1996!.
35 E. N. Economu and C. T. White, Phys. Rev. Lett.38, 289~1977!;
e

h.

E. N. Economu and P. Mihas, J. Phys. C10, 5017~1977!; R. D.
Poshusta and D. J. Klein, Phys. Rev. Lett.48, 1555 ~1982!; R.
D. Poshusta and D. J. Klein, J. Mol. Struct.229, 103 ~1991!.

36 D. J. Klein, G. E. Hite, and T. G. Schmalz, J. Comput. Chem7,
443 ~1986!.

37 M. A. Garcia-Bach, D. J. Klein, R. Valentı´, Int. J. Mod. Phys. B
1, 1035~1988!; D. J. Klein, M. A. Garcia-Bach, and R. Valent´,
ibid. 1, 2159~1989!.

38 D. J. Klein, M. A. Garcia-Bach, and W. A. Seitz, J. Mol. Struc
185, 275~1989!; M. A. Garcia-Bach, R. Valentı´, and D. J. Klein,
ibid. 185, 287 ~1989!.

39 M. A. Garcia-Bach, R. Valentı´, S. A. Alexander, and D. J. Klein
Croat. Chem. Acta64, 415 ~1991!.

40 S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett.61,
365 ~1988!.

41 S. Sachdev, Phys. Rev. B39, 12 232~1989!.
42 M. Havilio, Phys. Rev. B54, 11 929~1996!.
43 L. Pauling, J. Chem. Phys.1, 280 ~1933!.
44 S. N. Dixit and S. Mazumdar, Phys. Rev. B29, 1824~1984!.


