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The present paper proposes a method for electronic-structure calculations on a type of system that cannot be
handled by present methods. It considers a system where a multideterminant wave function is essential for an
atom or a small cluster of atoms embedded in a large system, normally a solid, which can be treated by
density-functional methods such as with the local-density approximation~LDA !. A suitable example is a
transition-metal atom in a semiconductor or MgO host. In this method the embedding potential for the cluster
is generated from a LDA calculation but applied in a multiconfiguration calculation. The method and the
concept of the embedding potential are validated by application to a simple system of a cluster Li2Mg2 of four
pseudoatoms.@S0163-1829~97!04828-5#
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I. INTRODUCTION

Modern science and technology need an understandin
the structure and properties of atoms, clusters of atoms,
molecules in the bulk or on the surface of a solid. Obvio
applications include impurity optical spectra, catalysis, c
rosion, and crystal growth, but complex systems can a
exhibit new properties such as size quantization and e
tronic Coulomb blockade, which are promising candida
for nanotechnology in microelectronics.

Quantum-mechanicalab initio calculations of the elec
tronic structure and total energy of solids are proving ev
more useful for understanding complex processes in so
including those at surfaces. The calculations using the te
niques for static and dynamic simulations based on th
associated with Car and Parrinello1 are remarkably success
ful, but involve essentially the local-density approximation2,3

~LDA !, for electron exchange and correlation, or a functio
closely related to the LDA.

However, the situation becomes unsatisfactory wh
open-shell atoms or molecules are involved, e.g., an atom
a 3d transition element. The majority of the LDA-type met
ods rely on some simple population scheme of one-elec
560163-1829/97/56~4!/1743~8!/$10.00
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levels. At the same time, the most natural Aufbau princi
quite often fails to provide the correct description of t
ground state for systems with open-shell atoms, for exam
in transition elements where there is competition betwe
filling of the 3d and 4s shells. In that case a wave functio
mixing several or many determinants is essential for desc
ing the many-electron energy levels~terms!, e.g., for optical
properties and some magnetic states, not the single dete
nant to which the LDA is usually referred. A suitable proc
dure for calculations including open-shell atoms is the m
ticonfiguration self-consistent field~MCSCF! method.4,5

Unfortunately, the MCSCF method cannot be applied to
solid as it stands because the computing time scales
badly with the system size.

Nevertheless, if a solid contains only a few open-sh
atoms, the MCSCF method could be applied not to the wh
solid, but only to a small part of it. For these cases, a hyb
embedding scheme is proposed to incorporate the MCS
method within solid-state calculations, the rest of which a
performed using the LDA.

The idea of embedding has a long history. Almost eve
theory of point defects in crystals contains some embedd
scheme, from the very simple to the rather sophisticated.
1743 © 1997 The American Physical Society
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1744 56I. V. ABARENKOV et al.
will mention only a few of them that are most closely relat
to the present paper. Perhaps the first embedding was
Bethe crystal field.6 Another paper that strongly influence
the embedding theory is the paper of Mott and Littleto7

Their continuum model is the basis of many embedd
schemes~see, for example, Ref. 8 and references therein! to
account for the long-range effects. Since then various
bedding schemes have been designed within different
proaches.

For the semiclassical treatment of the properties and
cesses in ionic solids the embedding scheme of Ref. 9
developed, into which pair potentials derived from quantu
mechanical calculations10 were incorporated later.

In the one-electron approximation the Green’s-funct
method provides a very suitable tool for the problem o
defect in a crystal. This method was employed in the eleg
approach of Inglesfield,11,12 where the whole one-electro
problem~Hartree-Fock or Kohn-Sham! was confined entirely
to the defect region by transferring the boundary conditio
from infinity to a surface surrounding the defect region.
the variational formulation of this approach the energy fu
tional acquires an additional surface integral that direc
leads to the embedding potential. The Green’s-funct
method was also employed in the perturbed cluster met
of Pisani et al.,13 where the linear combination of atom
orbitals basis was used to convert the problem to ma
form. Then approximations were made in the matrix blo
representing the indented crystal and the total matrix pr
lem was transformed to a problem for a comparatively sm
block representing the defect region embedded in the cry
The essential feature of the perturbed cluster method is
the first-order reduced density matrix is evaluated direc
from the Green’s-function matrix.

In the many-electron approach the ‘‘group functio
method’’14 is usually applied so that the wave function of t
whole system is approximated by the antisymmetrized pr
uct of many-electron function of individual atoms~ions! con-
stituting the system. To make the approximation tractable
‘‘strong orthogonality’’ condition14 is usually imposed. This
approach was employed in developing the equations for
response, including exchange and polarization, of the res
the crystal to the defect region,15 resulting in the justification,
improvement, and modification of the models for the lon
range effects. The group function method, together with
ab initio model potential,16 was employed to develop
scheme17,18 for the ionic crystals calculations where eve
ion is considered as being immersed in the sum of the
tentials due to the surrounding atoms. The potentials fr
the near ions include the Coulomb, exchange, and ortho
nality contributions. The farthest ions are represented by
corresponding point charges. The variant of the model po
tial used implies that the nodal structure of functions is p
served and not smoothed out as in the conventional no
conserving pseudopotential theory. This is a transpa
approach, but is rather a method for the self-consistent
culation with correlations of the large cluster.

The embedding scheme of the present paper serve
interface two different many-electron methods, the LDA a
the MCSCF method, and therefore it is based on the pro
ties that are well defined in both theories, namely the e
tronic density and the potential. Let us specify in a lit
the
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more detail the type of system to be discussed. We cons
a host material that can be adequately treated by the L
method, although some details of the present discussion
be written in terms of a more restricted type of crystal co
sisting only of closed-shell atoms, e.g., MgO. Suppose
atom with open shell is implanted in the bulk or on th
surface of the solid. We shall assume that the influence of
impurity atom on the solid is a short-range one without lon
range Coulomb tails. Moreover, we are interested only
those properties and processes that are confined to the im
rity or its near vicinity and are influenced by the cryst
environment. In the present paper, the properties of the
tem that depend on energy will be considered, namely,
total electronic energy of the system, its dependence on
geometry of the system, and a few lowest excitation en
gies.

II. OUTLINE OF THE METHOD

In our method different techniques~the MCSCF method
and the LDA! are applied to different parts of the system~the
impurity and host!. Although two different techniques are
applied, we propose to divide the whole system intothree
subsystemsA,B,S, as follows. SubsystemA ~atoms! ~see
Fig. 1! contains all the open-shell atoms and perhaps so
atoms of the solid if their electronic structure is strong
influenced by the impurity. We assume that all the proper
and processes to be considered are localized mostly in
systemA. We assume also that the total charge associa
with A does not differ from that in the ideal solid. Subsyste
S ~solid! contains all atoms of the solid where the influen
of the impurity is negligible. The third subsystem,B ~buffer!,
contains those atoms of the solid that are close to the im
rity and experience its influence, but where this influence
comparatively small.

It should be noted that we define our subsystems in te
of the atoms assigned to them, not in terms of regions
space. We therefore do not introduce surfaces dividing
subsystem from another. Each subsystem is largely local
in its region of space~and we shall talk about regionsA, S,
andB in this loose sense!, but its wave function can in prin-
ciple extend over the whole space. Thus the wave func
of, say, subsystemA is largely localized in regionA, but it
penetrates regionB and so on. The degree of localizatio
depends on the subsystem itself and on the influence of
other subsystems. For example, it is well known that
electronic density of an anion in an ionic crystal is mo

FIG. 1. Three regions:A, atoms;B, buffer; andS, solid.
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56 1745ELECTRONIC-STRUCTURE MULTICONFIGURATION . . .
compact than that of the free ion and the opposite is true
cations.

All atoms for which the LDA is unsatisfactory are co
lected in subsystemA and this has to be treated with th
MCSCF method. SubsystemS can be adequately treate
within the LDA approach as assumed for the pure so
SubsystemB can be treated equally well with either the LD
or the MCSCF method.

The basic idea of the proposed approach is to apply
every subsystem the calculational method that suits it b
and to simulate the influence of other subsystems wit
potential that in this context is known as an embedding
tential. The reason to introduce the third~buffer! subsystem
B is to avoid matching the LDA and MCSCF wave functio
and to allow the generation of the embedding potential to
carried out within one method of electronic-structure cal
lation. The potentialVS to embed A1B into S is generated
with the LDA calculations ofB1S and the potentialVA to
embedB1S into A is generated with the MCSCF calcula
tions ofA1B.

Clearly, the influence of each subsystem on the other
to be calculated self-consistently. Therefore, the propo
combined MCSCF-LDA method can be expressed as the
lowing sequence of steps.

~i! An appropriate estimate of the potentialVA simulating
the influence of systemA onto B1S is made as an initia
approximation. Quite oftenVA50 would be a suitable
choice for an initial aproximation.

~ii ! The B1S system in the embedding potentialVA is
calculated with the LDA method. TheB1S system is in fact
an indented crystal with the indentation~big hole! where
subsystemA was. Band-structure calculations with a sup
cell can be used in this case as is done for a crystal wi
single impurity. Though the system actually calculated h
periodically repeated indentations, still with a large enou
supercell the influence of one indentation onto the oth
could be made negligible. The LDA provides the solution
the Kohn-Sham equations

S 2
\2

2m0
¹21VKS

~B1S!1VADck5ekck , ~1!

and the occupied Kohn-Sham orbitalsck , k51, . . . ,N, pro-
vide a full description of theB1S system ground state in th
LDA approximation. Equation~1!, whereVKS

(B1S) is the stan-
dard Kohn-Sham potential, has to be solved for the wh
space. The occupied orbitalsck are large over the spac
belonging toB1S but penetrate the indentation~space be-
longing toA) in the same way as the Kohn-Sham orbitals
a crystal with a surface protrude into the vacuum. The deg
and the way of this penetration depend on the particu
shape ofVA .

~iii ! The embedding potentialVS , simulating the influ-
ence of subsystemS ontoB, is generated from the results o
the calculations of step~ii !. The Kohn-Sham orbitals ob
tained in step~ii ! should first be reorganized into two set
one belonging toB and one belonging toS. To do this or-
bitalsfk

(B) andfk
(S) can be defined as linear combinations

ck ,
r

.
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fk
~B!5 (

m51

N

Ckm
~B!cm , k51, . . . ,NB

fk
~S!5 (

m51

N

Ckm
~S!cm , k51, . . . ,NS ~2!

NB1NS5N,

with coefficients Ckm
(B) and Ckm

(S) comprising the square
N3N matrixC. The transformation~2! has to be made non
singular in order that orbitalsfk

(B) andfk
(S) together span the

same functional space as theN orthogonal orbitalsck . With
the help of some localization procedure one can find coe
cientsCkm

(B) andCkm
(S) so that orbitalsfk

(B) will have a much
smaller value in regionS compared to that in regionB ~i.e.,
they will be localized, with most of their weight in regio
B) and orbitalsfk

(S) will have a much smaller value inB
compared to that inS ~localized inS). Our present assump
tion of a system of closed-shell atoms is involved in step~iii !
because for a metal~for instance! one needs the whole ban
of occupied and unoccupied states to define localized orb
such as Wannier functions. However, we believe our met
can be extended to diamond-type semiconductors where
valence band can be expressed in terms of localized bon
orbitals.

There are a number of different localization procedu
that can be used in setting up thefk

(B) ,fk
(S) , one of which is

the following. Consider, for example, the subsystemB. Us-
ing the orbitalsfk

(B) , k51, . . . ,NB , as trial Kohn-Sham
orbitals for the isolated systemB, one can adjust the coeffi
cientsCkm

(B) so as to minimize the energy functional of th
isolated systemB calculated with thefk

(B) . The obtained
orbitals obviously would not satisfy the Kohn-Sham equ
tions for the isolated systemB exactly as their form is re-
stricted to Eq.~2!, but they will be localized in regionB.
Another possible localization procedure is to adjust the
efficientsCkm

(B) so that a one-determinant wave function bu
up from thefk

(B) would be as close as possible to the on
determinant wave function of the single systemB. A similar
localization procedure can be applied to systemS also.

After the localized orbitalsfk
(B) are obtained they are to

be expressed as the solution of the equation

S 2
\2

2m0
¹21VKS

~B!1VA1VSDfk
~B!5ek

~B!fk
~B! . ~3!

Here VKS
(B) is the standard Kohn-Sham potential calculat

with orbitalsfk
(B) , VA was defined before, and the only un

known quantity is the embedding potentialVS . It can be
obtained from Eq.~3! in several ways. One possibility i
simply to invert Eq.~3! similarly to what is done in the
well-known norm-conserving pseudopotential theory. A
other possibility is to assume a suitable form for the poten
VS , sayṼS , with parameters and to adjust the parameters
that the solutionsf̃k

(B) of Eq. ~3! with ṼS are as close as
possible to the orbitalsfk

(B) from Eq. ~2!.
One criterion of closeness is the minimum of the fun

tionalW,
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1746 56I. V. ABARENKOV et al.
W5E ur~B!~r !2 r̃ ~B!~r !u2t~r !dr , ~4!

wheret(r ) is a weight function and

r~B!~r !5 (
k51

NB

ufk
~B!~r !u2, r̃ ~B!~r !5 (

k51

NB

uf̃k
~B!~r !u2. ~5!

After the embedding potentialVS is constructed one can pro
ceed with the next step.

~iv! The A1B system in the embedding potentialVS is
calculated with the MCSCF method.

Here the wave functionC of the system is calculated as
linear combination of many-electron functions of vario
configurationsCk ,

C~x1 , . . . ,xn!5(
k
CkCk~x1 , . . . ,xn!. ~6!

The list of configuration should be long enough to include
the configurations whose weights

wk5uCku2 ~7!

are essential.
The analog of the LDA electron density is the first-ord

spatial reduced density matrix

r~r ur 8!5nE C~r1 ,s1 ,r2 ,s2 , . . . ,rn ,sn!

3C* ~r18 ,s1 ,r2 ,s2 , . . . ,rn ,sn!ds1dr2

3ds2•••drndsn . ~8!

It can be transformed to the diagonal form

r~r ur 8!5(
n

lncn~r !cn* ~r 8!. ~9!

Here cn(r ) are the natural orbitals andln are the natural
occupation numbers. They provide all the information n
essary to calculate the one-electron properties of the sys

It could be that the accuracy of the results obtained at
stage will already be good enough and calculations could
stopped here. If not, the calculations should be continue
follows.

~v! The embedding potentialVA , simulating the influence
of subsystemA onto subsystemB is generated from the re
sults of calculations of step~iv!. For this the natural orbitals
should be transformed into orbitals localized on subsyste
A andB. After that the potentialVA should be constructed
using a procedure similar to that forVS in step~iii !.

~vi! Return to step~ii ! and proceed until convergence.

We have implemented this scheme with the LDA calc
lations performed using theCASTEPprogram20 and the MC-
ll

r

-
m.

is
e
as

s

-

SCF calculations performed using theMOLCAS program21

and the numerical programs for atoms and diatom
molecules.22

III. PROTOTYPICAL SYSTEM

In order to test the method, we choose the simplest p
sible prototypical system, not only to reduce the scale of
computation, but also to analyze in detail what is going
We also need it to be sufficiently small that we can do ‘‘e
act’’ ~within the necessary precision! calculations of the vari-
ous excitation energies to compare the results of the pre
method with. In the whole calculation, the most resour
demanding part is that done with the MCSCF method a
the computational cost is determined by the number of
lence~‘‘active’’ ! electrons so that this number should be ke
as low as possible. It is not necessary for the prototyp
system to be a solid. Our proposed method could equ
well be applied to a cluster or to a molecule, as long as
division into three subsystems is meaningful. Hence it is
pedient to take for the prototypical system a cluster with
smallest possible number of atoms, every atom contain
the smallest possible number of electrons, consistent with
other requirement thatA should consist of open-shell atom
and thatB1S consist of closed-shell atoms or ions.

We therefore arrive at a minimal prototypical system a
cluster containing four atoms. Two identical lithiumlike a
omsL I andL II with one electron each constitute subsyste
A and we will be interested in the energy splitting betwe
two singlet and one triplet states of thisL2 molecule. The
closed-shell systemB1S consists of two magnesiumlike a
omsM I for B andM II for Swith two electrons each. We wil
consider two different geometries, linearL and transverse
T, as shown in Fig. 2.

The core electrons were eliminated from consideration
representing theL1 andM11 ions by ionic pseudopotential
in the conventional sense19 and choosing the very simpl
form

V~r !52Z
12exp2ar

r
, ~10!

with ZL51,ZM52 andaL50.619 48,aM50.693 10 to rep-
resent the first ionization potential of Li and the second io
ization potential of Mg.

As it is not necessary to use the equilibrium geometry
the method developed, the internuclear separations were
lected as a compromise between the calculated equilibr

FIG. 2. Schematic geometries of the prototypical system.
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56 1747ELECTRONIC-STRUCTURE MULTICONFIGURATION . . .
interatomic distances in the cluster and its parts, value
atomic radii, and the grid requirements in theCASTEP pro-
gram. The coordinates of the atoms in both geometries
given in Table I, thez axis being directed along the lin
M I-M II .

The electronic structure of the prototypical system and
fragments~theM atom andL2 andM2 molecules! was in-
vestigated with the LDA, Hartree-Fock~HF!, and MCSCF
methods. The HF and MCSCF codes employed by us w
designed for molecular calculations. The codes for an a
and for a diatomic molecule employ the numerical orbit
and could be applied immediately. TheMOLCAS codes em-
ploy a Cartesian Gaussian basis set. The 10s6p1d and
10s7p2d basis sets were chosen for theL andM atoms,
respectively, and these sets were optimized so as to bring
results ofMOLCAS calculations for atoms and molecules
close as possible to that done with the numerical progra
MCSCF calculations were made with increasing numbers
configurations until convergence within 0.001 a.u. in the
tal energy was achieved, so we can consider the MCS
results as exact. The number of configurations needed wa
the order of 23105 for the whole system and an order
magnitude less for its fragments. The MCSCF calculatio
for the whole system constituted the ‘‘exact’’ results wi
which the results from the present method could be co
pared.

TheCASTEPcode was designed for solid-state calculatio
and in order to apply it to an atom or a molecule this has
be enclosed in a large supercell. The cell was chosen
cubical with an edge length of 16 Å and atoms in bothL and
T geometries were arranged so that all the occupied orb
practically vanish at the cell boundaries.

In what follows the many-electron states and one-elect
states will be designated with the usual notations relate
the corresponding symmetry group: central field symme
for atom M , D`h for moleculesL2 and M2, C`v for the
prototypical system inL geometry, andC2v for the proto-
typical system inT geometry.

TABLE I. Coordinates of atoms in the prototypical system~in
a.u.! in L andT geometries.

L T
Atom z x z

L II 26.548 23.2745 0.000
L I 0.000 3.2745 0.000
M I 5.674 0.0000 5.674
M II 10.478 0.0000 10.478

TABLE II. Ground-state energies~in a.u.! of atomM and mol-
eculesM2 andL2.

M M2 L2
Method 1S 1Sg

1 1Sg
1

HF 20.752 21.389 20.365
LDA 20.767 21.433 20.392
MCSCF 20.783 21.459 20.401
of

re

s

re
m
s

he

s.
f
-
F
of

s
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to
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The energies of the ground state of theM atom and the
M2 andL2 molecules calculated in different approximatio
are given in Table II. From Table II it can be seen that t
LDA method accounts for approximately 60–70 % of t
correlations energy of the few-electron systems conside
The energy of the lowest singlet-singlet and singlet-trip
excitations, calculated as the difference of the total energ
in the MCSCF method, are given in Table III. For compa
son, the excitation energy calculated as the difference
tween the lowest empty and the highest occupied o
electron Kohn-Sham levels are also shown in this table. T
results presented in Tables II and III confirm that the LD
method provides a reasonably accurate description of
systems it will be applied to in the present paper, name
oneM atom and theM2 molecule. However, as expecte
the LDA method is seen not to work so well for theL2
molecule.

Several of the largest configuration weights are given
these fragments in Table IV, and in Table V the largest na
ral occupation numbers are shown. From Table IV one
see that there is one configuration~with a one-determinan
wave function! that dominates for theM atom and for the
M2 molecule, whereas at least two configurations have co
parable weights for theL2 molecule. The natural occupatio
numbers from Table V also indicate that the wave functio
of the M atom andM2 molecule are close to the one
determinant function. However, the situation is very differe
with the L2 molecule, where there are two electrons w

TABLE III. EnergiesDE ~in a.u.! of the lowest excitations of
atom M and moleculesM2 and L2 together with the difference
De of the lowest unoccupied and highest occupied Kohn-Sh
levels.

M M2 L2
State DE State DE State DE

1P 0.135 1Pg 0.069 1Su
1 0.079

3P 0.107 3Pg 0.057 3Su
1 0.017

De 0.112 De 0.059 De 0.036

TABLE IV. Weightswk of the most essential configurations fo
atomM and moleculesM2 andL2 in the ground state.

k M M2 L2

1 0.953 0.898 0.841
2 0.037 0.023 0.139
3 0.009 0.011 0.014
4 0.009 0.006
5 0.007
6 0.006
7 0.005

the rest 0.001 0.041 0.000

Total 1.000 1.000 1.000
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1748 56I. V. ABARENKOV et al.
opposite spins in the ground state and yet the occupatio
the second orbital in the configurational mixing is consid
able. This indicates that the one-determinant approxima
for theL2 molecule is a poor one even in its ground state

The results of the full MCSCF calculations for the lowe
few energy levels of the prototype system are given in Ta
VI. These constitute the exact answers with which to co
pare the results of the present method.

To show the necessity of the many-configuration wa
function and the number of configurations involved let
consider the1A1 state in theT geometry as a typical ex
ample. In this state there are two configurations with weig
0.67 and 0.21, respectively. All other configurations ha
weight less than 0.01. However, in the one-configuration
proximation ~HF! the energy is21.704 a.u. With the two
mentioned configurations the energy is21.740 a.u., which is
still far from the converged value21.819 a.u. These two
configurations account for 30% of the correlation energy
increasing the number of configurations, we found that
many as 2471 configurations were needed yield an energ
21.798 a.u., i.e., to account for 80% of the correlation e
ergy, and 35 465 configurations to yield an energy
21.814 a.u. to account for 95% of the correlation energy.
take account of the last 5% of the correlation energy is w
necessary to add another 100 000 configurations.

IV. APPLICATION OF THE PROPOSED METHOD TO
THE PROTOTYPICAL SYSTEM AND DISCUSSION

In the prototypical system, subsystemA is the L2 mol-
ecule andB1S is theM2 molecule, with theM I andM II
atoms representing systemsB andS, respectively. As step~i!
the potentialVA was set equal to zero. The total energy, t
electron density, the eigenfunctions, and the eigenvalue
the Kohn-Sham equation~1! were obtained for theM2 mol-
ecule using theCASTEPcode, as was explained in Sec. II
step~ii !.

In theM2 molecule there are two doubly occupied Koh
Sham s molecular orbitals c1(r )5c1sg(r ) and
c2(r )5c1su(r ). In step~iii ! they were transformed into or
bitalsf1

(B) andf1
(S) localized onM I andM II , respectively,

using the second localization procedure described in Sec
The transformation~2! was chosen to be unitary and its p

TABLE V. Largest natural occupation numbersln for atom
M and moleculesM2 andL2 in the ground state.

Orbital M Orbital M2 L2

1s 1.907 1sg 1.907 1.681
2p 0.073 1su 1.883 0.278
2s 0.018 1pu 0.066 0.028

1pg 0.048
2sg 0.036 0.012
2su 0.027

the rest 0.002 the rest 0.033 0.000

Total 2.000 Total 4.000 2.000
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II.

rameters were adjusted to makef1
(S)(r ) for atom M II as

close as possible to the Kohn-Sham orbital of the free a
M , which results inf1

(S)(r ) being very nearly spherically
symmetric. Then the orbitalf1

(B)(r ) is automatically defined.
The functions defined in this way are not similar, ev
though the moleculeM2 is symmetric. The reason is tha
atomsM I andM II will be treated differently in the next stag
of the calculation. AtomM II will be removed and the em
bedding potential will be inserted instead to make the den
of atomM I in the embedding potential equal tor (B)(r ).

The arguments why we choose to make atomM II spheri-
cally symmetrical and not atomM I are as follows. The elec
tron density could not be divided exactly into two spherica
symmetrical densities. By makingr1

(S)(r ) effectively spheri-
cally symmetric, the removal of subsystemS does not leave
any long-range dipolar or quadrupolar, etc., tail. Therefore
a potential exactly reproduces the densityr (B)(r ), this poten-
tial will be the embedding potential and there will be no ne
for corrections for any long-range tail of theM II potential in
theA region.

In the present case the embedding potential that m
simulate the influence of theM II atom onto theM I atom
resembles the pseudopotential for the virtual states of
atom, i.e., the pseudopotential for an extra electron adde
the atom, and not for the electron of the atom. We have
think of this potential as, in general, nonlocal, or semiloc
having differents, p, d, etc., components. In the case
atomM the occupied pseudostate is 1s, by which we mean
the lowest eigenvalue of theM pseudopotential correspond
ing to the real 3s Mg orbital. Its unoccupied~virtual! states
are formally 2p and 2s and they have approximately th
same energy. On the other hand, the 1s state of the embed
ding potential has to simulate the 2s virtual state, while the
2p state in the embedding potential must simulate thep
virtual state. To achieve this, thes component of the embed
ding potential should be repulsive compared to thep com-
ponent. In the case considered it was found that this sem
cality can be reproduced by a local potential by using the f
that thes state andp state have different behavior near th
origin because of ther l factor. Hence a potential that i
strongly localized in the vicinity of the origin has a signifi
cant effect ons states, but is almost negligible forp states. In
the present paper the simplest form of the potential that
the required properties was chosen for the embedding po
tial. It is the sum of two exponentials centered at the posit
R of theM II atom:

TABLE VI. Energies of the lowest states of prototype syste
~in a.u.!.

L T
geometry geometry

State Energy State Energy

1S 21.833 1A1 21.819
3S 21.811 3B1 21.818
1S* 21.763 1B1 21.791
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ṼS5ṼS~r !5V1e
2a1ur2Ru1V2e

2a2ur2Ru, ~11!

with a comparatively small value ofa1 and negativeV1 and
comparatively large value ofa2 and positive value ofV2. In
this form, the first term accounts for the attraction comm
to boths andp states, and the second term is a repulsion t
raises thes eigenvalue to that of the virtuals state as de-
scribed above. The values of these parameters were ch
to reproduce approximately the densityr (B)(r ). To do this,
for a given set of potential parametersa1 ,a2 ,V1 ,V2, the
Kohn-Sham equation was solved for theM I atom in the field
of the potentialṼS of Eq. ~11!, the orbitalf̃1

(B)(r ) was ob-
tained, and the densityr̃ (B)(r )5uf̃ (B)

1(r )u2 was calculated.
The functional~4! with the simplest form

t~r !5e2bur2R1u1e2bur2R2u ~12!

for the weight function was minimized with respect to t
potential parameters. HereR1 andR2 coincide with the po-
sition vectors of theL I andL II atoms in theT geometry and
b51.0 a.u. The optimum values of the potential parame
were found to beV1520.26 a.u.,a150.43 a.u.,V2518.4
a.u., anda251.256 a.u. This potential is well localized. It
centered on theM II atom and has a radius of 2.5 a.u. At th
same time the distance between theM II andM I atoms is 5
a.u. and the distance between theM II atom and theL2 mol-
ecule is 10 a.u. The obtained potential reproduces the de
r (B)(r ) moderately well. To fit the densityr (B)(r ) more ac-
curately, a better potential that is both nonlocal and conta
more flexible radial components should be used. Still, e
our simple potential~11! does very well, as we will see , an
can serve as an embedding potential for the chosen pr
typical system. Thus step~iv! is completed.

Two sets of calculations were performed in the pres
investigation. In the first set theM II atom was removed com
pletely from the system and the ground and few first exci
states of moleculeL2M were calculated in both geometrie
as isolated three-atom clusters. In Table VII the excitat
energies for the singlet-singlet and singlet-triplet excitatio
together with the difference of the ground-state energie
L and T geometries are given for the prototypical syste
(L2M2) and for the system in the isolated cluster appro

TABLE VII. Excitation energies~in a.u.! of the prototypical
systemL2M2, the isolated clusterL2M , and the cluster in the em
bedding potentialL2M1V together with the ground-state energ
change in the transition fromL to T geometry.

Geometry Transition L2M2 L2M L2M1Vembed

L 1S→1S* 0.070 0.074 0.070
T 1A1→1B1 0.028 0.045 0.030

L 1S→3S 0.022 0.019 0.023
T 1A1→3B1 0.001 0.006 20.001

L (1S)→T(1A1) 0.014 0.010 0.014
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mation (L2M ). One can see from the table that all the ener
differences have changed when the isolated cluster appr
mation is applied. Some changes are noticeable but sm
others, for example, the1A1→1B1 transition energy in the
T geometry, are comparatively large, constituting up to 5
of the transition energy itself. This clearly shows the nec
sity for the embedding potential.

The second set of calculations employs the present c
bined MCSCF-LDA scheme. The simple local embeddi
potential constructed in step~iv! was used to simulate th
M II atom that has been removed. This is step~v! of the
proposed method. The ground state and the same ex
states were calculated for both geometries. The calcula
excitations energies and difference of the ground-state e
gies in L and T geometries for this case are also given
Table VII. In both sets of calculations the same basis set
employed, which coincides with the set used in theL2M2
calculations.

In order to test the influence of the finite basis set
calculations were repeated with a smaller basis set obta
by removing thed basis functions. The results for the exc
tation energies in this case are given in Table VIII. This ta
shows that the excitations energies are almost unchan
with the basis set reduction, although changes in the abso
values of the energy constitute several units in the last d
mal place shown in the table.

Inspection of the tables shows that the embedding po
tial added to the isolated cluster moves all the excitat
energies and the difference of the ground-state energie
theL andT geometries close to their exact values in the to
system. The difference between the values obtained in
proposed method and the exact ones are of the order 0.05

It should be stressed that the same embedding pote
was applied in the calculation of all the different states and
the different geometries. It is also worth mentioning that t
embedding potential has a very simple form. It reprodu
the energies of different states of the system quite well, e
of those states that are not completely localized in theA
region, e.g., the excited1S* state in theL geometry. The
reproduction of the spatial distribution of the electron dens
is less satisfactory. The latter can be improved by usin
more complicated, nonlocal form of the embedding potent

V. CONCLUSION

In this paper two geometriesL andT geometry were em-
ployed in order to show that the results do not depend on

TABLE VIII. Same as Table VII, except with thed orbitals
removed from the basis.

Geometry Transition L2M2 L2M L2M1Vembed

L 1S→1S* 0.071 0.075 0.070
T 1A1→1B1 0.032 0.048 0.033

L 1S→3S 0.022 0.019 0.023
T 1A1→3B1 0.000 0.005 20.001

L (1S)→T(1A1) 0.016 0.010 0.015
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quasi-one-dimensional character of the prototypical sys
in theL geometry. We may therefore conclude that the co
bined MCSCF-LDA method proposed in the present pape
valid and can be applied to an open-shell impurity in t
closed-shell host crystal. The application of the method
the noble- and transition-metal impurities in insulators w
be the subject of subsequent papers.
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