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The present paper proposes a method for electronic-structure calculations on a type of system that cannot be
handled by present methods. It considers a system where a multideterminant wave function is essential for an
atom or a small cluster of atoms embedded in a large system, normally a solid, which can be treated by
density-functional methods such as with the local-density approximdtib®\). A suitable example is a
transition-metal atom in a semiconductor or MgO host. In this method the embedding potential for the cluster
is generated from a LDA calculation but applied in a multiconfiguration calculation. The method and the
concept of the embedding potential are validated by application to a simple system of a clyistes bif four
pseudoatomd.S0163-182607)04828-5

[. INTRODUCTION levels. At the same time, the most natural Aufbau principle
quite often fails to provide the correct description of the
Modern science and technology need an understanding gfround state for systems with open-shell atoms, for example,
the structure and properties of atoms, clusters of atoms, arid transition elements where there is competition between
molecules in the bulk or on the surface of a solid. Obviousfilling of the 3d and 4 shells. In that case a wave function
applications include impurity optical spectra, catalysis, cor-mixing several or many determinants is essential for describ-
rosion, and crystal growth, but complex systems can alsing the many-electron energy levdlerms, e.g., for optical
exhibit new properties such as size quantization and elegroperties and some magnetic states, not the single determi-
tronic Coulomb blockade, which are promising candidatesant to which the LDA is usually referred. A suitable proce-
for nanotechnology in microelectronics. dure for calculations including open-shell atoms is the mul-
Quantum-mechanicahb initio calculations of the elec- ticonfiguration self-consistent fieldMCSCPH method?®
tronic structure and total energy of solids are proving everUnfortunately, the MCSCF method cannot be applied to a
more useful for understanding complex processes in solidsolid as it stands because the computing time scales very
including those at surfaces. The calculations using the tectbadly with the system size.
niques for static and dynamic simulations based on those Nevertheless, if a solid contains only a few open-shell
associated with Car and Parrinéllare remarkably success- atoms, the MCSCF method could be applied not to the whole
ful, but involve essentially the local-density approximafidn  solid, but only to a small part of it. For these cases, a hybrid
(LDA), for electron exchange and correlation, or a functionalembedding scheme is proposed to incorporate the MCSCF
closely related to the LDA. method within solid-state calculations, the rest of which are
However, the situation becomes unsatisfactory wherperformed using the LDA.
open-shell atoms or molecules are involved, e.g., an atom of The idea of embedding has a long history. Almost every
a 3d transition element. The majority of the LDA-type meth- theory of point defects in crystals contains some embedding
ods rely on some simple population scheme of one-electroacheme, from the very simple to the rather sophisticated. We
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will mention only a few of them that are most closely related
to the present paper. Perhaps the first embedding was the
Bethe crystal field. Another paper that strongly influenced
the embedding theory is the paper of Mott and Littlefon.
Their continuum model is the basis of many embedding
schemesgsee, for example, Ref. 8 and references thergin B S
account for the long-range effects. Since then various em-
bedding schemes have been designed within different ap-
proaches.

For the semiclassical treatment of the properties and pro-
cesses in ionic solids the embedding scheme of Ref. 9 was
developed, into which pair potentials derived from quantum- FIG. 1. Three regionsA, atoms;B, buffer; andS, solid.
mechanical calculatioh®were incorporated later.

In the one-electron approximation the Green's-functiony,, e detail the type of system to be discussed. We consider

method provides a very suitable tool for the problem of 35 host material that can be adequately treated by the LDA
defect in a crystal. This method was employed in the elega

TRE Thethod, although some details of the present discussion will
approach of Inglesfielt,"* where the whole _one-eleptron be written in terms of a more restricted type of crystal con-
problem(Hartree-Fock or Kohn-Shamvas confined entirely sisting only of closed-shell atoms, e.g., MgO. Suppose an
to the defect region by transferring the boundary conditions,iom "\yith ‘open shell is implanted in the bulk or on the
from infinity to a surface surrounding the defect region. INg, tace of the solid. We shall assume that the influence of the
the variational formulation of this approach the energy f“nc'lmpurity atom on the solid is a short-range one without long-
tional acquires an additional surface integral that directlyrange Coulomb tails. Moreover, we are interested only in

leads to the embedding pptentlal. The Green's-functiony, e properties and processes that are confined to the impu-
"}eg?Od was ‘I"‘Ifso et:nployﬁd :_n the Peméf_bec! cIus]tcer methofly or its near vicinity and are influenced by the crystal
of Pisanietal,™ where the linear combination of atomiC ¢ ironment. In the present paper, the properties of the sys-

orbitals basis was used to convert the problem to matriXe  that depend on energy will be considered, namely, the

form. Then approximations were made in the matrix blockiqa) glectronic energy of the system, its dependence on the
representing the indented crystal and the total matrix prob-

. eometry of the system, and a few lowest excitation ener-
lem was transformed to a problem for a comparatively smalgieS
block representing the defect region embedded in the crystal.

The essential feature of the perturbed cluster method is that

the first-order reduced density matrix is evaluated directly Il. OUTLINE OF THE METHOD

from the Green’s-function matrix.

In the many-electron approach the “group function In our method different techniquéthe MCSCF method
method"*is usually applied so that the wave function of the and the LDA are applied to different parts of the syst¢time
whole system is approximated by the antisymmetrized prodimpurity and host Although two different techniques are
uct of many-electron function of individual atorfisns) con-  applied, we propose to divide the whole system ititcee
stituting the system. To make the approximation tractable thgubsystemsA,B,S, as follows. SubsysterA (atoms (see
“strong orthogonality” conditiori* is usually imposed. This Fig. 1) contains all the open-shell atoms and perhaps some
approach was employed in developing the equations for thatoms of the solid if their electronic structure is strongly
response, including exchange and polarization, of the rest dffluenced by the impurity. We assume that all the properties
the crystal to the defect regidnresulting in the justification, and processes to be considered are localized mostly in sub-
improvement, and modification of the models for the long-systemA. We assume also that the total charge associated
range effects. The group function method, together with thavith A does not differ from that in the ideal solid. Subsystem
ab initio model potential® was employed to develop a S (solid) contains all atoms of the solid where the influence
schemé&”8 for the ionic crystals calculations where every of the impurity is negligible. The third subsysteBi(buffer),
ion is considered as being immersed in the sum of the posontains those atoms of the solid that are close to the impu-
tentials due to the surrounding atoms. The potentials frontiity and experience its influence, but where this influence is
the near ions include the Coulomb, exchange, and orthoggomparatively small.
nality contributions. The farthest ions are represented by the It should be noted that we define our subsystems in terms
corresponding point charges. The variant of the model potersf the atoms assigned to them, not in terms of regions of
tial used implies that the nodal structure of functions is pre-space. We therefore do not introduce surfaces dividing one
served and not smoothed out as in the conventional nornmsubsystem from another. Each subsystem is largely localized
conserving pseudopotential theory. This is a transparerin its region of spacéand we shall talk about regioms, S,
approach, but is rather a method for the self-consistent carndB in this loose sengebut its wave function can in prin-
culation with correlations of the large cluster. ciple extend over the whole space. Thus the wave function

The embedding scheme of the present paper serves @, say, subsystem is largely localized in regiom\, but it
interface two different many-electron methods, the LDA andpenetrates regio® and so on. The degree of localization
the MCSCF method, and therefore it is based on the propedepends on the subsystem itself and on the influence of the
ties that are well defined in both theories, namely the elecether subsystems. For example, it is well known that the
tronic density and the potential. Let us specify in a little electronic density of an anion in an ionic crystal is more
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compact than that of the free ion and the opposite is true for N
cations. = CcB®y.. k=1,...Ng
All atoms for which the LDA is unsatisfactory are col- m=1

lected in subsystemh and this has to be treated with the \

MCSCF method. Subsyster®8 can be adequately treated (s)_ () _

within the LDA approach as assumed for the pure solid. b= 2 Cim#m, k=1,...Ns @
SubsystenB can be treated equally well with either the LDA
or the MCSCF method.

The basic idea of the proposed approach is to apply to
every subsystem the calculational method that suits it besith coefficients C(2) and C{® comprising the square
and to simulate the influence of other subsystems with §x N matrix C. The transformatiori2) has to be made non-
potential that in this context is known as an embedding po'singular in order that orbital¢,((B) and ¢§<S) together span the

Eem'?l' Th? dreasioE.to Rtrofgze th del\t/lhémgjcﬁlfr) sub?ystetm same functional space as tNeorthogonal orbitalsy, . With
IS 10 avoid matching the an wave Tunctions y, help of some localization procedure one can find coeffi-

and_to allow t_he_ generation of the embeddmg potential to b%ientsc(kﬁ]) and C(ki)] so that orbitalsq&f(B) will have a much
carried out within one method of electronic-structure calcu-Smaller value in regioi compared to that in regioB (i.e
lation. The potential/s to embed A-B into S is generated they will be Iocalizged with rF:lost of their wei ght in ré .ion
with the LDA calculations oB+ S and the potential/, to y ' 9 9

embedB+ S into A is generated with the MCSCF calcula- B) and orbitaIqu(k_S) will ha_tve a much smaller value iB
tions of A+ B compared to that irs (localized inS). Our present assump-

gon of a system of closed-shell atoms is involved in iep

Clearly, the influence of each subsystem on the other haB ; ) ds the whole band
to be calculated self-consistently. Therefore, the propose ecause for a metdfor instance one needs the whole ban

combined MCSCF-LDA method can be expressed as the foIQf occupied and unoccupied states to define localized orbitals
lowing sequence of steps such as Wannier functions. However, we believe our method

(i) An appropriate estimate of the potentig| simulating can be extended to diamond—typ_e semiconducto_rs where fche
the influence of system onto B+S is made as an initial valence band can be expressed in terms of localized bonding

e . . orbitals.
approximation. Quite oftenV,=0 would be a suitable . o
choice for an initial aproximation. There are a number of different localization procedures

(i) The B+S system in the embedding potentld) is  that can be used in setting up tie?) (S | one of which is
calculated with the LDA method. THe+ S system is in fact the following. Con§|der, for example, the subsystBmUs-
an indented crystal with the indentatigbig hole where ing the orbitals (>, k=1,... Ng, as trial Kohn-Sham
subsystemA was. Band-structure calculations with a super-orbitals for the isolated systef, one can adjust the coeffi-
cell can be used in this case as is done for a crystal with &ientsC{5) so as to minimize the energy functional of the
single impurity. Though the system actually calculated hassolated systenB calculated with theg{®). The obtained
periodically repeated indentations, still with a large enougtorbitals obviously would not satisfy the Kohn-Sham equa-
supercell the influence of one indentation onto the othersions for the isolated systefd exactly as their form is re-
could be made negligible. The LDA provides the solution tostricted to Eq.(2), but they will be localized in regioi.
the Kohn-Sham equations Another possible localization procedure is to adjust the co-
efficientsC{®) so that a one-determinant wave function built
52 up from theqs(kB) would be as close as possible to the one-
— — V24 VB = e (1) determinant wave function of the single systBmA similar
2mg kS ' localization procedure can be applied to systemilso.
After the localized orbitalsp{®) are obtained they are to
be expressed as the solution of the equation

NB+ NS:N,

and the occupied Kohn-Sham orbitalg, k=1, ... N, pro-
vide a full description of th®+ S system ground state in the 52

LDA approximation. Equatioril), whereV{&™ is the stan- — 5V HVE+Va+ Vs 8P =P 0. (9
dard Kohn-Sham potential, has to be solved for the whole 2mg

space. The occupied orbitalg, are large over the space
belonging toB+ S but penetrate the indentatigepace be-
longing toA) in the same way as the Kohn-Sham orbitals for
a crystal with a surface protrude into the vacuum. The degre
and the way of this penetration depend on the particula
shape ofV,.

Here V&) is the standard Kohn-Sham potential calculated
with orbitals ¢>(kB), V, was defined before, and the only un-
Enown quantity is the embedding potentM. It can be
pbtained from Eq.(3) in several ways. One possibility is
simply to invert Eq.(3) similarly to what is done in the
(i) The embedding potentia¥s, simulating the influ- Well-known norm-conserving pseudopotential theory. An-
ence of subsyster® onto B, is generated from the results of other poES|b|I|ty is to assume a suitable form for the potential
the calculations of stegii). The Kohn-Sham orbitals ob- Vs, SayVs, with parameters and to adjust the parameters so
tained in step(ii) should first be reorganized into two sets, that the solutions’JS(kB) of Eq. (3) with Vg are as close as
one belonging td and one belonging t&. To do this or-  possible to the orbitalg(®) from Eq. (2).
bitals #{2) and ¢{> can be defined as linear combinations of ~ One criterion of closeness is the minimum of the func-
D tional W,
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w=f 1p®(r)=p®(r)|2(r)dr, (4) Ly Li My Mp Li(® Mp Mp
O—O—E—© O—©
where 7(r) is a weight function and Li(e)
L. geometry T geometry

Ng Ng
pP=2 |67 pPn=2 [FE02 6
FIG. 2. Schematic geometries of the prototypical system.

After the embedding potentidg is constructed one can pro-

ceed with the next step. SCF calculations performed using theoLcas prograntt
(iv) The A+B system in the embedding potentdk is  and the numerical programs for atoms and diatomic
calculated with the MCSCF method. molecules?
Here the wave functiod of the system is calculated as a
linear combination of many-electron functions of various . PROTOTYPICAL SYSTEM
configurations?¥,

In order to test the method, we choose the simplest pos-
sible prototypical system, not only to reduce the scale of the
computation, but also to analyze in detail what is going on.

V(X - ’Xn):; CicPil(Xy, - - Xn). ®)  We also need it to be sufficiently small that we can do “ex-
act” (within the necessary precisipoalculations of the vari-
ous excitation energies to compare the results of the present
The list of configuration should be long enough to include allmethod with. In the whole calculation, the most resource-
the configurations whose weights demanding part is that done with the MCSCF method and
the computational cost is determined by the number of va-

wi=|Cyl? () lence(“active” ) electrons so that this number should be kept
are essential. as low as possible. It is not necessary for the prototypical
The analog of the LDA electron density is the first-ordersystem to be a solid. Our proposed method could equally
spatial reduced density matrix well be applied to a cluster or to a molecule, as long as the
division into three subsystems is meaningful. Hence it is ex-
pedient to take for the prototypical system a cluster with the
, smallest possible number of atoms, every atom containing
p(r|r )Z”J W(ry,01,12,02, ...n,00) the smallest possible number of electrons, consistent with the
other requirement thak should consist of open-shell atoms
XW*(r1,01,2,02, ... Fy,00)dodr, and thatB+ S consist of closed-shell atoms or ions.
X doy- - -drdo, . ) We therefore arrive at a minimal prototypical system as a

cluster containing four atoms. Two identical lithiumlike at-
omsL, andL, with one electron each constitute subsystem

It can be transformed to the diagonal form A and we will be interested in the energy splitting between
two singlet and one triplet states of tHis molecule. The
iy =S n O (1) 9 closed-shell systerB+ S con_sists of two magnesiumlike at-
p(rlr) 2 (1) (1) © omsM, for B andM,, for S with two electrons each. We will

H " tural orbitals ard th wral consider two different geometries, linelrand transverse
ere ,(r) are the natural orbitals and, are the natura T, as shown in Fig. 2.

occupation numbers. They provide all the |.nformat|on N€C- ~ The core electrons were eliminated from consideration by
essary to calculate the one-electron properties of the SySterﬂépresenting the * andM** ions by ionic pseudopotentials

It could be that the accuracy of the results obtained at thi#n the conventional sen¥eand choosing the very simple
stage will already be good enough and calculations could bérm
stopped here. If not, the calculations should be continued as

follows. B
(v) The embedding potentidd,, simulating the influence V(r)=-2 1-exp (10
of subsystemA onto subsystenB is generated from the re- r '

sults of calculations of stefiv). For this the natural orbitals
should be transformed into orpltals localized on s:ubsystem&vith Z,=1,2Zy=2 anda, =0.619 48.a;,=0.693 10 to rep-
A andB. After that the potentiaV, should be constructed M X | .

. . . resent the first ionization potential of Li and the second ion-
using a procedure similar to that fdfg in stepdiii ). R .

- - . ization potential of Mg.
(vi) Return to steqii) and proceed until convergence. L _ .
As it is not necessary to use the equilibrium geometry in

We have implemented this scheme with the LDA calcu-the method developed, the internuclear separations were se-

lations performed using theasTep progrant® and the MC-  lected as a compromise between the calculated equilibrium
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TABLE |. Coordinates of atoms in the prototypical systém TABLE Ill. EnergiesAE (in a.u) of the lowest excitations of

a.u) in L andT geometries. atom M and moleculesM, and L, together with the difference

Ae of the lowest unoccupied and highest occupied Kohn-Sham
T levels.
Atom z X z
M M, L,

Li —6.548 —3.2745 0.000 State AE State  AE State  AE

L, 0.000 3.2745 0.000

M, 5.674 0.0000 5.674 P 0135 My 0069  '¥;  0.079

M, 10.478 0.0000 10.478 °p 0.107 Il 0.057 %% 0.017
Ae 0.112 Ae 0.059 Ae 0.036

interatomic distances in the cluster and its parts, values of
atomic radii, and the grid requirements in thesTeP pro-

gram. The coordinates of the atoms in both geometries are 0 energies of the ground state of thleatom and the

given in Table |, thez axis being directed along the line ;. and| , molecules calculated in different approximations
M-My;.. _ , _are given in Table Il. From Table Il it can be seen that the
The electronic structure of the prototypical system and it§ pa” method accounts for approximately 60—70 % of the

fragments(the M atom andL, andM, moleculeg was in-  corejations energy of the few-electron systems considered.
vestigated with the LDA, Hartree-FodkiF), and MCSCF e energy of the lowest singlet-singlet and singlet-triplet

methods. The HF and MCSCF codes employed by us wergycitations, calculated as the difference of the total energies
designed for molecular calculations. The codes for an aton}, the MCSCF method. are given in Table Ill. For compari-
and for a dlatomlc' mqlecule _employ the numerical orbltalsson, the excitation energy calculated as the difference be-
and could be applied immediately. TLCAS codes em-  yeen the lowest empty and the highest occupied one-
ploy a Cartesian Gaussian basis set. Th&6pdd and  gjectron Kohn-Sham levels are also shown in this table. The
10s7p2d basis sets were chosen for theand M atoms,  (egyits presented in Tables Il and Il confirm that the LDA
respectively, and these sets were optimized so as to bring thgethod provides a reasonably accurate description of the
results ofMoLCAS calculations for atoms and molecules aSgsystems it will be applied to in the present paper, namely
close as possible to that done with the numerical programsgyne M atom and theM, molecule. However, as expected
MCSCEF calculations were made with increasing numbers of,e | DA method is seen not to work so well for the
configurations until convergence within 0.001 a.u. in the to-glecule.

tal energy was achieved, so we can consider the MCSCF geyera| of the largest configuration weights are given for
results as exact. The number of configurations needed was gfoqe fragments in Table 1V, and in Table V the largest natu-
the order of x10° for the whole system and an order of 5| gccupation numbers are shown. From Table IV one can
magnitude less for its fragments. The MCSCF calculationgee that there is one configuratiénith a one-determinant
for the whole system constituted the “exact” results with 5,6 function that dominates for th& atom and for the
which the results from the present method could be comy;. molecule, whereas at least two configurations have com-

pared. parable weights for the, molecule. The natural occupation

ThecasTEPcode was designed for solid-state calculations,mpers from Table V also indicate that the wave functions
and in order to apply it to an atom or a molecule this has tQyt the M atom andM, molecule are close to the one-

be enclosed in a large supercellk The cell was chosen ggierminant function. However, the situation is very different
cubical with an edge length of 16 A and atoms in bbthnd i the 1, molecule, where there are two electrons with
T geometries were arranged so that all the occupied orbitals

practically vanish at the cell boundaries. ] ) ] ]
In what follows the many-electron states and one-electron TABLE IV. Weightsw, of the most essential configurations for

states will be designated with the usual notations related t81°™M and molecules, andL in the ground state.

the corresponding symmetry group: central field symmetry

for atom M, D.,, for moleculesL, and M,, C,, for the M Mo Lo
prototypical system irL geometry, andC,, for the proto- 1 0.953 0.898 0.841
typical system inT geometry. 2 0.037 0.023 0.139
3 0.009 0.011 0.014
TABLE II. Ground-state energieén a.u) of atomM and mol- 4 0.009 0.006

eculesM, andL,. 5 0.007

M M, L, 6 0.006
Method s M M ! 0.005
HF —0.752 —1.389 —0.365 the rest 0.001 0.041 0.000
LDA —-0.767 —1.433 —0.392

MCSCF —0.783 —1.459 —0.401 Total 1.000 1.000 1.000
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TABLE V. Largest natural occupation numbexs, for atom TABLE VI. Energies of the lowest states of prototype system

M and moleculedM, andL, in the ground state. (in a.u).

Orbital M Orbital M, L, L T

1 1.907 1o 1.907 1.681 geometry geometry

s ’ 9 ' ’ State Energy State Energy

2p 0.073 1o, 1.883 0.278

2s 0.018 I, 0.066 0.028 s, —1.833 A, —1.819
1mg 0.048 33, —1.811 B, —1.818
20y 0.036 0.012 I3 -1.763 B, —1.791
20y 0.027

the rest 0.002 the rest 0.033 0.000

Total 2.000 Total 4.000 2.000

rameters were adjusted to makgS(r) for atom M, as
close as possible to the Kohn-Sham orbital of the free atom
M, which results ing{¥(r) being very nearly spherically
opposite spins in the ground state and yet the occupation gymmetric. Then the orbitab{®)(r) is automatically defined.
the second orbital in the configurational mixing is consider-The functions defined in this way are not similar, even
able. This indicates that the one-determinant approximatiothough the moleculév, is symmetric. The reason is that
for the L, molecule is a poor one even in its ground state. atomsM, andM,, will be treated differently in the next stage

The results of the full MCSCF calculations for the lowest of the calculation. AtomM |, will be removed and the em-
few energy levels of the prototype system are given in Tabldedding potential will be inserted instead to make the density
VI. These constitute the exact answers with which to com-of atomM in the embedding potential equal p6%)(r).
pare the results of the present method. The arguments why we choose to make atdi spheri-

To show the necessity of the many-configuration wavecally symmetrical and not atod, are as follows. The elec-
function and the number of configurations involved let ustron density could not be divided exactly into two spherically
consider the'A; state in theT geometry as a typical ex- symmetrical densities. By making™(r) effectively spheri-
ample. In this state there are two configurations with weightgally symmetric, the removal of subsyst&moes not leave
0.67 and 0.21, respectively. All other configurations haveany long-range dipolar or quadrupolar, etc., tail. Therefore, if
Welght less than 0.01. However, in the One-ConﬁgUration apa potentia| exact]y reproduces the denﬂ'&?)(r), this poten_
proximation (HF) the energy is—1.704 a.u. With the two tjal will be the embedding potential and there will be no need
mentioned configurations the energy-4.740 a.u., which is  for corrections for any long-range tail of thé,, potential in
still far from the converged value-1.819 a.u. These two the A region.
configurations account for 30% of the correlation energy. In |n the present case the embedding potential that must
increasing the number of configurations, we found that asjmulate the influence of th#1, atom onto theM, atom
many as 2471 configurations were needed yield an energy @ésembles the pseudopotential for the virtual states of an
—1.798 a.u,, i.e., to account for 80% of the correlation enatom, i.e., the pseudopotential for an extra electron added to
ergy, and 35465 configurations to yield an energy ofthe atom, and not for the electron of the atom. We have to

—1.814 a.u. to account for 95% of the correlation energy. Tahink of this potential as, in general, nonlocal, or semilocal
take account of the last 5% of the correlation energy is wagaving differents, p, d, etc., components. In the case of

necessary to add another 100 000 configurations. atomM the occupied pseudostate is, by which we mean
the lowest eigenvalue of thd pseudopotential correspond-

IV. APPLICATION OF THE PROPOSED METHOD TO ing to the real 3 Mg orbital. Its unoccupiedvirtual) states
THE PROTOTYPICAL SYSTEM AND DISCUSSION are formally 2 and X and they have approximately the
same energy. On the other hand, thestate of the embed-

In the prototypical system, subsysteiis theL, mol-  ding potential has to simulate thes Zirtual state, while the
ecule andB+S is the M, molecule, with theM, and M, 2p state in the embedding potential must simulate tipe 2

atoms representing systef@sandS, respectively. As stefi) virtual state. To achieve this, tleecomponent of the embed-
the potentiaM, was set equal to zero. The total energy, theding potential should be repulsive compared to theom-
electron density, the eigenfunctions, and the eigenvalues gfonent. In the case considered it was found that this semilo-

the Kohn-Sham equatiofl) were obtained for tht1, mol-  cality can be reproduced by a local potential by using the fact
ecule using theeAsTEP code, as was explained in Sec. Il as that thes state ando state have different behavior near the
stepii). origin because of the' factor. Hence a potential that is

In the M, molecule there are two doubly occupied Kohn- strongly localized in the vicinity of the origin has a signifi-
Sham o molecular orbitals ;(r)=1,4(r) and cant effect ors states, but is almost negligible fprstates. In
Po(r)= h1,4(r). In step(iii) they were transformed into or- the present paper the simplest form of the potential that has
bitals (¥ and ¢{> localized onM, andM,,, respectively, the required properties was chosen for the embedding poten-
using the second localization procedure described in Sec. Itial. It is the sum of two exponentials centered at the position
The transformatior{2) was chosen to be unitary and its pa- R of the M, atom:
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TABLE VII. Excitation energies(in a.u) of the prototypical TABLE VIIl. Same as Table VII, except with thd orbitals
systemL,M,, the isolated clustet,M, and the cluster in the em- removed from the basis.
bedding potentiaL,M +V together with the ground-state energy

change in the transition frorh to T geometry. Geometry Transition LM, L,M  LoM+Venped
1 1

Geometry Transiton  LoM,  LoM LM+ Vemped - T3 0.071  0.075 0.070
T A, —1B,; 0.032 0.048 0.033

L O 0.070 0.074 0.070

T 'A;—'B; 0.028 0.045 0.030 L iy .3y 0.022 0.019 0.023
T A, —3%B; 0.000 0.005 —0.001

L 1y 3y 0.022 0.019 0.023

T 'A;—°B; 0.001 0.006  —0.001 L (:3)—T(*A,) 0.016 0.010 0.015

L (*3)—T(*A;) 0.014 0.010 0.014

mation (L,M). One can see from the table that all the energy
differences have changed when the isolated cluster approxi-
mation is applied. Some changes are noticeable but small:
others, for example, théA;— 1B, transition energy in the

with a comparatively small value ef; and negativd/; and T geometry, are comparatively large, constituting up to 50%
Comparative'y |arge Va'ue ij,z and positive Va|ue O‘f/z_ In Of the transition energy |tse|f. Th|S Cleal’ly ShOWS the neces-
this form, the first term accounts for the attraction commonsity for the embedding potential.
to boths andp states, and the second term is a repulsion that The second set of calculations employs the present com-
raises thes eigenvalue to that of the virtual state as de- bined MCSCF-LDA scheme. The simple local embedding
scribed above. The values of these parameters were chosBftential constructed in stefiv) was used to simulate the
to reproduce approximately the densit{P’(r). To do this, M atom that has been removed. This is step of the
for a given set of potential parametess ,«,,V;,V,, the Proposed method. The ground state and the same excited
Kohn-Sham equation was solved for thig atom in the field states were calcglated for_ both geometries. The calculated
= -~ (B) excitations energies and difference of the ground-state ener-
of the potentialVg of Eq. (11), the orbital ¢}”/(r) was ob- o : : . .

) =~ (B) oy 15(B) ) gies inL and T geometries for thls case are also given in
tained, and the density™(r) =|¢*>,(r)|* was calculated. Taple VII. In both sets of calculations the same basis set was
The functional(4) with the simplest form employed, which coincides with the set used in thél,
calculations.

In order to test the influence of the finite basis set the
calculations were repeated with a smaller basis set obtained
by removing thed basis functions. The results for the exci-
tation energies in this case are given in Table VIII. This table
shows that the excitations energies are almost unchanged
with the basis set reduction, although changes in the absolute
galues of the energy constitute several units in the last deci-
mal place shown in the table.

Inspection of the tables shows that the embedding poten-
tial added to the isolated cluster moves all the excitation
energies and the difference of the ground-state energies in
theL andT geometries close to their exact values in the total
8 stem. The difference between the values obtained in the
ﬁ>r/oposed method and the exact ones are of the order 0.05 eV.

It should be stressed that the same embedding potential
as applied in the calculation of all the different states and in
he different geometries. It is also worth mentioning that the
embedding potential has a very simple form. It reproduces
e energies of different states of the system quite well, even
f those states that are not completely localized in Ahe
egion, e.g., the excited>* state in theL geometry. The
, .. reproduction of the spatial distribution of the electron density
pletely from the system and the ground and few first excite s less satisfactory. The latter can be improved by using a

states of molecul&,M were calculated in both geometries . . .
as isolated three-atom clusters. In Table VII the excitationmore complicated, nonlocal form of the embedding potential.

energies for the singlet-singlet and singlet-triplet excitations
together with the difference of the ground-state energies in
L and T geometries are given for the prototypical system In this paper two geometrids and T geometry were em-

(L,M5) and for the system in the isolated cluster approxi-ployed in order to show that the results do not depend on the

VSZVS(I‘)=Vlefallr7R‘+V267“2‘r7R|, (11)

T(r):eiﬁ‘riRllJ’-eiﬁlriRZl (12)

for the weight function was minimized with respect to the
potential parameters. HefR®, and R, coincide with the po-
sition vectors of thed; andL atoms in thelT geometry and
B=1.0 a.u. The optimum values of the potential parameter
were found to bé/;=-0.26 a.u.,;=0.43 a.u..V,=18.4
a.u., anda,=1.256 a.u. This potential is well localized. It is
centered on thé1, atom and has a radius of 2.5 a.u. At the
same time the distance between tlg and M, atoms is 5
a.u. and the distance between tiig atom and the., mol-
ecule is 10 a.u. The obtained potential reproduces the densi
p®(r) moderately well. To fit the density(®)(r) more ac-
curately, a better potential that is both nonlocal and contain§v
more flexible radial components should be used. Still, evep
our simple potentiaf{11) does very well, as we will see , and

typical system. Thus stefiv) is completed.

Two sets of calculations were performed in the presen
investigation. In the first set thd , atom was removed com-

V. CONCLUSION
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