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Real-space tight-binding approach to stability and order in substitutional multicomponent alloys
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A real-space approach based on the tight-binding approximation for studying electronic structure properties
and stability and order in substitutional multicomponent alloys is presented. First, for a chemically random
alloy based on a periodic lattice, we show that the coherent potential approximation equations can be solved
self-consistently in real space with the same accuracy currently achieved in reciprocal space. The resulting
one-electron Green function is given by a continued fraction expansion, and this analytic form can be conve-
niently used to determine alloy properties, and in particular the energetics. Second, combined with an orbital-
peeling technique, this method allows in a very efficient way the calculation of the effective cluster interactions
which enter the expression of the configurational part of the total energy for describing order-disorder phe-
nomena in alloys. Finally, we present some applications and briefly discuss the possible extensions of this
approach[S0163-18207)07028-§

[. INTRODUCTION TB-based studies crucially depends on a reliable determina-
tion of the parameters which describe both the TB electronic
It has long been recognized that order-disorder phenomHamiltonian and the energetics. Although no systematic pro-
ena and structural transformations affect a majority of thecedure to generate these parameters exists at present, meth-
physical properties exhibited by most alloys as functions ofds such as the TB version of the linear muffin-tin orbital
temperature, pressure, and concentration. Models based §aMTO) method allow a direct determination of the hop-
electronic structure calculations have been developed to préing integralsBat“in terms of Slater-Koster parameters, and
dict chemical order in alloys, and their effect on alloy Of the on-site energies,, (or crystal field integrals which
properties- More recently, with the discovery of bulk amor- enter the TB Hamiltonian given by
phous alloys, more precise experiments are being performed

to provide a better understanding of how chemical order, and H= E [N\) enn(NN|+ 2 |n)\>lg>\ﬂ<mu|, (1.2)
in particular short-range order, can affect the final topology A nmen nm
\

adopted by an alloy, and consequently alloy properties. In
this context, there is a need to develop efficient electronisvheren andm refer to site indices, anl and . to orbitals
structure models entirely solvable in real space which aréfor example\,u=1,9 in the case of systems characterized
capable of accounting for chemical order effects in materialdy spd electrons.
with reduced or no symmetry. In recent years methods have been developed to cast the
For pure elements or alloys which are characterized byjuantum mechanical description of the energetics of an alloy
fairly localized electrons, such as transition metals and theiin the form of an Ising model which is most appropriate for
alloys, or by covalent bonding, such as C, Si, and Ge, th@ subsequent statistical mechanics treatment of order-
tight-binding approximatioTBA) allows a fairly accurate disorder phenomena in alloys as functions of temperature
description of their electronic structure properties. Since th@nd concentratioh.The mapping of the energetics resulting
70's, real-space techniques, and in particular the recursiofiom the solution of the Hamiltoniail, for example given
method?® have been widely used within the TBA. One ma- by Eq.(1.1), onto an Ising form has been originally achieved
jor advantage of this latter method, besides its numericalithin the so-called generalized perturbation method
stability, resides in the fact that the one-electron Green functGPM).® The GPM is a perturbation treatment applied to a
tion is expressed in terms of a continued fraction expansiorreference medium which is close to any chemical configura-
The asymptotic behavior of the coefficients of the continuedion of the alloy. Intuitively, the appropriate medium to use
fraction as a function of the characteristics of the support ofs the completely disordered state, as the one described
the electronic spectrum is now well known, and the terminawithin the coherent potential approximatié8PA).”~ Sub-
tion of the truncated continued fraction can be performed asequently, the method has been generalized to account for
eas€’ The other obvious advantage is that the electronidhe correlations inside finite clusters embedded in the CPA-
structure of systems with reduced symmetry, such as in theeference medium, thus leading to the so-called embedded
presence of extended defects, e.g., dislocations, grain boundiuster method (ECM).*° In both methods, only the
aries, interfaces, or surfaces, or with no periodicity at all, asonfiguration-dependent contribution to the total energy is
in the case of amorphous alloys, can be conveniently invesexpressed by an expansion in terms of effective pair and
tigated by real-space approaches. However, the success miultisite interactions, and since the reference medium is con-
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centration dependent, so are these interactions. One shoutdology. Finally, in Sec. V, we summarize our results, and

emphasize that these two methods are in contrast with thogmiefly discuss the possible extension of this method to study
based on the knowledge of the electronic structure propertiemore complex alloy situations.

of ordered configurations of the alloy, such as the so-called

Connolly-Williams method! which lead to an expansion of ||, REAL-SPACE SOLUTION OF THE CPA EQUATIONS

the total energy itself in terms of cluster interactions which

are concentration independent, except via volume effects. In this section we show how the self-consistent CPA

Within the ECM, the configurationdbr ordering energy for ~ €quations which describe chemical disorder in substitutional
a binary alloy is given by alloys are solved within the real-space method presented in

this work. To this end, we begin by recalling briefly the
classical formulation of the CPA equations in the locator

AEgd{pnh) =2 VWsc,+ > V2 sc dcm+ - - - formalism which is most convenient for introducing our
n n.m=#n method. Then, in the following three subsections we present
(1.2 the new formalism. Finally we give a summary of the

method and discuss how this approach is extended to the
multiband case, which is a requirement for studying the elec-
tronic structure properties of realistic alloy systems.

where ¢, refers to the fluctuation of concentration on site
n, 6c,=p,—C, wherec is the concentration if8 species,
andp, is an occupation number associated with sitequal
to 1 or 0 depending on whether or not sités occupied by
aB species. Th&/(®) are the effective interactions involving
clusters ofa sites. For the sake of clarity, let us first consider the case of a
Once these interactions are known, the ground-state projinary alloy with only ones orbital located on each site of its
erties of the alloy at zero-temperature, i.e., the possible omnderlying lattice. The generalization to multiband alloys is
dered state which is stable at each concentration, can be pretraightforward, and will be discussed in the summary of this
dicted. Finally, combined with a statistical model such as thesection. Since we only considéior now) the case of diag-
cluster variation method or with Monte Carlo simulations, onal disorder, the Hamiltoniad for a given configuration of
the configurational part of the free energy can be computedhe alloy is written in the form
and hence, the phase diagram of an alloy which summarizes
the phase stability properties as functions of temperature and H=Hy+V, 23
T e e B o et Ho i the s of-dagonal par of he Hailorian
space using the so-called orbital-peeling method first intrc?y\’h'(.:h 'S supp]?shed;o be_ mo_lependent gf dlsorder_, and %wnt-
duced by Burké? based on the solution of the CPA equa- ten in terms of the hopping integraf, between sites an
. e . mas
tions. The application of the real-space extended recursion
technigue to obtain these solutions is one of the subjects
discussed in this paper. Ho= > Bamn)Xm|, 2.2
So far, most studies on stability and order in alloys have nm#n
been performed for alloys based on simple periodic latticesynqy is the random diagonal part &f given by
Within the present real-space approach, it will be possible to
extend such studies to alloys based on complex lattices even
in the presence of extended defects, as well as to topologi- v=> LGP 2.3
cally (structurally disordered materials. "
The rest of the paper is organized as follows. In Sec. llwhere
after a brief introduction of the CPA equations in the locator
formalism, we present the principle of the solution of these _E P
equations in real space, and then some technical aspects of €= i Pne€
the new approach. Then we relate the so-called sum space in
which the CPA-extended recursion is performed to the augand|n) is an atomic orbitakhere, there is one orbital per
mented space introduced by Mookerféé# and give some site) centered on site, p, is equal to one if site is occu-
of its properties. Finally we show how to calculate the coef-pied by the atomic speciésand to zero otherwise, arg} is
ficients of the continued fraction expansions of the CPA selfthe on-site energy associated with spec¢iesntered on site
energy and renormalized interactor for binary and highern (unless otherwise specified, we will assume in the follow-
order multicomponent alloys. In Sec. lll, we briefly review ing that this quantity, referred to as, does not depend on
the formalism which leads to the ECM, and the implemen-n). In the following we will also assume that the atomic
tation of the orbital-peeling method for calculating the effec-orbitals form an orthonormal basis, i.én|m)= &,,,, where
tive interactions which build up the configurational part of 5, is the usual Kroenecker symbol.
the total energy of an alloy within this ECM. In Sec. IV,  In order to introduce our new methodology, it is conve-
some applications of this real-space approach are discussaglent to start from the locator equation of motion for a site-
In particular, the density of states and the effective interacdiagonal element of the Green functidi which takes the
tions for binary, pseudobinary, and ternary transition metaform
alloys as obtained with the real-space approach are compared
with the ones calculated with the well knowwrspace meth- Gin=9nt9AGhn s (2.5

A. The CPA equations

(2.9
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where g, is the locator associated with site given by imposes drastic constraints on memory allocation and time
(z—ey) 1, and of execution. We will show in the following that our real-
space approach is free of these limitations, and opens up the
possibility of addressing more complex issues than those
possible with presently available techniques.

A= Z BomImBmnt E B9 BimImBmnt - -
m#n m#n

I#m

(2.6

This quantity,A,, represents the change in energy of an he followi | luti f th
electron at siten due to its interaction with the surrounding In the o owmgh_vvr? preslent ahrea -spaclf? solution of the
medium. Note that in the case of diagonal disorder onlyCPA equations which employs the two self-energiez),

A, depends on the configuration of the medium surroundindA"hICh Lepresenltls dthe effecllt %f. chemical dlsorFier,d a’.‘f]
site n, but not on the occupation of the siteitself. The n(2), the so-called renormalized interactor, associated wit

Green function can be rewritten as site n, which accounts for the coupling between giteand
the surrounding medium, here the effective medium as de-
Gnnz(ggl_An)*lz(z_ en—Ay) L 2.7 scribed within the CPA. From Ed2.6), it is clear that the
interactor that we now denotk(z) depends on the effective
In agreement with the assumptions behind the single-sitenedium which is entirely defined by (z). Thus, we can
CPA, the average medium surrounding sités assumed to formally write the functional relation
be given by a Hamiltonian with a site-diagonal coherent po-
tential ¢ which is a function of the complex energy and A(2)=f[a(2)]. (212
off-diagonal elements given in terms of the hopping integralsrhen, the CPA self-consistency condition can be expressed
B. The expression fok associated with this average medium as
is given by an expression analogous to E2.6) but with
eachg,, replaced byg = (z— o) "%, the so-called bare locator o(2)=9g[A(2)], (2.13

for the effective medium. Therefore, we obtain an approxi-which leads to an iterative solution fet(z) at each complex
mation for the site-diagonal eleme@t,, associated with an energyz.

atom of typei (here,i=A or B) at site 0 embedded in the  Since the two basic functions(z) ando(z) are Herglotz

B. Principle of the real-space methodology

medium: (which can be rigorously provedhey can be represented by

) — continued fractions, and in the following we will use the

00=(Z—&—A) . (2.8 notations

J— 2
Due to th_e independence af; on the occupatio_n of site O o(2)=Ag+ B1 , (2.14
the site-diagonal element of the Green function associated B3
with the effective medium is given by z— A - —Bar
_ _ z—A,—
GOOZ(Z_ O'_Ao)_l. (29) Z=
and
Within the CPA, the self-energy is determined through the b2
self-consistency condition A(z)= 1 o2 ) (2.15
2
i V\=Gq - ————————
(Goo»=Goo: (2.10 ! Y b3

that is, 2 S

o o Thus, the basic principle of our method is to determine the

D C (z—€6—Ag) t=(z—0—Ag) 1=Gex(2), continued fraction coefficientsA,,B,} for o and{a,,bg}
: for A, rather than calculating and A at each complex en-
(217 ergy z.

wherec; is the concentration in species. To avoid the introduction of additional functions or op-

This implicit equation foro is usually solved numerically erators, we will constantly use in the following the equiva-
at each complex energg for either the single or the mul- lence between the continued fraction expansiorwr () [or
tiorbital case. Making use of the fact that the average meA(z)] and the schematic representation of the associated TB
dium has the periodicity of the underlying lattice, this solu- Hamiltonian by a semilinear chain whose on-site energies
tion is effected in reciprocal space within the propagatorare theA, (ora,) and the nearest-neighbor hopping integrals
formalism, using the Bloch’s theorem. It is well known that are theB, (or b,), as indicated in Fig. 1. This equivalence
the CPA condition in the locator formalism is identical to the immediately allows us to replace the effective Hamiltonian
corresponding condition in the propagator formalism as welH¢«(z) for the disordered alloy by a Hamiltonian represented
as in the mean-field approdthich are most commonly by the semilinear chain/A,B,) attached to each site of the
used for the solution of the CPA equations. Note that inlattice on which the alloy is based. These chains exactly
reciprocal space, the standard numerical approach requiresgpresent the effect of the self-energyz). This second
diagonalization of the Hamiltonian until full convergence of equivalence is represented in Fig. 2 in the case of an alloy
the solution to the CPA equations is achieved at each enerdyased on an infinite linear chain. With this energy-
step and eaclk point. In practice, this mode of operation independent effective Hamiltonian, associated with the semi-
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A0 A1 A2 A3 B, B, B, B,
c(2)= OTOB_O—B_OB_ A0 A0 AO A
1 2 3 4 B, B, B, B,
a a a A, AQ MO A
1 2 3 B, B, €, or &y B, B,
A(z)= O O O " N
~ b, ”b, b, b A~ A~ A~ A
1 2 3 4 0 0 0 0
FIG. 1. Schematic representation of the continued fraction ex-
pansion of the self-energy(z) and of the renormalized interactor a(2) o(z) € Aor EB Gf(i) Gf(i)
A(z) by semilinear chains. @, @, . @, ()~

linear chain, the matrix element c_)f the Gree_n funCt!on Cf”m be FIG. 2. Equivalent representations of the effective Hamiltonian
calculated. The advantage of this formmat'on fes"?'es !n th%escribing chemical disorder, within the CPA, here for an alloy
fact that methods developed for solving TB Hamiltonians,yased on an infinite linear chaithick solid lines.

such as the recursion technique, can now be used. If one

calculatesA(z) by a recursion method with an initial recur- 1 i(p)

sion vector|0} which is taken to be the atomic orbitf0) —= |p+l ,

centered on site 0, then it is well known that the successive z-6—A(z) p 7

vectors |p} of the recursion extend away from site 0. In

particular,|p} will have nonzero components on sitgsof 1 _E n(p) 51
the chain attached to the sites of the real crystal up to a finite 72— o(2)—A(2) LA (2.17

value of g. Thus, in order to calculatdp} and also ) . o ) )

(ap,bp), we do not need to know all theA(,B,). It is ~ iVes by identification of the terms associated with the same
shown later by a precise analysis of the recusion scheme thBpWwer of 1z the result

one can obtain an expression for thg and b, in terms of

the (A4,B,) of the following type: M(D)ZZ Ciui(p) (2.18

for p=0. Then, recalling that the moments are expressed in

a,=ay(Ap_1,Bp_1,-...B1,A0), . . - .
p=2p(Ap-1,Bp-1 1:Ao) terms of the continued fraction coefficiefitselations among

be=bp(Bp_1,Ap 2, - - - B1.Ao), (2.16 these coefficients can be obtained. More precisely,
which is another way of expressing E@.12. mi(2p) = pi(bp,ap-—1,bp—1, ... b1, €),
Let us for now reconsider the self-consistent CPA equa-
tion (2.11), and show how to get information on tig and mi(2p+1)=pui(@p,bp,8p-1,bp-1, ... b1, €)
B, from the @, ,bp). A Laurent’s expansion of both sides of (2.19
this equation expressed as and

J
M(Zp)zl-’v(BprAp—laBp—lr PR ,Ao;bp,ap_l,bp_l, PR ,bl),

Iu’(zp—’_l):/“L(ApvayApflin*ly L lAO;apybpaap*llbp*ly L lbl)' (22@

Thus, by using Eq(2.18 we can calculate, at least in prin- Aq=Aq({ay.bp}h), p=aq,
ciple, the coefficienté\, andB, from the coefficients, and
b,. One easily gets

B,=Bq(by.{a,,b,}), =g-—1. 2.2
Ag=Ag(lel), a= Bq(bg.{ap.bp}),  p=q (2.22
B,=B(b,), Now, proceeding this way, the calculation of the continued
fraction coefficients becomes cumbersome and ill condi-
A=A (a;,by) tioned. However, the main point is summarized in the above
relations, Eqs(2.21) and (2.22), which give the number of
B,=B,(b,,a;,b;), (2.21  coefficientsa, andb, that one must know in order to calcu-

late the coefficient#\, andB,. Note that these relations are
and for the general terms a direct and more precise way of expressing dq13.
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Let us now summarize the principle of solution of the
CPA equations within the present approach. On one hand,
we have seen that the effective medium in which an atom is
embedded is determined by the self-energfyz), and the
interactorA (z), associated with site and coupled with the
effective medium, which depends ar(z), as indicated in
Eqg. (2.12. This can be used with a recursion procedure to
calculate the coefficients, and b, as functions of the
{Aq.,Bg} according to Eqs(2.16), or relations I. On the other
hand, Eq.(2.13 allows us to relate by a simple moment
analysis theA, and B, to the{a,,bp} by Egs.(2.21) and
(2.22, or relations Il. Then we use successively the relations
i, 1, 1, 1, 1l, ..., which is another way of expressing the
iterative procedure required to achieve self-consistency in
the classical solution of the CPA equations. For example,
A, can be calculated from Il, them, andb, are calculated X_O'
from 1, thenA; andB; are calculated from Il and sao.. .
Now that we have given the principle of our approach we
consider the more technical points. We consider first the cal-
culation ofa, andb,, (relations ), and show by an analysis
of a recursion procedure how to obtain the coefficiehts
and B, that one needs to know at any given step. Then w
describe the calculation &, andB, from a, andb, (rela-
tions Il). To this end, we introduce first the concept of sum

space, and the calculation of averages of operators in thiSia \which can be reached from the site at the origirgin
space. We apply thls_ concept to the treatmen_t of rela_t|ons ”steps i.e., corresponding to the applicationdfto |0}, then
anq show that‘T(.Z) 1S the self-energ.y associated with an o conclude thatp} has nonzero components up to site
orbital for a Hamiltonian whose matrix elements depend Ortp—q) of the semilinear chain attached to a neighboring site

ap and_bp. This allows us to calcu_latAq andB, again by a of orderg. Sincea, and b2, , are calculated from
recursion procedure on that Hamiltonian. P

FIG. 3. Equivalent representations G{«(z) by a lattice, here
an infinite linear chain with each site “dressed” by a semilinear
chain representing(z) (top par}, and by a semilinear chain in the
recursion basigbottom part. The extension of the recursion vector,
%t each step, here 1-3, is represented by solid, dashed, and double
solid lines, respectively.

= =
C. Extension of the recursion vectors % {p|H|p}, p=1,

Starting from an orbital centered on a given site, let us p+1—||H|p} ay|p}—bylp—1}?, p=0, (2.25
analyze a recursion procedure to determine the coefficients
A, andB,, which are needed to calculate the recursion vectothe values ofy, andb, can be determined provided we know
|p} and the coefficienta, andb,,. The generalization to the all the coefficients of the seriefg,B1,A;,By, ... up to
multiorbital case is stra|ghtforward and will be discussedAp-1 and B,_;, respectively. This justifies the formal ex-
later. In the recursion procedure, one calculates the set ¢fression given by Eqg2.16).
recursion vectorsp} according to the following recurrence

relation: D. Sum space and its properties
_ In the study of chemically disordered systems, one has to
HIp}=a,lp} +bplp =1} +bpa[p+ 1}, (223 calculate ave?/age values o?operators or gf some matrix ele-
with by= 0, and the condition that, at each step, the recursioments of operators. For example, in the calculation of the
vectors are orthonormal, i.e., density of states, we are primarily interested in the diagonal
element of the resolvent of the Hamiltonian. We will show
{pla}=8pq- (2.24  that the sum space is a natural and general frame for the

calculation of these averages, and that it is related to the
As is well known, for a TB Hamiltonian, the statgs}  augmented space which has been introduced by MooR2rjee
extend progressively from the initial orbital centered on ato describe specifically substitutional alloys.
given site, which corresponds {6} =|0). Thus ones needs
to know only the matrix elements of the Hamiltonian be- 1. Operators in the sum space

tween orbitals located at different site positions on which Let us consider a set of systed&} associated with the
|p} has a nonzero component. In Fig. 3, we present the pro- M

gressive extension of this vector in the case of an alloy base%‘et of vectorﬁln)s} For simplicity, we consider the case

on an infinite linear chain. At each stép}—|p+1}, the where there is a one to one correspondence between the vec-
wave function has components one step further on the semiors of the different systemS;. The Hilbert space for each
linear chains. Thus, it is clear thip} will have nonzero SystemsS is generated by these vectors. Let us definas
components up to sitept-1) of the semilinear chain at- the sum spacé generated by thén)g for all [n) and all
tached to the first neighbors and up to sife—(2) for the S;. For any operato@; acting onS;, the average of the
second neighbors, and so on. If we call neighbor of ogdar  matrix elements of\; can be written as
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_ 1 ~
Anm=2 i s(nlAIm)s, (2.26 G(2)= ;=7 =2 Gi(2), (2.39

wherep; is the probability associated with . From theA;  wjth G,=(z—H,;)"%, andH;, is the Hamiltonian which de-
one can define the sum-operatvin the sum-spacé as scribes the systers; . Then,

), e

where|a)s=3;\pila)s. This equality will be used in the
Z\i|n>s.:Ai|n>s5ij ' (2.29 next subsection to solve the self—consistﬂn CPA equations,
! ' and to give us a relation betweer{z) andAy(2).

1
z—H;

A= E, (2.29) S o <a
! 7 s z—H

a> , (2.36
S

where the action oA, in Sis simply given by

In other words,A; is now an operator acting i, but its
action inS; is the same as foh;, and for any othe6;, A
has no action. With this property it is straightforward to es-  In the case of a substitutional alloy, assumed here for the
tablish the relation sake of clarity of exposition to be a binary alloy, each system
S, of the configuration sum space is associated with a given
— configurationsS; of the alloy. Therefore, a syste® will be
A“mzzi Pi Si(nIAi|m)sjz(n(p)|A|m(p)>, (2.29 specgied by the configura)t/ion of each Site{r¥= 1,?30 of the
lattice on which the alloy is based. This configuration is de-
where|a(p))=Z2;\pi|@)s, anda is equal ton or m. Thus,  termined by a set of occupation numbggi), which indi-
the average of the matrix elementsAyfis formally related cates that site of S is in the configuratiors; . Thus, the set
to a matrix element of the sum-operatae=3A;, with A,  of all states{|n)s } in the basis is isomorphic to the tensorial
being the extension of; in the sum-spac&==3,;S,. The  product,

sum-operatoA has some useful properties that we now de- . . ]
rive. In)X[L,pa(i))X|2,p2(i)) X - - - X[N,pn(i)), (2.37)

where eaclp, takes the value 0 or 1 depending on the oc-
cupation of siten by anA or aB species, respectively.

3. Relation between the sum space and the augmented space

2. Properties in the sum space

Let us consider two operatofs andB; with the obvious We see that the sum space is isomorphic to a tensorial
property product of the Hilbert space spannned by the orbitais}
with the configuration space which is generated by the vec-
KI“B'J:‘TB'J 6IJ:;E\|§J 5” . (23@ tors
Then one readily gets |p)=]1,p1(i))X|2,p2(i))X -+ - X|N,pn(i)). (2.39

- If we defineW as being the sum spacH, the Hilbert space
A= (AD) (2.3)  spannned by the orbitals, ade the configuration space, we
' can write formally

for n=0. It is also easy to prove that
V=HXD], (2.39

A= (’,E\i*l) (2.32  Wwhich is the starting relation on which the augmented space
[ formalism derived by Mookerjee is bas&dThus, rather
than working in the sum space of all alloy configurations, we
can equivalently work in the product space as done in Ref.
13. In the framework of the sum space formalism, the aver-
A= E Ki” (2.33 age of a matrix element of an operator over all alloy configu-
! rations will be written as

and then finally

for any integem, positive or negative.
By extension, we expect that a function of an operator,
f(A), will be given by

s{nAi|m)s =(n(P)|A|m(P)), (2.40

whereP is the probability distribution for all the configura-
tionsi. If P, is the probability of configuration, then

Pi=Q1(p1(1))Qa(p2(i))- - - On(pn(i)), (2.41)

We note that for any operatdy; which can be diagonalized, whereQ, is the probability distribution for all the accessible
this relation is straightforward in the basis 8fthat diago-  configurations at site.

nalizes eachA;, and the same will hold for functions of In the case of a periodic lattice with one atom per unit
several operators. As an example, consider the Green opereell, @, does not depend on. In Eq. (2.40, a(P) (where
tor, a=n,m) is defined as

A= F(A). (2.34
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|(P)=2 VPla)g=Imlas)-|an), (2.42 a, a, a,
' G2 =E)—0—0—0—
! b b b b

where 1 ... 3 4
0} Mg~ 12} * 13}
lam= 2 VQu(P)In.py) (243
. . a a a
since for a binary alloyp can only take two values, 0 or 1, on 1 2 3

every site. Hence, we recover the formulation of averages in G(z) = 6 () () ()
the augmented space formalism. This formalism has been b b2 b3 b

proven useful for the study of substitutional alldys/~° 10} 1 11} 12} 13}

and this suggests that the sum-space formalism can be

equ"?‘"y useful. However one can Work along a different path FIG. 4. Schematic representation ®f(z) and G(z) associated
within the sum-space representation. For example, the abO\\/&
change in the basis which leads to the product space illus-

trates this. We will s_how below that a change in the basis The sum Hamiltonian can now be conveniently expressed
also allows us to derive a number of useful relations. in a new basis, different from the original basis

{lp}s, IP}s, P=0,1,2, .. }. For eactp, we define two or-

th H; andH, respectively, in the original basis.

E. Calculation of the coefficients of continued fraction thonormal states
We have seen from the analysis of the momeu(p), in
Sec. IIB, that the coefficientd, and B, can be calculated Phs= ‘/C—Al p}SA+ ‘/C—B| p}SB’
step by step from the coefficienta,b,). In this subsection,
we use the properties of the sum space to derive a formal |P}as= Vcalp}s,— Vealpls,, (2.47)

relation betweer and A. First, we consider the case of a
binary alloy. Note that the derivation given in Ref. 20 for
binary alloys is difficult to extend to the case of higher-order
multicomponent alloys, whereas the sum-space formalism

which generate the sum-spa&s=S,®Sg. One has obvi-
ously the relations

=0 ,
leads to a straightforward generalization as will be shown for s{Pla}s= dpq
the case of ternary and quaternary alloys. astPl At as= Spq.
1. Binary alloys asipldls= s{alp}as=0. (2.48

the CPA reads: orthonormal basis. Since all matrix elementskyf andHg
are identical except for the on-site terms associated with

> ¢Gi(2)=G(2), (2.44  10)aand|0)g, one gets for §,a) #(0,0)
i=AB
" stpIH|a}s=aspIH|a}as=s,{P[Hala}s,=s,{PIHBld} s, »
Wi
. stpIH|d}as=aslalH[p}s=0, (2.49
Gi(2)=[z—6—A(2)] %, B
and for (p,q)=(0,0),
G(Z):[Z_ O-(Z)_A(Z)]_l (245) S{0|H|0}S:CA€A+CB€BEGS!
Using the representation of andA in terms of semi-infinite AstO|H|0}as=Cpept Caep=€ns,
linear chainsG; andG can be viewed as the diagonal ele-
ments of Green operators on sj@; and|0), respectively, s{0|H|0}as= as{O|H|0}s= VcaCg(ep— ) =U.
of the systemsS; and S which are represented in Fig. 4. (2.50

Using Eq.(2.36 derived in Sec. 11D 2, we get
The HamiltonianH expressed in this new basis is sche-

1 matically represented in Fig. 5. The formal expression for the
> ciGi(z)={O—0], (2.46  average of the Green functiorG,(z) and Gg(z) implies
i=AB z—H that c,Ga(2) + cgGg(2) is the Green function on the site
occupied by the vectdi0}s for the Hamiltonian represented
o Sin Fig. 4. Therefore, the self-consistency condition imposes
Sy and Sg, i.e,, H=Ha+Hg. In other words,H is the  the equality of the diagonal elements of Green functions on
Hamiltonian of the global systerS made of the two un- the first site of the semilinear chain associated with the vec-
coupled system§, andSg, each associated with its Hamil- tor |0} of Fig. 5 (top), and on the first site of the semilinear
tonianH, andHg, respectively. chain associated witl0} of Fig. 4 or equivalently, of Fig. 5

where H is the sum Hamiltonian associated with system
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FIG. 5. Schematic representation of the Hamiltontdnex-
pressed in the new basifp}s,|plast (top), and compared with its
representation in the original bagi®}} (botton) for a binary alloy.

(bottom). Consequently the self-energy(z) is represented

by the coupling to the semi-infinite linear chain of Fig. 5

(bottom), and by simple identification, this function is ana-
lytically given by

U2

o(2)=egt Z—EAS——A(Z)’

(2.51

which, with an appropriate change in the notations, is iden-

tical to expressiori17) given in Ref. 20.

By identification of the continued fraction expansions of

o(z) andA(z), we then obtain
A0= €g,
A1=éps,

Bi=U?

Bq:bq_l, q>2,

=

=

Ag=ag-1, g=2. (2.52

2. Ternary and higher-order multicomponent alloys

For an alloy containingl, components, Eq2.36) can be
rewritten as
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10} 1}

FIG. 6. Schematic representation of the Hamiltontdnex-
pressed in the new basifp}s,|p}as,;|P}as,} for a terary alloy.

(o=

where|0}=%;_;, JGi|0}s andH=1;_;, H;, with H; be-

ing the Hamiltonian associated with the semilinear chain rep-
resenting the continued fraction expansiorf Again, the
initial basis{|p}si} is replaced by

> ¢Gi(2)=

i=1n

(2.53

|P}s:i:21n \/C—ip}Si'

|p}A§:iE Uilpts, J=1nc.—1. (2.59

=1n

The choice for the coefficients; is such that the new basis
must be orthonormal. However, we note that this choice is
not unique since the space orthogondihs is of dimension
n.— 1, for a givenp. Since theH; only differ by the on-site
energies associated Witb}si, one gets for ,q) # (0,0),

s{p|H|Q}s=Aq{p|H|Q}A§, j=1n.—1,

=s{plHila}s, i=1n, (2.59
and for (p,q)=(0,0),
S{O|H|O}S:i=§1:n Cigj=¢€s, (2.56

with the other matrix elements &f easily determined once
the particular choice fofu;;} is made. Let us define
GASZAS{O|H|0}A§' i:].,nc_l,

Ui=s{0[H|O}as, i=1nc—1,

Uij:A§{0|H|O}A§, ih,j=1n.—1,

Then the HamiltoniarH expressed in the new basis is
schematically represented in Fig. 6. The expressibd

(2.57
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FIG. 8. Equivalent representations of the self-ener¢y) in the
FIG. 7. Equivalent representations of the self-ener@g) inthe  case of a quaternary alloy.
case of a ternary alloy.
andA(z) at all complex energiesbecomes possible through
shows that¥;c;G;(z) is given by the diagonal element of the calculation of the coefficients of their continued fraction
{0|(z—H) 1|0} in the sum space. Therefore(z) is simply  expansions.
obtained by identification of the representations&iiz) in Second, we use the well-known equivalence between a
the old and the new basis, given in Fig(ottom) and Fig.  continued fraction expansion and its representation in terms
6, respectively. Contrary to the binary case, this time we d®f a semilinear chain, in which case the matrix elements of
not have an analytic expression fo(z) as a function of the Hamiltonian associated with this chain are the coeffi-
A(z). Note, however, that since we are interested in the desients of the continued fraction. Replaciagz) by the cou-
termination of the coefficientsA,B,) of the continued pling to a semilinear chain leads to the definition of an
fraction expansion fow(z), we can s|mp|y calculate them energy-independent effective Hamiltonian. The calculation
for the system represented in Fig.(fight-side representa- Of average Green operator matrix elements can then be per-
tion) by an additional recursion scheme. With an analysidormed by real-space methods such as the recursion, and
similar to that given in Sec. Il C regarding the extension ofproperties derived from the electronic structure, such as den-
the recursion vectors, we conclude that sity of states, integrals over the density of staeg., ener-
getics, effective interactiofsor transport properties can be
predicted in a very efficient way. Third, in order to solve the
self-consistent CPA equations, we use alternatively two re-
lations, namelyA(z), which depends on the effective envi-
Bq=Bq(Pg-1,89-2,0¢-2,--+\b1), 9=2, (258  ronment, and is a function af(z), and o(z), by the CPA
self-consistency condition, which is a function &fz).
and A, is immediately given byAo=2X;_; ci€;. We also By performing a recursion with a starting vector being
note thatB; and A; do not depend o\ (z) via its coeffi- one of the atomic orbitals centered on a given site, we can
cients @,,b,) since the vectofl} has a nonzero projection make use of the first relations (z) =f[ o(z)], with the in-
only on IO}S and|O}AS (j=1n.—1). As a further example troduction of an energy-independent effective Hamiltonian.
of the extension to hlgher -order multicomponent alloys, weWe calculate the, andby:
give in Fig. 8, the equivalent representations of the self- _
energyo(z) in the case of a quaternary alloy. 3p=p(Ap-1.Bp-1. .- A1LB1LAY),

Aq:Aq(aQ*libQ*l!aQ*Z’bCI*Zv"'vbl)v q>21

bp:bp(Bp*l!Apflv e ,Al,Bl,Ao). (259}
F. Summary of the methodology and extension
to the multiorbital case If there are several inequivalent orbitals=1,n,, then
one must consider a set of renormalized interactoy6z)
and self-energies-, (z) associated with each of these orbit-
O als. Then the coefﬁmenﬂ,ﬁ and bg, expressed as

The principle of our approach is to deal with the equatlon
of the CPA theory within the locator formalism. The tw
functions which naturally appear in this formalism are

a(z_), which is the self-energy associgted yvith an orbital and ag:ag(Ag_l B, .. AEBEAR),

which represents the effect of chemical disorder, Arid),

the s_o—called renqrmahzed interactor, wh|ch refgrs to the bA=b\(B_,, £, Al BYAR) (2.60
coupling of an orbital centered on a given site with the ef-

fective CPA medium. are calculated with a recursion procedure by starting from

First, within the CPA theory, the Herglotz property of each of then, inequivalent orbitals, i.e., by perfoming,
these two functions allows us to consider their continuedecursions in parallel. Note that this procedure becomes well-
fraction representations. Hence, the determinatiorv () suited for a practical implementation on a parallel computer.
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Then, we can explore the CPA self-consistency conditionretracing scattering contributions to the effective pair inter-
i.e., the second relation which relate$z) to A(z). In the  actions(EPI's) such asv®®)  v®
multiorbital case, one gets a set of self-consistency condi- The symbo[VE,";l) . ]in in Eq. (3.2 denotes an effec-
H _ : 1727 k=17
tions, 0*(2)_g[A,”(.Z)]‘ Note that these equations do not 0 muttisite interaction among they sites of clusterC, ,
couple different\’s in contrast to the previous set of rela- k

tionsA. (2)=f 7)1 which does. Again by an application under the restriction that site, is occupied by an atom of
of the ?éczjrsigr?ggr?gme we get g y PP typei. It has been shown that the ECM and the GPM are

closely related? with the former corresponding to a summa-
Ar=ANal_ . b ..., bH) tion of a set of diagram&@ermg of the latter. Note that, as in

R S e any perturbation theory which relies on the CPA medium,
the small parameter in the GPM only depends on the scatter-
ing properties of the electrons, which means that the expan-
sion for the ordering energy is valid even for large fluctua-

The final solution of the CPA problem is obtained by . f local . . h d ord
using alternatively the two sets of relations mentioned abovet.Ions of local concentrations. In practice, the second order
ontribution to the EPIV{?) | within the GPM is essentially

In addition to the real-space aspect of the solution, this new . LU .
methodology can be easily extended to account for Oﬁc_numencally indistinguishable from the full summation pro-

diagonal disorder within the Shiba approximatiowr the vided by the ECM of all scattering processes taking pl_ace
approach of Blackman, Esterling, and B&HZ as will be between the two sitas andm. One advantage of the ECM is

shown in a forthcoming publication, and can be applied tOthat it allows the calculation of local densities of states

other approximations such as the cluster Bethe Iatticé“’ithi,n a cluster, with.a specific atomic configuration, emped-
method?® or the calculation of transport properties in disor- ded in the CPA medium, and thus the study of local environ-

dered alloys ment effects on the electronic structure properties of alloys.

By=By(by-1.85-2, - .. .b%). (2.61)

B. Calculation of the effective interactions

Ill. EMBEDDED CLUSTER METHOD . .
and the orbital-peeling method

AND THE ORBITAL-PEELING TECHNIQUE

Since the ECM has been compared in detail with other The energyVy,” in Eq. (3.1) is an effective single-site

; : interaction which, by definition, is associated with the inter-

approaches which are also based on the electronic structur g : : . .
) : change of aB species with anA species at siten. This

of the chemically disordered state of an alloywe only

present the main results here. interaction is simply given by

Er
A. Embedded cluster method Vb= f, (e—Ep)(ni(e)—nh(e))de, (3.3

Let us consider a system consisting of a clu%of Ny

sites, embedded in a disordered material. An exact treatme
of this system would require a complete configurational av- Im

erage over all configurations of the material surrounding the ni(e)=—— lim G (e+i7n), (3.4
cluster. Clearly, approximations must be made to solve the ™
problem. At the first level of approximation, all sites outside ) )
the cluster are taken as being occupied by effective mediur¥ith i referring to the species, and
scatterers, or “CPA atoms.” The configuration@r order-

mhereEF is the Fermi energy of the CPA medium, and

n—0*

W . .

ing) energy is then given by Gnn(2)=[z—€en—An(2)] (3.9
1 Note that for alloys based on a periodic lattice with one site
E({5c},Er) =Ecpat >, VIV sc,+ > > V2 se,scm per cell, the tptal sing'le—si;tle) contribution to the configqra-

n m.n tional energy is zero sincé¥,;’ does not depend on the site
1 indexn, and=N_, ¢, =0, whereN is the number of sites in
+3 >V sc demdeyt -, (3.1) the crystal.
I,m,n

The effective two-site(or pain interaction (or EPI),

_ , @ s i : in single-site | :
where c,, refers to the fluctuation of local concentration, as Ynm- IS given by the difference in single-site interactions at

discussed in the Introduction. In this equati@yp, is the ~ Sit€ N when sitem=n is occupied by am or aB species.

energy associated with the CPA medium, M@,nz,m,nk is This energy difference is by definition given by
an effective cluster interaction defined within the ECM as Ep
o o . o ] V2= f_m(e— Er)An,(€)de, (3.6
Vn1n2~~~nk:[vn1n2~~~nk71]nk - [ann2~~~nkfl]nk'
(3.2  where
The double primes in Eq3.1) denote that the sums are >
performed over distinct sets of sites, i.e., all theéndices are Anpm(€)=——Im lim 2 sij(Tr(zl- HHm)_1>’
different, as opposed to the GPM expansion where the re- T ot

strictions apply to consecutive sites only, and lead to self- (3.7
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with s;j= +1 or —1 depending on whether or not j, and  great accuracy can be achieved in the determination of the
the sum extending over all possible combinations of pairzeros and the poles entering expressi®il.
ij (i,j=A,B for the case of a binary allgy The operator To ensure a continuous variation of the EPI's with the
Hpm is the Hamiltonian of a system where all sites exceptFermi energy(and therefore the band fillingwe adopted a
n andm are occupied by speciésandj, respectively. The slightly modified procedure than the one indicated in Ref. 12.
factor 2 in Eq.(3.7) accounts for the spin degeneracy, andTo position a pole o5} at the Fermi energ, the last
the trace, Tr, refers to a sum over thgorbitals. The symbol coefficienta, of the continued fraction expansion is modi-
(') denotes a configurational averaging over all sites excegied. This method preserves all other coefficients of the con-
n andm. This EPI can be expressed in terms of the phaséinued fraction, and thus all the moments of the density of
shift »(z) according to states, except the last oney, ;. Having a pole aEg im-
plies that the last coefficierat; is given by

2 (Er d7,m(2)
(2>:__ _ nm
Vim ijxde(e Er) dz (3.8 bgil
ar=Eg+
where P b5 >
ap-1—Ep— .
de{Ghm detGrry) a,_p—Ep— - ——
=1|n . p—2 F a—E
Tl Nereaetay 0 ERRIEYP

with G, being the resolvent of the Hamiltoniat(! ..

In a conventional calculation, for a binary alloy character-
ized byn, orbitals, the determination of one EPI involves
without reference to any symmetry of the Iatticéné cal-
culations. It was shown in the mid 70’s by Bufkehat such
a determination can be achieved with on&ng2 calculations
with the so-called orbital-peeling methotOPM). This
method also offers the advantage that only site-diagonal e
ements of Green function@nd not the off-diagonal ongs
need to be calculated. Within the OPM, the expres$&f)
for the EPI is rewritten as

With this last modified coefficient, we recompute the poles
and the zeros of the Green function and their numbers. Note
' that this operation can be applied after having extended the
continued fraction expansion with a numberaf and b2
which correspond to the asymptotic values af and bf),
respectively. The asymptotic values of these coefficients, re-
,g:lted to the center of the spectral suppat,, and to its
width, 4b.,, can be accurately determined in the case of a
connected electronic spectrum, i.e., in the absence of a gap,
with the Beer-Pettifor methotf, or with the method pro-
posed in Ref. 4 when gaps exist.

2 o In practice, since the self-energy,, () is known by its
V&=——Im>) s; > X, (3.10  continued fraction expansion, it is a simple matter to deter-
T A=t mine the continued fraction expansion®};’ with a recur-
where sion scheme byi) branching on each site of the real lattice,

except at siten and m, a semilinear chain representing
Er - o,(2), or n, chains representing,,,(z), in the multiorbital
- A, . : - “ .
OX= f_w(f— Er)In(Gpy)de case;(ii) locating the species andj at sitesn andm, re-
spectively; and(iii) setting the projection of the recursion
p-1 P - - - vector on siten, at each step of the recursion, to zero for the
= 21 M- 21 phI+(np—n}EL. (3.1)  orbitals 1 tox—1, in accordance with the OPM.

In this last expressiorG,ﬁ;H is the resolvent of a Hamiltonian IV. APPLICATIONS
Hm which defines a system where the two speciaesd j o
located at site: and m, respectively, are embedded in the To demonstrate the validity and the accuracy of the real-

average mediurthere, the CPA mediumand for which the ~ SPace methodology presented in thg previous sections, a
orbitals from 1 tox—1 are omitted at site. The quantities number of numerical tests were carried out for bcc-based

zM1 andp)'l are the zeros and the poles®}; , up to the Ibinar%/ Zr-RI’h anti terr:ar_y er-R;:.J-Eh aAI%)'{[s.. 'tl'hes? alloys be-
Fermi energy, which is indicated by the summation ower t(_)ngf 0 ?).C ass o tr.g? e_rlals Wt :jc exhibl 'IF‘ e{?ﬁ'_rllg |(ajroper-
up top—1 in the case of the zeros, and upptin the case of es Tor biocompatible Implant device applicationsio de-

nij nij scribe their electronic structure properties, the Slater-Koster
the poles. Then;! andnp correspond to the numbers of . AT
X (SK) parameters which enter the TB Hamiltonian have been
zeros and poles, respectively.

With this OPM., one avoids the numerical integration of extracted from TB LMTO calculations as described in Ref.
Eq. (3.6). I?'ijaddmon, the zeros and the poles of the Green The hopping integrals are written in terms of the SK pa-

function Gy are easily determined in the context of the -\ .\ bih depend on the occupation of sitesdm by
CPA-extended recursion presented above. Indeed, the po'?sandj species, respectively, and on the distangg be-
correspond to the eigenvalues of a tridiagonal mamx . oon’the two sites. as follows:

whose elements are,,=a, andP,,_1=P,_1n=bn_1, and

the zeros are given by the eigenvalues of a tridiagonal matrix

Z obtained from the matri® by deleting its first column and B\ :2 Wl 4.1)
row. This eigenvalue problem is well conditioned, and a i 4 TnmE R ame
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TABLE I. Tight-binding parameterafy, andP%,, see Eq(4.2), TABLE II. Coefficients Ak,, Brn, and Ck,, see Eq.(4.4),
which define the hopping integrals for Rh. which define the on-site energies for Rh.
h Azn (RY) PRn (au’) \ Ax (RY) By, (Ryaur’)  Cky (Ry au?)
Sso -16.7886 1.0573 S 9.407978 -2.689624 0.188783
ppo 13.2390 0.9274 p 9.613148 -2.606757 0.177081
ppm -161.7200 1.8024 tog 6.635920 -1.989722 0.141352
ddo -8.9922 0.9389 €y 6.170196 -1.864335 0.132686
ddm 158.6201 1.6576
ddé -216.2461 2.1738
spo 13.9556 0.9797 €n=¢€+ 5. (4.5
sdo -8.8131 0.9439
pdo -9.1538 0.9035
pdm 187.4781 1.7605 In the present cased,=0 Ry, 8g,=0.358 Ry, and

Oorp=0.313 Ry. With these assumptions, the TB Hamiltonian
h given in Eq.(1.2) is fully defined, and applications of the
where thew;; (1) refer to the SK parameters, and i methodology described in the previous sections to the study
depend on the direction cosines of vectgp,. The super- o the electronic structure properties, and of the energetics of

scripth runs over the ten SK parameters &pd elggtronic binary and higher-order multicomponent alloys can now be
systems, i.e.h=sso,ppo, ... ddo,ddw,dds, . ... presented.

As in Ref. 25, the SK parameters for the pure metals are

assumed to vary with the interatomic distartbeaccording
to A. Density of states of binary, pseudobinary,

and ternary alloys

wil=Alexp Pid (4.2) The electronic densities of staté®OS) were computed
h h ] with the CPA-extended recursion and compared with the re-

where the parameter&’ and Pi" have been fitted to TB- g jis of the standarél space approad. In the latter case,
LMTO results obtained for the three alloy components Zr,ihe gqyerage Green function was obtained after integration in
Ru, and Rh. In the following we will assume a cutoff dis- yeciprocal space over the first Brillouin zone with 240 special
tance not exceeding the second-neighbor distance in the bgc points?’ Figure 9 shows the DOS of bcc-based
lattice. These parameters are given in Tablg | for Rh, and Bt sRhy 5 obtained with both approaches. In that particular
Table | of Ref. 25 for Zr and Ru. For a particular alloy, the 546 the self-energies, each associated with an orbital sym-
SK parameters have been approximated according to metry (i.e., s, P, tyy, OF &), were accurately determined

2 with 17 levels of continued fraction, and asymptotic values
Wgnoyz(z Ci‘/Wiﬁi) , (4.3  of the coefficients determined with the Beer-Pettifor

i
where the/vn parameters of the pure specieare calculated

method?* The two DOS are almost indistinguishable.

at the interatomic distance of the alloy. The equilibrium lat-
tice constants of bcc-based Zr, Ru, and Rh, take the values’g
6.712 67 a.u., 5.801 941 a.u., and 5.796 79 a.u., respectively 6 59
as obtained from scalar relativistic LMTO calculations in the ®
atomic sphere approximatigASA). These values define the
lattice constant of the alloy at any composition by assuming
that the atomic volume of the alloy is given by the concen-
tration weighted average of the atomic volumes of the pure
specieqalso known as the Zen's lgw

Similarly, a variation of the on-site energies with the lat-
tice parametem is assumed, and given by a second order
polynomial

60

40

30

20

0OS (states/Ry

10

0
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

ed =Al+Bla+Cla?, (4.4)
E-E . (Ry)

where\ refers tos, p, ty4, or e;. These parameters ob-
tained from a fit to TB-LMTO calculations are given in  rig 9. Density of states of bce-based,ZRh, s disordered al-
Table Il for Rh, and in Table Il of Ref. 25 for Zr and Ru. In |6y a5 a function of energgthe Fermi energf: is taken as zero of
the alloy case, the on-site energies of each alloy componeghergy, as obtained fronfa) real-space calculationsolid line),
are calculated at the lattice constant of the all@y described  and(b) k-space calculation@otted ling, within the CPA. In(a) 17
above. To ensure local charge neutrality in a broad range ofevels of continued fraction were computéabth on the real crystal
alloy composition, global shift$; were applied to these on- and on the semilinear chains associated with each, sitel in (b)

site energies, integration has been performed with 240 spekigloints.
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FIG. 11. Density of states of a bcc-based pseudobinary

alloy as a function of energfthe Fermi energ¥ is taken as zero Zr°-50€Ru0-25Rh°-25), disordered alloy as a function of energiie
Fermi energyEr is taken as zero of energyln the real-space

of energy, as obtained from real-space calculations with:17 S . . .
9y P ) -approach(solid ling), only the sites of one of the simple cubic

levels of continued fraction on both the real crystal and the semi- blatti hich ied by R dRh “d 4
linear chain(solid line), and(ii) three levels of continued fraction sublattices, which are occupled by Ru an atoms, are “dresse

on the real crystal and ten levels along the semilinear chains. with semilinear chains representing the self-energies, within the
CPA, and 17 levels of continued fraction on both the real crystal

and the semilinear chain have been determined. Irktbpace ap-

Interestingly enough, the calculation in real space can bgroach(dotteo ling, 816.speci.ak points in the irreducible Brillouin .
performed with an equivalent level of accuracy but with gZone of the simple cubic lattice have been used for the integration.
significant reduction in computational caghemory alloca- _ )
tion and execution timeif the cluster of atoms, which is ZFosdRUo2dRho s, for which the CPA was applied to the
generated during the recursion procedure is truncated to @'emically random ternary system. o
size associated with levels of continued fraction, whereas It should be reemphasized that, within the real-space
the semilinear chains are extended uppt¢>gq) levels of methodology, all Green funcnons, partial per site or per or-
continued fraction. In Fig. 10 the DOS of bce-basedPital and total, are expressed in terms of contln_ued fractloos,
Zr,.:Rh, 5 obtained withg=3 andp= 10 is almost identical Whereas, in thek-space approach, they are given numeri-
to the one displayed in Fig. 9 with=gq=17. In the former cally. One can take advantage of the analytic form of the

case, only 175 sites belonging to the bcc lattice have beeﬁreeo function to efficiently and accurately calculate quan-
generated, as opposed to the 21 455 sites in the latter cadities integrated over the DOS, s_uch as the integrated density
This interesting property, although it depends on the lattic®' States or the band energy. Finally, one can also take ad-

and on the range of the SK parameters, comes about becaytage of this analytic representation to describe the elec-

of the information carried out by the coefficients of contin- FOnic properties of alloys, and to investigate the origin of
ued fraction along the semilinear chain which “dresses,” forfthew relative phase stab|!|t|es by using perturbatloo theories
each orbital. each site of the lattice. in the context of the continued fraction representation of the

Since the CPA equations are solved in real space, the
electronic structure properties of pseudobinary alloys can be 60
easily studied with minor effort in the practical implementa- E
tion of the formalism. Suppose that Zr fully occupies one of @
the simple cubiosg sublattice, whereas chemical disorder ‘®
takes place between Ru and Rh species on the other sublat> 40

FIG. 10. Density of states of bcc-basedy4rhg 5 disordered

50

a

tice. Only the sites of this latter sublattice will be “dressed” %
with semilinear chaingone per orbitgl which represent the &8 30
self-energiesone per orbitgl and the CPA equations for g
this pseudobinary alloy can be solved in the same way they~ 20
are for the binary case. For comparison, a similar calculation ¥ 10

DO

can be performed with &-space approach, but now the
integration has to be done in the Brillouin zone 01;2t7he simple
cubic lattice(in the present case, 816 spedigboints’ have

been used From Fig. 11 we conclude that the DOS of the -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
pseudobinary ZgsdRug.Rhg o5 disordered alloy, as ob- E‘EF(RV)

tained by both approaches, compare once again favorably. A

similar agreement is achieved in the case of ternary alloys, FIG. 12. Same as for Fig. 9 for the bcc-based ternary
and an example is given in Fig. 12 for the case of bcc-basedr o sgRug 2Ry 25 disordered alloy.
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60 ECM and ignored in the GPM, as mentioned in Sec. IIlA
[ a) (see also Ref. 10 for further discussion
—~ a0 | In the case of the binary alloy at equiatomic composition,
£ [ we find that the dominant first and second-neighbor EPI's are
% . positive, with V{?)>V{?) . According to the ground-state
= 20r analysis of the Ising modéf, the ground state is dB2 or
% [ v, CsCl-type at this alloy composition, in agreement with the
-~ 0r experimental observation of this phaSésigure 13 also sug-
= r gests that by decreasing the number of valence electrons,
w  _s9 which can be achieved by replacing for example a fraction of
s the Rh atoms by Ru atoms, there will be a stronger tendency
Y Y SPEEPEN RPN ISP NI B towardsB2 order(since the most important contribution to
1.0 the ordering energy, given by(f), increases by lowering
B 4 b) the Fermi energy, i.e., the number of valence elecjrons
0.8 Similar to what was mentioned in the previous subsection,
E the calculation of an EPI can be performed very efficiently
s 06F by minimizing the number of lattice sites visited during the
S o4 - recursion procedurénumber corresponding tq levels of
i C continued fractiojy while keeping a certain number of sites
£ 0.2 - along each semilinear chain which “dresses” each lattice
: F site (number associated with>q levels of continued frac-
a 0.0¢p tion). This property is even better followed in the present
0.2 F calculation, since, implicitly, an EPI is defined as a quantity
g integrated over the DOS, and is therefore less sensitive to
I B S — deviations from the most converged determination of the el-
-0.50 -0.25 0.00 0.25 0.50 0.75 ements of Green functions. For example, the results dis-
E'EF(RV) played in Fig. 13 obtained wittp=q=17 are practically

indistinguishable from the ones obtained with=10 and
g=3. However, note that this property will not only depend

Zro.sRho s and (b) pseudobinary ZgsfRuo ,4Rho o) disordered al- O the type of lattice and the range of the SK parameters, but

loys as functions of energgwith Ex taken as zero of energy ~ also on the range of the EPI's. _
Results from real-space akespace calculations are represented by N the case of the pseudobinary alloy, assuming that' the
solid lines and dashed lines, respectively. Zr atoms fully occupy one of the two sc sublattices which

form the bcc lattice, Fig. 13 shows that the first-neighbor EPI
on the sc lattice, which corresponds to the second-neighbor

PI on the bcc latticeis slightly negative. This would indi-
cate that the Ru and Rh atoms have a tendency to cl(ster
this sublatticg but because of the extremely small amplitude
of the EPI's at the Fermi energy, it is more likely that these
two species will form a solid solution on the sc sublattice
while the Zr atoms fully occupy the other sublattice.

As we have seen in Sec. Ill, once the self-energies and Finally, we display in Fig. 14 the most dominant first- and
renormalized interactors are defined in terms of continuedecond neighbor EPI's for the three types of pairs, in the case
fraction expansions, and computed with the CPA-extendedf a bce-based ternary ZeqRug »4Rhy o5 disordered alloy as
recursion scheme, it is a simple task to compute the EPI'g function of energywith the Fermi energy taken as zero of
with a combined OPM-recursion scheme within the ECM.energy. Note that in the case of higher-order component
This evaluation does not rely on any numerical integrationalloys, one has to define for each combination of two species
and only requires the knowledge of site-diagonal elements df andj an EPI, in the same way it is done for a binary alloy,
Green functions. This approach has been applied to the cadee also Eq(3.6), in terms of the combination
culation of the EPI's for the binary, pseudobinary, and ter-
nary alloys introduced in the previous subsection, and a com-
parison has been made with the results obtained within the V@i =yl il il (4.6)
GPM with a standard-space approach.

Figure 13 shows the most dominant EPVE’, wheres
refers to a shell index, for the binary £#Rhgys and the wheres is a shell index. This leads for an alloy with,
pseudobinary ZgsdRug »sRhg 29 disordered alloys, as func- components to the definition of,(n.—1)/2 EPI's per shell
tions of energy(with the Fermi energ\Eg taken as zero of index.
energy. Both the real-space arldspace approaches lead to  Once again, an excellent agreement between real-space
almost indistinguishable results. Note that the minor differ-and k-space results is achieved. Hence, at the Fermi energy
ences may be attributed to contributions of self-retracing incorresponding to this ternary alloy, we find the following
teractions of higher order which are accounted for in thehierarchy for the dominant EPI's,

FIG. 13. First and second EPI's for the bcc-bas@):binary

one-electron Green function, such as the linearized Gree
function metho@ which has been initially proposed for pure
metals.

B. Effective pair interactions
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FIG. 14. First 6=1) and secondg=2) effective pair interac-
tionsV?'! | whereij =ZrRu (top), ZrPd (middle), and RuRhbot-
tom), for the bce-based ternary ggdRug »5Rhg »5 disordered alloy,
as functions of energgwith E taken as zero of enerpy

\/(12),ZrRu> \/(22),ZrRu> 0 ,
V(12),ZrRh> V(22),ZrRh> O,

VPPRIR<o and VPRI 0, 4.7

Note also thatV{?)-#Ru~y(2)2Rhs, |\/(2).RIRN = A" ground-
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FIG. 15. Execution timgin se9 for computing a DOS as a
function of (a) p, for various values ofg; and (b) cluster size,
corresponding to various values @f(=p) indicated by the num-
bers along the curve. The absolute time corresponds to CPU time on
a workstation DEC Alpha 250, and the calculations have been per-
formed for a bcc-based binary alloy ZgRhg 5.

results found in the case of the pseudobinary alloy. Note that
similar results have been obtained and further discussed in
the case of the Zfs(Ru;_.Pd.) 5.2

C. Considerations on performance

So far, all the computations have been carried out on a
sequential computer, a DEC Alpha workstation 250 with a
clock frequency of 266 MHz. A full calculation of the DOS,
i.e., for four orbital symmetries, with=3 andp=10, on a
cluster of 175 sites is performed in a timgof 0.75 sec, to
be compared with 85 sec in the cage p=17 which corre-
sponds to a cluster of 21 455 sites on the bcc lattice, for the
binary alloy Zry sRhg 5. The execution time; for one EPI is
roughly given byt;~4X9X (ty/4), i.e., %o, where 4 refers

state analysis of the Ising model performed for ternary alloys¢o the number of combinations @f species, and 9 to the
based on the bcc lattitewith first- and second-neighbor number of orbitals peeled within the OPM. Obviously, once
EPI's predicts a tendency towards phase separation in twthe continued fraction expansions of(z) and A(z) are

B2 ordered states, ZrRu and ZrRh, as expected from thknown, the 4<9 recursions can be performed on a parallel
magnitude and the negative sign of the EPI's involved beimachine with a particle distribution, here 36 particles, among
tween Ru and Rh. These results established from the knowB6 processors, so that perfect load balance between proces-
edge of the electronic structure properties of the fully ran-sors can be achieved with an execution titg&l on each

dom ternary alloy are fully consistent with the previous processor.
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Also, note that, at fixed,, i.e., for a fixed number of sites The present formalism, although applied here to alloys
which belong to the real crystétluster sizg the execution with a periodic underlying lattice, is well suited for further
time scales linearly with the “length” of the semilinear developments to address stability and chemical order issues
chain, orp, as illustrated in Fig. 1®), as opposed to the in multi-component alloys with reduced or no symmetry,
execution time versus cluster si@@ q=p) as shown in Fig. taking full advantage of the overall real-space description
15(b). This is an important property since the calculation ofand the continued fraction expansion of the one-electron
an interaction within the OPM requires a number of polesGreen function, and the properties of the configuration sum
and zeros, see Eg€3.10 and(3.1]) to be accurate. Fortu- space. In addition, since the CPA-extended recursion tech-
nately the parameteay can be chosen very small while pre- nique is based on the locator formalism, extension of the
serving the accuracy for the determination of the DOS, andnethodology to account for off-diagonal disorder effects in
of any quantity integrated over the DOS such as the bandlloys is straightforward. Preliminary results on these exten-
energy or the EPI's, as discussed in the two previous subsesions will be discussed in a forthcoming paper. Finally, the
tions. recent real-space implementation of the Kubo-Greenwood

formulas within tight binding for model systefifscan, and
V. CONCLUSION will, be extended to a realistic electronic structure descrip-
tion of alloys with or without periodicity, so that electronic

We have shown that, within the tight-binding framework, transport and diffusivity as functions of alloy parameters can
the CPA equations can be very efficiently solved in realpe studied.

space with the recursion technique. This methodology leads

to an accurate description of the electronic structure proper-

ties of binary alloys with a straightforward extension to ACKNOWLEDGMENTS
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