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Real-space tight-binding approach to stability and order in substitutional multicomponent alloys
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A real-space approach based on the tight-binding approximation for studying electronic structure properties
and stability and order in substitutional multicomponent alloys is presented. First, for a chemically random
alloy based on a periodic lattice, we show that the coherent potential approximation equations can be solved
self-consistently in real space with the same accuracy currently achieved in reciprocal space. The resulting
one-electron Green function is given by a continued fraction expansion, and this analytic form can be conve-
niently used to determine alloy properties, and in particular the energetics. Second, combined with an orbital-
peeling technique, this method allows in a very efficient way the calculation of the effective cluster interactions
which enter the expression of the configurational part of the total energy for describing order-disorder phe-
nomena in alloys. Finally, we present some applications and briefly discuss the possible extensions of this
approach.@S0163-1829~97!07028-8#
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I. INTRODUCTION

It has long been recognized that order-disorder phen
ena and structural transformations affect a majority of
physical properties exhibited by most alloys as functions
temperature, pressure, and concentration. Models base
electronic structure calculations have been developed to
dict chemical order in alloys, and their effect on allo
properties.1 More recently, with the discovery of bulk amo
phous alloys, more precise experiments are being perfor
to provide a better understanding of how chemical order,
in particular short-range order, can affect the final topolo
adopted by an alloy, and consequently alloy properties
this context, there is a need to develop efficient electro
structure models entirely solvable in real space which
capable of accounting for chemical order effects in mater
with reduced or no symmetry.

For pure elements or alloys which are characterized
fairly localized electrons, such as transition metals and th
alloys, or by covalent bonding, such as C, Si, and Ge,
tight-binding approximation~TBA! allows a fairly accurate
description of their electronic structure properties. Since
70’s, real-space techniques, and in particular the recur
method,2,3 have been widely used within the TBA. One m
jor advantage of this latter method, besides its numer
stability, resides in the fact that the one-electron Green fu
tion is expressed in terms of a continued fraction expans
The asymptotic behavior of the coefficients of the continu
fraction as a function of the characteristics of the suppor
the electronic spectrum is now well known, and the termi
tion of the truncated continued fraction can be performed
ease.4 The other obvious advantage is that the electro
structure of systems with reduced symmetry, such as in
presence of extended defects, e.g., dislocations, grain bo
aries, interfaces, or surfaces, or with no periodicity at all,
in the case of amorphous alloys, can be conveniently inv
tigated by real-space approaches. However, the succe
560163-1829/97/56~4!/1726~17!/$10.00
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TB-based studies crucially depends on a reliable determ
tion of the parameters which describe both the TB electro
Hamiltonian and the energetics. Although no systematic p
cedure to generate these parameters exists at present,
ods such as the TB version of the linear muffin-tin orbi
~LMTO! method5 allow a direct determination of the hop
ping integralsbnm

lmu in terms of Slater-Koster parameters, a
of the on-site energiesenl ~or crystal field integrals!, which
enter the TB Hamiltonian given by

H5(
n,l

unl&enl^nlu1 (
n,mÞn

l,m

unl&bnm
lm^mmu, ~1.1!

wheren andm refer to site indices, andl andm to orbitals
~for example,l,m51,9 in the case of systems characteriz
by spd electrons!.

In recent years methods have been developed to cas
quantum mechanical description of the energetics of an a
in the form of an Ising model which is most appropriate f
a subsequent statistical mechanics treatment of or
disorder phenomena in alloys as functions of tempera
and concentration.1 The mapping of the energetics resultin
from the solution of the HamiltonianH, for example given
by Eq.~1.1!, onto an Ising form has been originally achieve
within the so-called generalized perturbation meth
~GPM!.6 The GPM is a perturbation treatment applied to
reference medium which is close to any chemical configu
tion of the alloy. Intuitively, the appropriate medium to u
is the completely disordered state, as the one descr
within the coherent potential approximation~CPA!.7–9 Sub-
sequently, the method has been generalized to accoun
the correlations inside finite clusters embedded in the CP
reference medium, thus leading to the so-called embed
cluster method ~ECM!.10 In both methods, only the
configuration-dependent contribution to the total energy
expressed by an expansion in terms of effective pair
multisite interactions, and since the reference medium is c
1726 © 1997 The American Physical Society
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56 1727REAL-SPACE TIGHT-BINDING APPROACH TO . . .
centration dependent, so are these interactions. One sh
emphasize that these two methods are in contrast with th
based on the knowledge of the electronic structure prope
of ordered configurations of the alloy, such as the so-ca
Connolly-Williams method,11 which lead to an expansion o
the total energy itself in terms of cluster interactions wh
are concentration independent, except via volume effe
Within the ECM, the configurational~or ordering! energy for
a binary alloy is given by

DEord~$pn%!5(
n

Vn
~1!dcn1 (

n,mÞn
Vnm

~2!dcndcm1•••

~1.2!

wheredcn refers to the fluctuation of concentration on s
n, dcn5pn2c, wherec is the concentration inB species,
andpn is an occupation number associated with siten, equal
to 1 or 0 depending on whether or not siten is occupied by
aB species. TheV(a) are the effective interactions involvin
clusters ofa sites.

Once these interactions are known, the ground-state p
erties of the alloy at zero-temperature, i.e., the possible
dered state which is stable at each concentration, can be
dicted. Finally, combined with a statistical model such as
cluster variation method or with Monte Carlo simulation
the configurational part of the free energy can be compu
and hence, the phase diagram of an alloy which summar
the phase stability properties as functions of temperature
concentration.1 With this motivation in mind, we show tha
the effective interactions can be easily calculated in r
space using the so-called orbital-peeling method first in
duced by Burke,12 based on the solution of the CPA equ
tions. The application of the real-space extended recur
technique to obtain these solutions is one of the subj
discussed in this paper.

So far, most studies on stability and order in alloys ha
been performed for alloys based on simple periodic lattic
Within the present real-space approach, it will be possible
extend such studies to alloys based on complex lattices e
in the presence of extended defects, as well as to topol
cally ~structurally! disordered materials.

The rest of the paper is organized as follows. In Sec.
after a brief introduction of the CPA equations in the loca
formalism, we present the principle of the solution of the
equations in real space, and then some technical aspec
the new approach. Then we relate the so-called sum spa
which the CPA-extended recursion is performed to the a
mented space introduced by Mookerjee,13,14 and give some
of its properties. Finally we show how to calculate the co
ficients of the continued fraction expansions of the CPA s
energy and renormalized interactor for binary and high
order multicomponent alloys. In Sec. III, we briefly revie
the formalism which leads to the ECM, and the impleme
tation of the orbital-peeling method for calculating the effe
tive interactions which build up the configurational part
the total energy of an alloy within this ECM. In Sec. IV
some applications of this real-space approach are discus
In particular, the density of states and the effective inter
tions for binary, pseudobinary, and ternary transition me
alloys as obtained with the real-space approach are comp
with the ones calculated with the well knownk-space meth-
uld
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odology. Finally, in Sec. V, we summarize our results, a
briefly discuss the possible extension of this method to st
more complex alloy situations.

II. REAL-SPACE SOLUTION OF THE CPA EQUATIONS

In this section we show how the self-consistent CP
equations which describe chemical disorder in substitutio
alloys are solved within the real-space method presente
this work. To this end, we begin by recalling briefly th
classical formulation of the CPA equations in the loca
formalism which is most convenient for introducing o
method. Then, in the following three subsections we pres
the new formalism. Finally we give a summary of th
method and discuss how this approach is extended to
multiband case, which is a requirement for studying the el
tronic structure properties of realistic alloy systems.

A. The CPA equations

For the sake of clarity, let us first consider the case o
binary alloy with only ones orbital located on each site of it
underlying lattice. The generalization to multiband alloys
straightforward, and will be discussed in the summary of t
section. Since we only consider~for now! the case of diag-
onal disorder, the HamiltonianH for a given configuration of
the alloy is written in the form

H5H01V, ~2.1!

whereH0 is the site off-diagonal part of the Hamiltonia
which is supposed to be independent of disorder, and is w
ten in terms of the hopping integralsbnm between sitesn and
m as

H05 (
n,mÞn

bnmun&^mu, ~2.2!

andV is the random diagonal part ofH given by

V5(
n

enun&^nu, ~2.3!

where

en5(
i
pn
i en

i ~2.4!

and un& is an atomic orbital~here, there is one orbital pe
site! centered on siten, pn

i is equal to one if siten is occu-
pied by the atomic speciesi and to zero otherwise, anden

i is
the on-site energy associated with speciesi centered on site
n ~unless otherwise specified, we will assume in the follo
ing that this quantity, referred to ase i , does not depend on
n). In the following we will also assume that the atom
orbitals form an orthonormal basis, i.e.,^num&5dnm , where
dnm is the usual Kroenecker symbol.

In order to introduce our new methodology, it is conv
nient to start from the locator equation of motion for a si
diagonal element of the Green function9,15 which takes the
form

Gnn5gn1gnDnGnn , ~2.5!
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where gn is the locator associated with siten, given by
(z2en)

21, and

Dn5 (
mÞn

bnmgmbmn1 (
mÞn
lÞm

bnlglb lmgmbmn1•••.

~2.6!

This quantity,Dn , represents the change in energy of
electron at siten due to its interaction with the surroundin
medium. Note that in the case of diagonal disorder on
Dn depends on the configuration of the medium surround
site n, but not on the occupation of the siten itself. The
Green function can be rewritten as

Gnn5~gn
212Dn!

215~z2en2Dn!
21. ~2.7!

In agreement with the assumptions behind the single-
CPA, the average medium surrounding siten is assumed to
be given by a Hamiltonian with a site-diagonal coherent
tential s which is a function of the complex energyz, and
off-diagonal elements given in terms of the hopping integr
b. The expression forD̄ associated with this average mediu
is given by an expression analogous to Eq.~2.6! but with
eachgn replaced byḡ5(z2s)21, the so-called bare locato
for the effective medium. Therefore, we obtain an appro
mation for the site-diagonal elementG00

i associated with an
atom of typei ~here,i5A or B) at site 0 embedded in th
medium:

G00
i 5~z2e i2D̄0!

21. ~2.8!

Due to the independence ofD̄0 on the occupation of site 0
the site-diagonal element of the Green function associa
with the effective medium is given by

Ḡ005~z2s2D̄0!
21. ~2.9!

Within the CPA, the self-energys is determined through the
self-consistency condition

^G00
i &5Ḡ00, ~2.10!

that is,

(
i
ci ~z2e i2D̄0!

215~z2s2D̄0!
215Geff~z!,

~2.11!

whereci is the concentration ini species.
This implicit equation fors is usually solved numerically

at each complex energyz, for either the single or the mul
tiorbital case. Making use of the fact that the average m
dium has the periodicity of the underlying lattice, this so
tion is effected in reciprocal space within the propaga
formalism, using the Bloch’s theorem. It is well known th
the CPA condition in the locator formalism is identical to t
corresponding condition in the propagator formalism as w
as in the mean-field approach8 which are most commonly
used for the solution of the CPA equations. Note that
reciprocal space, the standard numerical approach requi
diagonalization of the Hamiltonian until full convergence
the solution to the CPA equations is achieved at each en
step and eachk point. In practice, this mode of operatio
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imposes drastic constraints on memory allocation and t
of execution. We will show in the following that our rea
space approach is free of these limitations, and opens up
possibility of addressing more complex issues than th
possible with presently available techniques.

B. Principle of the real-space methodology

In the following we present a real-space solution of t
CPA equations which employs the two self-energies:s(z),
which represents the effect of chemical disorder, a
Dn(z), the so-called renormalized interactor, associated w
site n, which accounts for the coupling between siten and
the surrounding medium, here the effective medium as
scribed within the CPA. From Eq.~2.6!, it is clear that the
interactor that we now denoteD(z) depends on the effective
medium which is entirely defined bys(z). Thus, we can
formally write the functional relation

D~z!5 f @s~z!#. ~2.12!

Then, the CPA self-consistency condition can be expres
as

s~z!5g@D~z!#, ~2.13!

which leads to an iterative solution fors(z) at each complex
energyz.

Since the two basic functionsD(z) ands(z) are Herglotz
~which can be rigorously proved!, they can be represented b
continued fractions, and in the following we will use th
notations

s~z!5A01
B1
2

z2A12
B2
2

z2A22
B3
2

z2•••

~2.14!

and

D~z!5
b1
2

z2a12
b2
2

z2a22
b3
2

z2•••

. ~2.15!

Thus, the basic principle of our method is to determine
continued fraction coefficients$Ap ,Bp% for s and $aq ,bq%
for D, rather than calculatings andD at each complex en
ergy z.

To avoid the introduction of additional functions or op
erators, we will constantly use in the following the equiv
lence between the continued fraction expansion ofs(z) @or
D(z)# and the schematic representation of the associated
Hamiltonian by a semilinear chain whose on-site energ
are theAq ~or ap) and the nearest-neighbor hopping integr
are theBq ~or bp), as indicated in Fig. 1. This equivalenc
immediately allows us to replace the effective Hamiltoni
Heff(z) for the disordered alloy by a Hamiltonian represent
by the semilinear chain (Aq ,Bq) attached to each site of th
lattice on which the alloy is based. These chains exa
represent the effect of the self-energys(z). This second
equivalence is represented in Fig. 2 in the case of an a
based on an infinite linear chain. With this energ
independent effective Hamiltonian, associated with the se
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56 1729REAL-SPACE TIGHT-BINDING APPROACH TO . . .
linear chain, the matrix element of the Green function can
calculated. The advantage of this formulation resides in
fact that methods developed for solving TB Hamiltonian
such as the recursion technique, can now be used. If
calculatesD(z) by a recursion method with an initial recu
sion vectoru0% which is taken to be the atomic orbitalu0&
centered on site 0, then it is well known that the success
vectors up% of the recursion extend away from site 0.
particular,up% will have nonzero components on sitesq of
the chain attached to the sites of the real crystal up to a fi
value of q. Thus, in order to calculateup% and also
(ap ,bp), we do not need to know all the (Aq ,Bq). It is
shown later by a precise analysis of the recusion scheme
one can obtain an expression for theap andbp in terms of
the (Aq ,Bq) of the following type:

ap5ap~Ap21 ,Bp21 , . . . ,B1 ,A0!,

bp5bp~Bp21 ,Ap22 , . . . ,B1 ,A0!, ~2.16!

which is another way of expressing Eq.~2.12!.
Let us for now reconsider the self-consistent CPA eq

tion ~2.11!, and show how to get information on theAq and
Bq from the (ap ,bp). A Laurent’s expansion of both sides o
this equation expressed as

FIG. 1. Schematic representation of the continued fraction
pansion of the self-energys(z) and of the renormalized interacto
D(z) by semilinear chains.
-
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1

z2e i2D̄~z!
5(

p

m i~p!

zp11 ,

1

z2s~z!2D̄~z!
5(

p

m~p!

zp11 , ~2.17!

gives by identification of the terms associated with the sa
power of 1/z the result

m~p!5(
i
cim i~p! ~2.18!

for p>0. Then, recalling that the moments are expresse
terms of the continued fraction coefficients,2 relations among
these coefficients can be obtained. More precisely,

m i~2p!5m i~bp ,ap21 ,bp21 , . . . ,b1 ,e i !,

m i~2p11!5m i~ap ,bp ,ap21 ,bp21 , . . . ,b1 ,e i !
~2.19!

and

-

FIG. 2. Equivalent representations of the effective Hamilton
describing chemical disorder, within the CPA, here for an al
based on an infinite linear chain~thick solid lines!.
m~2p!5m~Bp ,Ap21 ,Bp21 , . . . ,A0 ;bp ,ap21 ,bp21 , . . . ,b1!,

m~2p11!5m~Ap ,Bp ,Ap21 ,Bp21 , . . . ,A0 ;ap ,bp ,ap21 ,bp21 , . . . ,b1!. ~2.20!
ed
di-
ve

-
e

Thus, by using Eq.~2.18! we can calculate, at least in prin
ciple, the coefficientsAq andBq from the coefficientsap and
bp . One easily gets

A05A0~$e i%!,

B15B1~b1!,

A15A1~a1 ,b1!

B25B2~b2 ,a1 ,b1!, ~2.21!

and for the general terms
Aq5Aq~$ap ,bp%!, p<q,

Bq5Bq~bq ,$ap ,bp%!, p<q21. ~2.22!

Now, proceeding this way, the calculation of the continu
fraction coefficients becomes cumbersome and ill con
tioned. However, the main point is summarized in the abo
relations, Eqs.~2.21! and ~2.22!, which give the number of
coefficientsap andbp that one must know in order to calcu
late the coefficientsAq andBq . Note that these relations ar
a direct and more precise way of expressing Eq.~2.13!.
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Let us now summarize the principle of solution of th
CPA equations within the present approach. On one ha
we have seen that the effective medium in which an atom
embedded is determined by the self-energys(z), and the
interactorD(z), associated with siten and coupled with the
effective medium, which depends ons(z), as indicated in
Eq. ~2.12!. This can be used with a recursion procedure
calculate the coefficientsap and bp as functions of the
$Aq ,Bq% according to Eqs.~2.16!, or relations I. On the othe
hand, Eq.~2.13! allows us to relate by a simple mome
analysis theAq andBq to the $ap ,bp% by Eqs. ~2.21! and
~2.22!, or relations II. Then we use successively the relatio
II, I, II, I, II, . . . , which is another way of expressing th
iterative procedure required to achieve self-consistency
the classical solution of the CPA equations. For exam
A0 can be calculated from II, thena1 andb1 are calculated
from I, thenA1 andB1 are calculated from II and so on . . . .
Now that we have given the principle of our approach
consider the more technical points. We consider first the
culation ofap andbp ~relations I!, and show by an analysi
of a recursion procedure how to obtain the coefficientsAq
andBq that one needs to know at any given step. Then
describe the calculation ofAq andBq from ap andbp ~rela-
tions II!. To this end, we introduce first the concept of su
space, and the calculation of averages of operators in
space. We apply this concept to the treatment of relation
and show thats(z) is the self-energy associated with a
orbital for a Hamiltonian whose matrix elements depend
ap andbp . This allows us to calculateAq andBq again by a
recursion procedure on that Hamiltonian.

C. Extension of the recursion vectors

Starting from an orbital centered on a given site, let
analyze a recursion procedure to determine the coeffici
Aq andBq which are needed to calculate the recursion vec
up% and the coefficientsap andbp . The generalization to the
multiorbital case is straightforward, and will be discuss
later. In the recursion procedure, one calculates the se
recursion vectorsup% according to the following recurrenc
relation:

Hup%5apup%1bpup21%1bp11up11%, ~2.23!

with b050, and the condition that, at each step, the recurs
vectors are orthonormal, i.e.,

$puq%5dpq . ~2.24!

As is well known, for a TB Hamiltonian, the statesup%
extend progressively from the initial orbital centered on
given site, which corresponds tou0%5u0&. Thus ones need
to know only the matrix elements of the Hamiltonian b
tween orbitals located at different site positions on wh
up% has a nonzero component. In Fig. 3, we present the
gressive extension of this vector in the case of an alloy ba
on an infinite linear chain. At each stepup%→up11%, the
wave function has components one step further on the s
linear chains. Thus, it is clear thatup% will have nonzero
components up to site (p21) of the semilinear chain at
tached to the first neighbors and up to site (p22) for the
second neighbors, and so on. If we call neighbor of orderq a
d,
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e
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n
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d
of

n
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site which can be reached from the site at the origin inq
steps, i.e., corresponding to the application ofHq to u0%, then
we conclude thatup% has nonzero components up to s
(p2q) of the semilinear chain attached to a neighboring s
of orderq. Sinceap andbp11

2 are calculated from

ap5$puHup%, p>1,

bp11
2 5iHup%2apup%2bpup21%i2, p>0, ~2.25!

the values ofap andbp can be determined provided we kno
all the coefficients of the seriesA0 ,B1 ,A1 ,B2 , . . . up to
Ap21 and Bp21, respectively. This justifies the formal ex
pression given by Eqs.~2.16!.

D. Sum space and its properties

In the study of chemically disordered systems, one ha
calculate average values of operators or of some matrix
ments of operators. For example, in the calculation of
density of states, we are primarily interested in the diago
element of the resolvent of the Hamiltonian. We will sho
that the sum space is a natural and general frame for
calculation of these averages, and that it is related to
augmented space which has been introduced by Mookerj13

to describe specifically substitutional alloys.

1. Operators in the sum space

Let us consider a set of systems$Si% associated with the
set of vectors$un&Si%. For simplicity, we consider the cas
where there is a one to one correspondence between the
tors of the different systemsSi . The Hilbert space for each
systemSi is generated by these vectors. Let us defineS as
the sum space16 generated by theun&Si for all un& and all

Si . For any operatorAi acting onSi , the average of the
matrix elements ofAi can be written as

FIG. 3. Equivalent representations ofGeff(z) by a lattice, here
an infinite linear chain with each site ‘‘dressed’’ by a semiline
chain representings(z) ~top part!, and by a semilinear chain in th
recursion basis~bottom part!. The extension of the recursion vecto
at each step, here 1–3, is represented by solid, dashed, and d
solid lines, respectively.
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Ānm5(
i
pi Si

^nuAi um&Si, ~2.26!

wherepi is the probability associated withSi . From theAi
one can define the sum-operatorA in the sum-spaceS as

A5(
i
Ãi , ~2.27!

where the action ofÃi in S is simply given by

Ãi un&Sj5Ai un&Sid i j . ~2.28!

In other words,Ãi is now an operator acting inS, but its
action inSi is the same as forAi , and for any otherSj , Ãi
has no action. With this property it is straightforward to e
tablish the relation

Ānm5(
i
pi Si

^nuAi um&Sj5^n~p!uAum~p!&, ~2.29!

whereua(p)&5( iApi ua&Si, anda is equal ton or m. Thus,

the average of the matrix elements ofAi is formally related
to a matrix element of the sum-operatorA5( i Ãi , with Ãi
being the extension ofAi in the sum-spaceS5( iSi . The
sum-operatorA has some useful properties that we now d
rive.

2. Properties in the sum space

Let us consider two operatorsÃi andB̃j with the obvious
property

Ãi B̃ j5AiBj̃ d i j5Ãi B̃ jd i j . ~2.30!

Then one readily gets

An5(
i

~ Ãi
n! ~2.31!

for n>0. It is also easy to prove that

A215(
i

~ Ãi
21! ~2.32!

and then finally

An5(
i
Ãi
n ~2.33!

for any integern, positive or negative.
By extension, we expect that a function of an opera

f (A), will be given by

f ~A!5(
i
f ~Ai !̃. ~2.34!

We note that for any operatorAi which can be diagonalized
this relation is straightforward in the basis ofS that diago-
nalizes eachÃi , and the same will hold for functions o
several operators. As an example, consider the Green op
tor,
-

-

r,

ra-

G~z!5
1

z2H
5(

i
G̃i~z!, ~2.35!

with G̃i5(z2Hi)
21, andHi is the Hamiltonian which de-

scribes the systemSi . Then,

(
i
pi

Si

K aU 1

z2Hi
Ua L

Si

5
S
K aU 1

z2H Ua L
S

, ~2.36!

where ua&S5( iApi ua&Si. This equality will be used in the
next subsection to solve the self-consistent CPA equatio
and to give us a relation betweens(z) and D̄0(z).

3. Relation between the sum space and the augmented spac

In the case of a substitutional alloy, assumed here for
sake of clarity of exposition to be a binary alloy, each syst
Si of the configuration sum space is associated with a gi
configurationSi of the alloy. Therefore, a systemSi will be
specified by the configuration of each siten (n51,N) of the
lattice on which the alloy is based. This configuration is d
termined by a set of occupation numberspn( i ), which indi-
cates that siten of Si is in the configurationSi . Thus, the set
of all states$un&Si% in the basis is isomorphic to the tensori
product,

un&3u1,p1~ i !&3u2,p2~ i !&3•••3uN,pN~ i !&, ~2.37!

where eachpn takes the value 0 or 1 depending on the o
cupation of siten by anA or aB species, respectively.

We see that the sum space is isomorphic to a tenso
product of the Hilbert space spannned by the orbitals$un&%
with the configuration space which is generated by the v
tors

uf&5u1,p1~ i !&3u2,p2~ i !&3•••3uN,pN~ i !&. ~2.38!

If we defineC as being the sum space,H the Hilbert space
spannned by the orbitals, andF the configuration space, w
can write formally

C5H3F, ~2.39!

which is the starting relation on which the augmented sp
formalism derived by Mookerjee is based.13 Thus, rather
than working in the sum space of all alloy configurations,
can equivalently work in the product space as done in R
13. In the framework of the sum space formalism, the av
age of a matrix element of an operator over all alloy config
rations will be written as

Si
^nuAi um&Si5^n~P!uAum~P!&, ~2.40!

whereP is the probability distribution for all the configura
tions i . If Pi is the probability of configurationi , then

Pi5Q1„p1~ i !…Q2„p2~ i !…•••QN„pN~ i !…, ~2.41!

whereQn is the probability distribution for all the accessib
configurations at siten.

In the case of a periodic lattice with one atom per u
cell, Qn does not depend onn. In Eq. ~2.40!, a(P) ~where
a5n,m) is defined as
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ua~P!&5(
i

APi ua&Si5un&ua1&•••uaN&, ~2.42!

where

uan&5 (
p50,1

AQn~p!un,pn& ~2.43!

since for a binary alloyp can only take two values, 0 or 1, o
every site. Hence, we recover the formulation of average
the augmented space formalism. This formalism has b
proven useful for the study of substitutional alloys,14,17–19

and this suggests that the sum-space formalism can
equally useful. However one can work along a different p
within the sum-space representation. For example, the ab
change in the basis which leads to the product space i
trates this. We will show below that a change in the ba
also allows us to derive a number of useful relations.

E. Calculation of the coefficients of continued fraction

We have seen from the analysis of the momentsm(p), in
Sec. II B, that the coefficientsAq andBq can be calculated
step by step from the coefficients (ap ,bp). In this subsection,
we use the properties of the sum space to derive a for
relation betweens andD. First, we consider the case of
binary alloy. Note that the derivation given in Ref. 20 f
binary alloys is difficult to extend to the case of higher-ord
multicomponent alloys, whereas the sum-space formal
leads to a straightforward generalization as will be shown
the case of ternary and quaternary alloys.

1. Binary alloys

For binary alloys, the self-consistency condition with
the CPA reads:

(
i5A,B

ciGi~z!5G~z!, ~2.44!

with

Gi~z!5@z2e i2D~z!#21,

G~z!5@z2s~z!2D~z!#21. ~2.45!

Using the representation ofs andD in terms of semi-infinite
linear chains,Gi andG can be viewed as the diagonal el
ments of Green operators on siteu0& i and u0&, respectively,
of the systemsSi and S which are represented in Fig. 4
Using Eq.~2.36! derived in Sec. IID2, we get

(
i5A,B

ciGi~z!5H 0U 1

z2HU0J , ~2.46!

whereH is the sum Hamiltonian associated with syste
SA and SB , i.e., H5H̃A1H̃B . In other words,H is the
Hamiltonian of the global systemS made of the two un-
coupled systemsSA andSB , each associated with its Hami
tonian H̃A and H̃B , respectively.
in
en

be
h
ve
s-
is

al
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The sum Hamiltonian can now be conveniently expres
in a new basis, different from the original bas
$up%SA,up%SB; p50,1,2, . . .%. For eachp, we define two or-
thonormal states

up%S5AcAup%SA1AcBup%SB,

up%AS5AcBup%SA2AcAup%SB, ~2.47!

which generate the sum-spaceS5SA%SB . One has obvi-
ously the relations

S$puq%S5dpq ,

AS$puq%AS5dpq ,

AS$puq%S5 S$qup%AS50. ~2.48!

It is then easy to express any matrix element ofH in this new
orthonormal basis. Since all matrix elements ofH̃A and H̃B
are identical except for the on-site terms associated w
u0&A and u0&B , one gets for (p,q)Þ(0,0)

S$puHuq%S5AS$puHuq%AS5SA
$puH̃Auq%SA5SB

$puH̃Buq%SB ,

S$puHuq%AS5AS$quHup%S50, ~2.49!

and for (p,q)5(0,0),

S$0uHu0%S5cAeA1cBeB[eS,

AS$0uHu0%AS5cBeA1cAeB[eAS,

S$0uHu0%AS5AS$0uHu0%S5AcAcB~eA2eB![U.
~2.50!

The HamiltonianH expressed in this new basis is sch
matically represented in Fig. 5. The formal expression for
average of the Green functionsGA(z) and GB(z) implies
that cAGA(z)1cBGB(z) is the Green function on the sit
occupied by the vectoru0%S for the Hamiltonian represente
in Fig. 4. Therefore, the self-consistency condition impos
the equality of the diagonal elements of Green functions
the first site of the semilinear chain associated with the v
tor u0%S of Fig. 5 ~top!, and on the first site of the semilinea
chain associated withu0% of Fig. 4 or equivalently, of Fig. 5

FIG. 4. Schematic representation ofGi(z) andG(z) associated

with H̃ i andH, respectively, in the original basis.
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~bottom!. Consequently the self-energys(z) is represented
by the coupling to the semi-infinite linear chain of Fig.
~bottom!, and by simple identification, this function is an
lytically given by

s~z!5eS1
U2

z2eAS2D~z!
, ~2.51!

which, with an appropriate change in the notations, is id
tical to expression~17! given in Ref. 20.

By identification of the continued fraction expansions
s(z) andD(z), we then obtain

A05eS ,

A15eAS,

B1
25U2,

•••

Bq5bq21 , q>2,

Aq5aq21, q>2. ~2.52!

2. Ternary and higher-order multicomponent alloys

For an alloy containingnc components, Eq.~2.36! can be
rewritten as

FIG. 5. Schematic representation of the HamiltonianH ex-
pressed in the new basis$up%S ,up%AS% ~top!, and compared with its
representation in the original basis$up%% ~bottom! for a binary alloy.
-

f

(
i51,nc

ciGi~z!5H 0U 1

z2HU0J , ~2.53!

whereu0%5( i51,nc
Aci u0%Si andH5( i51,nc

H̃ i , with H̃ i be-
ing the Hamiltonian associated with the semilinear chain r
resenting the continued fraction expansion ofGi . Again, the
initial basis$up%Si% is replaced by

up%S5 (
i51,nc

Acip%Si,

up%ASj5 (
i51,nc

uji up%Si, j51,nc21. ~2.54!

The choice for the coefficientsuji is such that the new basi
must be orthonormal. However, we note that this choice
not unique since the space orthogonal toup%S is of dimension
nc21, for a givenp. Since theH̃ i only differ by the on-site
energies associated withu0%Si, one gets for (p,q)Þ(0,0),

S$puHuq%S5ASj
$puHuq%ASj, j51,nc21,

5Si
$puH̃ i uq%Si , i51,nc , ~2.55!

and for (p,q)5(0,0),

S$0uHu0%S5 (
i51,nc

cie i[eS , ~2.56!

with the other matrix elements ofH easily determined once
the particular choice for$uji % is made. Let us define

eASi5ASi
$0uHu0%ASi, i51,nc21,

Ui5S$0uHu0%ASi, i51,nc21,

Ui j5ASi
$0uHu0%ASj , i , j51,nc21, ~2.57!

with Ui j5Uji .
Then the HamiltonianH expressed in the new basis

schematically represented in Fig. 6. The expression~2.53!

FIG. 6. Schematic representation of the HamiltonianH ex-
pressed in the new basis$up%S ,up%AS1,up%AS2% for a ternary alloy.
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shows that( iciGi(z) is given by the diagonal element o
$0u(z2H)21u0% in the sum space. Therefore,s(z) is simply
obtained by identification of the representations ofG(z) in
the old and the new basis, given in Fig. 5~bottom! and Fig.
6, respectively. Contrary to the binary case, this time we
not have an analytic expression fors(z) as a function of
D(z). Note, however, that since we are interested in the
termination of the coefficients (Aq ,Bq) of the continued
fraction expansion fors(z), we can simply calculate them
for the system represented in Fig. 7~right-side representa
tion! by an additional recursion scheme. With an analy
similar to that given in Sec. IIC regarding the extension
the recursion vectors, we conclude that

Aq5Aq~aq21 ,bq21 ,aq22 ,bq22 ,•••,b1!, q>2,

Bq5Bq~bq21 ,aq22 ,bq22 ,•••,b1!, q>2, ~2.58!

andA0 is immediately given byA05( i51,nc
cie i . We also

note thatB1 andA1 do not depend onD(z) via its coeffi-
cients (ap ,bp) since the vectoru1% has a nonzero projectio
only on u0%S and u0%ASj ~j51,nc21). As a further example
of the extension to higher-order multicomponent alloys,
give in Fig. 8, the equivalent representations of the s
energys(z) in the case of a quaternary alloy.

F. Summary of the methodology and extension
to the multiorbital case

The principle of our approach is to deal with the equatio
of the CPA theory within the locator formalism. The tw
functions which naturally appear in this formalism a
s(z), which is the self-energy associated with an orbital a
which represents the effect of chemical disorder, andD(z),
the so-called renormalized interactor, which refers to
coupling of an orbital centered on a given site with the
fective CPA medium.

First, within the CPA theory, the Herglotz property
these two functions allows us to consider their continu
fraction representations. Hence, the determination ofs(z)

FIG. 7. Equivalent representations of the self-energys(z) in the
case of a ternary alloy.
o
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e
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andD(z) at all complex energiesz becomes possible throug
the calculation of the coefficients of their continued fracti
expansions.

Second, we use the well-known equivalence betwee
continued fraction expansion and its representation in te
of a semilinear chain, in which case the matrix elements
the Hamiltonian associated with this chain are the coe
cients of the continued fraction. Replacings(z) by the cou-
pling to a semilinear chain leads to the definition of
energy-independent effective Hamiltonian. The calculat
of average Green operator matrix elements can then be
formed by real-space methods such as the recursion,
properties derived from the electronic structure, such as d
sity of states, integrals over the density of states~e.g., ener-
getics, effective interactions!, or transport properties can b
predicted in a very efficient way. Third, in order to solve t
self-consistent CPA equations, we use alternatively two
lations, namely,D(z), which depends on the effective env
ronment, and is a function ofs(z), ands(z), by the CPA
self-consistency condition, which is a function ofD(z).

By performing a recursion with a starting vector bein
one of the atomic orbitals centered on a given site, we
make use of the first relation:D(z)5 f @s(z)#, with the in-
troduction of an energy-independent effective Hamiltonia
We calculate theap andbp :

ap5ap~Ap21 ,Bp21 , . . . ,A1 ,B1 ,A0!,

bp5bp~Bp21 ,Ap21 , . . . ,A1 ,B1 ,A0!. ~2.59!

If there are several inequivalent orbitals,l51,no , then
one must consider a set of renormalized interactorsDl(z)
and self-energiessl(z) associated with each of these orb
als. Then the coefficientsap

l andbp
l , expressed as

ap
l5ap

l~Ap21
m ,Bp21

m , . . . ,A1
m ,B1

m ,A0
m!,

bp
l5bp

l~Bp21
m ,Ap21

m , . . . ,A1
m ,B1

m ,A0
m!, ~2.60!

are calculated with a recursion procedure by starting fr
each of theno inequivalent orbitals, i.e., by perfomingno
recursions in parallel. Note that this procedure becomes w
suited for a practical implementation on a parallel compu

FIG. 8. Equivalent representations of the self-energys(z) in the
case of a quaternary alloy.
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Then, we can explore the CPA self-consistency conditi
i.e., the second relation which relatess(z) to D(z). In the
multiorbital case, one gets a set of self-consistency co
tions, sl(z)5g@Dl(z)#. Note that these equations do n
couple differentl ’s in contrast to the previous set of rela
tionsDl(z)5 f @sm(z)# which does. Again by an applicatio
of the recursion scheme, we get

Aq
l5Aq

l~aq21
l ,bq21

l , . . . ,b1
m!,

Bq
l5Bq

l~bq21
l ,aq22

l , . . . ,b1
m!. ~2.61!

The final solution of the CPA problem is obtained b
using alternatively the two sets of relations mentioned abo
In addition to the real-space aspect of the solution, this n
methodology can be easily extended to account for
diagonal disorder within the Shiba approximation15 or the
approach of Blackman, Esterling, and Berk,21,22 as will be
shown in a forthcoming publication, and can be applied
other approximations such as the cluster Bethe lat
method,23 or the calculation of transport properties in diso
dered alloys.

III. EMBEDDED CLUSTER METHOD
AND THE ORBITAL-PEELING TECHNIQUE

Since the ECM has been compared in detail with ot
approaches which are also based on the electronic stru
of the chemically disordered state of an alloy,10 we only
present the main results here.

A. Embedded cluster method

Let us consider a system consisting of a clusterCnkof nk
sites, embedded in a disordered material. An exact treatm
of this system would require a complete configurational
erage over all configurations of the material surrounding
cluster. Clearly, approximations must be made to solve
problem. At the first level of approximation, all sites outsi
the cluster are taken as being occupied by effective med
scatterers, or ‘‘CPA atoms.’’ The configurational~or order-
ing! energy is then given by

E~$dcn%,EF!5ECPA1(
n

Vn
~1!dcn1

1

2 (
m,n

9 Vnm
~2!dcndcm

1
1

3 (
l ,m,n

9 Vlmn
~3! dcldcmdcn1•••, ~3.1!

wheredcn refers to the fluctuation of local concentration,
discussed in the Introduction. In this equation,ECPA is the
energy associated with the CPA medium, andVn1 ,n2 ,•••,nk

(k) is

an effective cluster interaction defined within the ECM as

Vn1n2•••nk
~k! 5@Vn1n2•••nk21

~k21! #nk
A 2 @Vn1n2•••nk21

~k21! #nk
B .

~3.2!

The double primes in Eq.~3.1! denote that the sums ar
performed over distinct sets of sites, i.e., all theni indices are
different, as opposed to the GPM expansion where the
strictions apply to consecutive sites only, and lead to s
,
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retracing scattering contributions to the effective pair int
actions~EPI’s! such asVmnmn

(4) , Vmnmnmn
(6) , . . . .

The symbol@Vn1n2•••nk21

(k21) #nk
i in Eq. ~3.2! denotes an effec-

tive multisite interaction among thenk sites of clusterCnk,
under the restriction that sitenk is occupied by an atom o
type i . It has been shown that the ECM and the GPM a
closely related,10 with the former corresponding to a summ
tion of a set of diagrams~terms! of the latter. Note that, as in
any perturbation theory which relies on the CPA mediu
the small parameter in the GPM only depends on the sca
ing properties of the electrons, which means that the exp
sion for the ordering energy is valid even for large fluctu
tions of local concentrations. In practice, the second or
contribution to the EPI,Vnm

(2) , within the GPM is essentially
numerically indistinguishable from the full summation pr
vided by the ECM of all scattering processes taking pla
between the two sitesn andm. One advantage of the ECM i
that it allows the calculation of local densities of stat
within a cluster, with a specific atomic configuration, embe
ded in the CPA medium, and thus the study of local enviro
ment effects on the electronic structure properties of allo

B. Calculation of the effective interactions
and the orbital-peeling method

The energyVn
(1) in Eq. ~3.1! is an effective single-site

interaction which, by definition, is associated with the inte
change of aB species with anA species at siten. This
interaction is simply given by

Vn
~1!5E

2`

EF
~e2EF!~nn

B~e!2nn
A~e!!de, ~3.3!

whereEF is the Fermi energy of the CPA medium, and

nn
i ~e!52

Im

p
lim

h→01

Gnn
ii ~e1 ih!, ~3.4!

with i referring to the species, and

Gnn
ii ~z!5@z2en

i 2Dn~z!#21. ~3.5!

Note that for alloys based on a periodic lattice with one s
per cell, the total single-site contribution to the configur
tional energy is zero sinceVn

(1) does not depend on the sit
indexn, and(n51

N dcn50, whereN is the number of sites in
the crystal.

The effective two-site~or pair! interaction ~or EPI!,
Vnm
(2) , is given by the difference in single-site interactions

site n when sitemÞn is occupied by anA or aB species.
This energy difference is by definition given by

Vnm
~2!5E

2`

EF
~e2EF!Dnnm~e!de, ~3.6!

where

Dnnm~e!52
2

p
Im lim

h→01
(
i j

si j ^Tr~zI2Hnm
i j !21&,

~3.7!
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with si j5 11 or21 depending on whether or noti5 j , and
the sum extending over all possible combinations of pa
i j ( i , j5A,B for the case of a binary alloy!. The operator
Hnm
i j is the Hamiltonian of a system where all sites exc

n andm are occupied by speciesi and j , respectively. The
factor 2 in Eq.~3.7! accounts for the spin degeneracy, a
the trace, Tr, refers to a sum over theno orbitals. The symbol
^ & denotes a configurational averaging over all sites exc
n andm. This EPI can be expressed in terms of the ph
shift h(z) according to

Vnm
~2!52

2

pE2`

EF
de~e2EF!

dhnm~z!

dz
, ~3.8!

where

hnm~z!5 ln
det̂ Gnm

AA&det̂ Gnm
BB&

det̂ Gnm
AB&det̂ Gnm

BA&
, ~3.9!

with Gnm
i j being the resolvent of the HamiltonianHnm

i j .
In a conventional calculation, for a binary alloy charact

ized byno orbitals, the determination of one EPI involve
without reference to any symmetry of the lattice, 22no

2 cal-
culations. It was shown in the mid 70’s by Burke12 that such
a determination can be achieved with only 22no calculations
with the so-called orbital-peeling method~OPM!. This
method also offers the advantage that only site-diagona
ements of Green functions~and not the off-diagonal ones!
need to be calculated. Within the OPM, the expression~3.6!
for the EPI is rewritten as

Vnm
~2!52

2

p
Im(

i j
si j (

l51

no

dX, ~3.10!

where

dX5E
2`

EF
~e2EF!ln^Gnm

l,i j &de

5 (
a51

p21

za
l,i j2 (

a51

p

pa
l,i j1~nP

l,i j2nZ
l,i j !EF . ~3.11!

In this last expression,Gnm
l,i j is the resolvent of a Hamiltonian

Hnm
l,i j which defines a system where the two speciesi and j

located at sitesn andm, respectively, are embedded in th
average medium~here, the CPA medium!, and for which the
orbitals from 1 tol21 are omitted at siten. The quantities
za

l,i j andpa
l,i j are the zeros and the poles ofGnm

l,i j , up to the
Fermi energy, which is indicated by the summation overa
up top21 in the case of the zeros, and up top in the case of
the poles. ThenZ

l,i j andnP
l,i j correspond to the numbers o

zeros and poles, respectively.
With this OPM, one avoids the numerical integration

Eq. ~3.6!. In addition, the zeros and the poles of the Gre
function Gnm

l,i j are easily determined in the context of th
CPA-extended recursion presented above. Indeed, the p
correspond to the eigenvalues of a tridiagonal matrixP
whose elements arePnn5an andPnn215Pn21n5bn21, and
the zeros are given by the eigenvalues of a tridiagonal ma
Z obtained from the matrixP by deleting its first column and
row. This eigenvalue problem is well conditioned, and
s

t

pt
e

-

l-

f
n

les

ix

great accuracy can be achieved in the determination of
zeros and the poles entering expression~3.11!.

To ensure a continuous variation of the EPI’s with t
Fermi energy~and therefore the band filling!, we adopted a
slightly modified procedure than the one indicated in Ref.
To position a pole ofGnm

l,i j at the Fermi energyEF , the last
coefficientap of the continued fraction expansion is mod
fied. This method preserves all other coefficients of the c
tinued fraction, and thus all the moments of the density
states, except the last one,m2p11. Having a pole atEF im-
plies that the last coefficientap* is given by

ap*5EF1
bp21
2

ap212EF2
bp22
2

ap222EF2•••2
2b1

2

a12EF

.

~3.12!

With this last modified coefficient, we recompute the po
and the zeros of the Green function and their numbers. N
that this operation can be applied after having extended
continued fraction expansion with a number ofa` and b`

2

which correspond to the asymptotic values ofap and bp
2 ,

respectively. The asymptotic values of these coefficients,
lated to the center of the spectral support,a` , and to its
width, 4b` , can be accurately determined in the case o
connected electronic spectrum, i.e., in the absence of a
with the Beer-Pettifor method,24 or with the method pro-
posed in Ref. 4 when gaps exist.

In practice, since the self-energysnl(z) is known by its
continued fraction expansion, it is a simple matter to det
mine the continued fraction expansion ofGnm

l,i j with a recur-
sion scheme by~i! branching on each site of the real lattic
except at siten and m, a semilinear chain representin
sn(z), or no chains representingsnm(z), in the multiorbital
case;~ii ! locating the speciesi and j at sitesn andm, re-
spectively; and~iii ! setting the projection of the recursio
vector on siten, at each step of the recursion, to zero for t
orbitals 1 tol21, in accordance with the OPM.

IV. APPLICATIONS

To demonstrate the validity and the accuracy of the re
space methodology presented in the previous section
number of numerical tests were carried out for bcc-ba
binary Zr-Rh and ternary Zr-Ru-Rh alloys. These alloys b
long to a class of materials which exhibit interesting prop
ties for biocompatible implant device applications.25 To de-
scribe their electronic structure properties, the Slater-Ko
~SK! parameters which enter the TB Hamiltonian have be
extracted from TB LMTO calculations as described in R
25.

The hopping integrals are written in terms of the SK p
rameters which depend on the occupation of sitesn andm by
i and j species, respectively, and on the distancer nm be-
tween the two sites, as follows:

bni,mj
lm 5(

h
cnm
h wi j

h ~r nm!, ~4.1!
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where thewi j
h (r nm) refer to the SK parameters, and thecnm

h

depend on the direction cosines of vectorrnm . The super-
script h runs over the ten SK parameters forspd electronic
systems, i.e.,h5sss,pps, . . . ,dds,ddp,ddd, . . . .26

As in Ref. 25, the SK parameters for the pure metals
assumed to vary with the interatomic distanced, according
to

wii
h5Ai

hexp2Pi
hd, ~4.2!

where the parametersAi
h and Pi

h have been fitted to TB-
LMTO results obtained for the three alloy components
Ru, and Rh. In the following we will assume a cutoff di
tance not exceeding the second-neighbor distance in the
lattice. These parameters are given in Table I for Rh, an
Table I of Ref. 25 for Zr and Ru. For a particular alloy, th
SK parameters have been approximated according to

walloy
h 5S (

i
ciAwii

h D 2, ~4.3!

where thewii
h parameters of the pure speciesi are calculated

at the interatomic distance of the alloy. The equilibrium l
tice constants of bcc-based Zr, Ru, and Rh, take the va
6.712 67 a.u., 5.801 941 a.u., and 5.796 79 a.u., respecti
as obtained from scalar relativistic LMTO calculations in t
atomic sphere approximation~ASA!. These values define th
lattice constant of the alloy at any composition by assum
that the atomic volume of the alloy is given by the conce
tration weighted average of the atomic volumes of the p
species~also known as the Zen’s law!.

Similarly, a variation of the on-site energies with the la
tice parametera is assumed, and given by a second ord
polynomial

e il
0 5Ai

l1Bi
la1Ci

la2, ~4.4!

wherel refers tos, p, t2g , or eg . These parameters ob
tained from a fit to TB-LMTO calculations are given i
Table II for Rh, and in Table II of Ref. 25 for Zr and Ru. I
the alloy case, the on-site energies of each alloy compo
are calculated at the lattice constant of the alloy~as described
above!. To ensure local charge neutrality in a broad range
alloy composition, global shiftsd i were applied to these on
site energies,

TABLE I. Tight-binding parametersARh
h andPRh

h , see Eq.~4.2!,
which define the hopping integrals for Rh.

h ARh
h (Ry) PRh

h (a.u.21)

sss -16.7886 1.0573
pps 13.2390 0.9274
ppp -161.7200 1.8024
dds -8.9922 0.9389
ddp 158.6201 1.6576
ddd -216.2461 2.1738
sps 13.9556 0.9797
sds -8.8131 0.9439
pds -9.1538 0.9035
pdp 187.4781 1.7605
e

,
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e il5e il
0 1d i . ~4.5!

In the present case,dZr50 Ry, dRu50.358 Ry, and
dRh50.313 Ry. With these assumptions, the TB Hamiltoni
given in Eq. ~1.1! is fully defined, and applications of th
methodology described in the previous sections to the st
of the electronic structure properties, and of the energetic
binary and higher-order multicomponent alloys can now
presented.

A. Density of states of binary, pseudobinary,
and ternary alloys

The electronic densities of states~DOS! were computed
with the CPA-extended recursion and compared with the
sults of the standardk space approach.25 In the latter case,
the average Green function was obtained after integratio
reciprocal space over the first Brillouin zone with 240 spec
k points.27 Figure 9 shows the DOS of bcc-base
Zr 0.5Rh0.5 obtained with both approaches. In that particu
case, the self-energies, each associated with an orbital s
metry ~i.e., s, p, t2g , or eg), were accurately determine
with 17 levels of continued fraction, and asymptotic valu
of the coefficients determined with the Beer-Pettif
method.24 The two DOS are almost indistinguishable.

TABLE II. Coefficients ARh
l , BRh

l , and CRh
l , see Eq.~4.4!,

which define the on-site energies for Rh.

l ARh
l (Ry) BRh

l (Ry a.u.21) CRh
l (Ry a.u.22)

s 9.407978 -2.689624 0.188783
p 9.613148 -2.606757 0.177081
t2g 6.635920 -1.989722 0.141352
eg 6.170196 -1.864335 0.132686

FIG. 9. Density of states of bcc-based Zr0.5Rh0.5 disordered al-
loy as a function of energy~the Fermi energyEF is taken as zero of
energy!, as obtained from~a! real-space calculations~solid line!,
and~b! k-space calculations~dotted line!, within the CPA. In~a! 17
levels of continued fraction were computed~both on the real crysta
and on the semilinear chains associated with each site!, and in~b!
integration has been performed with 240 specialk points.
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Interestingly enough, the calculation in real space can
performed with an equivalent level of accuracy but with
significant reduction in computational cost~memory alloca-
tion and execution time! if the cluster of atoms, which is
generated during the recursion procedure is truncated
size associated withq levels of continued fraction, wherea
the semilinear chains are extended up top (.q) levels of
continued fraction. In Fig. 10 the DOS of bcc-bas
Zr 0.5Rh0.5 obtained withq53 andp510 is almost identical
to the one displayed in Fig. 9 withp5q517. In the former
case, only 175 sites belonging to the bcc lattice have b
generated, as opposed to the 21 455 sites in the latter
This interesting property, although it depends on the lat
and on the range of the SK parameters, comes about bec
of the information carried out by the coefficients of conti
ued fraction along the semilinear chain which ‘‘dresses,’’
each orbital, each site of the lattice.

Since the CPA equations are solved in real space,
electronic structure properties of pseudobinary alloys can
easily studied with minor effort in the practical implement
tion of the formalism. Suppose that Zr fully occupies one
the simple cubic~sc! sublattice, whereas chemical disord
takes place between Ru and Rh species on the other su
tice. Only the sites of this latter sublattice will be ‘‘dressed
with semilinear chains~one per orbital! which represent the
self-energies~one per orbital!, and the CPA equations fo
this pseudobinary alloy can be solved in the same way t
are for the binary case. For comparison, a similar calcula
can be performed with ak-space approach,25 but now the
integration has to be done in the Brillouin zone of the sim
cubic lattice~in the present case, 816 specialk points27 have
been used!. From Fig. 11 we conclude that the DOS of th
pseudobinary Zr0.50~Ru0.25Rh0.25) disordered alloy, as ob
tained by both approaches, compare once again favorab
similar agreement is achieved in the case of ternary allo
and an example is given in Fig. 12 for the case of bcc-ba

FIG. 10. Density of states of bcc-based Zr0.5Rh0.5 disordered
alloy as a function of energy~the Fermi energyEF is taken as zero
of energy!, as obtained from real-space calculations with:~i! 17
levels of continued fraction on both the real crystal and the se
linear chain~solid line!, and ~ii ! three levels of continued fraction
on the real crystal and ten levels along the semilinear chains.
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Zr 0.50Ru0.25Rh0.25, for which the CPA was applied to th
chemically random ternary system.

It should be reemphasized that, within the real-spa
methodology, all Green functions, partial per site or per
bital and total, are expressed in terms of continued fractio
whereas, in thek-space approach, they are given nume
cally. One can take advantage of the analytic form of
Green function to efficiently and accurately calculate qu
tities integrated over the DOS, such as the integrated den
of states or the band energy. Finally, one can also take
vantage of this analytic representation to describe the e
tronic properties of alloys, and to investigate the origin
their relative phase stabilities by using perturbation theo
in the context of the continued fraction representation of

i-

FIG. 11. Density of states of a bcc-based pseudobin
Zr0.50~Ru0.25Rh0.25) disordered alloy as a function of energy~the
Fermi energyEF is taken as zero of energy!. In the real-space
approach~solid line!, only the sites of one of the simple cubi
sublattices, which are occupied by Ru and Rh atoms, are ‘‘dress
with semilinear chains representing the self-energies, within
CPA, and 17 levels of continued fraction on both the real crys
and the semilinear chain have been determined. In thek-space ap-
proach~dotted line!, 816 specialk points in the irreducible Brillouin
zone of the simple cubic lattice have been used for the integrat

FIG. 12. Same as for Fig. 9 for the bcc-based tern
Zr0.50Ru0.25Rh0.25 disordered alloy.
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one-electron Green function, such as the linearized Gr
function method28 which has been initially proposed for pur
metals.

B. Effective pair interactions

As we have seen in Sec. III, once the self-energies
renormalized interactors are defined in terms of contin
fraction expansions, and computed with the CPA-exten
recursion scheme, it is a simple task to compute the E
with a combined OPM-recursion scheme within the EC
This evaluation does not rely on any numerical integrati
and only requires the knowledge of site-diagonal element
Green functions. This approach has been applied to the
culation of the EPI’s for the binary, pseudobinary, and t
nary alloys introduced in the previous subsection, and a c
parison has been made with the results obtained within
GPM with a standardk-space approach.

Figure 13 shows the most dominant EPI’sVs
(2) , wheres

refers to a shell index, for the binary Zr0.5Rh0.5 and the
pseudobinary Zr0.50~Ru0.25Rh0.25) disordered alloys, as func
tions of energy~with the Fermi energyEF taken as zero of
energy!. Both the real-space andk space approaches lead
almost indistinguishable results. Note that the minor diff
ences may be attributed to contributions of self-retracing
teractions of higher order which are accounted for in

FIG. 13. First and second EPI’s for the bcc-based:~a! binary
Zr0.5Rh0.5 and ~b! pseudobinary Zr0.50~Ru0.25Rh0.25) disordered al-
loys as functions of energy~with EF taken as zero of energy!.
Results from real-space andk-space calculations are represented
solid lines and dashed lines, respectively.
en
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ECM and ignored in the GPM, as mentioned in Sec. III
~see also Ref. 10 for further discussion!.

In the case of the binary alloy at equiatomic compositio
we find that the dominant first and second-neighbor EPI’s
positive, with V1

(2)@V2
(2) . According to the ground-state

analysis of the Ising model,29 the ground state is ofB2 or
CsCl-type at this alloy composition, in agreement with t
experimental observation of this phase.30 Figure 13 also sug-
gests that by decreasing the number of valence electr
which can be achieved by replacing for example a fraction
the Rh atoms by Ru atoms, there will be a stronger tende
towardsB2 order~since the most important contribution t
the ordering energy, given byV1

(2) , increases by lowering
the Fermi energy, i.e., the number of valence electrons!.

Similar to what was mentioned in the previous subsecti
the calculation of an EPI can be performed very efficien
by minimizing the number of lattice sites visited during th
recursion procedure~number corresponding toq levels of
continued fraction!, while keeping a certain number of site
along each semilinear chain which ‘‘dresses’’ each latt
site ~number associated withp.q levels of continued frac-
tion!. This property is even better followed in the prese
calculation, since, implicitly, an EPI is defined as a quant
integrated over the DOS, and is therefore less sensitiv
deviations from the most converged determination of the
ements of Green functions. For example, the results
played in Fig. 13 obtained withp5q517 are practically
indistinguishable from the ones obtained withp510 and
q53. However, note that this property will not only depen
on the type of lattice and the range of the SK parameters,
also on the range of the EPI’s.

In the case of the pseudobinary alloy, assuming that
Zr atoms fully occupy one of the two sc sublattices whi
form the bcc lattice, Fig. 13 shows that the first-neighbor E
~on the sc lattice, which corresponds to the second-neigh
EPI on the bcc lattice! is slightly negative. This would indi-
cate that the Ru and Rh atoms have a tendency to cluste~on
this sublattice!, but because of the extremely small amplitu
of the EPI’s at the Fermi energy, it is more likely that the
two species will form a solid solution on the sc sublatti
while the Zr atoms fully occupy the other sublattice.

Finally, we display in Fig. 14 the most dominant first- an
second neighbor EPI’s for the three types of pairs, in the c
of a bcc-based ternary Zr0.50Ru0.25Rh0.25 disordered alloy as
a function of energy~with the Fermi energy taken as zero
energy!. Note that in the case of higher-order compone
alloys, one has to define for each combination of two spec
i and j an EPI, in the same way it is done for a binary allo
see also Eq.~3.6!, in terms of the combination

Vs
~2!,i j5Vs

ii1Vs
j j22Vs

i j , ~4.6!

where s is a shell index. This leads for an alloy withnc
components to the definition ofnc(nc21)/2 EPI’s per shell
index.

Once again, an excellent agreement between real-s
andk-space results is achieved. Hence, at the Fermi ene
corresponding to this ternary alloy, we find the followin
hierarchy for the dominant EPI’s,



oy
r
tw
th
be
ow
n
us

that
d in

n a
a
,

the

ce

llel
ng
ces-

e on
per-

1740 56P. E. A. TURCHI, D. MAYOU, AND J. P. JULIEN
V1
~2!,ZrRu@V2

~2!,ZrRu.0,

V1
~2!,ZrRh@V2

~2!,ZrRh.0,

V1
~2!,RuRh,0 and V2

~2!,RuRh.0. ~4.7!

Note also thatV1
(2),ZrRu;V1

(2),ZrRh@uV1
(2),RuRhu. A ground-

state analysis of the Ising model performed for ternary all
based on the bcc lattice31 with first- and second-neighbo
EPI’s predicts a tendency towards phase separation in
B2 ordered states, ZrRu and ZrRh, as expected from
magnitude and the negative sign of the EPI’s involved
tween Ru and Rh. These results established from the kn
edge of the electronic structure properties of the fully ra
dom ternary alloy are fully consistent with the previo

FIG. 14. First (s51) and second (s52) effective pair interac-
tionsVs

(2),i j , wherei j5ZrRu ~top!, ZrPd ~middle!, and RuRh~bot-
tom!, for the bcc-based ternary Zr0.50Ru0.25Rh0.25 disordered alloy,
as functions of energy~with EF taken as zero of energy!.
s

o
e
-
l-
-

results found in the case of the pseudobinary alloy. Note
similar results have been obtained and further discusse
the case of the Zr0.5~Ru12cPdc)0.5.

25

C. Considerations on performance

So far, all the computations have been carried out o
sequential computer, a DEC Alpha workstation 250 with
clock frequency of 266 MHz. A full calculation of the DOS
i.e., for four orbital symmetries, withq53 andp510, on a
cluster of 175 sites is performed in a timet0 of 0.75 sec, to
be compared with 85 sec in the caseq5p517 which corre-
sponds to a cluster of 21 455 sites on the bcc lattice, for
binary alloy Zr0.5Rh0.5. The execution timet1 for one EPI is
roughly given byt1;4393(t0/4), i.e., 9t0, where 4 refers
to the number of combinations ofi j species, and 9 to the
number of orbitals peeled within the OPM. Obviously, on
the continued fraction expansions ofs(z) and D(z) are
known, the 439 recursions can be performed on a para
machine with a particle distribution, here 36 particles, amo
36 processors, so that perfect load balance between pro
sors can be achieved with an execution timet0/4 on each
processor.

FIG. 15. Execution time~in sec! for computing a DOS as a
function of ~a! p, for various values ofq; and ~b! cluster size,
corresponding to various values ofq (5p) indicated by the num-
bers along the curve. The absolute time corresponds to CPU tim
a workstation DEC Alpha 250, and the calculations have been
formed for a bcc-based binary alloy Zr0.5Rh0.5.
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Also, note that, at fixedq, i.e., for a fixed number of site
which belong to the real crystal~cluster size!, the execution
time scales linearly with the ‘‘length’’ of the semilinea
chain, orp, as illustrated in Fig. 15~a!, as opposed to the
execution time versus cluster size~or q5p) as shown in Fig.
15~b!. This is an important property since the calculation
an interaction within the OPM requires a number of po
and zeros, see Eqs.~3.10! and ~3.11! to be accurate. Fortu
nately the parameterq can be chosen very small while pre
serving the accuracy for the determination of the DOS, a
of any quantity integrated over the DOS such as the b
energy or the EPI’s, as discussed in the two previous sub
tions.

V. CONCLUSION

We have shown that, within the tight-binding framewor
the CPA equations can be very efficiently solved in r
space with the recursion technique. This methodology le
to an accurate description of the electronic structure pro
ties of binary alloys with a straightforward extension
higher-order multicomponent alloys when combined with
configuration sum-space approach. In addition, the confi
rational contribution to the total energy, as described wit
the embedded cluster method, can be efficiently and a
rately determined in real space, with the orbital-peel
method and the recursion technique, and the codes resu
from this methodology can be ideally implemented on pa
lel machines with an adequate load balance.
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The present formalism, although applied here to allo
with a periodic underlying lattice, is well suited for furthe
developments to address stability and chemical order iss
in multi-component alloys with reduced or no symmetr
taking full advantage of the overall real-space descript
and the continued fraction expansion of the one-elect
Green function, and the properties of the configuration s
space. In addition, since the CPA-extended recursion te
nique is based on the locator formalism, extension of
methodology to account for off-diagonal disorder effects
alloys is straightforward. Preliminary results on these ext
sions will be discussed in a forthcoming paper. Finally, t
recent real-space implementation of the Kubo-Greenw
formulas within tight binding for model systems32 can, and
will, be extended to a realistic electronic structure descr
tion of alloys with or without periodicity, so that electroni
transport and diffusivity as functions of alloy parameters c
be studied.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U
Department of Energy by the Lawrence Livermore Nation
Laboratory under Contract No. W-7405-ENG-48. Part
support from NATO under Contract No. CRG 941028
gratefully acknowledged. The authors would like to tha
Dr. A. Gonis for fruitful discussions and a careful reading
the manuscript.
. B

. B

at-

-
es

J.

s
,

1P. E. A. Turchi, in Intermetallic Compounds: Principles an
Practice, edited by J. H. Westbrook and R. L. Fleischer~Wiley,
New York, 1995!, Vol. 1, Chap. 2, pp. 21–54.

2R. Haydock, inSolid State Physics: Advances in Research a
Applications, edited by H. Ehrenreich, F. Seitz, and D. Turnb
~Academic Press, New York, 1980!, Vol. 35, p. 215.

3Recursion Method and its Applications, edited by D. G. Pettifor
and D. L. Weaire, Springer Series in Solid States Sciences
58 ~Springer-Verlag, Berlin, 1985!.

4P. Turchi, F. Ducastelle, and G. Tre´glia, J. Phys. C15, 2891
~1982!; G. Grosso, G. Pastori Parravicini, and A. Testa, Ph
Rev. B32, 627 ~1985!.

5O. K. Andersen, O. Jepsen, and M. Sob, inElectronic Band
Structure and its Applications, edited by M. Yussouff~Springer-
Verlag, Berlin, 1987!, p. 1.

6F. Ducastelle and F. Gautier, J. Phys. F6, 2039~1976!.
7J. S. Faulkner, Prog. Mater. Sci.27, 1 ~1982!, and references cited
therein.

8F. Ducastelle,Order and Phase Stability in Alloys, edited by F. R.
de Boer and D. G. Pettifor, Cohesion and Structure Series,
3 ~North-Holland, Amsterdam, 1991!.

9A. Gonis,Green Functions for Ordered and Disordered System,
edited by E. van Groesen and E. M. Dejager, Studies in Ma
ematical Physics Vol. 4~North-Holland, Amsterdam, 1992!.

10A. Gonis, X.-G. Zhang, A. J. Freeman, P. E. A. Turchi, G. M
Stocks, and D. M. Nicholson, Phys. Rev. B36, 4630~1987!.

11J. W. D. Connolly and A. R. Williams, Phys. Rev. B27, 5169
~1983!.
d

l.

.

l.

-

12N. R. Burke, Surf. Sci.58, 349 ~1976!.
13A. Mookerjee, J. Phys. C6, 1340~1973!.
14I. Dasgupta, T. Saha, and A. Mookerjee, Phys. Rev. B51, 3413

~1995!.
15H. Shiba, Prog. Theor. Phys.46, 77 ~1971!.
16D. Mayou, A. Pasturel, and D. Nguyen Manh, J. Phys. C19, 719

~1986!.
17A. Cordelli, G. Grosso, and G. Pastori Paravicini, Phys. Rev

44, 2946~1991!.
18A. Cordelli, G. Grosso, and G. Pastori Paravicini, Phys. Rev

48, 11 567~1993!.
19T. Saha, I. Dasgupta, and M. Mookerjee, J. Phys. Condens. M

ter 6, L245 ~1994!; Phys. Rev. B50, 13 267~1994!.
20J. P. Julien and D. Mayou, J. Phys.~France! I 3, 1861~1993!.
21J. A. Blackman, D. M. Esterling, and N. F. Berk, Phys. Rev. B4,

2412 ~1971!.
22A. Gonis and J. W. Garland, Phys. Rev. B16, 1495~1977!.
23M. O. Robbins and L. M. Falicov, Phys. Rev. B29, 1333~1984!.
24N. Beer and D. G. Pettifor, inThe Electronic Structure of Com

plex Systems, Vol. 113 ofNATO Advanced Study Institue, Seri
B: Physics,edited by P. Phariseau and W. M. Temmerman~Ple-
num, New York, 1984!, p. 769.

25A. Traiber, P. E. A. Turchi, R. M. Waterstrat, and S. M. Allen,
Phys., Condens. Matter.8, 6357~1996!.

26J. C. Slater and G. F. Koster, Phys. Rev. B94, 1498~1954!.
27D. J. Chadi and M. L. Cohen, Phys. Rev. B8, 5747~1973!.
28P. Turchi and F. Ducastelle, inThe Recursion Method and it

Applications, edited by D. G. Pettifor and D. L. Weaire



1742 56P. E. A. TURCHI, D. MAYOU, AND J. P. JULIEN
Springer Series in Solid State Sciences Vol. 58~Springer-
Verlag, Berlin, 1985!, p. 104.

29S. M. Allen and J. W. Cahn, Acta Metall.20, 423 ~1972!.
30Binary Alloy Phase Diagrams, edited by T. B. Massalski~ASM
International, Materials Park, OH, 1990!, Vols. 1–3.
31A. J. S. Traiber and S. M. Allen, Acta Metall. Mater.40, 1403

~1992!.
32D. Mayou and S. N. Khanna, J. Phys.~France! I 5, 1199~1995!.


