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| give an additional argument that the proof of Perdeval, stating that the highest occupied Kohn-Sham
eigenvalue equals the ionization energy, is flawed. | also argue that the new proof given by Perdew and Levy
in the preceding paper is wrong. The significance of the result for the two-electron “Hooke’s atom” is then
discussed[S0163-182808)04103-4

Using a mixed state density functional, Equation(4) contains the difference betwedit 6N andN
- electron functionals whereas in E§) EN[py] is evaluated
EN[on]=(1-0)E™[pul+0E™ pyi1l, (D) twice, first afpy and then &by s wheresN=5f(N) .. This

Where is much like taking a pure state functiora{™)[ p,,] which
has no physical meaning for nonintedér, and differentiat-

() =(1—w)pw(r)+ opyia(r), (2)  ing it with respect to one of thé;. This yields € which

everyone agrees is physically meaninglésgcept for the

the tilde indicates a mixed state quantitfpndr=N  highest occupied;, whose meaning or lack thereof is the
=M+, M is an integer, and Qw<1, Perdewet al'>  center of our dispute

gave a proof thaty ., the highest occupied Kohn-Sh&m  p|_ give a new proof thaty, ;= —| based on their Egs.
(KS) eigenvalue (for the exact KS potential only (19A) and(19B),
equals —1, where the ionization energy=E™)[py]
M+1 ~ P —~ —_~
—EM™py 4] They took p=0dENIIN=GENd0=ENIoN=E(MNIdw. (6)
=2 TN y(n)? @) HereE{Y is given by Eq(1) as isEY) except thavs(r) is
I

treated as an external potential for the pure states so that
EQ andE({ * just equal the sum of their occupied eigen-
values. Because it must be calculated self-consistantlyis

not equivalent to an external potential. It is obvious that

, EM=EM and that the chemical potentigh=EM*%)
In the preceding paper Perdew and L2L) say that | 9wy LM+t M P =Eq

. ; L —EM#EMD_EM = Thys the claim of PL thatu
(in Ref. 7) seem to question the validity of Janak’s theorem —Q(N) s9 s9 - =(N) .
for ensembles with noninteger particle number. Janak’s theg= 9Eg /N is 'de”t'9aL"(?“)9Esg /9N, where the latter deriva-
rem must hold, providing the KS potentiaks which yields Ve is evaluated witivis taken to be independent o,
pn(r) is obtainable as the functional derivative of cannot be correct. I note thafld " V#v e and that even
El(-l'\>l<)c[FN]+LU(r)pN(r)d3r! whereuv(r) is the external po- When these are taken to be fixed external potentiafy)

tential andE(N)[5y] is the Hartree, exchange, and correla-Cannot be independent bf because it approachegs ) as

~ ~ M
tion part of EM[py]. Because of the dependencepgfon ©—1 andvgd 0. ) _
in Eq. (2), | argued thatéE(H'i)clﬁ'ENJrv(r) might not be ~Ir’\1I a~ngte added in proof '50 Ref/ | pointed out that
vks(r). If, as PL state, the variation gk is constrained to dE] )-/dfF\/I-)i-l fails to equald Eﬂ )/d_“’ Or.‘,h,/“ because the re-
keepN (and thusw) fixed, my argument no longer holds. | laxation energy is not quite linear in (1§}, ;). The many-
showed that dELN)/d'f“,(\mﬁ dE,&N)/dw, indicating that body wave functions from which the charge density and then

I_the “exact” wvgg(r) are obtained to numerically prove

with TM=1 fori<M, T} ;= w andFM=0 fori>M+1
and equateddEN/dw=—1 with dEMN/df(\) =€y,
where the last equality is just Janaktheorem.

d/df(N) , andd/dw do not represent the same thing but P

N TN — RN : T em+1=—1 will probably never be sufficiently accurate to
argue thadE™%/dfy %, =dE™/dw in no V\@y)lmplles that  jetect so small a difference. PL note that Laufer and Krfeger
the equality holds for the component parts=s¥). However, have proven thag,s= — | for a Hooke’s atom, i.e., two elec-

given the fixedN condition, | can now argue that the tWo yons in a parabolic potential, which repel each other with a
derivatives are never equivalent. We have that Coulomb potential. Two electrons are a special case because
(r)=[p(r)/2]*'? while the Hooke’s atom is a truly unique
case. The wave function factorizes into a function of the
center of mass coordinate and a function of the relative co-
whereas ordinate while E(N=2)=E.n+E,=1.%Y?*+E, and
E(N=1)=1.5"? wherek is the Hooke’s law constant. Us-
dEN/d’fﬂ.\'lﬁ lim {E(N)[;NMN]_E(N)[;N]}/ SN. (5) ing the WKB approximation_;//(r) was obtaine?i_at larger
SN—0 and the KS equation inverted to obtaigs=E.

dEN/dw=lim {EN*M[5 . 5 ]1-EN[py]}/ 0N, (9)
SN—O0
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=E(N=2)—E(N=1). One cannot conclude from this that taken to be al— 1) electron wave function withy and the

ewm+1=— | for potentials which do not allow the wave func- spin of theNth electron treated as parameters. It is fairlyob-
tion to be factorized. vious for transition metals whose principle Slater determi-
A simple proof thatey.,;=—1 goes as follows. For a npates containl"s? valence functions but whose ionic deter-

pure state)is(r) may always be chosen to vanish at infinity. minants contaird™/1 valence functions thap(N—1) does
Therefore its KS charge density which is identical to thepqt collapse to the/(N—1). Consider now a2p? atom with
many-body charge density decays as [e’Q(__ZGMﬂ)l/Z] S symmetry.p(ry) is spherical sop(N—1) must haveS
whereas the many-body charge density decays agymmetry(under rotation of all the electron coordinates and
exf—2(2)"%]. The proof given in Ref. 2 that the many- the parameter,). Thus even asy—o, it is not possible for
body charge density decays as stated consists of writing thg;(N_ 1) to collapse to th® symmetry of thes2p? ion. It is
equation possible thato(N—1) collapses to a combination of the
three degenerate states with coefficients which depend on
@) the direction in whichry—, so as to preserve the oversl|
symmetry under a rotation of all the coordinates apd
) ) . ) Therefore, | conclude that for some cases, if not all, the proof
where is defined to be-1, v(r) is the external potential, tails. Furthermore, other proofs given in the literature con-
p(r) is the charge density of the exact many electron groungyin unproven assumptions, according to the authors of Ref.
statey(N), andveg(r) is a potential they derivgNote that > Therefore, except for the Hooke's atom, | assert that
their Egs.(7) and(8), which state thaj is a Lagrange mul- .1=—1 remains unproven.
tiplier for the charge conservation condition, have nothing to " Note added in proofPL appear to have added Appendix
do with their proof and are unlikely to be correct since therep g their Comment to refute my statement that there is no
is no reason to expect that the Lagrange multiplier isfor reason to expect that the Lagrange multiplier is equat to
a finite system]. The proof concludes by arguing that They obtainu=JE%/JN. But py (r) is determined byw,

[ V24 u(r) +venn) oM 2(r) = wp (1)

Ver(r—22)—0. This requires that which brings us back to the original argument of Ref. 7
o(N—1)=NY2y(N)/ pY/2(ry) ) based on the nonarbitariness &gy
becomes equal to a combination of degenera(®—1) This work was supported by the Welch Foundation

ground states differing only in spifspin-orbit coupling is (Houston, Texas and the NSF under Grant No.
completely neglected throughgwthenry—»>. ¢(N—1) is DMR9614040.
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