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~Received 17 November 1997!

With more explanation than usual and without appeal to Janak’s theorem, we review the statement and proof
of the ionization potential theorems for the exact Kohn-Sham density-functional theory of a many-electron
system:~1! For any average electron numberN between the integersZ21 andZ, and thus forN→Z from
below, the highest occupied or partly occupied Kohn-Sham orbital energy is minus the ionization energy of the
Z-electron system.~2! For Z21,N,Z, the exact Kohn-Sham effective potentialvs(r ) tends to zero as
ur u→`. We then argue that an objection to these theorems.@L. Kleinman, Phys. Rev. B56, 12 042~1997!#
overlooks a crucial step in the proof of theorem~2!: The asymptotic exponential decay of the exact electron
density of theZ-electron system is controlled by the exact ionization energy, but the decay of an approximate
density isnot controlled by the approximate ionization energy. We review relevant evidence from the numeri-
cal construction of the exact Kohn-Sham potential. In particular, we point out a model two-electron problem
for which the ionization potential theorems are exactly confirmed. Finally, we comment on related issues: the
self-interaction correction, the discontinuity of the exact Kohn-Sham potential asN passes through the integer
Z, and the generalized sum rule on the exchange-correlation hole.@S0163-1829~98!04403-8#
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I. INTRODUCTION

Kohn-Sham density functional theory1–4 is a formally ex-
act way to find the ground-state energy and density o
many-electron system by solving a self-consistent o
electron Schro¨dinger equation. In practice, the density fun
tional for the exchange-correlation energy must be appr
mated, and approximate Kohn-Sham calculations ar
mainstay of modern electronic structure theory in both c
densed matter physics and quantum chemistry.

Perdew, Parr, Levy, and Balduz5 ~PPLB! showed that the
highest-occupied exact Kohn-Sham orbital energy~for all
electron numbersN between the integersZ21 and Z) is
minus the ionization energy of theZ-electron system. The
ensemble constrained search of Ref. 5 implicitly fixes
constant limur u→`dExc /dn(r ). Later Levy, Perdew, and
Sahni6 ~LPS! showed that this limit of the exact exchang
correlation potential vanishes forZ21,N,Z, and thus for
N→Z from below. These ‘‘ionization potential theorems
have been challenged in a recent article by Kleinman.7

Our comment on Kleinman’s article begins with a revie
of the ionization potential theorems and their proofs~Sec. II!.
These proofs were originally presented separately and br
in Refs. 5 and 6. They appear together in Ref. 8, a confere
proceedings article which also addresses other related is
In Sec. III, we examine Kleinman’s critique, and show tha
560163-1829/97/56~24!/16021~8!/$10.00
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overlooks a crucial step in the proof of Ref. 6. In Sec. IV, w
review numerical evidence for and against the ionization
tential theorems. Section V reviews the related ideas of s
interaction correction, derivative discontinuity, an
exchange-correlation sum rule. Appendix B presents
exactly-solved model two-electron problem for which t
ionization potential theorems are exactly confirmed.

II. IONIZATION-POTENTIAL THEOREMS AND PROOFS

In the original density-functional theory1,9,10 based upon
many-electron wave functions, the electron number

N5E d3rn~r ! ~1!

is a fixed integer. As a result, functional derivativ
dF/dn(r ), which satisfy the equation

dF@n#5E d3r
dF

dn~r !
dn~r ! ~2!

for infinitesimal density changesdn(r ), are only defined to
within an arbitrary additive constant. Reference 5 extend
the domain of density-functional theory to noninteger ele
tron numberN, for two reasons:~1! to ensure that all func-
tional derivatives, and hence all potentials, are comple
16 021 © 1997 The American Physical Society
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defined, and~2! to describe an open system which can e
change electrons with its environment. In an open syst
the electron number can fluctuate between integers, an
time or ensemble average need not be an integer. For m
electronic systems,5,8 this extension is nothing more than a
explicit display of the zero-temperature limit of Mermin
finite-temperature density-functional theory11 within the
grand canonical ensemble.

Let Z be an integer, and consider average electron num
N in the rangeZ21,N,Z. Generalize the constrained
search10 definition of the universal density functionalF@n#
to

F@n#[min
G→n

^T̂1V̂ee&G . ~3!
in
l

-
l-
no

ar
-
,

its
ost

er

In Eq. ~3!, T̂ and V̂ee are the kinetic and electron-electro
repulsion operators.G is an ensemble or statistical mixture o
a (Z21)-electron pure stateCZ21 with probability 12v,
and aZ-electron pure stateCZ with probability v, where
0,v,1. The pure states must be antisymmetric under
change of a pair of electrons. For eachCM ~M5Z21 or Z!,
define a density

nM~r !5^CMun̂~r !uCM&, ~4!

so that

^n̂~r !&G5~12v!nZ21~r !1vnZ~r !, ~5!

^N̂&G5~12v!~Z21!1vZ5Z211v5N. ~6!

Equation~3! can then be rewritten as
F@n#5min$~12v!^CZ21uT̂1V̂eeuCZ21&1v^CZuT̂1V̂eeuCZ&%, ~7!
as

ov-

n-

-
-

where the minimum is taken over all pairsCZ21 and CZ
such that (12v) nZ21(r )1vnZ(r )5n(r ).

We now establish the density-functional variational pr
ciple. For a given electron numberN and external potentia
v(r ), define the ground-ensemble energy

EN
g 5 min

G→N
K T̂1V̂ee1E d3r n̂~r !v~r !L

G

, ~8!

and define the ground-ensemble densitynN
g (r ) as the density

of the minimizing ensembleG. The minimization of Eq.~8!
can be done in two steps: first over all ensemblesG yielding
a given densityn(r ), then over all densitiesn(r ) integrating
to N, whence

EN
g 5 min

n→N
HF@n#1E d3r n~r !v~r !J 5~12v!EZ21

g 1vEZ
g ,

~9!

nN
g ~r !5~12v!nZ21

g ~r !1vnZ
g~r !. ~10!

The Euler equation for the minimization of Eq.~9! is
d@F@n#1*d3rn(r )v(r )2mN#50 or

dF

dn~r !
1v~r !5m, ~11!

wherem5]EN
g /]N is the Lagrange multiplier for the con

straint of constantN. ~Since the Lagrange multiplier is a
ways the derivative with respect to the constraint, we do
need Janak’s theorem.12! Also Appendix A arrives atm
5]EN

g /]N by a different route for those who are unfamili
with Lagrange multipliers.

Now consider a fictitious noninteracting (V̂ee50) system
of electrons with the same densityn(r ) as above. By analogy
with Eq. ~3!, we define the noninteracting kinetic energy

Ts@n#[min
G→n

^T̂&G . ~12!
-

t

Define the Hartree self-repulsion of the electron density

U@n#5 1
2 E d3r E d3r 8n~r !n~r 8!/ur 82r u, ~13!

and the exchange-correlation energyExc by

F@n#5Ts@n#1U@n#1Exc@n#. ~14!

The Euler equation~11! can then be written as

dTs

dn~r !
1vs~r !5m, ~15!

where

vs~r !5v~r !1
dU

dn~r !
1

dExc

dn~r !
, ~16!

and dU/dn(r )5*d3r 8n(r 8)/ur2r 8u. Equation ~15! is the
Euler equation for a system of noninteracting electrons m
ing in an external potentialvs(r ), the Kohn-Sham effective
potential, which holds them at densityn(r ). The Kohn-Sham
spin orbitalsc i(r ) are self-consistent solutions of the Koh
Sham equations

@2 1
2 ¹21vs~r !#c i~r !5e ic i~r !, ~17!

n~r !5(
i

f i uc i~r !u2, ~18!

where f 151 for e i,eZ( i ,Z), 0 for e i.eZ( i .Z), and v
for e i5eZ( i 5Z). ThenTs@n#5( i f i^c i u2

1
2 ¹2uc i&.

The self-consistent equations~17! and ~18! result, with a
fractional occupation numberonly at i 5Z, because by equa
tions ~12! and ~15! n(r ) is simultaneously the ground
ensemble density whose noninteracting energy is

EN
sg5~12v!EZ21

sg 1vEZ
sg , ~19!
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whereEM
sg is the total ground-state energy~sum of occupied

orbital energies! of that M -electron noninteracting system
whose external potential isvs(r ), with M5Z21 or M5Z.

By construction the chemical potentials,m, for the nonin-
teracting and interacting systems of the same densityn(r )
are the same. Further, by Eqs.~15! and ~19! we have

m5
]EN

sg

]N
5

]EN
sg

]v
5EZ

sg2EZ21
sg 5eZ , ~19a!

and by Eqs.~9! and ~11! we have

m5
]EN

g

]N
5

]EN
g

]v
5EZ

g2EZ21
g 52I Z , ~19b!

where the derivatives are taken at fixedvs(r ) andv(r ), re-
spectively. Consequently, by Eqs.~19a! and ~19b!, our de-
sired result is obtained:

eZ52I Z ~Z21,N,Z!. ~19c!

Thus through a somewhat different route than previou
employed5 and without use of Janak’s theorem, we have c
firmed that the exact highest-occupied Kohn-Sham eig
value is minus the ionization energy of theZ-electron sys-
tem. Since Eq.~19c! holds for allN betweenZ21 andZ, it
also holds in the limitN→Z from below, for which the cal-
culations described in Sec. IV are carried out.

We pause to review the interacting and noninteracting
sembles we have constructed. We are given an externa
tential v(r ) and an average electron numberN in the range
Z21,N,Z. The interacting ground ensemble is simply
mixture of the ground states of the (Z21) electron system
~with probability 12v! and of theZ-electron system~with
probability v!. Thus nN

g (r ), EN
g , and F@nN

g # vary linearly
with N, although the individual components ofF @Eq. ~14!#
do not. The noninteracting or Kohn-Sham ensemble is a m
ture of the ground states for (Z21) and Z noninteracting
electrons in the presence of the external potentialvs(r ),
which of course depends uponv(r ) and varies withN. The
Kohn-Sham potentialvs(r ) is chosen so that the ground
ensemble density of the noninteracting electrons is the s
as that of the interacting electrons.

LPS ~Ref. 6! arrived at

lim
ur u→`

vs~r !50 ~Z21,N,Z! ~20!

within the exact Kohn-Sham theory by proving conclusive
that the asymptotic decay of the exact electron density of
Z-electron system is

n~r !;exp@22A2I Zur u# ~21!

when the external potentialv(r ) vanishes asur u→`. The
proof depends upon the fact that, as one electron coordi
of the Z-electron ground-state wave function tends to infi
ity, the remaining electrons collapse to the (Z21)-electron
ground state~if it is accessible by symmetry!. For a numeri-
cal demonstration of this collapse, see Ref. 13.

Since typically I Z,I Z2I , Eq. ~21! describes the
asymptotic decay of the ensemble density of Eq.~10!. The
Kohn-Sham noninteracting ensemble density has by c
struction the same densityn(r ), and clearly
y
-

n-
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e
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ur u→`: n~r !;exp$22A2@2eZ1vs~`!#ur u%. ~22!

Comparison of Eqs.~19c!, ~21!, and~22! leads immediately
to Eq. ~20!. The theorem~21! and its associated conclusion
were derived independently in a different way by Almbla
and von Barth.14

Theorem~21! was also deduced in an unpublished tec
nical report15 and by Katriel and Davidson.16 However, as
discussed in the beginning of the paragraph containing
~21! of LPS, 6 LPS bypassed the need for a conjecture c
cerning theS matrix in Ref. 16 and the need for a certa
suspect assumption, involving the decay of an infinite se
of exponentials, that was employed in Refs. 14, 15, and
Not yet having the definitive proof of LPS at hand, PPL
played it conservatively and gave the right-hand side of
~20! here as a non-negative number, by considering the
responding asymptotic inequality in Ref. 17 as well as
asymptotic equality in Refs. 15 and 16.

At this point, we have derived everything needed for
comment on Ref. 7. We note, however, that there are o
implications of these arguments, which are drawn out
Refs. 5, 6, and 8, and Sec. V.

III. REBUTTAL OF FORMAL OBJECTIONS
TO THE IONIZATION POTENTIAL THEOREMS

Our first reading of Ref. 7 suggested to us that Kleinm
was questioning the validity of Janak’s theorem12 for en-
sembles with noninteger particle number. Although he d
not, and although the theorem is in fact valid, we have h
improved the intelligibility of our argument, and made
simpler, by deriving Eqs.~19c! and ~20! without it.

An important part of Kleinman’s objection7 to Eqs.~19c!
and ~20! is the assertion that the same derivation can
given for approximate density functionals, for which the co
clusions clearly do not follow.

Any approximate density functionalFapprox@n# has a di-
rect extension from integer to noninteger electron numb
which may differ from the extension of Eq.~7!. For example,
the local density approximation1 for exchange and correla
tion,

Exc
LDA@n#5E d3r n~r !exc„n~r !…, ~23!

can be evaluated directly for anyn(r ), whether it integrates
to an integer or not, and can lead to a highly nonlinearN
dependence of the total energy forZ21,N,Z ~see Fig. 5
of Ref. 8! which is completely different from the exact be
havior of Eq.~9!. Much ~but not all! of the spurious nonlin-
earity disappears in self-interaction-free18 approximations
such as the optimized effective potential~OEP! method of
Refs. 19 and 20, an exact-exchange-only implementatio
Kohn-Sham theory.21 As support for the preceding sentenc
see for example Figs. 8 and 9 of Ref. 20, or Fig. 5 of Ref.

Kleinman7 is not referring to these direct extensions
approximate functionals, but to an analog of Eqs.~7! and~9!:

Fapprox@n#[min$~12v!Fapprox@nZ21#1vFapprox@nZ#%,
~24!

where the minimum is taken over all pairsnZ21(r ) and
nZ(r ), such that (12v)nZ21(r )1vnZ(r )5n(r ). ~Note
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that, even when the evaluation ofFapprox@nM# for integerM
is trivial, the evaluations ofFapprox@n# for non-integerN and
of its functional derivative are not.! Then

EN
g,approx5 min

n→N
HFapprox@n#1E d3r n~r !v~r !J

5~12v!EZ21
g,approx1vEZ

g,approx, ~25!

and

eZ
approx5]EN

g,approx/]v52I Z
approx~Z21,N,Z!. ~26!

So far as we can see, Eq.~26! is a valid conclusion. How-
ever, it cannot be used to conclude thatvs

approx(`)50 for
Z21,N,Z because there is no analog of Eq.~21! for ap-
proximate functionals, i.e., the ensemble density

ng,approx~r !5~12v!nZ21
g,approx~r !1vnZ

g,approx~r ! ~27!

doesnot decay with an exponent controlled byI Z
approx~except

possibly in special cases like the metallic surface!. For an
approximate functional, the crucial link between t
asymptotic density decay and the ionization energy is m
ing.

To be specific, we consider the exchange-only OEP
proximation of Refs. 19, 20, and 7. For theZ-electron sys-
tem, we can construct an OEP Kohn-Sham potential wh
goes to zero~by arbitrary choice! at infinity. By Koopmans’
theorem, the highest occupied orbital energy differs byD, a
negative electronic relaxation energy~D520.05 hartree for
the Ar atom! from minus the OEP ionization energy. But th
potential can and does differ by the additive constantD from
the limit ~asN→Z from below! of

v~r !1
dU

dn~r !
1

dExc
approx

dn~r !
~28!

of Eq. ~24!, whose highest occupied Kohn-Sham eigenva
is minus the OEP ionization energy according to Eq.~26!.
Kleinman does grant that the potential of Eq.~28! might
differ from zero in the limitur u→`, but says that then ‘‘the
result would be of little utility,’’ as indeed it is.

We stress again that Eq.~24! is not the direct extension
@e.g., Eq.~23! for LDA # of a density-functional approxima
tion to noninteger electron number. One can construct s
tems in which the exact ground-state wave function pla
noninteger electron number on each of two or more se
rated subsystems, e.g., ‘‘stretchedH2

1’’ of Sec. V. This situ-
ation is8 energetically equivalent to one in which each of t
subsystems is described by an exact ensemble. But, if
apply a density-functional approximation like LDA to th
combined system, the result will be energetically equival
to one in which each subsystem is described by the di
extension of this approximation to noninteger electron nu
ber, and not by Eq.~24!.

In Ref. 7, Kleinman also defines two~nonstandard! Har-
tree energies, his Eqs.~11! and ~12!, which are equal atv
51. He shows that the partial derivative of the first wi
respect tov differs from that of the second with respect
s-

p-

h

e

s-
s

a-

e

t
ct
-

f Z(Z) at v51. We do not see any implication of this resu
for the derivation of PPLB~our Ref. 5!, or a fortiori for our
present derivation.

PPLB provided the uniquely correct extension of the e
act total energy fromN5Z to Z21,N,Z, and thus of the
sum of the Hartree and exchange-correlation energies. W
there is no such unique extension of the Hartree or excha
correlation energies separately, we believe that our choic
the most natural one. However, careful consideration
Kleinman’s argument does help to explain why se
interaction free approximations like his Eq.~12! can mimic
the straight line behavior of the exact total energy forZ21
,N,Z.

By Eq. ~9!, the total energy of the interacting system is
minimum with respect to arbitrary density variationsdn(r )
which conserve the numberN of electrons (dv50). This
condition leads to Eq.~11!, and hence to the Kohn-Sham
equations. Eqs.~16! and ~17! of Ref. 7 are not correct, be
cause the normalized orbitals are to be varied freely at fi
N. Only after minimization with respect to orbitals do w
obtain Eqs.~9! and ~10!.

In summary, we do not find any formal argument in R
7 which casts doubt upon our Eqs.~19c! and~20!. We turn to
the numerical evidence in the following section.

IV. NUMERICAL EVIDENCE FOR THE IONIZATION
POTENTIAL THEOREMS

When we first wrote Refs. 5 and 6, little was known abo
the exact Kohn-Sham potentials for real electronic syste
Since then, many authors14,22–36have constructed essential
exact Kohn-Sham potentials for small atoms and molecu
by various numerical methods, starting from accurate co
lated ground-state electron densities. Because these p
tials are constructed to vanish at infinity, all this work can
regarded as an investigation of the limitN→Z from below,
whereZ is the integer electron number of the atom or m
ecule.

The earliest reference~Ref. 22! in our list assumed, and
was consistent with, the ionization potential theorems. Ma
of the more recent works do not assume the ionization
tential theorems of Eqs.~19c! and ~20!, and so provide a
direct numerical test of these theorems. In none of th
articles do we find a challenge to the truth of the theorem

Kleinman7 observes that Ref. 25 finds some numeric
discrepancies between the highest-occupied eigenvalues@cal-
culated under the assumption of Eq.~20!# and minus the
ionization energies. These discrepancies are extremely s
for the light atoms, but for the Ar atome3p520.55 hartree
is somewhat different from2I 520.58 hartree. However
the authors of Ref. 25 ‘‘expect more accurate ionization p
tentials will be found when higher quality densities are us
as the reference.’’ The problem is that the reference dens
are found by variational means such as the method of c
figuration interaction, and the total energy is not sensitive
the asymptotic decay of the density into the vacuum.

For the small molecules LiH, BH, and HF~Table I of Ref.
33! or H2O and HF ~Table 2 of Ref. 32!, the ionization
potential theorems are obeyed with remarkable accuracy
Appendix B, we discuss a model two-electron problem
which these theorems are exactly confirmed.
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Finally, the overwhelming numerical confirmation20 of
the OEP Koopmans’ theorem8,20,37 supports the validity of
Eq. ~21!, because the OEP Koopmans’ theorem has rece
been derived by assuming37 that Eq.~21! is correct for arbi-
trary electron-electron repulsion constant, at fixed dens
The Koopmans’ theorem arises37 by equating terms that ar
first order in the coupling constant.

V. SELF-INTERACTION CORRECTION, DERIVATIVE
DISCONTINUITY, AND EXCHANGE-CORRELATION

SUM RULE

Our work of Ref. 5 was motivated by the self-interactio
correction of Ref. 18~see also Ref. 38!, and by an intriguing
statement of Slater39 about the local-density-approximatio
description of a Na atom and a Cl atom at infinite separat
‘‘Electronic charge will flow from the Na to the Cl, falling to
a lower one-electron energy and producing some posi
charge on the Na, negative on the Cl.... This process
have the effect of pushing the energy levels of the Cl upw
and lowering those of the Na....’’. Since no charge sho
flow between well-separated neutral atoms in theexact
Kohn-Sham theory, an explanation for the exact preventa
mechanism was needed. This exact mechanism, the de
tive discontinuity of the total energy at integer electron nu
berN5Z, turned out to very much like the approximate o
provided by the self-interaction correction18,38,40to the local-
density approximation of Eq.~23!, and by other self-
interaction-free methods such as the exchange-only O
approximation.20,40

To see the derivative discontinuity, generalize Eq.~19b!
to

m5]EN
g /]N5H 2I Z5EZ

g2EZ21
g ~Z21,N,Z!

2AZ5EZ11
g 2EZ

g ~Z,N,Z11!.
~29!

Equation~29! asserts that the total energy as a function of
average electron numberN is a linkage of straight lines with
kinks or derivative discontinuities at the integers. Becaus5,8

the smallest ionization energy of the Periodic Table is gre
than the largest electron affinity, the exact description of a
two neutral atoms at large separation~e.g., Na and Cl! is one
in which the total energy minimizes at one of these kin
with an integer number of electrons on each atom and w
each atom separately neutral.

For deeper insight, consider Eqs.~11! and ~14!. Since
neither v(r ) nor dU/dn(r ) changes discontinuously asN
crosses the integerZ, it must be that5,40,41

F dTs

dn~r !
1

dExc

dn~r !GU
N5Z1d

2F dTs

dn~r !
1

dExc

dn~r !GU
N5Z2d

5I Z2AZ8 ~30!

whered is a positive infinitesimal. The same analysis appl
to the Kohn-Sham noninteracting system yields
tly

y.

:

e
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d
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e
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-
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e
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,
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d

dTs

dn~r !
U

N5Z1d

2
dTs

dn~r !
U

N5Z2d

5eZ11~Z!2eZ~Z!, ~31!

where e i(Z) is the i th Kohn-Sham orbital energy of th
Z-electron system. The difference between Eqs.~30! and
~31! is the discontinuity of the exact exchange-correlati
potentialdExc /dn(r ), which must be positive for an open
shell system in whicheZ11(Z)5eZ(Z).

As N increases through the integerZ, the exact exchange
correlation potential can jump up by an additive positi
constant. Then, asN continues to increase aboveZ, this
‘‘constant’’ starts to disappear, first atur u5` and then at
smaller and smaller values ofur u, as shown in Fig. 11 of Ref
20 or Fig. 4 of Ref. 8.

In a system of two well-separated dissimilar atoms~such
as Na and Cl!, the exact Kohn-Sham potential shows an ex
positive buildup around the more electronegative atom~such
as Cl! to prevent the transfer of a fraction of an electron
this more electronegative atom~Ref. 34, and Fig. 7 of Ref.
8!.

Continuum approximations toExc@n#, such as the loca
density approximation~LDA ! of Eq. ~23! the generalized
gradient approximation~GGA! ~Refs. 43 and 44!, or the
Fermi-Amaldi approximation,45 in their direct extensions
@e.g., Eq.~23!# to noninteger electron number, cannot pr
duce the correct derivative discontinuity. In the open-sh
case, they average over the discontinuity of Eq.~29!,
making41,8,36

eZ
approx~Z!'2

1

2
~ I Z1AZ!. ~32!

Continuum approximations typically give good total ene
gies for integerN, but poor total energies for nonintegerN.
The explanation for both these facts can be found in
generalized sum rule8 on nxc(r ,r 8), the density atr 8 of the
exact exchange-correlation hole around an electron atr . The
exchange-correlation energy is half the electrostatic inte
tion between each electron and its hole:

Exc@n#5
1

2 E d3r E d3r 8
n~r !nxc~r ,r 8!

ur 82r u
. ~33!

In an open system with average electron numberN be-
tween the integersZ21 andZ, the generalized sum rule fo
the exact hole is8

E d3r 8nxc~r ,r 8!5211v~12v!E
0

1

dl@nZ
g~r ;l!

2nZ21
g ~r ;l!#/nN

g ~r !, ~34!

where v5N2(Z21). Here nM
g (r ;l) is the ground-state

density for M electrons with scaled interactionlV̂ee and
with external potentialvl(r ) which holds theN-electron en-
semble density fixed at itsl51 or fully interacting value;
thus vl51(r )5v(r ) and vl50(r )5vs(r ). The exact ex-
change hole8 obeys Eq.~34! with nM(r ;l)→nM(r ;0). The
LDA and GGA holes integrate to21, which is correct in the
integer or nonfluctuating limitsN5Z21 andN5Z, but not
in between@where the correction to21 in Eq. ~34! is typi-



ly

o

si
n

le
f
is
en
te

gy

n
e

-
m
47

e
ad
tis
lv

tiv

re
ey

l
n-
a
th

ie
,
t

e

l

,
dix.
e

b-

eld

i-
rgy
at

tic

16 026 56COMMENTS
cally positive#. Thus LDA and GGA energies are serious
too negative for the ground state of ‘‘stretchedH2

1 , ’’ 46,38 a
system composed of two well-separated protons and
electron, in which the average electron numberN is 1/2 for
each proton basin. For this problem, neither spin-den
generalization nor symmetry breaking can rescue LDA a
GGA.

The self-interaction-corrected~SIC! hole of Ref. 18 satis-
fies a sum rule8 which is very much like the exact sum ru
of Eq. ~34!, differing from it only in the replacement o
nM

g (r ;l) by nN
g (r ;0). However, the SIC method of Ref. 18

not really a Kohn-Sham method; SIC constructs a differ
potential for each orbital, and these orbital-dependent po
tials always vanish asur u→`.

In Eq. ~10! of Ref. 7, Kleinman proposes a Hartree ener
UK@n# which differs from the standard one of Eq.~13! by
the positive quantity

UK@n#2U@n#5
v~12v!

2 E d3rd3r 8

3
@nZ~r !2nZ21~r !#@nZ~r 8!2nZ21~r 8!#

ur 82r u
.

~35!

@From n(r ), we find v via Eq. ~6!, and v(r ) via Eq. ~11!;
nZ(r ) and nZ21(r ) are then theZ and (Z21) electron
ground-state densities for external potentialv(r ).# By our
accounting, Eq.~35! is a contribution toExc@n#. Adding it to
the LDA of Eq. ~23!, or to GGA, interestingly produces a
exchange-correlation hole which satisfies a sum rule v
much like the exact one of Eq.~34!, differing from it only in
the replacement ofnM

g (r ;l) by nM
g (r ;1).

The generalization of Eq.~34! from zero to nonzero tem
perature, which takes the same mathematical form for fer
ons, bosons, or classical particles, can be found in Ref.

The exact density functionalsTs@n# and Exc@n# are de-
fined in terms of density-constrained searches over
sembles of antisymmetric wave functions. Thus they alre
contain information about energy quantization, Fermi sta
tics, and ensemble weights. The exact functional themse
~and not extraneous constraints, as suggested in Refs. 48
49! are responsible for the shell structure and the deriva
discontinuities of the ground-state energy.

For simplicity, we have presented all arguments and
sults in the context of density-functional theory, but th
carry over directly to spin-density-functional theory.1–3 Both
the density-functionalTs@n# and the spin-density-functiona
Ts@n↑ ,n↓# for the noninteracting kinetic energy are co
structs of the imagination with no exact physical counterp
in real electronic systems, and neither can capture all of
derivative discontinuity of the physical total energy.41,42

Finally, it has been observed that the highest-occup
orbital energy equals the negative of the ionization energy
exact hybrid schemes. The appropriate correlation poten
is added to the whole Fock potential,55 or to a part thereof,56

and the exact ground-state density is obtained upon s
consistency.
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APPENDIX A: DERIVATION OF µ5EN
g N THAT DOES

NOT EMPLOY THE LAGRANGE MULTIPLIER
TECHNIQUE

In Eq. ~9! defineEv@n# by

Ev@n#5F@n#1E d3r n~r ! v~r !, ~A1!

and definem by

m5
dEv@n#

dn~r !
U

n5n
N
g

, ~A2!

where the derivative is taken at fixedv(r ). Next, note that
the minimization ofEv@n#, at fixedN, dictates that

05dEv@n#5E d3r mdn~r !, ~A3!

for arbitrary infinitesimal variationdn(r ) about the minimiz-
ing densitynN

g , from which it follows them is a constant
because*d3rdn(r )50. Now consider the infinitesima
variation dn(r )5nN1dN

g (r )2nN
g (r ), wherenN1dN

g (r ) is the
minimizing density forN1dN electrons. Sincem has al-
ready been identified as a constant, this time we obtain

dEv@n#5E d3r mdn~r !5mE d3r dn~r !5mdN, ~A4!

wheredEv5Ev@nN1dN
g #2Ev@nN

g #. Equation~A4! is equiva-
lent to the desired result,m5]EN

g /]N. ~See Refs. 3, 4, 50
and 51 for studies that are closely related to this appen
One crucial difference is that our logical progression her
bypasses the use of any Lagrange multiplier.!

APPENDIX B: AN EXACTLY SOLVED TWO-ELECTRON
PROBLEM FOR WHICH THE IONIZATION

POTENTIAL THEOREMS ARE EXACTLY CONFIRMED

We know only one exactly solved many-electron pro
lem, the ‘‘Hooke’s atom’’ or ‘‘harmonium,’’52–54 in which
two electrons repel one another Coulombically and are h
together by a harmonic-oscillator external potential

v~r !5 1
2 kr2. ~B1!

Laufer and Krieger53 showed both numerically and analyt
cally that the highest-occupied Kohn-Sham orbital ene
e25e1 for this problem, under the assumption th
limur u→`dExc /dn(r )50, is

e25E2
g2E1

g ~B2!

for all k, in agreement with Eq.~19c!. For special values of
k, the energies and wave functions are explicit analy
expressions.54

Some further discussion is needed here, sincev(r ) of Eq.
~B1! does not satisfy the conditionv(`)50 used to derive
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Eqs.~19c! and~20!. We introduce a modified Hooke’s atom
depending upon a parameterR, with external potential

ṽ~R,r !5H 1
2 kr22 1

2 kR2 ~r ,R!

0 ~r .R!.
~B3!

Clearly, asR→`,

ṽ~R,r !→v~r !2 1
2 kR2, ~B4!

ẼZ
g~R!→EZ

g2
Z

2
kR2, ~B5!

ẽ2~R!→e22 1
2 kR2, ~B6!
.6

d

io
y

PS
with corrections that are exponentially small. The modifi
Hooke’s atom obeys the conditions required to derive E
~19c! and ~20!, so

ẽ2~R!5Ẽ2
g~R!2Ẽ1

g~R!, ~B7!

for any finite R. Now let R→`, and apply Eqs.~B5! and
~B6! to ~B7!; the result is Eq.~B2!.
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