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With more explanation than usual and without appeal to Janak’s theorem, we review the statement and proof
of the ionization potential theorems for the exact Kohn-Sham density-functional theory of a many-electron
system:(1) For any average electron numkérbetween the integerZ—1 andZ, and thus foN—Z from
below, the highest occupied or partly occupied Kohn-Sham orbital energy is minus the ionization energy of the
Z-electron system(2) For Z—1<N<Z, the exact Kohn-Sham effective potential(r) tends to zero as
[r]—c. We then argue that an objection to these theor¢msKleinman, Phys. Rev. 56, 12 042(1997)]
overlooks a crucial step in the proof of theoré®): The asymptotic exponential decay of the exact electron
density of theZ-electron system is controlled by the exact ionization energy, but the decay of an approximate
density isnot controlled by the approximate ionization energy. We review relevant evidence from the numeri-
cal construction of the exact Kohn-Sham potential. In particular, we point out a model two-electron problem
for which the ionization potential theorems are exactly confirmed. Finally, we comment on related issues: the
self-interaction correction, the discontinuity of the exact Kohn-Sham potentMIEesses through the integer
Z, and the generalized sum rule on the exchange-correlation [I80&¢63-182@08)04403-9

[. INTRODUCTION overlooks a crucial step in the proof of Ref. 6. In Sec. IV, we
review numerical evidence for and against the ionization po-

Kohn-Sham density functional thedfy is a formally ex- ~ tential theorems. Section V reviews the related ideas of self-
act way to find the ground-state energy and density of dnteraction correction, derivative discontinuity, —and
many-electron system by solving a self-consistent one€xchange-correlation sum rule. Appendix B presents an
electron Schidinger equation. In practice, the density func- €xactly-solved model two-electron problem for which the
tional for the exchange-correlation energy must be approxilonization potential theorems are exactly confirmed.
mated, and approximate Kohn-Sham calculations are a
mainstay of modern electronic structure theory in both con-Il. IONIZATION-POTENTIAL THEOREMS AND PROOFS
densed matter physics and quantum chemistry.

Perdew, Parr, Levy, and Baldu@PLB) showed that the
highest-occupied exact Kohn-Sham orbital eneffyyr all
electron numberdN between the integerg—1 andZ) is
minus the ionization energy of th#-electron system. The N=f d3rn(r) (D)
ensemble constrained search of Ref. 5 implicitly fixes the
constant lim_.0E,./én(r). Later Levy, Perdew, and is a fixed integer. As a result, functional derivatives
Sahn? (LPS) showed that this limit of the exact exchange- sF/an(r), which satisfy the equation
correlation potential vanishes far—1<N<Z, and thus for
N—Z from below. These “ionization potential theorems” ;. OF
have been challenged in a recent article by Kleinrhan. 5':[”]:[ d°r sn(r) on(r) @

Our comment on Kleinman'’s article begins with a review
of the ionization potential theorems and their pro@sc. I).  for infinitesimal density changeén(r), are only defined to
These proofs were originally presented separately and brieflwithin an arbitrary additive constant. Reference 5 extended
in Refs. 5 and 6. They appear together in Ref. 8, a conferendbe domain of density-functional theory to noninteger elec-
proceedings article which also addresses other related issu¢n numbemM, for two reasons(1) to ensure that all func-

In Sec. Ill, we examine Kleinman'’s critique, and show that ittional derivatives, and hence all potentials, are completely

In the original density-functional theary'° based upon
many-electron wave functions, the electron number
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defined, and2) to describe an open system which can ex-In Eq. (3), T and V,, are the kinetic and electron-electron
change electrons with its environment. In an open systenrepulsion operatord. is an ensemble or statistical mixture of
the electron number can fluctuate between integers, and its (Z— 1)-electron pure statd,_,; with probability 1— w,
time or ensemble average need not be an integer. For moahd aZ-electron pure stat&; with probability », where
electronic systems?® this extension is nothing more than an 0<w<1. The pure states must be antisymmetric under ex-
explicit display of the zero-temperature limit of Mermin's change of a pair of electrons. For eaély (M=2Z—-1 orZ),
finite-temperature density-functional thebrywithin the  define a density
grand canonical ensemble.

Let Z be an integer, and consider average electron number (1) = (Wl W), @
N in the rangeZ—1<N<Z. Generalize the constrained- SO that
0 1 it i i i ~
tsgzarcﬁ definition of the universal density functiongl n] (A= (1= w)ny_1(r)+ wny(r), (5)
A - NYp=(1— ~1)+wZ=Z—1+w=N.
Flnj=min(T+V.or. 3 (N)yr=(1-w)(Z-1)+wZ=Z-1+w=N (6)
r—n Equation(3) can then be rewritten as
|
FIn]=min{(1—o){(V7_1|T+Ved ¥z 1)+ o( V| T+V V7)1, (7
|
where the minimum is taken over all pais;_; and ¥, Define the Hartree self-repulsion of the electron density as

such that (+ w) nz_1(r) + wnz(r)=n(r).
We now establish the density-functional variational prin- 1 3, il
ciple. For a given electron numbar and external potential Uln]=3 | d° [ d°'n(r)n(r")/|r'=r|, (13

v(r), define the ground-ensemble energy .
and the exchange-correlation enefgy. by

E%=min<%+\7ee+Jd3r ﬁ(r)v(r)> , ) F[n]=T{n]+U[n]+E,Jn]. (14)
I'—N r

and define the ground-ensemble densifyr) as the density The Euler equatiorill) can then be written as

of the minimizing ensembl&. The minimization of Eq(8)

can be done_in two steps: first over aII”ensemqueldi_ng oTs +oy(n=pu, (15)
a given densityn(r), then over all densities(r) integrating on(r)
to N, whence
where
Eg=min[F n +J dr n(r)u(r)]=(1—w)E9J +wEY, sU S5E
S A T vs(D=v(N+ 505+ 50y (16)

9
and sU/én(r)=Sd3'n(r')/|r—r’'|. Equation (15) is the
nR(N=(1—w)nd_(r)+ ond(r). (100 Euler equation for a system of noninteracting electrons mov-
ing in an external potential((r), the Kohn-Sham effective
potential, which holds them at densityr). The Kohn-Sham
spin orbitalsy;(r) are self-consistent solutions of the Kohn-
Sham equations

The Euler equation for the minimization of Eq9) is
SF[n]+ fd3n(r)v(r)—uN]=0 or

+o(r)=u, (11

on(r) [~ 392+ 0d(D](N) = e (1), (17
where u=JE}/IN is the Lagrange multiplier for the con-
straint of constanN. (Since the Lagrange multiplier is al- n(r)zE £l y(r)|2 (18)
. I I ’

ways the derivative with respect to the constraint, we do not
need Janak’s theoreff). Also Appendix A arrives atu . .
— 9EY/N by a different route for those who are unfamiliar Wherefi=1 for e<ez(i<Z), 0 for 6i>f2(2'>z)’ and o
with Lagrange multipliers. for €j=ez(i=2). ThenTn]=2ifi(yi| —2Vys).

Now consider a fictitious noninteractiny {.=0) system f Tthe slelf-con5|f_tent equbatlolmis?t)_zintzj(tS) result,bW|th a
of electrons with the same densityr) as above. By analogy t_rac 'onl‘; occgpalgon nhumbemly a Ilt_ ' ecI:autie y equg—
with Eq. (3), we define the noninteracting kinetic energy ions (12) an .( ) n(r) is simuitaneously theé ground-

ensemble density whose noninteracting energy is
T{n]= min('i’)r . 12

I'—n

Exl=(1-w)E3% |+ wES’, (19
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whereE}? is the total ground-state energsum of occupied Ir|—oe:  n(r)~exp{—2V2[ — ez +v(=)]|r]}. (22
orbital energiep of that M-electron noninteracting system
whose external potential isy(r), with M=Z—-1 orM=2Z.

By construction the chemical potentia}s, for the nonin-
teracting and interacting systems of the same deng(ty
are the same. Further, by Ed45) and(19) we have

Comparison of Eqs(190), (21), and(22) leads immediately
to Eq. (20). The theoren(21) and its associated conclusions
were derived independently in a different way by Almbladh
and von Barth?

Theorem(21) was also deduced in an unpublished tech-

IER?  IER? s0 s n!cal repor@5 and by _Kat.riel and Davidsotf. Howeve'r,_as
r="N " 70 Fz EziTez (198  discussed in the beginning of the paragraph containing Eq.
(21) of LPS,® LPS bypassed the need for a conjecture con-
and by Egs(9) and (11) we have cerning theS matrix in Ref. 16 and the need for a certain

suspect assumption, involving the decay of an infinite series
of exponentials, that was employed in Refs. 14, 15, and 16.
Not yet having the definitive proof of LPS at hand, PPLB
played it conservatively and gave the right-hand side of Eq.
(20) here as a non-negative number, by considering the cor-
responding asymptotic inequality in Ref. 17 as well as the
asymptotic equality in Refs. 15 and 16.
e,=—1, (Z—1<N<2). (199 At this point, we have derived everything needed for a
comment on Ref. 7. We note, however, that there are other

Thus through a somewhat different route than previouslymplications of these arguments, which are drawn out in
employed and without use of Janak’s theorem, we have conRefs. 5, 6, and 8, and Sec. V.
firmed that the exact highest-occupied Kohn-Sham eigen-

IJEY  IEY o g

P=oN " 90 Ez Ezam—lz (19b
where the derivatives are taken at fixedr) anduv(r), re-
spectively. Consequently, by Eqd.98 and (19b), our de-
sired result is obtained:

value is minus the ionization energy of teelectron sys- IIl. REBUTTAL OF FORMAL OBJECTIONS

tem. Since Eq(19¢ holds for allN betweenZ—1 andZ, it TO THE IONIZATION POTENTIAL THEOREMS

also holds in the limiN— Z from below, for which the cal-

culations described in Sec. IV are carried out. Our first reading of Ref. 7 suggested to us that Kleinman

We pause to review the interacting and noninteracting enwas questioning the validity of Janak’s theofénfor en-
sembles we have constructed. We are given an external pgembles with noninteger particle number. Although he does
tential v(r) and an average electron numiérin the range not, and although the theorem is in fact valid, we have here
Z-1<N<Z. The interacting ground ensemble is simply aimproved the intelligibility of our argument, and made it
mixture of the ground states of th&¢ 1) electron system simpler, by deriving Eqs(19¢) and(20) without it.

(with probability 1— ») and of theZ-electron systentwith An important part of Kleinman's objectidrto Egs.(19¢)
probability w). Thusn¥(r), EY, and F[n¥] vary linearly apd (20) is the assertion that the.same derivqtion can be
with N, although the individual components Bf[Eq. (14)] ~ 9Iven for approximate density functionals, for which the con-
do not. The noninteracting or Kohn-Sham ensemble is a mixclusions clearly do not follow. _

ture of the ground states foZ¢ 1) andZ noninteracting Any approximate density functiond&®***fn] has a di-
electrons in the presence of the external potentigt), rect extension from integer to noninteger electron number,
which of course depends uperr) and varies wittN. The ~ Which may differ from the extension of E(). For example,
Kohn-Sham potentiab(r) is chosen so that the ground- the local density approximatiorfor exchange and correla-
ensemble density of the noninteracting electrons is the sanf#on:

as that of the interacting electrons.

LPS (Ref. 6 arrived at E;CDA[n]:f d3r n(r)e(n(r)), (23
limovg(r)=0 (Z—-1<N<2) (20

[r[—oe

can be evaluated directly for am{r), whether it integrates
to an integer or not, and can lead to a highly nonlinbar
within the exact Kohn-Sham theory by proving COﬂC|USive|ydependence of the total energy for- 1<N<Z (see Fig. 5
that the asymptotic decay of the exact electron density of thef Ref. 8 which is completely different from the exact be-

Z-electron system is havior of Eq.(9). Much (but not al) of the spurious nonlin-
earity disappears in self-interaction-ftfBeapproximations
n(r)~exd —2v2l|r|] (2 such as the optimized effective potenti@EP method of

when the external potential(r) vanishes agr|—w. The Refs. 19 and 20, aln exact-exchange-only implementation of
proof depends upon the fact that, as one electron coordinat§ohn-Sham theor§: As support for the preceding sentence,
of the Z-electron ground-state wave function tends to infin-S€€ for example Figs. 8 and 9 of Ref. 20, or Fig. 5 of Ref. 8.
ity, the remaining electrons collapse to th&~1)-electron Klelnmarf is not referring to these direct extensions of
ground statdif it is accessible by symmetyyFor a numeri- ~ @Pproximate functionals, but to an analog of E@$.and(9):
cal demonstration of this collapse, see Ref. 13. ADDION o7 on P, aporo

Since typically 1,<l, ,, Eq. (21) describes the = PEInI=min{(1-w)F*PPInz o]+ 0 FP )[nZ]}('24)
asymptotic decay of the ensemble density of Ed). The
Kohn-Sham noninteracting ensemble density has by conahere the minimum is taken over all pairs,_;(r) and
struction the same densityr), and clearly nz(r), such that (*w)ny_4(r)+wnz(r)=n(r). (Note
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that, even when the evaluation Bf°P*{n,,] for integerM  fz(Z) at @=1. We do not see any implication of this result
is trivial, the evaluations oF2P™fn] for non-integeN and  for the derivation of PPLBour Ref. 5, or a fortiori for our
of its functional derivative are notThen present derivation.
PPLB provided the uniquely correct extension of the ex-
act total energy froolN=2 to Z— 1<N<Z, and thus of the
ER PP min[ Fappro}{”ﬁf dr n(f)v(f)} sum of the Hartree and exchange-correlation energies. While
n—N there is no such unique extension of the Hartree or exchange-
—1_ g,approx g,approx correlation energies separately, we believe that our choice is
=(1-@)BZ50 ok ’ @9 the most naturgl one.p HoweX/er, careful consideration of
and Kleinman's argument does help to explain why self-
interaction free approximations like his E@.2) can mimic
€3PPIOX JEG.APPIOY 5, — PO 71 <N<Z). (26) tEeNitrZaight line behavior of the exact total energy Zor 1
: . . By Eq. (9), the total energy of the interacting system is a
So far as we can see, 5Q@6) is a valid CO”};'“S'O”- How- minimum with respect to arbitrary density variatiods(r)
ever, it cannotbe used to conclude that?™(=)=0 for \ynich conserve the numbet of electrons bw=0). This
Z—1<N<Z because there is no analog of EB1) for ap-  condjtion leads to Eq(11), and hence to the Kohn-Sham
proximate functionals, i.e., the ensemble density equations. Eqs(16) and (17) of Ref. 7 are not correct, be-
cause the normalized orbitals are to be varied freely at fixed
nd-2PPY 1) = (1 - w)nZ 2P Y1) + nZ®P°(r)  (27)  N. Only after minimization with respect to orbitals do we
obtain Eqgs(9) and(10).
doesnot decay with an exponent controlled b§**(except In summary, we do not find any formal argument in Ref.

possibly in special cases like the metallic surfadéor an 7 which casts doubt upon our Eq449¢) and(20). We turn to
approximate functional, the crucial link between thethe numerical evidence in the following section.

asymptotic density decay and the ionization energy is miss-

ing.
To be specific, we consider the exchange-only OEP ap- V. NUMERICAL EVIDENCE FOR THE IONIZATION
proximation of Refs. 19, 20, and 7. For t#eelectron sys- POTENTIAL THEOREMS

tem, we can construct an OEP Kohn-Sham potential which
goes to zerdby arbitrary choicgat infinity. By Koopmans’
theorem, the highest occupied orbital energy differsAbya
negative electronic relaxation energy= —0.05 hartree for
the Ar atom) from minus the OEP ionization energy. But this
potential can and does differ by the additive constafiom
the limit (asN—Z from below) of

When we first wrote Refs. 5 and 6, little was known about
the exact Kohn-Sham potentials for real electronic systems.
Since then, many authdfs’?~3%have constructed essentially
exact Kohn-Sham potentials for small atoms and molecules
by various numerical methods, starting from accurate corre-
lated ground-state electron densities. Because these poten-
tials are constructed to vanish at infinity, all this work can be
rox regarded as an investigation of the limit—Z from below,

oU SESEP whereZ is the integer electron number of the atom or mol-

+ (28
on(r)  on(r) ecule.
The earliest referenc@Ref. 22 in our list assumed, and

of Eq. (24), whose highest occupied Kohn-Sham eigenvaluevas consistent with, the ionization potential theorems. Many
is minus the OEP ionization energy according to E2f). of the more recent works do not assume the ionization po-
Kleinman does grant that the potential of E§8) might tential theorems of Eqg19¢ and (20), and so provide a
differ from zero in the limit/r|—c, but says that then “the direct numerical test of these theorems. In none of these
result would be of little utility,” as indeed it is. articles do we find a challenge to the truth of the theorems.

We stress again that ER4) is not the direct extension Kleinmar’ observes that Ref. 25 finds some numerical
[e.g., Eq.(23) for LDA] of a density-functional approxima- discrepancies between the highest-occupied eigenvialaks
tion to noninteger electron number. One can construct syssulated under the assumption of E®0)] and minus the
tems in which the exact ground-state wave function placesonization energies. These discrepancies are extremely small
noninteger electron number on each of two or more sep&or the light atoms, but for the Ar atora;,=—0.55 hartree
rated subsystems, e.g., “stretchidd ” of Sec. V. This situ- is somewhat different from-1=—0.58 hartree. However,
ation i€ energetically equivalent to one in which each of thethe authors of Ref. 25 “expect more accurate ionization po-
subsystems is described by an exact ensemble. But, if weentials will be found when higher quality densities are used
apply a density-functional approximation like LDA to the as the reference.” The problem is that the reference densities
combined system, the result will be energetically equivalentaire found by variational means such as the method of con-
to one in which each subsystem is described by the dirediguration interaction, and the total energy is not sensitive to
extension of this approximation to noninteger electron numthe asymptotic decay of the density into the vacuum.
ber, and not by Eq24). For the small molecules LiH, BH, and HFable | of Ref.

In Ref. 7, Kleinman also defines twmonstandardHar-  33) or H,O and HF(Table 2 of Ref. 32 the ionization
tree energies, his Eq¢ll) and (12), which are equal ab potential theorems are obeyed with remarkable accuracy. In
=1. He shows that the partial derivative of the first with Appendix B, we discuss a model two-electron problem for
respect tow differs from that of the second with respect to which these theorems are exactly confirmed.

v(r)+
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Finally, the overwhelming numerical confirmatfSnof 5T,
the OEP Koopmans' theorérf>’ supports the validity of 0]
Eq. (21), because the OEP Koopmans’ theorem has recently

been derived by assumifighat Eq.(21) is correct for arbi-  \where €(2) is the ith Kohn-Sham orbital energy of the
trary electron-electron repulsion constant, at fixed densityy_glectron system. The difference between E(@9) and
The Koopmans' theorem arisésy equating terms that are (31) is the discontinuity of the exact exchange-correlation
first order in the coupling constant. potential SE,./Sn(r), which must be positive for an open-
shell system in whicke,, 1(Z)=€,(2).
As N increases through the integér the exact exchange-
correlation potential can jump up by an additive positive

V. SELF-INTERACTION CORRECTION, DERIVATIVE constant. Then, adl continues to increase abowg this

DISCONTINUITY, AND EXCHANGE-CORRELATION “constant” starts to disappear, first ehrt|=_oo and then at
SUM RULE smaller and smaller values pf|, as shown in Fig. 11 of Ref.

20 or Fig. 4 of Ref. 8.

Our work of Ref. 5 was motivated by the self-interaction In a system of two well-separated dissimilar atofssch
correction of Ref. 18see also Ref. 38and by an intriguing  as Na and G| the exact Kohn-Sham potential shows an extra
statement of Slatét about the local-density-approximation positive buildup around the more electronegative atsuth
description of a Na atom and a Cl atom at infinite separationas C) to prevent the transfer of a fraction of an electron to
“Electronic charge will flow from the Na to the ClI, falling to this more electronegative ato(Ref. 34, and Fig. 7 of Ref.

a lower one-electron energy and producing some positive).

charge on the Na, negative on the Cl.... This process will Continuum approximations t&,Jn], such as the local
have the effect of pushing the energy levels of the Cl upwardiensity approximationLDA) of Eq. (23) the generalized
and lowering those of the Na....”. Since no charge shouldyradient approximatiofGGA) (Refs. 43 and 44 or the
flow between well-separated neutral atoms in #weact Fermi-Amaldi approximatiofi® in their direct extensions
Kohn-Sham theory, an explanation for the exact preventativge.g., Eq.(23)] to noninteger electron number, cannot pro-
mechanism was needed. This exact mechanism, the derivduce the correct derivative discontinuity. In the open-shell
tive discontinuity of the total energy at integer electron num-case, they average over the discontinuity of Eg9),
berN=2Z, turned out to very much like the approximate one making &~

provided by the self-interaction correcti§ri®“°to the local-

6T
“onn), ., e meld) 8D

N=Z+46

density approximation of Eq(23), and by other self- 1
interaction-free methods such as the exchange-only OEP Eéppm)tz)%_i(lerAZ)' (32
approximatiorf>4°

To see the derivative discontinuity, generalize EPb) Continuum approximations typically give good total ener-
to gies for integeN, but poor total energies for nonintegsr

The explanation for both these facts can be found in the

generalized sum rufeon n,(r,r’), the density at’ of the

exact exchange-correlation hole around an electron &he

—A;=EJ,,—EJ (Z<N<Z+1). exchange-correlation energy is half the electrostatic interac-
(29 tion between each electron and its hole:

—1,=E%-EJ_, (Z-1<N<2)
w=0ER/IN=

i i 1 n(ryn,(r,r’
Equation(29) asserts that the total energy as a function of the Exc[n]zzfdgrfdsf' (|) xclrsr’) 33

average electron numbbris a linkage of straight lines with r'—r|
kinks or derivative discontinuities at the integers. Becafise
the smallest ionization energy of the Periodic Table is greater In an open system with average electron nuridebe-
than the largest electron affinity, the exact description of anyween the integer&—1 andZ, the generalized sum rule for
two neutral atoms at large separati@ng., Na and Glis one  the exact hole &
in which the total energy minimizes at one of these kinks,
with an integer number of electrons on each atom and with
each atom separately neutral.

For deeper insight, consider Eqdl) and (14). Since
neitherv(r) nor 8U/én(r) changes discontinuously aé —ng_1(r;M)1/nk(r), (34)
crosses the integét, it must be that*%4!

f d3r’nxc(r,r’)=—1+w(1—w)fld)\[n%(r;)\)
0

where o=N—(Z—1). Hereng,(r;\) is the ground-state
density for M electrons with scaled interactionV,, and
with external potentiad, (r) which holds theN-electron en-
semble density fixed at its=1 or fully interacting value;
thus vy —1(r)=v(r) and v,_o(r)=v4(r). The exact ex-
=l;—Az (30 change holéobeys Eq.(34) with ny(r;\)—ny(r;0). The
LDA and GGA holes integrate te- 1, which is correct in the
wheredis a positive infinitesimal. The same analysis appliedinteger or nonfluctuating limitdl=Z—1 andN=2Z, but not
to the Kohn-Sham noninteracting system yields in between[where the correction te-1 in Eq. (34) is typi-

oTs OE¢

N OTs SE,¢
on(r) on(r)

(Sn(r)Jr on(r)

N=Z+46 N=Z-¢
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cally positivd. Thus LDA and GGA energies are seriously APPENDIX A: DERIVATION OF u=@dE{dN THAT DOES

too negative for the ground state of “stretchidd ,” *¢*%a NOT EMPLOY THE LAGRANGE MULTIPLIER
system composed of two well-separated protons and one TECHNIQUE
electron, in which the average electron numbleis 1/2 for In Eq. (9) defineE,[n] by

each proton basin. For this problem, neither spin-density

generalization nor symmetry breaking can rescue LDA and

GGA e [nl=Flnl+ [ o o, (A
The self-interaction-correcte@IC) hole of Ref. 18 satis-

fies a sum ruléwhich is very much like the exact sum rule and defineu by

of Eq. (34), differing from it only in the replacement of

n% (r;\) by n§(r;0). However, the SIC method of Ref. 18 is _OE,[n]
not really a Kohn-Sham method; SIC constructs a different “=sn(r) nend (A2)
potential for each orbital, and these orbital-dependent poten- N
tials always vanish ag|— . where the derivative is taken at fixedr). Next, note that
In Eq. (10) of Ref. 7, Kleinman proposes a Hartree energyine minimization ofe [n], at fixedN, dictates that
Uk[n] which differs from the standard one of E(.3) by Y
the positive quantity
0=5Ev[n]=f d3r wéon(r), (A3)
Uy[n]—U[n]= o(l-w) f PBrd for arbitrgry infinitesimal -vari.atioraSn(r) about. the minimiz-
2 ing densitynd, from which it follows theu is a constant

[N(1) = Ny 1 () ][Pp(F ) = Mgy (F)] because [d® én(r)=0. Now consider the infinitesimal
z oz z-1 _ variation sn(r)=ng , s(r) —nf(r), wherend_ s(r) is the
r’—=r| minimizing density forN+ 6N electrons. Sincex has al-
(35  ready been identified as a constant, this time we obtain

[From n(r), we find w via Eq. (6), andv(r) via Eq. (11); 5Ev[n]=f dr Mn(r)=uf dr sn(r)=uoN, (Ad)
nz(r) and n,_4(r) are then theZ and —1) electron
ground-state densities for external potentigr).] By our  whereSE,=E,[n{, s]—E,[n{]. Equation(A4) is equiva-
accounting, Eq(35) is a contribution tE,[n]. Addingitto  |ent to the desired resuliy=JEJ/IN. (See Refs. 3, 4, 50,
the LDA of Eq.(23), or to GGA, interestingly produces an and 51 for studies that are closely related to this appendix.
exchange-correlation hole which satisfies a sum rule verpne crucial difference is that our logical progression here
much like the exact one of Eq34), dlfferlng from it Only in bypasses the use of any Lagrange mu|t|lj||er
the replacement afif,(r;\) by n§,(r;1).
The generalization of Eq34) from zero to nonzero tem-
perature, which takes the same mathematical form for fermi-
ons, bosons, or classical particles, can be found in Ref. 47.
The exact density functional§J n] and E,Jn] are de-
fined in terms of density-constrained searches over en-
sembles of antisymmetric wave functions. Thus they already
contain information about energy quantization, Fermi statis- We know only one exactly solved many-electron prob-
tics, and ensemble weights. The exact functional themselvdem, the “Hooke’s atom” or “harmonium,”®?~3%in which
(and not extraneous constraints, as suggested in Refs. 48 atvwib electrons repel one another Coulombically and are held
49) are responsible for the shell structure and the derivativeogether by a harmonic-oscillator external potential
discontinuities of the ground-state energy.
For simplicity, we have presented all arguments and re- v(r)=1kr. (B1)
sults in the context of density-functional theory, but they
carry over directly to spin-density-functional thedfy.Both  Laufer and Kriege¥ showed both numerically and analyti-
the density-functional  n] and the spin-density-functional cally that the highest-occupied Kohn-Sham orbital energy
TJn;,n,] for the noninteracting kinetic energy are con- e;=€; for this problem, under the assumption that
structs of the imagination with no exact physical counterpartim;|_..6E,./én(r)=0, is
in real electronic systems, and neither can capture all of the
derivative discontinuity of the physical total enertjy*? e,=EJ—EJ (B2)
Finally, it has been observed that the highest-occupied
orbital energy equals the negative of the ionization energy, iffor all k, in agreement with Eq19¢). For special values of
exact hybrid schemes. The appropriate correlation potentidd, the energies and wave functions are explicit analytic
is added to the whole Fock potentfalor to a part thereof®  expressions?
and the exact ground-state density is obtained upon self- Some further discussion is needed here, sir(cg of Eq.
consistency. (B1) does not satisfy the conditian(ec) =0 used to derive

APPENDIX B: AN EXACTLY SOLVED TWO-ELECTRON
PROBLEM FOR WHICH THE IONIZATION
POTENTIAL THEOREMS ARE EXACTLY CONFIRMED
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Egs.(190 and(20). We introduce a modified Hooke’s atom, with corrections that are exponentially small. The modified
depending upon a parametey with external potential Hooke’s atom obeys the conditions required to derive Egs.
(1909 and(20), so
1kr’—ikR? (r<R)

T(Rr)= B3 (R =EYR)—EY(R), B7
( ) 0 (r>R). (B3) €:(R) 5( ) 7( ) (B7)
for any finite R. Now let R—<, and apply Eqs(B5) and
Clearly, asR—, (B6) to (B7); the result is Eq(B2).
- 12
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