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Efficient method for the simulation of STM images. I. Generalized Green-function formalism
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We present a theoretical formalism specially suited for the simulation of scanning tunneling microscopy
~STM! images. The method allows for a realistic description of the STM system, taking fully into account its
three-dimensional nature. Bias effects may also be considered since the theory is not restricted to the low-bias
limit. The starting point is the previously applied Landauer-Bu¨ttiker formula, which expresses the current at the
STM junction as a sum of transmission coefficients linking eigenstates at each electrode. The transmission
coefficients are directly obtained from the scattering matrix which is, in our approach evaluated through
Green-function techniques; in particular, we employ the surface Green-function matching~SGFM! method to
find the Green function at the interface, and explicitly derive simple expressions for the current. Additionally,
the formalism goes beyond the elastic-scattering limit by considering inelastic effects via an optical potential.
We also present a method to analyze the current in terms of contributions arising from individual atomic orbital
interactions and their interference with other interactions. To this end, the SGFM method is replaced by a
first-order expansion of the interface Green function.@S0163-1829~97!04648-1#
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I. INTRODUCTION

Since the early work of Tersoff and Hamann1 on the
theory of the scanning tunneling microscope~STM!, many
theoretical approaches have been developed in order to
further physical insight into the real space images that
technique provides.2–6 Most of the basic principles govern
ing the current or topographic contrast recorded in a S
image are now reasonably well understood in terms of
electronic and atomic structures of both the tip and surf
being probed together with their interactions.2 Moreover,
most STM-related experimental findings have also been
isfactorily explained, such as bias-dependent images,7 nega-
tive differential resistances,8,9 electron-density waves,10 atom
transport,11 quantization of the conductance,12 and thermo-
voltage measurements,13 among many others.

There exist, however, few STM theories that can be u
routinely to simulate STM images for a great variety of sy
tems in a fast and simple way, and that are realistic eno
to make a comparison with the experiment meaningful. I
often the case that a semiquantitative theory suffices to
tract useful information from a STM image or from spectr
scopic data, rather than performing accurate first-princip
calculations which are usually time consuming or even
tractable. Such an approach is necessary, for example, w
one desires to monitor chemical reactions with the STM. I
then crucial to identify coadsorbed species before and a
the reaction takes place. To determine the chemical iden
or their adsorption sites is not often a trivial task that can
directly extracted from the experimental image, so that o
needs to perform parallel calculations in order to assign
560163-1829/97/56~24!/15885~15!/$10.00
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ferent types ofbumpsor holes to a particular atom or mol-
ecule.

The so-called elastic-scattering quantum chemis
~ESQC! theory3,4,14–17has revealed itself as a computatio
ally fast and convenient scheme to calculate theoretical S
images. Up to now, it has been successfully applied t
great variety of systems: CO adsorbed on Pt~111!,14 benzene
on Pt~111! ~Ref. 18! and on Rh~111!,3 O and several othe
atoms on Pt~111!,15 and S on Re~0001! ~Ref. 16! and on
Mo~100!,17 among others. In the ESQC approach, the c
ductance of the system is evaluated via the Landau
Büttiker formula ~LBF!,19 which connects electronic state
~channels! on both sides of the STM junction. In this way
the coupling of the surface and the tip apex to their resp
tive bulk materials is fully taken into account. The probab
ity for electrons to be transmitted from one channel to a
other is directly obtained from the scattering matrixS which
is, in turn, evaluated through the transfer-matrix technique3,20

~TM!. However, the TM can only be applied to symmetric
junctions in the sense that both the geometrical and e
tronic structures of the tip and substrate bulk materials h
to be considered as identical. This requirement has also
vented the use of ESQC for analyzing spectroscopic d
since the applied bias shifts the energy bands at each sid
the junction in opposite directions, thus breaking the symm
try. All previous studies using the ESQC theory have the
fore been restricted to the low-bias limit which is, neverth
less, a common experimental condition when prob
metallic samples.

In this paper we present a reformulation of the ESQ
method, whereby in obtaining the scattering matrixS the TM
15 885 © 1997 The American Physical Society
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technique is replaced by the surface Green-function ma
ing ~SGFM! method.21 A very similar approach, but re
stricted to the one-dimensional~1D! case and the low-bia
limit, was recently developed by Chicoet al.22 in connection
to the conductance of nanotube heterojunctions. As will
shown, the use of Green functions lifts all the above rest
tions. At the same time, the full 3D nature of the system
also taken into account through an integration ink space
over the Brillouin zones of the substrate and tip. Furth
more, we show how a decomposition of the current into
dividual atomic-orbital contributions or interference term
may be accomplished if the SGFM method is replaced b
first-order perturbation theory. The actual application of
theory to some real systems, together with a detailed stud
the effect of the parameters involved will be presented in
following paper.23

In Sec. II we will briefly explain how the LBF~Ref. 19! is
applied to the STM problem. Although there exist more
cent and general formalisms to the quantum transport,24 we
feel that the LBF formula offers a conceptually simple, y
correct approach to the problem. The complete theory for
one-dimensional case will be presented in Sec. III, where
also show its equivalence with the ESQC for a simple mod
The extension to three dimensions and the method for
current analysis are described in Sec. IV, while in Sec. V
incorporate in an approximate way inelastic effects with
the theory. We leave to Sec. VII a final discussion on
present STM formalism.

II. LANDAUER FORMULA APPLIED TO THE STM

As depicted in Fig. 1~a!, we model the STM experimenta
setup by two perfect conducting wires corresponding to
substrates and the tipt. Each wire has one of its termina
tions attached to an electron reservoir characterized
chemical potentialsms andm t , respectively. The two wires
are then brought close to each other forming an interfacI
which we identify as the STM junction. Since the electron
and geometrical structures of the sample and tip surfaces
in general differ from those within their corresponding bu
materials, it is convenient to define each surface as a sep
block which we denote byr for the reconstructedtermina-
tion of thes wire, and bya for the tip apex of thet wire. The
interfaceI is thus composed of the two surface blocksr and
a.

In the STM experiment, the difference in chemical pote
tials at thes andt reservoirs is externally controlled throug
the applied sample biasV, so thateV5ms2m t ~with e,0),
and an electron flow sets up from the wire at higher chem
potential to the wire at lower potential. This situation is
lustrated in Fig. 1~b! for the casem t.ms , which corresponds
to a positive sample biasV (eV,0). In order to evaluate the
current I (V) associated with this flow we follow the argu
ments of Bu¨ttiker et al.,19 considering the zero-temperatu
limit. At a given energyE, each wirea, wherea5s and t,
may be described by a certain numberNa(E) of independent
ideal one-dimensional conductors, which are referred to
channels. Electrons propagate through these channels
out dissipation from the reservoirs to their respective s
faces, and vice versa. We may denote each channelm by the
ketuua

6m(E)&, where we use the1 sign for propagation from
h-
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s to t and the2 sign for the opposite direction. The supe
script m, which takes values between 1 andNa(E), stands
for any proper quantum number such as the band index~this
will be clarified in the next sections!. Notice that the flow
directions at both bulk materials need not be along the sa
axis, but it will be determined by the particular shape a
relative orientation of the wires. In particular, the bulk repe
vectors at the two wires might not be aligned with ea
other, although in Fig. 1~a! they are depicted in such a
arrangement. AtT50, the reservoirs will inject electron
into the channels so that they are all occupied up to th
respective chemical potentials and unoccupied for higher
ergies. All the chemical potential drop is assumed to be
calized in the vacuum region of the junction@Fig. 1~b!#. We
can then view an electron in channeluut

2m(E)& propagating
along the t bulk material until it reaches the interfaceI
where it is scattered, having certain probabili

^us
2m8(E8)uT uut

2m(E)& to transmit across the junction int

channeluus
2m8(E8)& at s or ^ut

1m8(E8)uRuut
2m(E)& for back

reflecting into another channel att. Depending on the energ
E8 of the scattered electron the scattering process may e
be elastic (E5E8) or inelastic (EÞE8). Next, we take the
elastic-scattering limit and approximate the transmiss
probabilities by

^us
2m8~E8!uT uut

2m~E!&'d~E2E8!^us
2m8~E8!uT uut

2m~E!&

5d~E2E8!Tm8m
2

~E!. ~1!

FIG. 1. Schematic of the STM theoretical model.~a! The sub-
strates and tip t are considered as wires connected to a reserv
~b! Chemical potentialm at each wire when a negative biasV is set
between the two reservoirs. All allowed states belowm are assumed
to be occupied. The atomic-scale potential energy along the w
and at the junction is also sketched as curved lines.~c! The 1D
model: the numbering below each pair of atoms denotes the pr
pal layers~PL’s!. ~d! The 3D model: dashed horizontal lines ind
cate the surface superlattices atr anda, which are taken commen
surate with their respective bulk lattices.
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The first equality in Eq.~1! implies that all the scattering
at I is elastic, the contribution to the transmission arisi
from dissipative processes being neglected. The great ad
tage in using this approach is that only the energy ra
@ms ,ms2eV# needs to be considered when evaluating
current; channels att with energies belowms cannot transmit
into any channel ats, since they are all occupied at the
energies. On the other hand, there will be no occupied ch
nels att abovem t5ms2eV. A more detailed discussion o
this limit will be given later in Sec. V. Under all the abov
assumptions, we may now use the many-channel LBF~Ref.
19! to evaluate the intensity across the junction:

I ~V!5
e

p\E0

2eV

dE(
mm8
Tm 8m

2
~E1ms!, V.0. ~2!

If the sample bias is reversed (ms.m t), then the electron
flow will be directed froms to t, and the same reasoning wi
lead to a similar expression for the current flowing in t
opposite direction:

I ~V!5
e

p\E0

2eV

dE(
mm8
Tm8m

1
~E1ms!, V,0, ~3!

whereeV now takes positive values.
In deriving Eqs.~2! and ~3! it is further assumed tha

channels are normalized to unit flux, so that the current
into any channel is independent of its group velocity.

The key ingredient in evaluatingI (V) is therefore the
transmission probability matrixT6(E) which couples chan-
nels on each side of the interface. These probabilities
related to the scattering matrixS6(E) through the following
relation:25,26

Tm8m
6

~E!5 z^ua8
6m8~E!uS6~E!uua

6m~E!& z2
va8

m8

va
m

. ~4!

herea anda8 stand fors or t depending on the transmissio
direction, andva

m is the group velocity of channelm. The last
factor in Eq.~4! accounts for the flux normalization at eac
channel.

The whole problem is thus reduced to the evaluation
the scattering matrixS6(E) in the channel basis, whose el-
ements we define as

Sm8m
6

~E!5^ua8
6m8~E!uS6~E!uua

6m~E!&. ~5!

The next two sections are devoted to obtaining explicit
pressions for these matrix elements.

III. 1D CASE

A. Definitions and notations

For the one-dimensional case we regard each wire a
semi-infinite chain where the side extending to infinity co
responds to the one attached to the reservoir. A schem
the model is illustrated in Fig. 1~c!. Although we denote this
system as 1D, it is in fact more general than just a sim
linear chain, since we allow the wires to have a finite late
n-
e
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size~see, for example, blocka in the figure!. In analogy with
Lee and Joannopoulus,20 we split each chain into a sem
infinite stack of principal layers, where a principal layer~PL!
is defined as the smallest group of atoms such that o
nearest-neighbor interactions between PL’s exist. We furt
assume that the bulk chainss and t can be described by a
periodic array of identical PL’s within each chain. As show
in Fig. 1~c!, the numbering of PL’s runs in increasing ord
from thes chain to thet chain, and the origin is chosen s
that the two surface blocksr and a are located at PL’s
n521 and 1, respectively, while the PLn50 is skipped.
We therefore haven,21 for thes chain andn.1 for thet
chain.

Within a linear combination of atomic orbitals frame
work, any wave function at any PL may be expanded
terms of a given set of atomic orbitals$a i ,i 51,Na%, and we
allow different basis sets at each block. That is, at the s
faces we have the basis set$r i ,i 51,Nr% at r and the set
$ai ,i 51,Na% at a. In the bulk chains we have the se
$t i ,i 51,Nt% for n.1 and the set$si ,i 51,Ns% for n,21.
We emphasize that, as opposed to the TM technique wh
the $si% and $t i% basis must be identical, in the present fo
malism the sizes of the four basis sets can be different,
this allows for a more realistic description of the system.

For a given energyE, wave functions at each PLn may
be written as

uan~E!&5(
i 51

Na

ai ,n~E!ua i~dW n!&, ~6!

where nowa5t,a,r ,s depending on the block in which PL
n is located. The ketua i(dW n)& corresponds to thei th orbital of
the $a i% basis set located in PLn. The vectordW n gives the
origin of the PL.

We use a tight-binding HamiltonianH with only nearest-
neighbor interactions among PL’s to describe the electro
part of the whole system. The infinite tridiagonal matrixH is
sketched in Fig. 2~a!. It consists of matrix blocksHnn8, with
n85n,n61 that give the interaction between PL’sn andn8.
A general matrix element at eachnn8 matrix block
Hnn8(a i ,a j8)5^a i(dW n)uHua j8(dW n8)& contains the interaction
between orbitala i at n anda j8 at n8. Obviously, ifn andn8
belong to the same bulk blocks or t, these matrices will be
independent ofn, and we can replace the subscriptn by s or
t @see Fig. 2~a!#.

In order to apply the LBF, Eqs.~2! and~3!, we must first
identify the channelsuua

6m(E)&. Since the bulk chainss and
t are assumed periodic, their eigenfunctions correspond
Bloch wavesuua

6m(E)& characterized at each energyE by
the quantitiesua

6m(E)5ka
6m(E)aa , whereaa is the lattice

constant for the PL’s andka
6m(E) is the wave number giving

the energy dispersion of them energy band in chaina. From
now on we regardaa as a unit distance, and identifyua

6m(E)
with the wave number along the propagation direction. Th
Bloch waves act precisely as the propagative channels for
electrons in the wires, each one with a group velocity giv
by

va
m~E!5

1

\

]E

]ua
m

, ~7!



a-
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FIG. 2. Schematics and notation for the m
trix blocks corresponding to~a! the Hamiltonian
H and overlap matrixO and ~b! the Green func-
tion G for the 1D system of Fig. 1~c!. The inter-
face Green functionGII is indicated by the cen-
tral square in~b!.
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where the sign of the energy derivative determines the6
direction of propagation in the channel.

The wave function of an electron in channel6m may
then be written as

uua
6m~E!&5

1

AN
(

n,unu.2
uun

6m~E!&, ~8!

N being the number of PL’s in the bulk materiala, while the
kets uun

6m(E)& give the wave-function amplitude of an ele
tron at PLn, with unu.2:

uun
6m~E!&5(

i 51

Na

ui ,n
6m~E!ua i~dW n!&, ~9!

which, since it must satisfy the Bloch condition, is related
adjacent PL’s through

uun61
1m ~E!&5e6 iua

1m
~E!uun

1m~E!&, ~10!

uun61
2m ~E!&5e7 iua

2m
~E!uun

2m~E!&. ~11!

The interchannel scattering matrix elementsSm8m
6 (E) de-

fined in Eq.~5! may then be obtained by relating Bloch wa
amplitudes at PL’sn andn8 such that they are both at dif
ferent bulk chains and far away from the interface:

Sm8m
1

~E!5^un8
1m8~E!uSuun

1m~E!&, n8@2, n!22,
~12!

Sm8m
2

~E!5^un8
2m8~E!uSuun

2m~E!&, n8!22, n@2,
~13!

where the requirement for bothn andn8 to be located deep
inside the bulk materials ensures that any evanescent w
will make a negligible contribution to the scattering matrix19

We now define the system’s Green functionG(E) at a
given complex energyE by

G~E!F~E!5F~E!G~E!5I , ~14!

whereI is the identity matrix, andF(E) is the usual secula
matrix defined as

F~E!5EO2H, ~15!
es

H being the Hamiltonian andO the overlap matrix whose
structure is identical toH @Fig. 2~a!#. To avoid divergences
the energyE is taken complex and a small positive imag
nary partd is added to the actual real energyEr :

E5Er1 id. ~16!

It should be noted, however, that the formalism develop
below is still numerically stable for values ofd as low as
10210 eV, so that the use of a complex energy does not im
a limitation to the elastic-scattering approximation. The u
of larger values ford will be discussed in Sec. V.

Any element ofF may be written as

Fnn8~a i ,a j8!5EOnn8~a i ,a j8!2Hnn8~a i ,a j8!, ~17!

where we have omitted the energy dependence ofF for the
sake of clarity, and we will maintain this convention for mo
of the matrix expressions appearing in the remaining s
tions. However, it is important to notice that under an a
plied biasV the energy levels at the chains shift in energy,
that the actual value ofE to be used in Eq.~17! will be
different whether we consider thers or at sides of the junc-
tion. For the former, we useErs5EF(s)1E, while for the
latter we haveEat5EF(t)1eV1E, where EF(a) is the
Fermi level of thea bulk chain. As indicated in Sec. II,E
ranges between 0 and2eV. This scheme ensures that bo
Fermi levels will be aligned for the zero bias case. As for t
interblockFar andFra matrices we approximate the energ

to a fixed valueEar5
1
2 @EF(s)1EF(t)# independent ofE.

We believe that more sophisticated approaches to the ev
ation of Ear , which would take into account the specifi
shape of the potential drop at the junction, will not modi
the final contrast in the image significantly. Besides, corr
tions toEar should be relatively small since this term mult
plies the overlap matricesOar andOra , whose elements al
ready have small values.

The structure ofG is shown in Fig. 2~b!. The projection of
Eq. ~14! on any matrix blocknn8 yields two matrix equa-
tions depending on whether we use the first or second eq
ity:

Idnn85Fnn21Gn21n81FnnGnn81Fnn11Gn11n8, ~18!
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Idnn85Gnn821Fn821n81Gnn8Fn8n81Gnn811Fn811n8.
~19!

In order to evaluateG, we use the Dyson equation, an
choose as the unperturbed system that formed by the
semi-infinite chains (ta and rs) but assuming there is n
interaction among them. Therefore, the unperturbed Ha
tonian and overlap matricesH0 andO0 will be identical toH
andO except that the blocksra andar are set to zero. Since
the chains are decoupled, the unperturbed Green functioG0

may be calculated separately for each one, and the prob
reduces to evaluate the surface Green functionsGaa

0 andGrr
0

and their couplings to their respective bulk chains. Not
that any matrix blockGnn8

0 linking PL’s n andn8 that are not
located in the same chain will be zero. The evaluation ofG0

is presented in Appendix A, and here we assume it to
known. The perturbation is then introduced by switching
the ra interactions that couple both chains. Since this per
bation is localized at the interfaceI5r and a, to obtainG
from G0, we follow Ref. 21 and apply the SGFM metho
generalizing it to nonorthogonal basis sets. By projecting
Dyson equation atI, an expression for the interface Gree
functionGII can be easily deduced:

GII5S Grr Gra

Gar Gaa
D 5S ~Grr

0 !21 Fra

Far ~Gaa
0 !21D 21

. ~20!

Knowledge ofGII andG0 enables the evaluation of an
Gn8n matrix block through21

Gn8n5Gn8n
0

1Gn8 i 8
0

~Gi 8 i 8
0

!21~Gi 8 i2Gi 8 i
0

!~Gi i
0 !21Gin

0 ,
~21!

where i and i 8 stand for the surface blocksr or a of the
chains to whichn andn8 belong.

Any wave functionuan8& at any PLn8 may now be ob-
tained from the unperturbed wave functionuan

0& at n via the
Lippman-Schwinger equation

uan8&5Gn8n~Gnn
0 !21uan

0&. ~22!

Expressions~21! and~22! may be simplified by introduc-
ing theTnn8 andSnn8 transfer matrices

Tn8n5Gn8n
0

~Gnn
0 !21, ~23!

Snn85~Gnn
0 !21Gnn8

0 , ~24!

so that we arrive at

uan8&5Tn8nuan
0&1Tn8 i 8~Gi 8 i2Gi 8 i

0
!Sin~Gnn

0 !21uan
0&.

~25!

The interpretation of Eq.~25! is straightforward. The first
term propagatesuan

0& from n to n8. SinceTn8n only depends
on G0 @see Eq.~23!#, it can be readily identified with the
unperturbed wave functionuan8

0 & at that layer. It is worth
noting thatTn8n should not be confused with the bulk tran
fer matrix (Ts61s)

n appearing in Eq.~A10!. According to our
choice of the unperturbed system, we are also considerin
Tn8n the scattering arising from the surfacei ~which is in the
same chain asn), although the presence of the other chain
o

il-

m

e

e
n
r-

e

in

s

not taken into account. Obviously, ifn andn8 are located at
different sides of the interface,uan8

0 & is zero. The second
term in Eq.~25! adds to the first one the perturbation intr
duced by the other chain by first propagatinguan

0& to i , where
it scatters toi 8 and finally it is propagated ton8. If i 5 i 8 ~that
is, n and n8 are in the same chain! then Eq.~25! gives the
reflected amplitude, while ifiÞ i 8 (n andn8 are at different
chains! we obtain the transmitted amplitude. The scatter
matrixS relating the unperturbed wave function atn with the
scattered wave atn8 can then be directly extracted from th
second term,

Sn8n5Tn8 i 8~Gi 8 i2Gi 8 i
0

!Sin~Gnn
0 !21. ~26!

B. Scattering matrix in the Bloch basis

Since we are interested in the transmitted amplitudes,
need to consider in Eq.~26! the case wheren and n8 are
located at different sides of the interfaceI and, again, we
will focus on the transmission along the negative directio
which corresponds to electrons propagating from the tipt to
the substrates. We then havei 5a, and i 85r , and, taking
the limits n@2 andn8!22, Eq. ~26! reads

Sn8n
2

5Tn8rGraSan~Gtt
0 !21, ~27!

where we took into account thatGra
0 50 for the unperturbed

system, andGnn
0 has been replaced by thet bulk diagonal

Green-function matrix blockGtt
0 , since we are considering

the limit n@2.
Let us first decompose the transfer matricesTn8r andSan

in the following forms:

Tn8r5Tn8n811Tn811n812•••T2322T22r

5~Ts21s!
2n822Tsr , ~28!

San5Sa2S23 . . . Sn22n21Sn21n5Sat~Stt11!n22, ~29!

where we used the bulk transfer matricesTs21s and Stt11
derived in Appendix A. The two second equalities in Eq
~28! and ~29! reflect the fact that transfer matricesTnn8
(Snn8) only depend onn2n8 if both n and n8 are in the
same bulk blocks or t, andn8 is closer to~further from! the
surface thann ~see Appendix A!. Using the latter expan-
sions, Eq.~27! can be written as

Sn8n
2

5~Ts21s!
2n822TsrGraSat~Stt11!n22~Gtt

0 !21, ~30!

or, using relation~A12!, we may express theStt11 bulk
transfer matrix in terms ofTt21t :

Sn8n
2

5~Ts21s!
2n822TsrGraSat~Gtt

0 !21~Tt21t!
n22. ~31!

For transmission along the positive direction we take
limits n!22 andn8@2 to arrive at a very similar relation

Sn8n
1

5~Tt11t!
n822TtaGarSrs~Gss

0 !21~Ts11s!
2n22. ~32!

These are our final relations for the scattering matrixSn8n
6

in the atomic-orbital~AO! basis.Gra or Gar are obtained
from Eq. ~20!, and explicit expressions for the rest of th
matrices appearing in Eqs.~31! and ~32! are provided in
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Appendix A. However, we still need to find the Bloch bas
in order to transformSn8n

6 . To this end, it is convenient to
cast the Bloch coefficients appearing in Eq.~9! into vector
form according to

uW n
6m5~u1,n

6m ,u2,n
6m , . . . ,uNa ,n

6m !. ~33!

By applying Eq.~A10! at any siten of the bulk chains, we
have

uW n61
6m 5Ta61auW n

6m, ~34!

with a5t,s. Comparing Eqs.~34! with Eqs. ~10! and ~11!,
we arrive at the following eigenvalue problem:

Ta61auW n
6m5eiua

6m
uW n

6m , ~35!

which implies that the reduction of theTa61a into a diagonal
form directly provides the wave numbersua

6m :

Ta61aUa
65Ua

6Qa
6 . ~36!

HereQa
6 is the diagonal matrix whose nonzero elements

the eiua
6m

quantities, and the transformation matrixUa
6 con-

tains the Bloch eigenvectors

Ua
65~uW n

61 ,uW n
62 , . . . ,uW n

6Na!. ~37!

If ua
6m is real, we then have a propagative channel, wh

if it has a nonzero imaginary part the eigenstate correspo
to an evanescent wave which decays exponentially as
propagate fromn to n61. We may now substitute Eq.~36!
into Eq. ~31! to obtain a more convenient expression for t
scattering matrixSn8n

2 :

Sn8n
2

5Us
2$~Qs

2!2n822~Us
2!21TsrGraSat~Gtt

0 !21

3Ut
2~Q t

2!n22%~Ut
2!21. ~38!

The braced factor in Eq.~38! can be easily identified with
the scattering matrix in the Bloch basisS2, which we were
seeking. When considering limits~12! and~13! for n andn8
in these expressions, the evanescent waves make a negl
contribution, and we may retain only thoseSm8m

6 matrix el-
ements that relate the propagative channelsm andm8. Fur-
thermore, when taking the square modulus of these exp
sions in order to obtain the transmission coefficient to
used in Eqs.~2! and ~3!, the Qa

6 matrices may be dropped
since they only provide a phase factor. The scattering ma
in the channelsbasis can then be written as

S25~Us
2!21TsrGraSat~Gtt

0 !21Ut
2 . ~39!

For the opposite case, transmission from substrate to
we obtain

S15~Ut
1!21TtaGarSrs~Gss

0 !21Us
1 . ~40!

C. A simple model

Since for 1D symmetric junctions and in the zero-b
limit both the ESQC and the Green-function method j
e

e
ds
e

ible

s-
e

ix

p,

t

developed provide an exact way of calculating the elas
scattering transmission coefficientT6(E) ~as long as we
maintain the one-electron Hamiltonian!, we wish to show
their equivalence here. Rather than performing a rigor
proof, we choose the simple system depicted in Fig. 3,
which was already studied in Ref. 3. It consists of an infin
bulk chain into which an impurity has been inserted. T
bulk chain contains just one orbital per PL, and we use
nearest-neighbor Hamiltonian characterized by the on-
energiese and the hopping interactionh. The energy at the
impurity is v and its coupling to the chain is given by th
interactionsa andb. We further assume that the AO basis
orthogonal, so that all overlaps between different PL’s
zero.

If we identify the impurity with the blockr , and the PL to
its right with the tip apex a, we have Fsr5Frs5a,
Far5Fra5b, Frr 5E2v, Fss5Ftt5Faa5E2e, and
Fss615Ftt615Fat5Fta5h. By substituting these value
into expressions~A21!, ~A17!, ~A2!, ~A18!, and ~A14!, we
obtain

Srs52a@~E2e!1ht#21, ~41!

Tta52h@~E2e!1ht#21, ~42!

~Gss
0 !215~E2e!12ht, ~43!

~Gaa
0 !215~E2e!2h2@~E2e!1ht#21, ~44!

~Grr
0 !215~E2v!2a2@~E2e!1ht#21, ~45!

wheret stands for the bulk transfer matrix:t5Ts61s5Tt61t .
To obtain its value, we note that in this modela coincides
with any PL at t, and therefore,Tta5Tt61t5t. Then, by
equating the expression forTta in Eq. ~42! with t, we find

t5
2~E2e!

2h
6

A~E2e!224h2

2h
. ~46!

WhenE is contained in the intervale62h thent is imagi-
nary with utu51 and we have a propagative channel in t
chain. The set of parameters (e,h,v,a,b) can be further
reduced to four by definingq5(E2e)/h, X5(v2e)/h,
Y5a/h, and Z5b/a. By substituting the above relation
into Eq. ~40! we may obtain an analytical expression for t
transmission coefficient as a function of these new variab
The algebra involved is presented in Appendix B, and
final result is

T~E!5T1T2~E!, ~47!

where

T154~Z11/Z!22, ~48!

FIG. 3. Schematic of the simple 1D linear chain with one orbi
per PL, and an impurity inserted at the interface.
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T2~E!5S 11
@X1q~W221!#2

W4~42q2!
D 21

, ~49!

W5YA~11Z2!/2. ~50!

This result is identical to expressions~15! in Ref. 3. Notice
that the use of Eq.~39! instead of Eq.~40! gives the same
result, since we are considering the zero-bias limit.

This expression may be further simplified if we assu
the limit b!a. This approximation implies a weak intera
tion between the sample surfacer and the tip apexa, which
is the typical situation in the STM experiments. In this ca
Z!1, T1'4Z2, andW'Y/A2, andT(E) may be expressed
as

T~E!'
Z2Y4~42q2!

q2~12Y2!1Xq~Y222!1X21Y4
. ~51!

On the other hand, the local density of states atr and a
(r r

0 and ra
0) may be obtained from Eqs.~A22!, ~A23!, and

~41!–~45!:

r r
05

1

2p

Y2A42q2

h@q2~12Y2!1Xq~Y222!1X21Y4#)
,

ra
05

2

p

A42q2

h
, ~52!

and it is then easy to show that

T~E!}b2ra
0r r

0 , ~53!

so that in the limit of a weakar interaction,b!1, we re-
trieve the Fermi golden rule. We stress, however, that su
simple relation is by no means an accurate approach to
real STM experiment. Any real surface being probed is
from the 1D idealization we have assumed in this secti
and, when considering 3D interfaces, or even just allow
for a greater number of AO’s at each layer, the appearanc
interference effects9,14,15,17invalidates Eq.~53!.

IV. 3D CASE

In this section we model the STM geometry in a mo
realistic way. The system is still divided into the same fo
blocks used for the 1D case,s, r , a, andt, but PL’s are now
assumed to be composed of atomic planes which are per
in the lateral direction. Within the bulk materialss or t, all
atomic planes are parallel to each other and have the s
in-plane lattice vectorsrW s or rW t . The propagation direction a
each wire coincides with the repeat vector linking adjac
PL’s in the bulk material. Obviously, the atomic planes ca
not contain the propagation direction. The lattices at the s
face blocksrW r or rW a are further assumed to be commensur
with their respective bulk latticesrW s or rW t , respectively. Al-
though the tip apex blocka is not periodic in the real STM
experiment, we will assume it as such for now, and sh
below how we can accurately retrieve the nonperiodic lim
The model is schematically shown in Fig. 1~d!. It is impor-
tant to realize that the geometrical descriptions of the w
are uncorrelated. This means that the lattices atrs will be in
e

,

a
he
r
,

g
of

r

ic

me

t
-
r-
e

.

s

general incommensurate with those atat. Furthermore, nei-
ther the propagation direction nor the orientation of t
atomic planes at one wire have to be aligned with those
the other wire.

We can then form at each PLn a set of 2D Bloch waves
each one corresponding to a different wave vectorkWa con-
tained in the 2D Brillouin zone~BZ! of the layer.20 We fol-
low the notation of Sec. III, so thata stands fors if n,21,
r if n521, a if n51 or t if n.1. In analogy with Eq.~6!,
we denote the 2D Bloch wave-function amplitudes at PLn

by uan(kWa)&:

uan~kWa!&5(
i 51

Na

ai ,n~kWa!ua i~dW n ,kWa!&. ~54!

Here,ua i(dW n ,kWa)& gives the Bloch statekWa of orbitala i in
layer n:

ua i~dW n ,kWa!&5
1

ANrW a
(
rW a

eikWarW aua i~rW 1dW n!&, ~55!

whereNrW a is the number of lattice points in the layer~see
below!.

TheF matrices given in Eq.~17! must also be modified to
include thekWa dependence. For a diagonal matrix blocknn

we use the notationFnn(kWa), whose elements are given by

^a i uFnn~kWa!ua j&5^a i~dW n ,kWa!uFua j~dW n ,kWa!&, ~56!

while for the off-diagonal matrix blocksnn8 we use
Fnn8(k

W
a ,kWa8

8 ) with elements

^a i uFnn8~kWa ,kWa8
8 !ua j8&5^a i~dW n ,kWa!uFua j8~dW n8,k

W
a8
8 !&.

~57!

Due to translation symmetry, all matrix block
Fnn8(k

W
a ,kWa8 ) that relate PL’sn and n8 located in the same

block a are zero ifkWaÞkWa8 . Therefore, in thes and t bulk
regions the 2D Bloch functions do not mix between ea
other, and we may regard eachkWa state as an independent 1
linear chain.20 This decoupling allows us to retain th
Landauer-Bu¨ttiker picture of independent channels in th
wires and, expressions~2! and ~3! for the current can be
generalized by noting that thekWa index acts just as anothe
quantum number:

I ~V!5
e

p\E0

2eV

dE (
kW

a8
8 kWa

(
mm8
Tm8,m

6
~kWa8

8 ,kWa ,E1ms!,

~58!

where the transmission probability matrix is now given b

Tm8m
6

~kWa8
8 ,kWa!5uSm8m

6
~kWa8

8 ,kWa!u2
va8

m8~kWa8
8 !

va
m~kWa!

. ~59!

As in the 1D case, the problem again reduces to obtain
the scattering matrixS6 in the Bloch basis,

Sm8m
6

~kWa8
8 ,kWa!5^un8

6m8~kWa8
8 !uS6uun

6m~kWa!&, ~60!
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for which we may still use relations~39! and ~40!, but the
explicit expressions for the matrices involved need revisi

First, bulk quantities may be evaluated in the same wa
in Sec. III by simply replacing theF matrix elements of Eq.
~17! with the above expressions~56! and ~57!. In particular,
the band structureQa

6(kWa) and the corresponding eigenve

tor matrix Ua
6(kWa) at eachkWa can be found via the eigen

value problem~36!:

Ta61a~kWa!Ua
6~kWa!5Ua

6~kWa!Qa
6~kWa!, ~61!

where theTa61a(kWa) transfer matrices are evaluated in t
same way as for the 1D case using expressions~A3!–~A8!.
The diagonal blocks of the bulk Green functionsGss

0 (kW s) or

Gtt
0 (kW t) are then easily obtained via Eq.~A2!.

The next task is to include the effect of the surface
each of the bulk blocks. Let us first consider thers case. We
assume the latticerW r at PL r to be commensurate with th
bulk lattice rW s , MGW rs being the ratio between the sizes
both unit cells. In this case, each surfacek vector kW r will
only couple to the bulkkW r1GW rs chains, whereGW rs are the
MGW rs surface reciprocal lattice vectors contained in the b
BZ. Therefore, to find the surface Green functionGrr

0 (kW r), we
may still use Eq.~A14!, but including a summation ove
GW rs :

I 5H S (
GW rs

MGW rs

Frs~kW r ,kW r1GW rs!Tsr~kW r1GW rs ,kW r !D
1Frr ~kW r !J Grr

0 ~kW r !, ~62!

whereas theTsr(kW r1GW rs ,kW r) transfer matrix is obtained
from Eq. ~A17!,

Tsr~kW r1GW rs ,kW r !52$Fss~kW r1GW rs!1Fss21~kW r1GW rs!

3Ts21s~kW r1GW rs!%
21Fsr~kW r1GW rs ,kW r !,

~63!

and a related expression for the other transfer ma
Srs(kW r ,kW r1GW rs) can be obtained by using Eq.~A21!:

Srs~kW r1GW rs ,kW r !52Frs~kW r ,kW r1GW rs!$Fss~kW r1GW rs!

1Fss21~kW r1GW rs!Ts21s~kW r1GW rs!%
21.

~64!

Similar reasonings can be applied to theat blocks. In this
case, however, the tip apex is not periodic, and we wish
keep the AO basis set for this block instead of the 2D Blo
wave representation. To this end, the BZ ata should be
shrunk to a point, but this generates normalization proble
We overcome this difficulty by assuming that the tip apex
actually periodic. The corresponding latticerW a is chosen
such that it is commensurate with that at the bulk blockrW t ,
and the ratio of their unit cell sizesMGW at is much greater
than unity. This yields a very small BZ ata, so that we may
.
s

n

k

ix

to
h

s.
s

neglect allkWa vectors at this PL exceptkWa50W , which will

couple to all the bulkGW at chains, whereGW at are theMGW at
reciprocal-lattice vectors ata contained in the bulk BZ of the
t block. Consequently, the expressions forGaa

0 (0W a),

Tta(GW at ,0W a), andSat(0W a ,GW at) are analogous to Eqs.~62!–
~64! derived for thers blocks. Clearly, in the limit ofMGW at
very large, the localized AO basis set picture ata is recov-
ered.

As for the choice of thekWa vectors summed up in Eq
~58!, we must first realize that even if the isolatedrs andat
wires possess a certain 2D symmetry in real space; w
combining both to form the whole of the STM system, a
allowing for tip displacements relative to the substrate, a
symmetry will be lost. This lack of symmetry impedes th
use of efficientk-sampling schemes.27 Instead, we assume
that PL’s at each wire can be described by a large super
denoted by thek supercell, which is commensurate with bo
the surface and bulk lattices at that wire, and we apply
usual periodic boundary conditions. Accordingly, if thek
supercell containsNrW a bulk unit cells, we then obtain a set o
NkWa allowed k points at each bulk blocka, where
NkWa5NrW a .

For thers chain, the resultingkW s grid will determine at the
same time theNkW r allowed surface wave vectors atr , where
NkW r5NkWs /NGW rs . These kW r vectors correspond simply to
thosekW s which lie inside the surface BZ, whereas ifkW s falls
outside, then it will be related to a particularkW r by addition
of a surface reciprocal lattice vectorGW rs . An example of this
k sampling procedure is shown in Fig. 4~a!.

Similarly, the choice of thekW t wave vectors att may be
done by defining another largek supercell commnesurat
with rW t and rW a . In fact, it is convenient to choose thek
supercell coincident with the latticerW a imposed at the apex
block a. We then haveNrW t5NkW t5NGW at

and all kW t coincide

with the reciprocal-lattice vectorsGW at contained in the BZ at

FIG. 4. k-space sampling~solid dots! at each bulk block. Open
circles indicate the surface reciprocal-lattice points, while cros
give the resulting surfacek mesh. The bulk, surface, andk-
supercell 2D BZ’s are indicated by solid, dashed, and dotted lin
respectively;~a! rs block assuming an hexagonal lattice fors and a
rectangularc(432) lattice for r ; and ~b! at block, with a square
lattice for botha and t. The 2D BZ ata is not shown, since it is
coincident with thek-supercell BZ. In both cases thek supercell
corresponds to ap(434) lattice.
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t. Obviously, since we only have the 0W
a vector at a,

NkWa5NrW a51. An example for this case is provided in Fi
4~b!.

Finally, we need to evaluate the 3D interface Green fu
tion GII by applying the SGFM method. The latticerW r at r
will not in general be commensurate with that imposed aa,
rW a . This implies that the tip apexa can couple differentkW r

vectors, and the statesuar(kW r)& can no longer be treated a
independent when the blocka is present. The Green functio
matrix blocksGrr (kW r ,kW r8) are then nonzero, as opposed to t
isolated surface. Therefore, when calculatingGII through Eq.
~20!, all Grr (kW r ,kW r8) blocks should be computed at the sam
time. The matrix to be inverted appearing in the third term
Eq. ~20! must then include all (kW r ,kW r8) blocks and its dimen-
sions can become rather large@'(1033103)#. Thus an exact
calculation ofGII becomes too time consuming to render t
method efficient. Instead, we approximate the evaluation
the Gra(kW r ,0W a) blocks by assuming thata does not actually
couple states atr with different kW r . Under this assumption
Eq. ~20! reads

GII~kW r ,0W a!5S Grr ~kW r ,kW r ! Gra~kW r ,0W a!

Gar~0W a ,kW r ! Gaa~0W a ,0W a!
D

'S @Grr
0 ~kW r ,kW r !#

21 Fra~kW r ,0W a!

Far~0W a ,kW r ! @Gaa
0 ~0W a ,0W a!#21D 21

.

~65!

Test calculations comparing Eq.~65! with its exact ver-
sion proved the approximation to be excellent for any re
istic tip-sample distancez. For instance, the transmission c
efficient is affected by less than 1% whenz is only 4 Å. This
is an expected result, since to collect an electron ata which
has changed its wave vector atr from kW r to kW r8 , it must first
tunnel toa where it loses the parallel momentum, then tun
back tor picking up thekW r8 vector and finally transmit again
to a. Therefore, the contribution to the transmission aris
from theGrr (kW r ,kW r8) terms involves at least three tunnelin
processes, and becomes negligible when typical transmis
amplitudes across the junction are used.

To summarize, our final general expressions for the s
tering matrices in the 3D case are therefore

S2~kW s ,kW t!5@Us
2~kW s!#

21Tsr~kW s ,kW r !Gra~kW r ,0W a!Sat~0W a ,kW t!

3@Gtt
0 ~kW t!#

21Ut
2~kW t!, ~66!

S1~kW t ,kW s!5@Ut
1~kW t!#

21Tta~kW t ,0W a!Gar~0W a ,kW r !Srs~kW r ,kW s!

3@Gss
0 ~kW s!#

21Us
1~kW s!, ~67!

wherekW s5kW r1GW rs andkW t5GW at .
We may further simplify the structure ofS6 by defining

the renormalized transfer matricesT̄aa8 as

T̄sr~kW s ,kW r !5@Us
2~kW s!#

21Tsr~kW s ,kW r !, ~68!
-

f

f

l-

l

g

ion

t-

T̄at~0W a ,kW t!5Sat~0W a ,kW t!@Gtt
0 ~kW t!#

21Ut
2~kW t!, ~69!

T̄ ta~kW t ,0W a!5@Ut
1~kW t!#

21Tta~kW t ,0W a!, ~70!

T̄rs~kW r ,kW s!5Srs~kW r ,kW s!@Gss
0 ~kW s!#

21Us
1~kW s!, ~71!

so that we arrive at the compact expressions

S2~kW s ,kW t!5 T̄sr~kW s ,kW r !Gra~kW r ,0W a! T̄at~0W a ,kW t!, ~72!

S1~kW t ,kW s!5 T̄ ta~kW t ,0W a!Gar~0W a ,kW r ! T̄rs~kW r ,kW s!. ~73!

Relations~72! and~73! have a simple physical interpreta
tion. The T̄aa8 matrices linking the bulk blockss and t to
their respective surfacesr anda account for all the multiple
scattering events between the bulk channels and the orb
at each surface. On the other hand, the Green-function
tricesGra andGar relate the wave amplitudes atr anda and,
again, they include both the intralayer multiple scattering ar
anda as well as the interlayer multiple scattering betweer
anda.

It is also clear that these expressions become comp
tionally very suited for evaluating entire STM images sin
the T̄aa8 matrices only depend on the unperturbed syst
~i.e., the isolated wires!. Therefore, one may first evaluat
these matrices for all energies andk vectors. Next, for each
tip position relative to the sample origin we only need
reevaluate theFar and Fra matrices in the secular equatio
of the entire system, and solve Eq.~65! for the Green-
function matrix blockGar or Gra depending on the bias sign
The scattering matrix elements are then computed by sim
matrix multiplications and the current is obtained direc
through Eqs.~58! and ~59!.

Current analysis

One of the major aims of the present theory is the po
bility to provide an easy interpretation to the origin of th
contrast in the final STM image. Generally speaking, o
wishes to indentify which AO’s or which interactions at th
interface dominate this contrast, and how their contributio
to the current are modified as the tip is displaced across
sample surface. However, and as can be seen from Eqs.~72!,
~73!, ~58!, and~59!, the entire electron transmission proce
is a rather complex one, involving both multiple-scatteri
events and interference effects; an electron propaga
along a certain ingoing channel is scattered at the interfa
and its wave field, after considering all the scattering pa
will be distributed among the AO’s at the interface. Th
associated probability for the electron to end up in a cert
outgoing channel at the opposite wire will depend on the
interference among all these scattering paths. Unfortuna
the SGFM, by evaluating theGar or Gra matrices at one
stroke through the inversion of Eq.~65!, hinders the possi-
bility of separating the intralayer from the interlayer multip
scattering at the interface or, in other words, it carries
many scattering events to permit a comprehensible ana
of which a-r interactions contributed most to the final cu
rent.
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A simple way out of this problem is to obtain the Gre
function of the entire systemG, by expanding the Dyson
equation in the following way:

G5G01G0DFG'G01G0DFG01G0DFG0DFG01•••.
~74!

By noting that the unperturbed system corresponds to
isolated wires, it is then trivial to show that the interfa
matrix blocksGar

1 andGra
1 , up to first order in Eq.~74!, are

given by

Gar
1 5Gaa

0 FarGrr
0 , Gra

1 5Grr
0 FraGaa

0 . ~75!

Thus these expressions decouple the intralayer scatte
at each surface~matricesGaa

0 andGrr
0 ) at the cost of consid-

ering just one tunneling event (Far or Fra) across the junc-
tion. Nevertheless, this approximation is usually very ac
rate since the tunneling matrix elements ofFar or Fra are
small for typical tip sample distances used in the STM
periment, implying that ther -a interlayer multiple scattering
hardly affects the final current value. In fact, several ST
theories have successfully relied on this approximation.2

Upon substituting Eq.~75! into Eqs. ~72! and ~73!, we
may define the first-order scattering matrixS16 as

S12~kW s ,kW t!5 T̄sr~kW s ,kW r !Gra
1 ~kW r ,0W a! T̄at~0W a ,kW t!, ~76!

S11~kW t ,kW s!5 T̄ ta~kW t ,0W a!Gar
1 ~0W a ,kW r ! T̄rs~kW r ,kW s!, ~77!

while the total transmission coefficient up to first order,T 16,
may be written as

T 165 (
ma,m8a8

uS16~ma,m8a8!u2, ~78!

where now thema index stands for both the band index a
the kWa vector, and we have further assumed that the gr
velocitiesva

m appearing in Eq.~59! are already included in

the renormalized transfer matricesT̄aa8. The energy depen
dence has also been omitted, but it must be recalled thatT 16

is evaluated in Eq.~78! for a particular energy valueE.
The total first-order transmission coefficient may be d

composed into the interference matrix term
Iaa8

16 (a i2a j8 ,a i 82a j 8
8 ) between the (a i-a j8) and (a i 8-a j 8

8 )
interactions, wherea anda8 stand forr or a. Under a nega-
tive sample bias, these terms are given by

I12~r i2aj ,r i 82aj 8!

5 (
ms,m8t

$@ T̄ taGaa
0 #~m8t,aj !F~m8t,aj ,ms,r i !

3@Grr
0 T̄rs#~ms,r i !%3$@ T̄ taGaa

0 #~m8t,aj 8!

3F~m8t,aj 8,ms,r i 8!@Grr
0 T̄rs#~ms,r i 8!%* ,

~79!

and a similar expression for the positive bias case. Here
use@AB#( i , j ) to denote the (i , j ) element of the matrix prod
uct AB and the * superscript stands for the complex con
gate.
e

ng

-

-

p

-

e

-

The diagonal terms in Eq.~79!, I12(r i2aj ,r i2aj ), give
the contribution to the total probability arising from an ele
tron which has tunneled fromaj to r i in the absence of any
interference with the rest of tunneling paths. The o
diagonal elements correspond, on the other hand, to the
tribution arising solely from the interference between t
(r i-aj ) and (r i 8-aj 8) interactions and hence, they might b
positive or negative, in which case the interference will
contructive or destructive, respectively.

From the interference matrix we may define t
T ra

16(r i ,aj ) quantities as

T ra
16~r i ,aj !5 (

r i 8,aj 8

Nr ,Na

I12~r i2aj ,r i 82aj 8!, ~80!

giving the contribution toT 16 arising from an electron
which has tunneled fromr i to aj ~or vice versa if the bias is
positive!, after the interference with the rest of the tunneli
paths has been taken into account.

A more general view of how the current is distribute
among the orbitals at the interface may be achieved thro
the individual AO componentsT a

16(a i) of the first-order
transmission coefficient:

T r
16~r i !5(

aj

Na

T ra
16~r i ,aj !, T a

16~aj !5(
r i

Nr

T ra
16~r i ,aj !,

~81!

so that the sum of the individual components at any of
two surface blocks,a5r and a, adds up to the total trans
mission

T 165(
a i

Na

T a
16~a i !5 (

r i ,aj

Nr ,Na

T ra
16~r i ,aj !

5 (
r i ,aj

Nr ,Na

(
r i 8,aj 8

Nr ,Na

I16~r i2aj ,r i 82aj 8!. ~82!

Therefore, an inspection of theT r
16(r i) values already

provides valuable information on which surface AO’s a
being imaged~i.e., contribute most to the total current!,
while from theT a

16(aj ) quantities one can deduce which t
states act as the main probing orbitals. We must also re
that any componentT a

16(a i) may attain negative values i
the interference terms involving this orbital result in a n
destructive interference.

V. INELASTIC EFFECTS

So far, we have developed the formalism of Secs. III a
IV under the elastic scattering limit used by Bu¨ttiker et al. to
deduce their multichannel formula for transmission, Eqs.~2!
and ~3!. Under this assumption, any electron energy loss
neglected, and the electron flux is conserved. It should
noted, however, that in using approximation~1! for the
evaluation of the current, we are not strictly neglecting
elastic scattering effects, and we may in fact include a cer
amount of damping during the electron propagation from o
reservoir to the other. To this end, we add an imagin
component to the real energyEr at which theelastic trans-
mission probabilityTmm8

6 (Er) is to be evaluated, which act
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as an optical potential just as in low-energy electro
diffraction theory.28 This approach suits naturally the Gree
function formalism, as it suffices to setd in Eq. ~16! to any
desired value of the optical potential, leaving the rest of
equations derived above unchanged. Similar modelings
the inelastic effects in related problems have been used
different authors.29

If we assume relaxation times for the conducting electr
of the order of;10213–10214 s, then the correspondin
linewidths are;0.01–0.1 eV, and we may set the optic
potential in the bulk blocksda (a5s or t) to these values
As regards inelastic effects at the surfacesr anda, one ex-
pects smaller relaxation times for these blocks than for
bulk and, accordingly, we may setd at these blocks to an
upper limit of da5d r50.1 eV.

However, the inclusion of damping into the formalis
generates some ambiguity when defining the propaga
channels, since now theua

m(E) wave numbers in Eqs.~10!
and ~11! all become complex quantities, and the distincti
between propagating and evanescent waves is not clea
more. In principle, it is easy to expandua

m(E) analytically to
first order to obtain an approximate value of the wave nu
ber at real energyEr :

ua
m~Er !'ua

m~E!2 ida

]ua
m

]E
5ua

m~E!2
ida

va
m

, ~83!

which allows us to discern whetherua
m at real energy is an

evanescent or propagative wave. Relation~83! turns out to
be a useful approximation for values ofda<0.01 eV. Nev-
ertheless, when taking the limitsunu,un8u@2 in Eqs.~12! and
~13!, any Bloch function with a wave number that contains
non-negligible imaginary part will suffer a considerable d
cay before reaching the interface or the opposite reserv
regardless of whether it would be a nondispersive chann
real energy. Therefore, we believe that a meaningful criter
is to regard as propagative channels those for wh
ueiuu.C, whereC is a preselected decay cutoff, and then
evaluate the transmission matrix elements only for th
channels according to expressions~66! and ~67!; i.e., drop-
ping theQ matrices just as we did in Eq.~38! to obtain our
final expressions~39! and~40! for S6(E) in the 1D case. For
instance, if the optical potential is set toda;0.01 eV, a
cutoff value ofC50.97 gives good results.23

A related and important issue is the setup of an effici
scheme for the energy integration in Eq.~58!. The energy
step to be used in the numerical integration should not
larger than the imaginary part of the energyda since, other-
wise, one may skip resonant peaks in the transmission c
ficient which could give the dominant contribution to th
current. For small biases~V<0.1 V! a value ofda5 0.01 eV
is computationally still adequate, but when consider
larger STM biases the number of energy points becomes
large and the calculations too expensive, so thatda has to be
increased to values around 0.05–0.1 eV. As a conseque
all the Bloch waves become essentially evanescent w
ueiuu,0.95, so that the nearly elastic scattering assumptio
not well satisfied. Nonetheless, by reducingC to 0.93–0.87,
we can still select a considerable number of the propaga
channels existing in theda50.01 eV (C50.97) case and
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fortunately, for most systems, the shape and corrugation
the images are only weakly affected by the precise value
da .23 The main difference between a high or low value
the optical potential is the tip-sample separationz, since to
achieve the same current valueI (V) under a strong damping
the tip must come closer to the substrate.

It is also worth mentioning that besides the elast
scattering limit, a major approximation in the LBF is th
neglect of any interference effects or contributions to
measured resistance arising from the coupling of the ch
nels to the reservoirs. If this contribution is comparable
the gap resistance at the interface, this approximation
generate discrepancies when comparing measured and
calculated resistances,25 and extreme experimental care
necessary to filter out the resistance arising from the sca
ing at the wire-reservoir junctions.12 Fortunately, typical
STM measurements are far from this problem, since ess
tially all the resistance arises from the electron tunnel
through the potential barrier localized at the junction.

VI. FINAL DISCUSSION

A fundamental issue prior to applying a given theory is
establish its overall accuracy and, consequently, we sum
rize here the most crucial approximations in our STM fo
malism. Let us first assume that the geometry of Fig. 1 c
sen to model the STM is correct. We then have as the m
sources of inaccuracy thek sampling and the treatment o
inelastic effects. For the former, we find thatk grids com-
posed of 200–400 points at each bulk block are already w
converged, in the sense that the transmission coefficients
affected by less than610% if one further increases the de
sity of the k grid. If the image is calculated in the topo
graphic mode, this translates into tip height uncertainties
only ;0.02 Å for typical gap resistances of 100 MV. The
precise value of the optical potentiald, on the other hand
has a much stronger influence on the tip heightz, and in-
duces errors up to 0.5 Å for the same gap resistance.23 The
reason is that asd is increased the damping also increas
and the tunnel current decreases. Correspondingly, thz
value ~tip height! becomes smaller. However, and provid
that one includes enough channels in the calculation, the
fect of the damping on the calculated currentI (V) is more or
less independent of thex-y position of the tip, so that all
pixels in the STM image are basically affected in the sa
way. The implication is that the uncertainty on the corrug
tion is much smaller than the error inz. From the numerical
point of view, the formalism generates uncertainties in
corrugation of around 0.03 Å, and the final shape of
image is therefore hardly modified by thek sampling or the
optical potential.23 Thus, as long as we do not choose t
unreasonable values for the density of thek grid, d or C, the
theory should still provide a reliable way of identifying th
main features present in the STM image via a qualitat
comparison with the experiment.

As regards the zero-temperature limit assumed for the
tire formalism, we also do not believe that this can be
major cause of inaccuracy. Expressions~2! and ~3! can be
easily generalized to nonzero temperatures19 by including the
Fermi-Dirac distributions of the two wires and performin
the energy integration over a wider range than the@0,2eV#
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15 896 56CERDÁ, VAN HOVE, SAUTET, AND SALMERON
interval used for theT50 case. However, the smearing o
of sharp features in the electronic structure of the system
the use of an optical potential tends to minimize any poss
effects arising from energies outside the@0,2eV# range. On
the other hand, typical measured thermovoltages at the S
junction are only of the order of 1026 V.13

A more delicate issue is to estimate the errors introdu
by the modeling of the inelastic effects via an optical pote
tial or the neglect of electron-electron interactions. The ex
tence of other more sophisticated approaches should
pointed out,9,30,31 but they have been developed mainly
order to explain specific features in certain experiments,
this kind of study is far beyond the scope of our theory. A
matter of fact, it is most common in STM theories to negle
inelastic effects and still, the experiment-theory agreemen
good for most systems studied.2 We also notice that Persso
and Baratoff predicted a decrease of 10% or more in
tunneling conductance for certain cases due to reso
processes,32 and this is in accordance with our estimates
the inelastic effects.

So far, we have deliberately omitted the description of
Hamiltonian to be used in the present formalism since,
principle, any tight-binding-type Hamiltonian may be ch
sen. We would like to stress, however, that the entire STM
a rather complex system which involves both short-ran
interactions within each wire and long-range interactio
(.5 Å! between the sample surface and the tip apex. Th
fore, it is not sufficient to achieve a good description of t
isolatedrs andat wires, but issues such as the surface wa
function decay into the vacuum and the van der Waals
traction between the wires33–35 play a crucial role and they
must also be properly addressed if a quantitative compar
with the experiment is desired. The errors introduced b
particular Hamiltonian are difficult to estimate but, at least
should always reproduce certain experimental facts~e.g., the
exponential decay of the current with the tip-sample dista
z2,36 or the capability of the STM to resolve atoms in clos
packed surfaces!. In the forthcoming paper,23 we will con-
firm that the simple extended Hu¨ckel theory37 ~EHT! already
provides a fairly good qualitative description of the ma
processes that control the final contrast in the STM ima
Furthermore, we find that the shape of the calculated ima
is hardly dependent on the exact electronic charge distr
tion at the surface blocksr and a; i.e., images are not too
sensitive to the precise electronic structure but, rather, t
reflect its qualitative features.23 Therefore, errors inherent t
a particular Hamiltonian are less crucial when simulat
STM images than when calculating, for instance, total en
gies or adsorption sites. This is in line with the fact that t
STM has not yet been proved to be a powerful tool for d
termining electronic structures when compared to other sp
troscopic techniques, despite some isolated applications
as the measurements of band gaps, metal work function
dispersion of surface bands.

In view of the above discussion, we cannot claim that
numerical values given above represent a realistic estima
the overall accuracy of the method, but rather, they provid
lower limit to the error bars. In practice, once a particu
Hamiltonian has been selected, the accuracy will be sys
dependent and, probably, a more reasonable way for its
timation is the direct comparison with experiment. It tur
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out that for the systems studied, and employing the EHT,
calculated corrugations are at least within 50% of the exp
mental value, while we estimate a safe error bar in the ab
lute tip sample distancez to be 1–2 Å.23

These considerations imply that, even under the assu
tion that the structure of the system is well known, we can
expect accurate quantitative results from our present form
ism, and we consider it as a semiquantitative theory. Nev
theless, we do not feel it necessary at this point to introd
further refinements, since a crucial parameter in the image
the actual tip apex termination, and in the current STM e
periments this cannot yet be determined easily. The ass
ated uncertainty is probably overwhelming over the rest, e
phasizing the need of fitting the apex geometry and chem
identity prior to extract any quantitative conclusions from t
surface being probed. Many studies have provided evide
of this.9,16,38 A related issue is the potential of STM to de
termine the surface crystallography~adsorption sites, bond
lengths, buckling at the surface layer, etc.! via an
experiment-theory fitting of the images andI (V) spectro-
scopic data. Previous ESQC applications have already
tained this kind of information in certain systems,14,18,16al-
though a systematic way for evaluating the level
agreement between two images orI (V) curves has not ye
been established.17

Having discussed above the shortcomings associated
the current theory, we conclude by highlighting its basic co
ceptual and practical aspects. In the first place, we have
sented a semiempirical method capable of generating S
images in a fast and easy way; for a given set of tig
binding parameters, typical topographic images of entire u
cells take between 20 min and 2 h on a DECAlpha Station.
Most of the nonstructural parameters involved, such as
optical potential or the charge distribution, may be estima
prior to performing the calculation, so that, to a great exte
any agreement with the experiment cannot be considere
fortuitous or due to an excess in the number of parame
fitted. The use of the SGFM method allows one to take i
account multiple-scattering effects at the interface in
quasiexact way@the only related approximation is Eq.~65!,
which turns out to be very accurate#. If instead of the SGFM
method, a first-order approximation in the number of tunn
ing events is used, then the resulting expressions for the
current can be decomposed into individual AO compone
or into contributions arising from a particular interaction
the interface and its interference with other tunneling pat
These type of decompositions permit a simple and comp
hensive analysis of the origin of the contrast in the imag
Furthermore, in employing the Bu¨ttiker-Landauer formula
we fully couple the interface to the bulk materials; we shou
mention that this type of approach is becoming widely us
in many studies of the conductance orI (V) characteristics of
different nanodevices.6,12,22,24,39A very pleasant feature o
the theory is the description of the whole system atom
atom, with relatively few geometrical restrictions, so that w
are able to model the STM in a realistic way, inasmuch
the geometry of the constituent blocks is knowna priori. On
the other hand, the use of a tight-binding Hamiltonian ma
feasible the study of large unit cells.

More importantly, the method can be applied to a wi
variety of systems without the need for any modification
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we may study different coadsorbed atoms or molecu
forming ordered or disordered structures, vacancies or im
rities, steps, bias effects, etc. In particular, it represen
potential tool for identifying different chemical species at
surface during the STM experiments. The extension to se
conductor surfaces should not give any problems eithe
long as one includes band-bending effects, and these
readily be incorporated into the theory.
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APPENDIX A: 1D SEMI-INFINITE CHAIN

In this appendix we derive explicit expressions for t
transfer and Green function matrices of a semi-infinite
chain. Although most of the expressions to appear below
be found elsewhere~see, for example, Ref. 21!, we prefer to
include them here for the sake of completeness, and in o
to provide a unified notation throughout the present wo
We will only consider thers chain of Fig. 1, while the
equivalent relations for theat chain can be easily obtaine
by simply replacingr by a and s by t and also taking into
account that propagation from surface to bulk within ea
chain has opposite signs~according to Fig. 1, positive forat
and negative forrs).

1. Bulk Green function

We first consider the bulk chains as infinite, so that the
surfacer is not present. In this case, and due to translat
symmetry, the Green-function matrix blocksGn8n

0 only de-
pend on the differencen82n. We may then substitute th
subscriptn by s and label these blocks asGss6n

0 or Gs6ns
0 .

Projecting Eq.~18! at the diagonal blockss, we arrive at

I 5Fss21Gs21s
0 1FssGss

0 1Fss11Gs11s
0 . ~A1!

Making use of theTn8n transfer matrices defined in Eq
~23! and again noting that they only depend on the differe
n82n, we may rewrite Eq.~A1! as

I 5$Fss21Ts21s1Fss1Fss11Ts11s%Gss
0 , ~A2!

which gives an expression forGss
0 as a function ofTs61s . To

obtain these bulk transfer matrices we follow the iterat
procedure developed in Ref. 40, which leads to the exp
sions

Ts11s5t01h0t11h0h1t21•••1h0h1 . . . hm21tm ,
~A3!
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Ts21s5h01t0h11t0t1h21•••1t0t1 . . . tm21hm ,
~A4!

wherem is the maximun iteration step used. The proced
is initialized through

t052~Fss!
21Fs11s , ~A5!

h052~Fss!
21Fs21s , ~A6!

while the rest of thehi and t i terms are obtained via

t i52~ I 2t i 21hi 212hi 21t i 21!21t i 21
2 , ~A7!

hi52~ I 2t i 21hi 212hi 21t i 21!21hi 21
2 . ~A8!

The algorithm is carried on until convergence in all mat
elements is achieved. Then, the diagonal bulk Gre
function blockGss

0 can be obtained by simply inverting th
expression in brackets in Eq.~A2!. The rest of the blocks
Gs6ns

0 can be obtained by repeatedly multiplyingGss
0 by the

transfer matricesTs61s ,

Gs6ns
0 5~Ts61s!

nGss
0 . ~A9!

On the other hand, wave-function amplitudes at differe
PL’s are simply related through

uas6n
0 &5~Ts61s!

nuas
0&. ~A10!

If instead of projecting Eq.~18! we use Eq.~19!, similar
expressions may be obtained, but as a function of theSss61
transfer matrices defined in Eq.~24! instead of theTs61s
matrices:

Gss6n
0 5Gss

0 ~Sss61!n. ~A11!

Noting that in the bulkGss7n
0 5Gs6ns

0 , we may combine
Eqs.~A9! and ~A11! to obtain a useful relation

~Sss71!n~Gss
0 !215~Gss

0 !21~Ts61s!
n. ~A12!

In fact, both transfer matrices are related through21

Fss61Ts61s5Sss61Fs61s . ~A13!

2. Surface Green function for a 1D chain

We now regards as a semi-infinite chain, and allow fo
the existence of the surfacer . Notice that in this case the
translation symmetry is broken and theGnn8

0 blocks depend
on the actual value ofn andn8. By projecting Eq.~18! at the
diagonal blockrr , we obtain

I 5FrsGsr
0 1FrrGrr

0 5$FrsTsr1Frr %Grr
0 , ~A14!

where we have introduced the transfer matrixTsr defined as

Tsr5Gsr
0 ~Grr

0 !21. ~A15!

In order to evaluate the surface Green functionGrr
0 we

then need to findTsr first. To this end, we project Eq.~18! on
the matrix blocksr to obtain
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05FsrGrr
0 1FssGsr

0 1Fss21Gs21s
0

5FsrGrr
0 1$Fss1Fss21Ts21s%Gsr

0 . ~A16!

Notice that we can still use in this expression the bulk tra
fer matrix Ts21s deduced above, since the coupling of P
n522 with the rest of the bulks chain (n,22) is not
affected by the presence of the surfacer , which is located at
the other side (n521).

Combining Eqs.~A15! and ~A16!, we can now find an
explicit expression forTsr :

Tsr52$Fss1Fss21Ts21s%
21Fsr . ~A17!

We may arrive at a similar relation forGrr
0 by using Eq.

~19! to perform the projections:

I 5Grr
0 $Frr 1SrsFsr%, ~A18!

where theSrs transfer matrix is defined as

Srs5~Grr
0 !21Grs

0 , ~A19!

and may be obtained by projecting Eq.~19! at rs:

05Grr
0 Frs1Grs

0 Fss1Grs21
0 Fs21s

5Grr
0 Frs1Grs

0 $Fss1Sss21Fs21s%. ~A20!

With the aid of Eq.~A13! the calculation of the bulk transfe
matricesSss61 can be avoided, and, from Eqs.~A19! and
~A20! Srs can be expressed as

Srs52Frs$Fss1Fss21Ts21s%
21. ~A21!

Finally, the local density of states projected on an orb
a i at layer n, rn

0(a i), may be obtained directly from the
Green function through41

rn
0~a i !52

1

p
Im$~GO!n,n~a i ,a i !%, ~A22!

where Im stands for the imaginary part andO is the overlap
matrix. Notice that Eq. ~A22! involves the products
Gnn61On61n besides the diagonal termGnnOnn . The total
LDOS projected on a PLn, rn

0 , is then simply given by

rn
05(

i

Na

rn
0~a i !52

1

p
Tr$Im~GO!nn%, ~A23!

where Tr is the trace of the matrix.

APPENDIX B: ANALYTICAL DERIVATION OF T„E…

In this appendix we wish to find an analytical expressi
for the transmission coefficientT(E) for the simple 1D sys-
tem depicted in Fig. 3. Let us first findGra . Inserting Eqs.
~41!–~45! into Eq. ~20! and using definitionsq5(E2e)/h,
X5(v2e)/h, Y5a/h, andZ5b/a, we have
o

s-
L

al

n

Gra5
2b

u~GII!21u
5

2b

h2@~q1t !~q2X1Y2t !2Y2Z2#
.

~B1!

Now we may calculate explicitly the scattering coefficie
S1(E) in Eq. ~40!. Taking into account that (Ut

1)21Us
151

and dropping theTta5t term since it only provides a phas
factor, we obtain

S1~E!5
2Y2Zt~q12t !

~q1t !~q2X1Y2t !2Y2Z2
. ~B2!

In order to find the squared modulus of this expression
is convenient to distinguish real and imaginary parts. Sin
all quantities in Eq. ~B2! are real exceptt, we write
t52q/26D, whereD5Aq224 is a purely imaginary quan-
tity. Dropping again thet in the numerator of Eq.~B2! and
using the definition ofD, we obtain

S1~E!5
2Y2Z~6D!

~q/26D/2!@q2X1Y2~2q/26D/2!#2Y2Z2
,

~B3!

and after some algebra we may separate those terms m
plying D from the rest through

„S1~E!…2152
~1/Z1Z!

4W2 H ~q2X!1
q22qX24W2

6D J ,

~B4!

where we have definedW5YA(11Z2)/2. The (q2X) term
inside the braces is real, and the second purely imaginary
that we can now easily evaluate the transmission coeffic
according to

T~E!5$@Re~1/S!#21@ Im~1/S!#2%21. ~B5!

By substituting Eq.~B4! into Eq. ~B5!, we obtain

T~E!5T1T2~E!, ~B6!

where

T15
4

~1/Z1Z!2
, ~B7!

while the second factorT2(E) is given by

T2~E!5~4W4!S ~q2X!21
~q22qX24W2!2

42q2 D 21

,

~B8!

and after some rearrangement one finally finds

T2~E!5S 11
@X1q~W221!#2

W4~42q2!
D 21

. ~B9!
ri

n
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41M.P. López Sancho, J.M. Lo´pez Sancho, and J. Rubio, J. Phys.
18, 1803~1985!.


