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Efficient method for the simulation of STM images. I. Generalized Green-function formalism
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We present a theoretical formalism specially suited for the simulation of scanning tunneling microscopy
(STM) images. The method allows for a realistic description of the STM system, taking fully into account its
three-dimensional nature. Bias effects may also be considered since the theory is not restricted to the low-bias
limit. The starting point is the previously applied Landauetiier formula, which expresses the current at the
STM junction as a sum of transmission coefficients linking eigenstates at each electrode. The transmission
coefficients are directly obtained from the scattering matrix which is, in our approach evaluated through
Green-function techniques; in particular, we employ the surface Green-function matSi@fd/) method to
find the Green function at the interface, and explicitly derive simple expressions for the current. Additionally,
the formalism goes beyond the elastic-scattering limit by considering inelastic effects via an optical potential.
We also present a method to analyze the current in terms of contributions arising from individual atomic orbital
interactions and their interference with other interactions. To this end, the SGFM method is replaced by a
first-order expansion of the interface Green functi®0163-1827)04648-1

[. INTRODUCTION ferent types ofbumpsor holesto a particular atom or mol-
ecule.
Since the early work of Tersoff and Hamanan the The so-called elastic-scattering quantum chemistry

theory of the scanning tunneling microscof®TM), many  (ESQQ theory***~1"has revealed itself as a computation-
theoretical approaches have been developed in order to gaatly fast and convenient scheme to calculate theoretical STM
further physical insight into the real space images that thismages. Up to now, it has been successfully applied to a
technique provide$:® Most of the basic principles govern- great variety of systems: CO adsorbed ofLP1),** benzene
ing the current or topographic contrast recorded in a STMon P{111) (Ref. 1§ and on RK111),% O and several other
image are now reasonably well understood in terms of th@toms on Ril11 15 and S on R®00) (Ref. 16 and on
electronic and atomic structures of both the tip and surfac10(100),'” among others. In the ESQC approach, the con-
being probed together with their interactiochdloreover, ductance of the system is evaluated via the Landauer-
most STM-related experimental findings have also been saButtiker formula (LBF),'® which connects electronic states
isfactorily explained, such as bias-dependent imdgesga-  (channel} on both sides of the STM junction. In this way,
tive differential resistance®’ electron-density wave'S,atom  the coupling of the surface and the tip apex to their respec-
transport! quantization of the conductanteand thermo- tive bulk materials is fully taken into account. The probabil-
voltage measurementd among many others. ity for electrons to be transmitted from one channel to an-
There exist, however, few STM theories that can be usedther is directly obtained from the scattering matsixvhich
routinely to simulate STM images for a great variety of sys-is, in turn, evaluated through the transfer-matrix technigtie
tems in a fast and simple way, and that are realistic enougfirM). However, the TM can only be applied to symmetrical
to make a comparison with the experiment meaningful. It igunctions in the sense that both the geometrical and elec-
often the case that a semiquantitative theory suffices to exronic structures of the tip and substrate bulk materials have
tract useful information from a STM image or from spectro-to be considered as identical. This requirement has also pre-
scopic data, rather than performing accurate first-principlesented the use of ESQC for analyzing spectroscopic data,
calculations which are usually time consuming or even in-since the applied bias shifts the energy bands at each side of
tractable. Such an approach is necessary, for example, whéime junction in opposite directions, thus breaking the symme-
one desires to monitor chemical reactions with the STM. It istry. All previous studies using the ESQC theory have there-
then crucial to identify coadsorbed species before and aftdiore been restricted to the low-bias limit which is, neverthe-
the reaction takes place. To determine the chemical identitiess, a common experimental condition when probing
or their adsorption sites is not often a trivial task that can banetallic samples.
directly extracted from the experimental image, so that one In this paper we present a reformulation of the ESQC
needs to perform parallel calculations in order to assign difmethod, whereby in obtaining the scattering maftithe TM

0163-1829/97/5@4)/1588515)/$10.00 56 15885 © 1997 The American Physical Society



15 886 CERDA, VAN HOVE, SAUTET, AND SALMERON 56

technique is replaced by the surface Green-function match- I

ing (SGFM) method?! A very similar approach, but re- A — 4

stricted to the one-dimensionélD) case and the low-bias r:a

limit, was recently developed by Chia al??in connection Ly «—o— —o— M (a)

to the conductance of nanotube heterojunctions. As will be

shown, the use of Green functions lifts all the above restric-

tions. At the same time, the full 3D nature of the system is o il

also taken into account through an integrationkirspace n ey <oi U <9 t (b)

over the Brillouin zones of the substrate and tip. Further- ~ Siaainain N \/\ /\/\/\/\/\/\/\/\

more, we show how a decomposition of the current into in- /m/m/m{m

dividual atomic-orbital contributions or interference terms

may be accomplished if the SGFM method is replaced by a

first-order perturbation theory. The actual application of the o000 000sie) §HO00000OO- (C)
21345

theory to some real systems, together with a detailed study of
the effect of the parameters involved will be presented in the
following paper®®

In Sec. Il we will briefly explain how the LBFRef. 19 is .
applied to the STM problem. Although there exist more re-
cent and general formalisms to the quantum transfoxe
feel that the LBF formula offers a conceptually simple, yet
correct approach to the problem. The complete theory for the
one-dimensional case will be presented in Sec. lll, where we
also show its equivalence with the ESQC for a simple model. FIG. 1. Schematic of the STM theoretical mod@)) The sub-
The extension to three dimensions and the method for thetrates and tipt are considered as wires connected to a reservoir.
current analysis are described in Sec. IV, while in Sec. V web) Chemical potentiak at each wire when a negative bids set
incorporate in an approximate way inelastic effects withinbetween the two reservoirs. All allowed states bejoare assumed

the theory. We leave to Sec. VIl a final discussion on thel® be occupied. The atomic-scale potential energy along the wires
present STM formalism. and at the junction is also sketched as curved litesThe 1D

model: the numbering below each pair of atoms denotes the princi-

pal layers(PL’s). (d) The 3D model: dashed horizontal lines indi-
Il. LANDAUER FORMULA APPLIED TO THE STM cate the surface superlatticesraanda, which are taken commen-
surate with their respective bulk lattices.

(d)

As depicted in Fig. (a), we model the STM experimental
setup by two perfect conducting wires corresponding to th% to t and the— sign for the opposite direction. The super-

substrates and the tipt. Each wire has one of its termina- script m, which takes values between 1 aNd(E), stands
tions attached to an electron reservoir characterized bYor any broper quantum number such as the ban,d irfthis
chemical potentialgs and u,, respectively. The two wires

h ht ol h other formi 3 will be clarified in the next sectiofnsNotice that the flow
are then brought close to each other forming an interface yjractions at both bulk materials need not be along the same
which we identify as the STM junction. Since the electronic is, but it will be determined by the particular shape and

and geometrical structures of the sample and tip surfaces Wify,|4tive orientation of the wires. In particular, the bulk repeat
in general differ from those within their corresponding b“|kvectors at the two wires might not be aligned with each

materials, it is convenient to define each surface as a separgjg,q, although in Fig. (8 they are depicted in such an
block which we denote by for the reconstructedermina- 5 angement. AT=0, the reservoirs will inject electrons
tion of thes wire, and bya for the tip apex of thé wire. The 45 the channels so that they are all occupied up to their
interface is thus composed of the two surface blockand  espective chemical potentials and unoccupied for higher en-
a. ergies. All the chemical potential drop is assumed to be lo-

n the STM experimen_t, the difference in chemical poten-.ajized in the vacuum region of the junctiffig. 1(b)]. We
tials at thes andt reservoirs is externally contrqlled through o1 then view an electron in channa[ ™(E)) propagating
the applied sample bidé, so thateV= pis— u, (With e<0), along thet bulk material until it reaches the interface
and an electron flqw sets up from the_ wire at h|_gher_ Chem!ca\Nhere it is scattered, having certain probability
potential to the wire at lower potential. This situation is il- =~ _ . —m . . o
lustrated in Fig. tb) for the caseu,> s, which corresponds (Us ~ (E )|T]/ut (E)) to transmit across the junction into

to a positive sample bia¢ (eV<0). In order to evaluate the channelug™ (E’)) ats or (u;™ (E')|R|u; "(E)) for back
currentl (V) associated with this flow we follow the argu- reflecting into another channelatDepending on the energy
ments of Bitiker et al,'® considering the zero-temperature E’ of the scattered electron the scattering process may either
limit. At a given energyE, each wirea, wherea=s andt, be elastic E=E’) or inelastic E#E’). Next, we take the
may be described by a certain numbgy(E) of independent elastic-scattering limit and approximate the transmission
ideal one-dimensional conductors, which are referred to aprobabilities by

channels. Electrons propagate through these channels with- ,

out dissipation from the reservoirs to their respective sur-(u;™ (E’)|7]u; "(E))~S8(E—E"){us ™ (E")|T]u; "(E))
faces, and vice versa. We may denote each chanrmsl the

kefu M(E)), where we use the- sign for propagation from =0(E-E")T,(E). @
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The first equality in Eq(1) implies that all the scattering size(see, for example, block in the figure. In analogy with
at 7 is elastic, the contribution to the transmission arisingLee and Joannopould8,we split each chain into a semi-
from dissipative processes being neglected. The great advainfinite stack of principal layers, where a principal layet)
tage in using this approach is that only the energy rangés defined as the smallest group of atoms such that only
[ s, ms—€V] needs to be considered when evaluating thehearest-neighbor interactions between PL’s exist. We further
current; channels atwith energies belovks cannot transmit ~assume that the bulk chaissandt can be described by a
into any channel as, since they are all occupied at these periOdiC array of identical PL’s within each chain. As shown
energies. On the other hand, there will be no occupied charld Fig. 1(c), the numbering of PL’s runs in increasing order
nels att aboveu,=us—eV. A more detailed discussion of from the s chain to thet chain, and the origin is chosen so
this limit will be given later in Sec. V. Under all the above that the two surface blocks and a are located at PL’s
assumptions, we may now use the many-channel [B&. Nn=—1 and 1, respectively, while the Pb=0 is skipped.
19) to evaluate the intensity across the junction: We therefore havea<—1 for thes chain andh>1 for thet
chain.
e [-ev Within a linear combination of atomic orbitals frame-
|(V):_f dED, T, (E+ups, V>0. (2 work, any wave function at any PL may be expanded in
mh Jo mm’ terms of a given set of atomic orbitdls; ,i=1,N,}, and we

L allow different basis sets at each block. That is, at the sur-
If the sample bias is reverse@{> u;), then the electron {365 we have the basis set,i—1N,} atr and the set
flow will be directed froms to t, and the same reasoning will {a;,i=1N,} at a. In the bulk chains we have the set
| ) .

lead to a similar expression for the current flowing in the{ti i—=1N,} for n>1 and the sefs;,i=1Ng} for n<—1.

opposite direction: We emphasize that, as opposed to the TM technique where

the {s;} and{t;} basis must be identical, in the present for-
e (~ev malism the sizes of the four basis sets can be different, and
(V)= %fo dE2, T;’m(E—’_:u’s)' V<0, () this allows for a more realistic description of the system.
mm For a given energf, wave functions at each Ph may
whereeV now takes positive values. be written as

In deriving Egs.(2) and (3) it is further assumed that N
channels are normalized to unit flux, so that the current fed S ~
into any channel is independent of its group velocity. |a”(E)>:Z‘1 a; n(B)|ai(dp)), (6)

The key ingredient in evaluating(V) is therefore the . . .
transmission probability matrig™ (E) which couples chan- Where nowa=t,a,r,s depending on the block in which PL
nels on each side of the interface. These probabilities ar8 is located. The kéi;(d,)) corresponds to thigh orbital of
related to the scattering matré&" (E) through the following the {«;} basis set located in Ph. The vector&n gives the
relation?>2® origin of the PL.

We use a tight-binding Hamiltoniad with only nearest-
Um/ neighbor interactions among PL'’s to describe the electronic
* —1/Em + +m 2 a part of the whole system. The infinite tridiagonal matrixs
Tl B)=Ku ™ (B)S™(B)u (BN @ sketched in Fig. @). It consists of matrix blocksl,,/, with

. ) .. n’=n,nx=1 that give the interaction between Pldsandn’.
herea ande’ stand fors or t depending on the transmission 5 general matrix element at eachn’ matrix block

direction, and " is the group velocity of channeh. The last
factor in Eq.(4) accounts for the flux normalization at each
channel.

The whole problem is thus reduced to the evaluation o
the scattering matrixs™ (E) in the channel basiswhose el-
ements we define as

[e3

Hon (@i, a])=(a;i(dn)|H|e] (d,)) contains the interaction
between orbitaly; atn ande; atn’. Obviously, ifn andn’
pelong to the same bulk blockor t, these matrices will be
independent oh, and we can replace the subscripby s or
t [see Fig. 2a)].

In order to apply the LBF, Eqg2) and(3), we must first
B / identify the channelsu_, ™(E)). Since the bulk chains and
S;,m(E)=<uj,m (E)|S™(E)|u,™(E)). (50 t are assumed periodic, their eigenfunctions correspond to
Bloch waves| 6, "(E)) characterized at each ener§yby
the quantitiesd, ™(E)=k_ "(E)a,, wherea, is the lattice
constant for the PL’s anki; ™(E) is the wave number giving
the energy dispersion of thre energy band in chair. From
now on we regara,, as a unit distance, and identity. "(E)
A. Definitions and notations with the wave number along the propagation direction. These
Bloch waves act precisely as the propagative channels for the
8lectrons in the wires, each one with a group velocity given

The next two sections are devoted to obtaining explicit ex
pressions for these matrix elements.

Ill. 1D CASE

For the one-dimensional case we regard each wire as
semi-infinite chain where the side extending to infinity cor-
responds to the one attached to the reservoir. A scheme 0
the model is illustrated in Fig.(&). Although we denote this 1 J9E
system as 1D, it is in fact more general than just a simple vVME)=5 —, (7)
linear chain, since we allow the wires to have a finite lateral h a0,
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= g

|ss-1 88 [ss+] 33]32] ar [3alaz2]s3
SS-1| 88 sr -2-3|-2-2( Sr |(-2a|-22(-23
1s| 1| r3(rs| r |ra|r2i; FIG. 2. Schematics and notation for the ma-

trix blocks corresponding téa) the Hamiltonian

ar :: ’:tt| - as Z ar :: :: a H and overlap matrbO and(b) the Green func-

mmt& Z’: v 23; aln :: tion G for the 1D system of Fig. (t). The inter-

- o . face Green functiorG;; is indicated by the cen-

ﬂm ° Ta] tral square in(b).
te1 tt 1

(a) (b)

where the sign of the energy derivative determines the H being the Hamiltonian an@® the overlap matrix whose

direction of propagation in the channel. structure is identical téd [Fig. 2(@)]. To avoid divergences,
The wave function of an electron in channelm may  the energyE is taken complex and a small positive imagi-
then be written as nary parts is added to the actual real enerBy:
1 o
PEME)) = LET(EY, 8 E=E, +i6. (16)
0T EN= 5, B, 4 "(E) ®)

_ . _ _ It should be noted, however, that the formalism developed
N being the number of PL’s in the bulk materia) while the  pelow is still numerically stable for values @ as low as

kets|u, "(E)) give the wave-function amplitude of an elec- 10-%eV, so that the use of a complex energy does not imply
tron at PLn, with [n|>2: a limitation to the elastic-scattering approximation. The use
N of larger values fors will be discussed in Sec. V.
+ n 3 Any element ofF may be written as
[un ()= 2, U(E)ax(d), © Y Y

which, since it must satisfy the Bloch condition, is related to Frw(ai,a)) =BOny (ai,a)) =Hon (ai,aj), (17

adjacent PL's through where we have omitted the energy dependenck &ir the

sake of clarity, and we will maintain this convention for most
of the matrix expressions appearing in the remaining sec-
m +10-™(E). —m tions. However, it is important to notice that under an ap-
lup(E))=e™ % Blu ™(E)). 11 plied biasV the energy levels at the chains shift in energy, so
. . . — that the actual value o to be used in Eq(17) will be
The interchannel scattering matrix elemeds (E) de-  gitferent whether we consider this or at sides of the junc-
fined in Eq.(5) may then be obtained by relating Bloch wave tion. For the former, we USE,=Ex(s) + E, while for the
amplitudes at PL’'s1 andn’ such that they are both at dif- |5tter we haveE,,=Eg(t) +eV+E, where Ex() is the

UM (E))=e* 1% B Ui M(E)), (10)

ferent bulk chains and far away from the interface: Fermi level of thea bulk chain. As indicated in Sec. IE
— e o ) ranges between 0 andeV. This scheme ensures that both
Spm(E)=(uy, " (B)[SJu;™(E)), n'>2, n<-2 Fermi levels will be aligned for the zero bias case. As for the

(120 interblockF,, andF,, matrices we approximate the energy

- - Cm ) to a fixed valueE,, =3[ Er(s)+Eg(t)] independent of.
Swm(E)=(U," (B)[S|uy ™(E)), n'<-2, n>2, We believe that more sophisticated approaches to the evalu-
13 ation of E,,, which would take into account the specific
where the requirement for bothandn’ to be located deep shape of the potential drop at the junction, will not modify
inside the bulk materials ensures that any evanescent wav#e final contrast in the image significantly. Besides, correc-
will make a negligible contribution to the scattering matiix. tions toE,, should be relatively small since this term multi-
We now define the system’s Green functig(E) at a  plies the overlap matrice®,, andO,,, whose elements al-

given complex energ¥ by ready have small values.
The structure o is shown in Fig. 2b). The projection of
G(E)F(E)=F(E)G(E) =1, (149 Eq. (14) on any matrix blocknn’ yields two matrix equa-

wherel is the identity matrix, andr(E) is the usual secular

tions depending on whether we use the first or second equal-
matrix defined as 1ty

F(E):EO_H: (15) |5nn':an—lgn—ln’+angnn’+an+lgn+ln’a (18)
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I 8nn=Gnn'—1Fn' =10+ Gnn'Frrn' + Ganr +1F s 410 - not taken into account. Obviously,fifandn’ are located at
(190  different sides of the interfacdaﬁ,) is zero. The second
term in Eq.(25) adds to the first one the perturbation intro-

In order to evaluatej, we use the Dyson equation, and . . )
choose as the unperturbed system that formed by the twfjuc{Ed by the other chain by first propagatia&) toi, where

semi-infinite chains t@ and rs) but assuming there is no :Escr:]a;tﬁasntp araen;jnfmaelI)S/;nlqsepgﬁg)ﬁ.%aétﬁdlzm (.2I;)| :i\llegr,:ﬁte
interaction among them. Therefore, the unperturbed Hamil-"’ ) S, ,q' g
tonian and overlap matricé$® andO° will be identical toH reflected amplitude, while #i" (n andn’ are at different

andO except that the blocksa andar are set to zero. Since chaing we obtain the transmitted amplitude. The scattering

; matrix S relating the unperturbed wave functionrewvith the
the chains are decoupled, the unperturbed Green fungtion cattered wave at’ can then be directly extracted from this
may be calculated separately for each one, and the proble% y

. second term,
reduces to evaluate the surface Green functighsand G°,

i . . : ; . 0 -
and their coqpllngs tg th-elr. respective bulk chains. Notice S, n:Tn,i,(gi,i_gi,i)sm(ggn) 1 (26)
that any matrix blockg, , linking PL's n andn’ that are not
located in the same chain will be zero. The evaluatiog®f
is presented in Appendix A, and here we assume it to be . _ _ _
known. The perturbation is then introduced by switching on ~ Since we are interested in the transmitted amplitudes, we
thera interactions that couple both chains. Since this perturneed to consider in Eq26) the case whera andn’ are
bation is localized at the interfacE=r anda, to obtainG  located at different sides of the interfageand, again, we
from G°, we follow Ref. 21 and apply the SGFM method, will focus on the transmission along the negative direction,
generalizing it to nonorthogonal basis sets. By projecting thavhich corresponds to electrons propagating from thé tip
Dyson equation af, an expression for the interface Green the substrates. We then haveé =a, andi’=r, and, taking

B. Scattering matrix in the Bloch basis

function G, can be easily deduced: the limitsn>2 andn’<—2, Eq.(26) reads
—(g” gra)_( (g?r)_l Fra)_l (20 Sr:’n:Tn’rgraSan(g?t)ilv (27)
P\ Gar Gaal \Far (@27 where we took into account thgf,=0 for the unperturbed

system, an@ﬂn has been replaced by thebulk diagonal

Knowledge ofg; and g, enables the evaluation of any oo, fnction matrix blockS, since we are considering

Gnrn Matrix block throught

the limit n>2.
o= gg/nJr ggli ,(giO,i N NGoi— g?/i)(gﬁ)flg?n , _ Let us f|r§t decomppse the transfer matridgs, andS,,
in the following forms:
(21
wherei andi’ stand for the surface blocks or a of the Tor=TamreaTnrsanre2 Toz—2T oo
chains to whichn andn’ belong. n—2
Any wave function|a,/) at any PLn’ may now be ob- =(Ts-15) Tsr, (28)
tained from the unperturbed wave functitaf) atn via the . B n_2
Lippman-Schwinger equation San=Sa2S23- - - Shan-1Shi- 1= Sal Sier )™ 5 (29)
10 where we used the bulk transfer matrices 15 and Sy, ¢
|an )= Gnrn(Gon) ~an)- (22)  derived in Appendix A. The two second equalities in Egs.

(28) and (29) reflect the fact that transfer matrics,,
(S,n) only depend om—n’ if both n andn’ are in the
same bulk blocks or t, andn’ is closer to(further from the

Expressiong21) and(22) may be simplified by introduc-
ing theT,,, andS,, transfer matrices

0 1 surface tham (see Appendix A Using the latter expan-
T“'“_gn’“(gg”) ' (23 sions, Eq.27) can be written as
_ 0 ’
Son = (Gan) o (24 Spn=(Te 10 ™™ " 2TeGraSar(Su )™ 2(G) %, (30
so that we arrive at or, using relation(A12), we may express th&;.; bulk

transfer IIIatl"iX in terms Ol 1t
T 0 - t—1t
|an’> n’n|a2> n’i’(gi’i gifi)sin(ggn) llag>'

(29 Son=(Te 10 ™™ 2T GraSa(90) HT_ 10" 2. (3D)

The interpretation of Eq(25) is straightforward. The first  For transmission along the positive direction we take the

term propagatefa)) from n to n’. SinceT,, only depends imits n<—2 andn’>2 to arrive at a very similar relation,
on G° [see Eq.(23)], it can be readily identified with the

unperturbed wave functiofa’,) at that layer. It is worth S = (T 2T1aGarSis(G29 (T2 " 2. (32
noting thatT,,,, should not be confused with the bulk trans- .
fer matrix (Ts+ 15)" appearing in Eq(A10). According to our These are our final relations for the scattering mafjx,

choice of the unperturbed system, we are also considering iim the atomic-orbital(AO) basis.G,, or G,, are obtained
Tnn the scattering arising from the surfaicéwhich is inthe  from Eq. (20), and explicit expressions for the rest of the
same chain as), although the presence of the other chain ismatrices appearing in Eq$31) and (32) are provided in



15890 CERDA, VAN HOVE, SAUTET, AND SALMERON 56

Appendix A. However, we still need to find the Bloch basis h o B h h
in order to transforms;,, .. To this end, it is convenient to h e e /\03 ~ e
cast the Bloch coefficients appearing in Ef) into vector /\_/\_ _/\_/\

form according to . . . - .
FIG. 3. Schematic of the simple 1D linear chain with one orbital

Jﬁm:(uf?,uirzn, o auﬁln,n)- (33) per PL, and an impurity inserted at the interface.
developed provide an exact way of calculating the elastic-
scattering transmission coefficie™ (E) (as long as we
maintain the one-electron Hamiltonianwe wish to show
GEM =T gEm (34) their equivalence here._ Rather than performir)g a rigorous
nxl™ taxlatn o proof, we choose the simple system depicted in Fig. 3, and
with a=t,s. Comparing Eqs(34) with Egs.(10) and(11), = which was already studied in Ref. 3. It consists of an infinite

By applying Eq.(A10) at any siten of the bulk chains, we
have

we arrive at the following eigenvalue problem: bulk chain into which an impurity has been inserted. The
. bulk chain contains just one orbital per PL, and we use a
Tor1ounM=€% ur™, (35)  nearest-neighbor Hamiltonian characterized by the on-site

o . . ] energiese and the hopping interactioln. The energy at the
which implies that the reduction of the, . ,, into a diagonal impurity is @ and its coupling to the chain is given by the

form directly provides the wave numbefg™: interactionsx and 8. We further assume that the AO basis is
N . orthogonal, so that all overlaps between different PL's are
Tax1,U,=U,0,. 36 zero.

Here®: is the diagonal matrix whose nonzero elements are |f we identify the impurity with the block, and the PL to
its right with the tip apexa, we have Fg,=F =«,

Far:Fl’a:B’ Frr:E_w! FSS:FII:Faa:E_e' and
Fssr1=Fu:1=Fa=Fia=h. By substituting these values

thee'ta" quantities, and the transformation mattix, con-
tains the Bloch eigenvectors

U§=(G§1,J§2, . ,GfN“). 37 r;?aienxpressiomAZl), (A17), (A2), (A18), and(Al14), we
11t has a nomsero maginay part e cipensiae consponcs Se=—al(E-e)+hy) ! @
Dropagate o 1o n-1. We may now Subatiite EGH6, Ta=~hl(E=e)+he) ™, “2
;n;zttlz?ih(;’,lr)n;rsgrtir? a more convenient expression for the (G0)~1=(E—e)+2ht, 43

Sn=Us{(0) " "3 (UJ) M5 GraSa( G (G ~'=(E—e)—h¥(E—e)+ht] %, (44)
XU (00)" 2} (U~ (39) (Gr) '=(E-w)-a*[(E-e)+ht]™, (45

The braced factor in Eq38) can be easily identified with wheret stands for the bulk transfer matrite= Tg. 1= Ty gt -
the scattering matrix in the Bloch bas$s, which we were TO obtain its value, we note that in this modelcoincides
seeking. When considering limit¢2) and(13) for n andn’  With any PL att, and thereforeT,=T.,,=t. Then, by
in these expressions, the evanescent waves make a negligitfiguating the expression fdk, in Eq. (42) with t, we find
contribution, and we may retain only thoéﬁ,m matrix el-

ements that relate the propagative chanmelandm’. Fur- {= —(E—e) V(E—e)"—4h (46)
thermore, when taking the square modulus of these expres- 2h 2h '

sions in order to obtain the transmission coefficient to be
used in Egs(2) and(3), the ®, matrices may be dropped, WhenE is contained in the interva=* 2h thent is imagi-
since they only provide a phase factor. The scattering matrixary with [t|=1 and we have a propagative channel in the

in the channelsbasis can then be written as chain. The set of parameters,f,w,«,8) can be further
_ reduced to four by definingj=(E—e)/h, X=(w—e)/h,
S =(Ug) TgGraSa(GH) MU, . (39  Y=a/h, and Z=B/a. By substituting the above relations

_ o _into Eq.(40) we may obtain an analytical expression for the
For the opposite case, transmission from substrate to tigransmission coefficient as a function of these new variables.
we obtain The algebra involved is presented in Appendix B, and the

_ final result is
ST =(U{) " TiaGarSis(Ge ~'Us . (40
T(E)="TT,(E), (47)

C. A simple model where

Since for 1D symmetric junctions and in the zero-bias
limit both the ESQC and the Green-function method just T,=4(Z+ 1/2)"2, (48)
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[X+qW2—1)12) "
+—

W=Y(1+Z%)/2. (50)

This result is identical to expressiofis5) in Ref. 3. Notice
that the use of Eq(39) instead of Eq(40) gives the same
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general incommensurate with thoseadt Furthermore, nei-
ther the propagation direction nor the orientation of the

atomic planes at one wire have to be aligned with those at

the other wire.
We can then form at each Ria set of 2D Bloch waves,

each one corresponding to a different wave vedﬁprcon-
tained in the 2D Brillouin zongBZ) of the layer?® We fol-

result, since we are considering the zero-bias limit. low the notation of Sec. lll, so that stands fors if n<—1,
This expression may be further simplified if we assumer if n=—1,aif n=1 ort if n>1. In analogy with Eq(6),

the limit B<«. This approximation implies a weak interac- we denote the 2D Bloch wave-function amplitudes atrPL

tion between the sample surfacend the tip apex, which  py |an(|2a)>;

is the typical situation in the STM experiments. In this case,

Z<1, T;~4Z?, andW~Y/\/2, andZ(E) may be expressed . Na . .
as anK)) =2 anklai(dn k). (54

2 2 RO _
TE)~ Z>Y*(4-q°) . (51) Here,|«;(d,,k,)) gives the Bloch statk, of orbital «; in

q?(1-Y?)+Xq(Y?2—2)+ X2+ Y4 layer n:
On the other hand, the local density of states anda N i 5
(p° and pd) may be obtained from Eq$A22), (A23), and |@i(dn Ke))= pZ efhelai(5+d,)), (55
(41)—(45): N P
whereN;, is the number of lattice points in the layésee
po:i YA bel_?x\b.': tri i in Eql talso b dified t
27 M[A(1—Y2) + Xq(Y?—2) - X2+ Y4]) e F matrices given in Eq(17) must also be modified to

include thek,, dependence. For a diagonal matrix blatk

0 2 ,/4_q’Z 52 we use the notatioﬁnn(lza), whose elements are given by
Pa=_ '
h . . - .
- " (ailFan(Ko)| @) = (@ (dy Ko)|Fla(dy Ky)),  (56)
and itis then easy to show that while for the off-diagonal matrix blocksnn’ we use
T(E)e B2p2°, (53)  Fnn(Kg,k.,) with elements

so that in the limit of a wealar interaction,f<<1, we re-

trieve the Fermi golden rule. We stress, however, that such a
simple relation is by no means an accurate approach to the
real STM experiment. Any real surface being probed is far Due to translation symmetry, all matrix blocks
from the 1D idealization we have assumed in this sectiong . (k, k') that relate PL'sn andn’ located in the same

e e oo, ok  are zer0 i, K, Therelore in ths andt bul
g y pp regions the 2D Bloch functlons do not mix between each

interference effects*'>invalidates Eq(53)
other, and we may regard ealcjg state as an independent 1D

linear chair’® This decoupling allows us to retain the
Landauer-Bttiker picture of independent channels in the

In this section we model the STM geometry in a morewires and, expression&@) and (3) for the current can be
realistic way. The system is still divided into the same fOUfgeneralized by noting that tH_él index acts just as another
blocks used for the 1D cass,r, a, andt, but PL's are now  quantum number:
assumed to be composed of atomic planes which are periodic
in the lateral direction. Within the bulk materiadsor t, all e [~
atomic planes are parallel to each other and have the same (V)= ﬁjo
in-plane lattice vectorgs or p; . The propagation direction at
each wire coincides with the repeat vector linking adjacent (58)
PL’s in the bulk material. Obviously, the atomic planes can-where the transmission probability matrix is now given by
not contain the propagation direction. The lattices at the sur-

(@i Frn (Ko K @]y =(i(dn Ko)|Fla] (d K],)).
(57)

IV. 3D CASE

dEZ 2 T m

kr

a' |kayE+MS)

01

face blocksp, or p, are further assumed to be commensurate Lo _. S (E; )
with their respective bulk latticess or p;, respectively. Al- T, (K. ko) =|S., (k. k )IZT. (59
though the tip apex block is not periodic in the real STM Va(Ka)

experiment, we will assume it as such for now, and show
below how we can accurately retrieve the nonperiodic limit.
The model is schematically shown in Figdl It is impor-
tant to realize that the geometrical descriptions of the wires
are uncorrelated. This means that the latticeasatill be in

As in the 1D case, the problem again reduces to obtaining
the scattering matri™ in the Bloch basis,
(60)

Srm(Kor 1K) = (U™ (KL)[S* Uy ™(Ko)),
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for which we may still use relation€39) and (40), but the ._K O=6 ng
explicit expressions for the matrices involved need revision.  ~ ™S rs r
First, bulk quantities may be evaluated in the same way as
in Sec. Il by simply replacing th& matrix elements of Eq.
(17) with the above expressioris6) and(57). In particular,

the band structuré)Lf(IZQ) and the corresponding eigenvec-

tor matrix U(f(lza) at eachIZa can be found via the eigen-
value problem(36):

Tax1alK)Ug (Ke) =UZ(K)OZ (K, (6
where theTaila(IZa) transfer matrices are evaluated in the (a) (b)
same way as for the 1D case using expressi&&—(A8). _ _
The diagonal blocks of the bulk Green fUnCtiC@&(ES) or . F|G4 -k-Space Sampllngsollq d0t$ at gaCh bulk blOle. Open
0, . . ) circles indicate the surface reciprocal-lattice points, while crosses
Gu(ky) are then easily obtained via E(A2). give the resulting surfac& mesh. The bulk, surface, ank-

The next task is to include the effect of the surface onsypercell 2D BZ's are indicated by solid, dashed, and dotted lines,
each of the bulk blocks. Let us first consider tisecase. We  respectivelyja) rs block assuming an hexagonal lattice foand a

assume the latticg, at PLr to be commensurate with the rectangularc(4x 2) lattice forr; and (b) at block, with a square
bulk lattice ps, Mg,s being the ratio between the sizes of lattice for botha andt. The 2D BZ ata is not shown, since it is
both unit cells. In this case, each surfdcerector |Zr will coincident with thek-supercell BZ. In both cases thesupercell

only couple to the bulkk, +G,, chains, where3,. are the  COTeSPONds to p(4x4) lattice.
M g,s surface reciprocal lattice vectors contained in the bulk

BZ. Therefore, to find the surface Green functigfh(k,), we  neglect allk, vectors at this PL except,=0, which will

may still use Eq.(A14), but including a summation over couple to all the bulkG,, chains, whereS,, are theM g,
Gs: reciprocal-lattice vectors a contained in the bulk BZ of the
Mg t bli)ck.é ConsequerjtlyL the expressions fcgga(ﬁa),
_ ° - - 2 - 2 e T1a(Gar,0,), andS,(0,,G,,) are analogous to Eq$62)—
I_{ ( g Fro(kr ket Gro) Tor(kr +Grs kr) (64) derived for thers blocks. Clearly, in the limit oM g,
" very large, the localized AO basis set pictureaais recov-
ered.

+Frr(kr)] Gor(Kp), (62) As for the choice of thek, vectors summed up in Eq.
(58), we must first realize that even if the isolatedandat
wires possess a certain 2D symmetry in real space; when
combining both to form the whole of the STM system, and
allowing for tip displacements relative to the substrate, any
- s - - o - 2 symmetry will be lost. This lack of symmetry impedes the
Tsi(Ki +Grs k) = —{FsdK + Gys) +Fss-1(Kr + Gys) use of efficientk-sampling schemée¥. Instead, we assume
C AR -1 c A that PL’s at each wire can be described by a large supercell,
X Tsmas(kit Grollb ™ Farlke t Crs ki), denoted by thé supercell, which is commensurate with both
(63)  the surface and bulk lattices at that wire, and we apply the
)ysual periodic boundary conditions. Accordingly, if tke
supercell containBl ;,, bulk unit cells, we then obtain a set of

whereas theTg (K, +G,s,k;) transfer matrix is obtained
from Eq. (A17),

and a related expression for the other transfer matri

Sis(kr .k +Gys) can be obtained by using E¢A21): Ng. allowed k points at each bulk blocka, where

- = - S = - = NlZa: Nﬁa .
Srs(Kr + Grs ki) = = Frs(ke K+ Gro) {F ki Gr) For thers chain, the resulting grid will determine at the
+Fos 1K+ Gro) Too 1k +Gro)} 1 same time thé\y, allowed surface wave vectors mtwhere

Ny, =Nis/Ng,s. These k, vectors correspond simply to
thoseks which lie inside the surface BZ, whereaskif falls
Similar reasonings can be applied to teblocks. In this  outside, then it will be related to a particulgr by addition

case, however, the tip apex is not periodic, and we wish tf a surface reciprocal lattice vectGr. . An example of this
keep the AO basis set for this block instead of the 2D Blochx sampling procedure is shown in Fig(ai

wave representation. To this end, the BZaatshould be Similarly, the choice of th&t wave vectors at may be

shrunk to a point, but this generates normalization problemsy,ne 'y defining another large supercell commnesurate
We overcome this difficulty by assuming that the tip apex is

wuall iodic. Th ding latticé is ch with p; and p,. In fact, it is convenient to choose tHe
actually periodic. The corresponding fatigg 1S chosen supercell coincident with the latticg, imposed at the apex
such that it is commensurate with that at the bulk blggk

and the ratio of their unit cell sizeMg,, is much greater PloCka. We then han“ﬁtZNﬁtiNéat and allk; coincide
than unity. This yields a very small BZ at so that we may with the reciprocal-lattice vectoiS,; contained in the BZ at

(64)
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t. Obviously, since we only have the,Ovector at a, T_at((ja,Rt)zsat(Ga,Et)[gg(lzt)]—lut—(ﬁt), (69)
Nia=Nza=1. An example for this case is provided in Fig.
4(b). —

Finally, we need to evaluate the 3D interface Green func- Tra(Kt,02) =[U{ (Kp) ]~ "Tra(ky,0q), (70)

tion G;; by applying the SGFM method. The lattige atr o
will not in general be commensurate with that imposed,at Trs(Kr K9) =Sis(kr k)[G24(K)1 U (ko),  (7D)

pa- This implies that the tip apea can couple differenEr
vectors, and the statéar(lzr» can no longer be treated as
independent when the bloekis present. The Green function
matrix blocksg,, (K, ,E;) are then nonzero, as opposed to the
isolated surface. Therefore, when calculaiiiyg through Eg.

so that we arrive at the compact expressions

>

37 ( Izs ) k)t) = T_sr( lzs: ) IZr )Gral IZr ) 6a)T_at( 63 Ko, (72

(20), all G, (k, ,k/) blocks should be computed at the same S* (ke ks) = Tra(ke,0a) Gar(0a K Trs(Ke Ke).  (73)
time. The matrix to be inverted appearing in the third term of _ _ o
Eqg. (20) must then include allK, ,‘Zr’) blocks and its dimen- Relations(72) and(73) have a simple physical interpreta-

sions can become rather large (10°x 10°)]. Thus an exact tion. TheT,,  matrices linking the bulk blocks andt to
calculation ofG,; becomes too time consuming to render thetheir re'spective surfacesanda account for all the muItipIe.
method efficient. Instead, we approximate the evaluation o$cattering events between the bulk channels and the orbitals

the G,4(K, ,0,) blocks by assuming that does not actually &t each surface. On the other hand, the Green-function ma-
L - . . tricesg,, andg,, relate the wave amplitudes mtanda and,

couple states at with differentk, . Under this assumption, . . . . .

Eq. (20) reads again, they include both the intralayer multiple scattering at

anda as well as the interlayer multiple scattering between
. anda.
It is also clear that these expressions become computa-

tionally very suited for evaluating entire STM images since

. .. 1 the T, matrices only depend on the unperturbed system
[Go(K k)Tt Fra(k;,0,) (i.e., the isolated wirds Therefore, one may first evaluate
~ = (5 K ) [go (5 G )t these mfatrices f(_)r all energies ahd/ec_to_rs. Next, for each
art=a» aalrarra tip position relative to the sample origin we only need to
(65 reevaluate thé-,, andF,, matrices in the secular equation
of the entire system, and solve E(5) for the Green-
Test calculations comparing E(G5) with its exact ver-  function matrix blockG,, or G, depending on the bias sign.
sion proved the approximation to be excellent for any real-The scattering matrix elements are then computed by simple
istic tip-sample distance. For instance, the transmission co- matrix multiplications and the current is obtained directly
efficient is affected by less than 1% whets only 4 A. This  through Eqs(58) and (59).
is an expected result, since to collect an electroa atich

has changed its wave vectorrafrom k, to k; , it must first Current analysis
tunnel toa where it loses the parallel momentum, then tunnel One of the major aims of the present theory is the possi
back tor picking up thek; vector and finally transmit again bility to provide an easy interpretation to the origin of the

to a. Therefore, the contribution to the transmission arisingcOntrast in the final STM image. Generally speaking, one
from the Gy, (k; k) terms involves at least three tunneling wishes to indentify which AO’s or which interactions at the
processes, and becomes negligible when typical transmissianterface dominate this contrast, and how their contributions

amplitudes across the junction are used. to the current are modified as the tip is displaced across the
To summarize, our final general expressions for the scatsample surface. However, and as can be seen from(E)s.
tering matrices in the 3D case are therefore (73), (58), and(59), the entire electron transmission process
_ is a rather complex one, involving both multiple-scattering
5™ (ks k) =[Ug (k)1 *Tor(Ks k) Gra(Kr ,02) Sar(Oa k) events and interference effects; an electron propagating
R _ along a certain ingoing channel is scattered at the interface,
x[gﬁ(kt)]*lu;(kt), (66) and its wave field, after considering all the scattering paths,

will be distributed among the AQO’s at the interface. The
SR B N—Tl1 (-1 A R oL associated probability for the electron to end up in a certain
S (kiokg) =[Ue (k)] Tral ke, 02)Gar(0a ko) Srs(kr k) outgoing channel at the opposite wire will depend on the net

X[Ged ko)1~ (Ky), (67)  interference among all these scattering paths. Unfortunately,
5° s the SGFM, by evaluating th€,, or G,, matrices at one
whereks=K, + G, andk,=G,, . stroke through the inversion of E¢65), hinders the possi-

bility of separating the intralayer from the interlayer multiple
scattering at the interface or, in other words, it carries too
many scattering events to permit a comprehensible analysis

- L . g e of which a-r interactions contributed most to the final cur-
Tsr(ksvkr):[us (ks)] Tsr(kslkr): (68) rent.

We may further simplify the structure & by defining
the renormalized transfer matric@s,, as
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A simple way out of this problem is to obtain the Green The diagonal terms in Eq79), Ilf(ri—aj Ti—q;), give
function of the entire systeng, by expanding the Dyson the contribution to the total probability arising from an elec-

equation in the following way: tron which has tunneled from; to r; in the absence of any
0. o 0 0. o 0 0 interference with the rest of tunneling paths. The off-
G=G"+GPAFG~G°+G°AFG°+ G°AFGPAF GO+ - - -. diagonal elements correspond, on the other hand, to the con-

(74 tribution arising solely from the interference between the
gri-aj) and (r;--a;+) interactions and hence, they might be
positive or negative, in which case the interference will be
contructive or destructive, respectively.

From the interference matrix we may define the

By noting that the unperturbed system corresponds to th

isolated wires, it is then trivial to show that the interface

matrix blocksG:, and G, , up to first order in Eq(74), are

given by Tr4 (ri,a;) quantities as
g;r: ggaFarg?r’ g?a: g?r Ffagga' (75) N Na
N 1-(r.—a. r.,—a.
Thus these expressions decouple the intralayer scattering Tia (1i48;) riéj, T rie=ay), (80

at each surfacématricesG?, andg’) at the cost of consid- L P
ering just one tunneling evenE(, or F,,) across the junc- giving the contribution to7- arising from an ele-ctro-n
tion. Nevertheless, this approximation is usually very accuWhich has tunneled from, to &; (or vice versa if the bias is
rate since the tunneling matrix elementsFef, or F,, are positive), after the interference with the rest of the tunneling

small for typical tip sample distances used in the STM exPaths has been taken into account.

periment, implying that the-a interlayer multiple scattering /A More general view of how the current is distributed
hardly affects the final current value. In fact, several STM@MOng the orbitals at the interface may be achieved through

. . 1+ 1
theories have successfully relied on this approximation.  the individual AO.c.omponentﬁfa () of the first-order
Upon substituting Eq(75) into Egs. (72) and (73), we  transmission coefficient:
may define the first-order scattering mat§x™ as

Na Ny
L= . T ()= T (ria), Ti(a)=>, T-:(r; ),
S' (Ks k) = Tsr(Ks K ) Gra(Kr ,02) Tar(Oa ko), (76) rorg T R
_ _ o (81
S™ (Kt k9= Tia(Kt,0) G202, k) Trs(ki ks, (7D 5o that the sum of the individual components at any of the
while the total transmission coefficient up to first ordgt>, ~ tWo surface blockse=r anda, adds up to the total trans-

may be written as mission
Ny Ny vNa
T = Y |§1t(ma,m’a’)|2, (79 T =2 Ty (a)= 2, Trlai(ri,aj)
ma,m’ a’ aj ria
Ny Ny Np Ny

where now thana index stands for both the band index and

the Ea vector, and we have further assumed that the group
velocitiesv!! appearing in Eq(59) are already included in

= E E Ilt(ri_aj,ri/_ajr). (82)

i rinap

: - 1+
the renormalized transfer matric@s,,,.. The energy depen- ~ Therefore, an inspection of th&;~(r;) values already
dence has also been omitted, but it must be recalledfthat ~ Provides valuable information on which surface AO's are
is evaluated in Eq(78) for a particular energy valug. being imaged(i.e., contribute most to the total currgnt

The total first-order transmission coefficient may be de-While from the7.(a;) quantities one can deduce which tip
composed into the interference matrix termsstates act as the main probing orbitals. We must also recall
Iizf(ai_aj, ,a;—a,) between the ¢-a]) and (a;-a,) that any componerf*(«;) may attain negative values if
interactions, whera]anda’ stand forr or a. Under a nej,-ga- the interference terms involving this orbital result in a net

tive sample bias, these terms are given by destructive interference.
IV (ri—ay,r—aj) V. INELASTIC EFFECTS
— So far, we have developed the formalism of Secs. Ill and
= > {[TwGll(m't,a)F(m't,a;,msr;) - T ;

/ ta“aa 14 14 i IV under the elastic scattering limit used bytBker et al. to

msmt deduce their multichannel formula for transmission, E@s.
X[Gh Trsl(msrhx{[TGa.l(m't,a;) and (3). Under this assumption, any electron energy loss is
L neglected, and the electron flux is conserved. It should be

><F(m’t,aj/,msri/)[G?rTrs](msri/)}*, noted, however, that in using approximatid¢h) for the

evaluation of the current, we are not strictly neglecting in-
(79 elastic scattering effects, and we may in fact include a certain
and a similar expression for the positive bias case. Here wamount of damping during the electron propagation from one
use[ AB](i,j) to denote thei(j) element of the matrix prod- reservoir to the other. To this end, we add an imaginary
uct AB and the * superscript stands for the complex conju-component to the real enerdy; at which theelastic trans-
gate. mission probability]'fqm,(Er) is to be evaluated, which acts



56 EFFICIENT METHOD FOR THE ... . I. ... 15895

as an optical potential just as in low-energy electron-fortunately, for most systems, the shape and corrugation of
diffraction theory?® This approach suits naturally the Green- the images are only weakly affected by the precise value of
function formalism, as it suffices to sétin Eq. (16) to any &, .2 The main difference between a high or low value of
desired value of the optical potential, leaving the rest of thehe optical potential is the tip-sample separatmrsince to
equations derived above unchanged. Similar modelings ddchieve the same current vall@/) under a strong damping
the inelastic effects in related problems have been used hijne tip must come closer to the substrate.
different authorg® It is also worth mentioning that besides the elastic-
If we assume relaxation times for the conducting electronscattering limit, a major approximation in the LBF is the
of the order of~10"1%-10 % s, then the corresponding neglect of any interference effects or contributions to the
linewidths are~0.01-0.1 eV, and we may set the optical measured resistance arising from the coupling of the chan-
potential in the bulk blocks, («=s ort) to these values. nels to the reservoirs. If this contribution is comparable to
As regards inelastic effects at the surfacesnda, one ex- the gap resistance at the interface, this approximation can
pects smaller relaxation times for these blocks than for thegyenerate discrepancies when comparing measured and LBF
bulk and, accordingly, we may sét at these blocks to an calculated resistancés,and extreme experimental care is
upper limit of §,= 6,=0.1 eV. necessary to filter out the resistance arising from the scatter-
However, the inclusion of damping into the formalism ing at the wire-reservoir junctior$. Fortunately, typical
generates some ambiguity when defining the propagativ€ TM measurements are far from this problem, since essen-
channels, since now the?(E) wave numbers in Eq10) tially all the resistance arises from the electron tunneling
and (11) all become complex quantities, and the distinctionthrough the potential barrier localized at the junction.
between propagating and evanescent waves is not clear any

more. In principle, it is easy to expa®]'(E) analytically to V1. EINAL DISCUSSION
first order to obtain an approximate value of the wave num-
ber at real energ¥, : A fundamental issue prior to applying a given theory is to
establish its overall accuracy and, consequently, we summa-
90" . rize here the most crucial approximations in our STM for-
O™(E;)~O0™(E)—i6,—= = O™(E)— —, (83  malism. Let us first assume that the geometry of Fig. 1 cho-
JE Vo sen to model the STM is correct. We then have as the main

sources of inaccuracy the sampling and the treatment of

which allows us to discern whethe] at real energy is an inelastic effects. For the former, we find tHatgrids com-
evanescent or propagative wave. RelatiB8) turns out to  posed of 200—400 points at each bulk block are already well
be a useful approximation for values 6§=<0.01 eV. Nev- converged, in the sense that the transmission coefficients are
ertheless, when taking the limifs|,|n’|>2 in Eqs.(12) and  affected by less thar 10% if one further increases the den-
(13), any Bloch function with a wave number that contains asity of the k grid. If the image is calculated in the topo-
non-negligible imaginary part will suffer a considerable de-graphic mode, this translates into tip height uncertainties of
cay before reaching the interface or the opposite reservoibnly ~0.02 A for typical gap resistances of 100(M The
regardless of whether it would be a nondispersive channel grecise value of the optical potentid] on the other hand,
real energy. Therefore, we believe that a meaningful criteriomas a much stronger influence on the tip heighaind in-
is to regard as propagative channels those for whicljuces errors up to 0.5 A for the same gap resistahdae
|e'?|>C, whereC is a preselected decay cutoff, and then toreason is that as is increased the damping also increases
evaluate the transmission matrix elements only for thesend the tunnel current decreases. Correspondingly,zthe
channels according to expressiai§) and (67); i.e., drop-  value (tip heighy becomes smaller. However, and provided
ping the® matrices just as we did in E¢38) to obtain our  that one includes enough channels in the calculation, the ef-
final expression$39) and(40) for S*(E) in the 1D case. For fect of the damping on the calculated curref¥) is more or
instance, if the optical potential is set #,~0.01 eV, a less independent of the-y position of the tip, so that all
cutoff value ofC=0.97 gives good resulfs. pixels in the STM image are basically affected in the same

A related and important issue is the setup of an efficientvay. The implication is that the uncertainty on the corruga-
scheme for the energy integration in E§8). The energy tion is much smaller than the error in From the numerical
step to be used in the numerical integration should not b@oint of view, the formalism generates uncertainties in the
larger than the imaginary part of the enerdy since, other-  corrugation of around 0.03 A, and the final shape of the
wise, one may skip resonant peaks in the transmission coeiimage is therefore hardly modified by thkesampling or the
ficient which could give the dominant contribution to the optical potentiaf® Thus, as long as we do not choose too
current. For small biasé¥<0.1 V) a value of§,= 0.01 eV  unreasonable values for the density of kherid, & or C, the
is computationally still adequate, but when consideringtheory should still provide a reliable way of identifying the
larger STM biases the number of energy points becomes tomain features present in the STM image via a qualitative
large and the calculations too expensive, so thahas to be  comparison with the experiment.
increased to values around 0.05-0.1 eV. As a consequence, As regards the zero-temperature limit assumed for the en-
all the Bloch waves become essentially evanescent withire formalism, we also do not believe that this can be a
|e'?<0.95, so that the nearly elastic scattering assumption imajor cause of inaccuracy. Expressid@ and (3) can be
not well satisfied. Nonetheless, by reduciigo 0.93-0.87, easily generalized to nonzero temperattitey including the
we can still select a considerable number of the propagatingermi-Dirac distributions of the two wires and performing
channels existing in thé,=0.01 eV (C=0.97) case and, the energy integration over a wider range than[te-eV]
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interval used for th& =0 case. However, the smearing out out that for the systems studied, and employing the EHT, the
of sharp features in the electronic structure of the system viaalculated corrugations are at least within 50% of the experi-
the use of an optical potential tends to minimize any possiblenental value, while we estimate a safe error bar in the abso-
effects arising from energies outside fiie—eV] range. On lute tip sample distance to be 1-2 A2

the other hand, typical measured thermovoltages at the STM These considerations imply that, even under the assump-
junction are only of the order of 16 V.13 tion that the structure of the system is well known, we cannot

A more delicate issue is to estimate the errors introduce@xpect accurate quantitative results from our present formal-
by the modeling of the inelastic effects via an optical potenism, and we consider it as a semiquantitative theory. Never-
tial or the neglect of electron-electron interactions. The existheless, we do not feel it necessary at this point to introduce
tence of other more sophisticated approaches should Harther refinements, since a crucial parameter in the images is
pointed ouf®*3 but they have been developed mainly in the actual tip apex termination, and in the current STM ex-
order to explain specific features in certain experiments, angeriments this cannot yet be determined easily. The associ-
this kind of study is far beyond the scope of our theory. As aated uncertainty is probably overwhelming over the rest, em-
matter of fact, it is most common in STM theories to neglectphasizing the need of fitting the apex geometry and chemical
inelastic effects and still, the experiment-theory agreement iglentity prior to extract any quantitative conclusions from the
good for most systems studiédVe also notice that Persson surface being probed. Many studies have provided evidence
and Baratoff predicted a decrease of 10% or more in thef this>®38 A related issue is the potential of STM to de-
tunneling conductance for certain cases due to resonatgrmine the surface crystallograpligdsorption sites, bond
processe?? and this is in accordance with our estimates oflengths, buckling at the surface layer, gtovia an
the inelastic effects. experiment-theory fitting of the images ah@V) spectro-

So far, we have deliberately omitted the description of thescopic data. Previous ESQC applications have already ob-
Hamiltonian to be used in the present formalism since, irtained this kind of information in certain systeffs®1€al-
principle, any tight-binding-type Hamiltonian may be cho- though a systematic way for evaluating the level of
sen. We would like to stress, however, that the entire STM iegreement between two images|g¥) curves has not yet
a rather complex system which involves both short-rangéeen establishel.
interactions within each wire and long-range interactions Having discussed above the shortcomings associated with
(>5 A) between the sample surface and the tip apex. Therdghe current theory, we conclude by highlighting its basic con-
fore, it is not sufficient to achieve a good description of theceptual and practical aspects. In the first place, we have pre-
isolatedrs andat wires, but issues such as the surface wavesented a semiempirical method capable of generating STM
function decay into the vacuum and the van der Waals atimages in a fast and easy way; for a given set of tight-
traction between the wird§=®play a crucial role and they binding parameters, typical topographic images of entire unit
must also be properly addressed if a quantitative comparisoeells take between 20 min dr2 h on a DECAIpha Station.
with the experiment is desired. The errors introduced by avlost of the nonstructural parameters involved, such as the
particular Hamiltonian are difficult to estimate but, at least, itoptical potential or the charge distribution, may be estimated
should always reproduce certain experimental féetg., the prior to performing the calculation, so that, to a great extent,
exponential decay of the current with the tip-sample distancany agreement with the experiment cannot be considered as
2230 or the capability of the STM to resolve atoms in close-fortuitous or due to an excess in the number of parameters
packed surfac@sIn the forthcoming paper we will con- fitted. The use of the SGFM method allows one to take into
firm that the simple extendedldkel theory’ (EHT) already ~ account multiple-scattering effects at the interface in a
provides a fairly good qualitative description of the mainquasiexact waythe only related approximation is E5),
processes that control the final contrast in the STM imagewhich turns out to be very accuratédf instead of the SGFM
Furthermore, we find that the shape of the calculated image®ethod, a first-order approximation in the number of tunnel-
is hardly dependent on the exact electronic charge distribuing events is used, then the resulting expressions for the total
tion at the surface blocks and a; i.e., images are not too current can be decomposed into individual AO components
sensitive to the precise electronic structure but, rather, thegr into contributions arising from a particular interaction at
reflect its qualitative feature€s. Therefore, errors inherent to the interface and its interference with other tunneling paths.
a particular Hamiltonian are less crucial when simulatingThese type of decompositions permit a simple and compre-
STM images than when calculating, for instance, total enerhensive analysis of the origin of the contrast in the images.
gies or adsorption sites. This is in line with the fact that theFurthermore, in employing the "Biker-Landauer formula
STM has not yet been proved to be a powerful tool for de-we fully couple the interface to the bulk materials; we should
termining electronic structures when compared to other speanention that this type of approach is becoming widely used
troscopic technigues, despite some isolated applications sudm many studies of the conductancel §¥) characteristics of
as the measurements of band gaps, metal work functions, dlifferent nanodevice%'%222439A very pleasant feature of
dispersion of surface bands. the theory is the description of the whole system atom by

In view of the above discussion, we cannot claim that theatom, with relatively few geometrical restrictions, so that we
numerical values given above represent a realistic estimate afe able to model the STM in a realistic way, inasmuch as
the overall accuracy of the method, but rather, they provide ¢he geometry of the constituent blocks is knowpriori. On
lower limit to the error bars. In practice, once a particularthe other hand, the use of a tight-binding Hamiltonian makes
Hamiltonian has been selected, the accuracy will be systerieasible the study of large unit cells.
dependent and, probably, a more reasonable way for its es- More importantly, the method can be applied to a wide
timation is the direct comparison with experiment. It turnsvariety of systems without the need for any modifications;
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we may study different coadsorbed atoms or molecules,  T. ;. =hy+toh;+tot;hy+ - +tots .. . tm_1hm,
forming ordered or disordered structures, vacancies or impu- (A4)
rities, steps, bias effects, etc. In particular, it represents an is th . iterati ¢ d. Th d
potential tool for identifying different chemical species at avneremIs Ine maximun fteration step used. the procedure
surface during the STM experiments. The extension to semf® initialized through

conductor surfaces should not give any problems either as

long as one includes band-bending effects, and these can to=—(Fso 'Fst1s, (A5)

readily be incorporated into the theory.
hOZ_(Fss)ilFs—lsa (A6)

while the rest of théh; andt; terms are obtained via
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APPENDIX A: 1D SEMI-INFINITE CHAIN Gsrns=(Tsx15)"Gss- (A9)

In this appendix we derive explicit expressions for the On the other hand, wave-function amplitudes at different
transfer and Green function matrices of a semi-infinite 1DPL’s are simply related through
chain. Although most of the expressions to appear below can o 0
be found elsewherésee, for example, Ref. 21we prefer to |agsn) = (Tsx15)"]as)- (A10)
include them here for the sake of completeness, and in order _ . L .
to provide a unified notation throughout the present work. If lns'gead of prOJeCtlng.Eq(18) we use Eq(.19), similar
We will only consider thers chain of Fig. 1, while the €XPressions may be obtained, but as a function oSfie,
equivalent relations for that chain can be easily obtained transfer matrices defined in Eq24) instead of theTs. s

by simply replacing’ by a ands by t and also taking into Marices:

account that propagation from surface to bulk within each 0 _ n A1l
chain has opposite sigriaccording to Fig. 1, positive faat Gssen=God Ssoz1)" (ALD)
and negative fors). Noting that in the bulkg?.. =2, s, we may combine

Egs.(A9) and(A1l) to obtain a useful relation

nHA0\—1_ 0\—1 n
We first consider the bulk chais as infinite, so that the (Sss1)"(Gsg) 7= (Gse) (Tsz19)"™ (A12)

surfacer is not present. In this case, and due to translation |, fact, both transfer matrices are related thrddgh
symmetry, the Green-function matrix blocgﬁ,n only de-

1. Bulk Green function

pend on the differenca’—n. We may then substitute the Fssr1Tsx15= Sssr1Fsx1s- (A13)
subscriptn by s and label these blocks &, , or G2, ...
Projecting Eq(18) at the diagonal blocks, we arrive at 2. Surface Green function for a 1D chain
|=Fss 108 16+ Fslist Fssi1G8:1 (A1) We now regards as a semi-infinite chain, and allow for
SS— s—1s S SS SS S S*

the existence of the surfage Notice that in this case the

Making use of theT,,, transfer matrices defined in Eq. translation symmetry is broken and tﬁ%n, blocks depend
(23) and again noting that they only depend on the differencen the actual value af andn’. By projecting Eq(18) at the
n’—n, we may rewrite Eq(Al) as diagonal blockrr, we obtain

I :{FSS* lTS* lS+ FSS+ FSS+ lTS+ lS}ggS’ (AZ) I = Frsggr+ I:I'I'gl'ol' = {FFSTST+ Frr}g?r ' (A14)

which gives an expression f@i, as a function offs. ;5. To  where we have introduced the transfer mafiix defined as
obtain these bulk transfer matrices we follow the iterative 0 0.1
procedure developed in Ref. 40, which leads to the expres- Tsr=0s(Gr) (A15)

sions ]
In order to evaluate the surface Green functigh we

Ter1s=to+hot; +hohyta+ -+ - +hohy . .. hy_ 1t then need to find, first. To this end, we project E418) on
(A3)  the matrix blocksr to obtain
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0:Fsrg9r+Fssg2r+Fss—lg(s)—ls G.— -B . —B
=F oG +{FsstFos 1Ts 151G - (A16) (G Y hz[(q+t)<q—><+v2t>—vzzz]'(Bl)

Notice that we can still use in this expression the bulk trans-

fer matrix T,_,; deduced above, since the coupling of PL  Now we may calculate explicitly the scattering coefficient
n=—2 with the rest of the bulks chain ((<—2) is not S*(E) in Eq. (40). Taking into account thatl{,") "*UJ =1
affected by the presence of the surfacevhich is located at and dropping thél,;=t term since it only provides a phase

the other siderf=—1). factor, we obtain
Combining Egs.(A15) and (A16), we can now find an X
explicit expression fofl g, : —-Y°Zt(q+2t
plicit exp st SHE)= @20 gy
Tor=—{FestFoss 1Ts 15 Fsr. (AL7) (@+D(@=X+Y)—=Y7Z

In order to find the squared modulus of this expression, it
is convenient to distinguish real and imaginary parts. Since
all quantities in Eq.(B2) are real exceptt, we write

We may arrive at a similar relation fcﬁ?r by using Eq.
(19) to perform the projections:

|= g?r{F” +SisFsrhs (A18) t=—0/2+xA, whereA=y 2—4 is a purely imaginary quan-
o ] tity. Dropping again thé in the numerator of Eq(B2) and
where theS; transfer matrix is defined as using the definition of\, we obtain
+ —
and may be obtained by projecting Eq9) atrs: S (B)= (q/2+ AI2)[q— X+ Y2(—q/2= A/2)]—Y222'
B3
0=GpFrs+ GrsFsst Gps-1Fs-1s ©9
0 0 and after some algebra we may separate those terms multi-
=G Frst Grg{Fsst Sss-1Fs-1s}- (A20)  plying A from the rest through
With the aid of Eq(A13) the calculation of the bulk transfer 1Z+7 2_ gX—AW?
matricesSss; can be avoided, and, from Eg819) and (ST(E) t=— % (q—X)+ # ,
(A20) S, can be expressed as AW *A -
B4

— -1
Sre= ~Fra{Fest FosaToad A2 here we have defined/=Y /(1+Z?)/2. The @— X) term

Finally, the local density of states projected on an orbitalinside the braces is real, and the second purely imaginary, so
a; at layern, p%(a;), may be obtained directly from the that we can now easily evaluate the transmission coefficient

Green function throu according to

. 1 T(E)={[Re(1/S)1*+[Im(1/85)]%} . (B5)
J=— O Lai)l, A22 _— ; ;

Pal i) T M{(GO)nn(ai )} (h22) By substituting Eq(B4) into Eq. (B5), we obtain
where Im stands for the imaginary part a@ds the overlap TE)=T,T,(E), (B6)
matrix. Notice that Eg.(A22) involves the products
Gnns10n+ 1, besides the diagonal ter@,,0,,. The total Where
LDOS projected on a Ph, p2, is then simply given by 4

N h=——"3, (B7)
J 1 1/1Z2+2)?
p2=3 plla) =~ TH{IM(GO)),  (A23 i
! while the second factdf>(E) is given by
where Tr is the trace of the matrix. ) 2.0\ ~1
. , (@®—gX—4w?)
TH(E)=(4WH| (q—X)?+ - ,
APPENDIX B: ANALYTICAL DERIVATION OF  7Z(E) 4—q
B8
In this appendix we wish to find an analytical expression i i (B8)
for the transmission coefficief{E) for the simple 1D sys- and after some rearrangement one finally finds
tem depicted in Fig. 3. Let us first fing,, . Inserting Egs. X+ a(W2—1)12|
(41)—(45) into Eq. (20) and using definitiongj= (E—e)/h, T(E)= | 14 AW D) B9)
X=(w—e)/h, Y=al/h, andZ= S/ «, we have W4(4—q?)
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