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Transport through dirty interfaces
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The transport properties of a single dirty interface are calculated starting from thed®g&oequation. The
disordered scattering potential is modeled by a high density of short-range scatterers, randomly distributed in
a plane perpendicular to the direction of transport. The distribution function of transmission matrix eigenvalues
is shown to be universal in the sense that it scales with a single parameter, the conductance, and does not
depend on the dimension or the precise values of the microscopic parameters. It differs, however, from the
well-known universal distribution for diffusive bulk conductors. These general results are supported by ana-
Iytical and numerical calculations of the conductance and the angular dependence of the transmission and
reflection probabilities as a function of the microscopic parameters. The conductance fluctuations are nonuni-
versal and a localization transition does not oc¢80163-182807)00348-2

. INTRODUCTION tot} is the product of the transmission amplitude matgjx
and its Hermitian conjugate. The mattixcollects the trans-
Most studies of phase-coherent electrical transport in dismission amplitudes of the propagating)(states on the left-
ordered metals are restricted to bulk conductors in the weakand side of a scattering region to those on the right-hand
scattering regime. Several interesting phenomena are oRide. All propagating states are normalized to carry unit flux
served in these systemszor example, when the conduc- in the direction of transport. The distribution functi®f(T)
tance is smaller than the conductance quantfiih, the  of the eigenvalued, of the matrixt,t! is defined as
electron wave functions are localized, causing the conduc-
tance to drop exponentially with the sample length. Another
fascinating phenomenon is the universality of some transport P(T)= < 2 5(T—Tn)> , (1)
properties that do not depend on the precise values of the n
microscopic parameters. The best known example of this is
provided by the universal conductance fluctuatibrishe  Where the angular brackets indicate averaging over all pos-
sample-to-sample variations of the conductance are of théible realizations of disorder in a given Hamiltonian. This
order ofe?/h, independent of the sample shape and size, thélistribution function can be usddee, for example, Ref) To
degree of disorder, and the dimensionality. express the average value of any propertpat is described
In this paper we consider transport through dirty inter-by a linear statisti@(T) as
faces. The term “dirty” implies that the scattering is due to
a random potential and that the conductagéi unitse?/h)
is sufficiently smaller than the number of conducting chan- <a>=<§n: a(Tn)> ZJ dT a(T)P(T). @
nelsN (g<<N). For an interface the scattering region with
lengthL (the “thickness™ of the interfackis supposed to be  The conductance, for example, is related to the transmis-
sufficiently shortgr than thg Fgrm| wavelength. In CON-  sjon matrix by the Landauer formula
trast, the calculations for diffusive bulk conductors are in the
regimeL>\ . The aim of this work is to investigate to what
extent the transport through strongly disordered interfaces is g:Trtpt;g: E T, 3
different from or similar to diffusive transport in the bulk. n
Besides the purely theoretical interest, our study of dirty in-
terfaces is motivated by experiments on transport througl@nd is thus described by the linear statig@)=T. Simi-
metallic interfaces in magnetic multilayers exhibiting giant larly, the shot-noise powey (in units 2e|V|e?/h, with V the
magnetoresistancé’ These interfaces strongly scatter elec-applied voltagg is described by the linear statistio(T)
trons in a region with a length comparable to or smaller thar=T(1—T).8 Also for a normal metal/superconducttds)
\e.> Experiments of transport through a narrow disorderedunction the conductancgys and the shot-noise powers
region in a two-dimensional electron gas are in progfess.can be expressed in terms of the transmission matrix eigen-
With some modifications the present calculations are alswalues of the normal-metal region by the linear statistics
applicable to other scattering problems, such as the transpagns(T)=2T%/(2—T)? (Ref. 9 and pyg(T)=16T%(1
ency of a thin, yet strongly diffusing medium to light. —T)/(2—T)* ¥ respectively.
Many properties of a disordered conductor can be ob- For disordered bulk conductors in the metallic regime
tained directly from the distribution functiofor density of  (where 1<g<N) the distribution function of transmission
transmission matrix eigenvalues. The transmission matrixnatrix eigenvalues has been shown to be univérsaf
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(g) 1 N step. The scattering potential at the interface is modeled by
P(T)=—-5 —=—= for COShZ(— <T<1 (4 short-range scatterers with strength at positionp,, in the
2 M= Pa
TWi=T (9 planex=0:
and P(T)=0 otherwise. The cutoff at small is such that
J5dTP(T)=N, which for N>g does not affect the averages V(N=2 y,8X)8(p—py), (6)

of the first- and higher-order moments ©f Equation(4)

does not depend on the shape of the conductor or the spatiah > is the @—1)-di ional i ¢ th
resistivity distribution. The distribution function is bimodal: wherép IS the ( . )-dimensiona position vector orthogo-
Most eigenvalues are either close td“bpen” channels or nal to thex direction. The wave function can be expanded in

close to 0(“closed” channel3. This is in contrast to the a complete set of transverse plane waves that are labeled by

naive notion that all eigenvalues should be much smallefhe parallel component of the wave vecigras
than 1 for g<N. It follows directly!® from Eq. (4) that

p)/{g)=1/3, which is only one-third of the classical value > .
léor>a< F?oisson process wiffi,<1. The universality of(T) (ﬂ(X,p)—% Cku(x)ﬁ’ @)

has its limits. Either close to the localization regifhég |

~1) or close to the ballistic regim®(g=<N) Eq. (4) is no  in which A is the d— 1)-dimensional cross section of the
longer valid. Even in the metallic regime wherey<<N the interface. Employing the orthogonality of the transverse
universality can be broken by extended defects, such as tuplane waves, a set of one-dimensional equations is obtained
nel barriers, grain boundaries, or interfa¢es.

In this paper a microscopic calculation is presented in d? ) 2m
which the scattering potential at the interface is modeled by ECEH(X)_’_kLCIZH(X)Z_ZZ Vi krd(x)ee (%), (8)
. . . X h ’ I I

scatterers with short-range potentials that are randomly dis- K|
tributed on a plane. The main result is a universal distribu-With
tion function of transmission matrix eigenvalues for a single
dirty interface that differs from Eq4) for bulk systems. In y
other words, dirty interfaced (<\¢) belong to a universal- Vi g/=2 =
ity clasg® different from disordered bulk conductors. ( A

>\g). In addition, a localization transition does not exist, The perpendicular part of the wave vectar is defined in

the conductance fluctuations are nonuniversal, and the angyk : 2_ 12
. -~ “terms of the Fermi wave vectdi-=2mE:/A ask{=k
lar dependences of the transmission and reflection probabili- F B Lo oF

ties differ from those of bulk conductors. A short account of d.fI]fH ' N(t)tf that the mterfa&ce po_lt_intlaltgives rse ti mmr(njg of
part of this work was given in Ref. 17. arteren kransverse modes. € s.a”esl V\Mlih> 9 _?rr:
The paper is organized as follows. In Sec. Il the model jgmaginaryk, are evanesceriexponentially localizex €

introduced and the scattering properties are expressed [fraginary part 01_kl is chosen to l_)e positive through_out this
terms of the microscopic parameters. In Sec. Il it is ex-Paper. _The solutions for the Iongltudmal_ wave functlons the.lt
plained how the distribution function can be calculated from@® of interest for the transport proE)emes can be written in
the conductance by using so-called Ward identities. The gerferms of a propagating incoming staeand outgoing states
eral aspects of configurational averaging in the strong scatZH that are either propagating or evanescent:

tering regime are discussed in Sec. IV and explicit expres-

sions are derived in the coherent potential approximation in m 5'2\\ ,g‘ie“ﬁxﬂl;” ’,gre’”‘ix, x<0
ck(X)=\/—7—
(%) filk,|

ek

e i(K=K)pa, 9

Sec. V. The analytical and numerical calculations are com- kX |
pared in Sec. VI. In Sec. VIl the angular dependences of the t, ki€ x>0,
transmission and reflection probabilities are studied both (10

analytically and numerically. Section VIII presents a discus-Where the matrices andr collect the transmission and re-
sion of the results including the conductance fluctuations.

flection amplitudes, respectively. All the propagating states
are normalized to carry unit flux perpendicular to the inter-
Il. TRANSMISSION THROUGH A DISORDERED face. Only the evanescent states that are localized near the

INTERFACE interface need to be taken into acco(thbse that are diverg-
6{{1g for x— *o have zero amplituge The transmission and
reflection amplitudes can be calculated by matching the
wave functions on the two sides of the interface. Continuity
of the solution(10) at x=0 yields

The scattering properties of a single interface for states
the Fermi energyEr can be calculatéd directly from the
Schralinger equation

2

h - - - Y W
= 5 V2V [ §(1) = Epy(r). 5 "y Rf = U6y g Ok K- (1)

Integration of Eq.(8) over the é function gives a relation
The problem can be formulated for arbitrary dimensigso  between the spatial first derivatives of solutiti0) on the
r is the d-dimensional position vector. The potential on ei- left- and right-hand sides of the interface. In combination
ther side of the interface is constant and equal to zero, i.e., with Eq. (11) this yields an equation for the transmission
free-electron model is considered and there is no potentiamplitudes:®
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1
5” *N—l—ir” W | ’125’ Ky 12 T:— —+ T
kz]’ [0k +1Tk keIt = 9k ki (12 totp=5 (tpFtp), (20)
with which follows very generally from current conservation in
combination with continuity of the wave function across the
m interface. A second, less general Ward identity can be de-

o= Ya o-itkj—k-p k| ) » = .
FkH K= ? . Ke 1= QT m (13 rived under the condition thdt is proportional tom:

This can be written in matrix notation gs+iI"Jt=1, with |

the unit matrix. For the transport properties we are only in-
terested in that part of that connects propagating states.
Separating the outgoing propagating) (@nd evanescengf  This relation is valid when evanescent states can be disre-

tptp=

J
1+ m&—m)tp. (21)

states, the matrix equation forcan be rewritten as garded, which is the case in the limit of weak scattering.
) ) However, also in the strong scattering regifiiés propor-
I+l 1Tpe | (1p _ ' 14 tional to m, as can be seen from Egd3) and (15). The

iTep |1+ilee/ \te o/ (14 Ward identity (21) thus applies both in the weak scattering

. . o regime (considered in Ref. J5and in the strong scattering

of t, yields[| +iT]tp=| with regime. Note that Eq21) can also be expressed in terms of
_ the derivative with respect to théaverage¢ scattering
T=Tpp—iFpd | +iTee] Tep. (15  strength'® Although both alternatives should be equivalent,

The Hermiti . fth b icedare ai the expression in terms of the mass leads to more transparent
e Hermitian conjugates of the submatriced’oére given oo its in the dirty limit.

t_ T T t

by I'pp=Tpp, Pee=~Tee, Ipe=iTep andl'ep=iT'ye, from Using these two Ward identities and their Hermitian con-
which it follows thatI' is Hermitian. The transmission am- jugates repeatedly, higher-order productspoﬁndt; can be
plitudes for the propagating states are thus expressed direCfgduced to expressions that contain oiglandt} . This sim-

in terms of the scattering potential as plifies the calculations enormously. The distribution function
~ P(T) can be rewritten in terms of a power series in the
tp=[1+iI]"". (160 transmission matrix by expressing tiefunction in Eq.(1)

as a Fourier integral and subsequently expanding the expo-

Using the Hermiticity ofl’, the transmission matrix can be nent exp(qtpt;;):

written as

—— . n
tptp=[1+TT] % 17) P(T)= f g—:e—iqTZ %Tr((tptg)”). 22)

Equations(16) and (17) are valid for every individual real- o

ization of the disorder. Average quantities are obtained byBy using the Ward identities repeatedly and applying a

configurational averaging over the random impurity posi-Kramers-Kronig relation in the parameter=m?, this ex-

tions that are assumed to be uniformly distributed: pression can for an integrable functi¢g( 7,)>=Tr<tpt’rg) be

rewritten a$®
1 1 T
| o P(T)_ET(l—T)'ng(T—l_'O >
where N, is the number of impurities. This configurational

averaging can be carried out both analytically using Greenwjith 0* a positive infinitesimal. Details of the derivation of

function methods and numerically by brute-force calcula-gq, (23) and a discussion of a possibly nonintegrable part of

tions. (9(7)) are given in the Appendix. By calculating,) we
obtain the conductance from

. N N ordp, - N
<a(plv L] 1PN|)>E 1__[ Z a(plv e 1pN|)! (18)
a=1

. (23

IIl. WARD IDENTITIES

The analytical calculation of the configurationally aver- (9(m) =ReTH(t)]. 24

aged quantities and of the distribution function is based Ofrhe calculation of the distribution function is thus reduced to
the expansion of, in powers ofI" that follows from Eq. the calculation of the configurational average of the trans-
(16): mission amplitude matrix.

tp= MEZO (— i’f)M_ (19) IV. CONFIGURATIONAL AVERAGING

In order to calculate the configurational averagéat is
From this power series one can defi/avo so-called Ward convenient to introduce the Green-function mat@x. The
identities, which relate single-particle and two-particle prop-elements ofG* are related to the transmission amplitudes
erties. The first Ward identity is by?°
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FIG. 2. Lowest-order irreducible diagrams that contribute to the
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X X self-energy, which is represented by the big circle withXhiaside.

E A From Egs.(19) and (25) an expansion of the configuration-

! K Y ally averaged Green function in terms of the scattering po-
(b) d)” tential is obtained, which reads

FIG. 1. Lowest-order diagrams in the expansion for the configu-
rationally averaged Green function. The solid lines with arrows
represent unperturbed Green functions, the crosses are the scatter-
ing centers, and each dashed line is a scattering etardand (b)

are the zeroth- and first-order diagrams, respectively. The secondrhe different terms in this expansion are obtained by inte-

order diagramsc) and(d) represent scattering once at two different gration over all possible impurity positions and can be rep-
impurities and scattering twice at a single impurity, respectively. asented by Feynman dlagrallﬁSThe zeroth-order term is

b WZ (=IDNg & @D

kH k>_

42 given by
- i kel .
R s kikinu'kﬁ' @9 m
i _ 0
The unperturbed Green-function matrx*(? is diagonal Ih . k’( HXT >kn ku 5"\\ (28

and its elements are given by

1 which is nothing but the unperturbed Green function, de-
O Gt Os o= m =5k (26)  picted schematically in Fig.(&). To first order in the scat-
ok~ g Ok h2 k, KK tering potential only the propagating states play a role:

1 - _gHO Ya 0o .
ﬁZ kLk/ )<Fpp>kH kH ; A GkH 5kH,kH'- (29)

This term comes from scattering once at a single impurity and is represented by the diagram depicted (in).Rig.the
second-order term also the evanescent states should be taken into account:

m 1 0% Vo
[ _i\2/72 - +(0) _a Sa +(0) .
| ﬁz ,—kik, | <F + Fpel_‘ep>k” k kH ( Zﬂ A ) k” ( 2 A ) Gk” 5kH

[z (%S

a

+ GIZ”

> GJ,“”) ¢ i (30
K[

The first term stems from scattering once at two different (v) Sum over all intermediate states, including evanes-
scatterers, whereas the second term arises from scattering cent states.
twice at the same scatterer. The corresponding diagrams are The exact configurationally averaged Green function can
shown in Figs. {c) and Xd). Note that the evanescent statespe obtained by summing over all diagrams. These can be
enter only via the intermediate wave-vector summation. Theartially summed by introducing the irreducible self-energy.
higher order terms can be represented by Feynman diagramg, irreducible diagram is a diagram that cannot be divided
according to the following set of rule§. into two subdiagrams joined only by a single electron line.
(i)  For each electron line, lnthdU(ﬁ@*H Examples of irreducible diagrams are shown in Fig. 2. Be-
(i) For each scattering vertax, introducey,, /A. cause the translation invariance parallel to the interface is
(i) Conserve momentum at each vertex. restored after configurational averaging, the self-energy ma-

(iv) Sum over all impurities. trix 3 is diagonal inIZH:

+(0)
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= + % x ,X\ ,x\
| |
FIG. 3. Schematic representation of the Dyson equation, which E |

relates the perturbed Green functihick line) to the unperturbed
Green function(thin line) and the self-energicircle). X

A 4

EKH‘EH,:EE\I&ZH’Q' (31 + PN + ...

I . ’ \ N

The Dyson equatiotiG*)=G* O+ G*(O3(G") relates the
configurationally averaged Green function to the unperturbed : . : .
Green function and the self-energy. A schematic representa- F'<: 4- Ireducible diagrams that are taken into account in the
- . LT . . alculation of the self-energy in the coherent potential approxima-
tion of this equation is given Fig. 3. One can easily see tha]

substitution of the self-energy of Fig. 2 into the Dyson equa-

tion of Fig. 3 generates the reducible diagrams of Fig. 1.

Substitution of Eqs(26) and (31) into the Dyson equation (9) 1

yields P(T)=-—_—" TR T for

1+

vy -<T<1 (35

2(g)

+ +
(G, ,|2H'>:<G|2H>5IZH vlz“’:(Gjr(O))——l_E,é‘ZH k- (321 andP(T)=0 otherwise. The cutoff at small is introduced
K s to ensure thatf gdTP(T)=N; the origin of this cutoff is
o . - ] discussed in the Appendix. Fd¥>g this normalization is
The Green function is thus diagonal k) after configura-  jyrelevant for the averages of the first- and higher-order mo-

tional averaging. In the strong scattering regime whegre ments ofT. We emphasize that E¢35) is valid only in the
<N the self-energy is much larger than the inverse of thesyrong scattering regime whege<N.

unperturbed Green function and E£§2) can be expanded as  The distribution function of transmission matrix eigenval-
ues for a strongly disordered interface is thus universal in the

4 1 1 sense that it does not depend on any of the microscopic pa-
(Gg)=- 5o 1+ GOy (33 rameters or on the dimensiah it depends only on the mac-
K K| K roscopic conductance. We obtained this result without ex-

) ) ) i plicitly calculating any Feynman diagrams, only using the
The leading term in the expanS|o.n'of the Green function thugeneral property that the self-energy is independent of the
only depends on the self-energy; it does not contain the Unsjectron mass. Note that E(B5) differs significantly from

perturbed Green function and therefore does not depend QRe yniversal result4) obtained for diffusive bulk conduc-

the effective mass. _ _ _ _tors in the weak scattering regime.
In the complete perturbation expansion of the irreducible - a|sq for dirty interfaces universality has its limits. When

;elf—energ_y all inte.rnal Gregn functions are fully rer?ormal—»[he self-energy has no imaginary part the conductance van-
ized, i.e., in all the intermediate wave-vector summations théspes in lowest order and the calculation yiel@T)
unperturbed Green function is replaced by the perturbed \ 5T), A real self-energy is, for example, characteristic
Green function. In the strong scattering regime the perturbegh 5 tunnel barrier. To obtain a finite conductance in that
Green _functlon depends only on the self-energy. It then fol—Case higher-order terms in the expansi@®) should be
lows directly from the Feynman rules that the summationayen into account, which give rise to nonuniversal results.
over any set of renormalized diagrams leads to a selftyg oss of universality is analogous to the situation consid-
consistent equation for the self-energy that does not contaigeq by Nazaro¥® who finds that universal behavior in bulk

the unperturbed Green function and is thus independent Qfisordered conductors can be destroyed by a tunnel barrier.
the electron masm. The simple andin the present modgl

exact result for the distribution function in the strong scatter-
ing regime as derived below is a direct consequence of this V. COHERENT POTENTIAL APPROXIMATION
m independence of the self-energy.

In the strong scattering regime the average conductan
can be calculated from the self-energy using Eg4), (25),
and(33) as

To be more specific we will now explicitly calculate the
C§elf—energy for a limited set of diagrams, namely, all dia-
grams in which the lines representing potential scattering do
not cross. This corresponds to calculating the scattering at a
single impurity exactly while treating the scattering from all

52 (P — Im[ERH]kl the other impurities in a mean-field approximation. Quantum
WmM)=—7=2 ———— (34  interference of electron waves scattered from different impu-
AL
K ki

rities is thus disregarded. The diagrams that are taken into
account are shown in Fig. 4. Using the Dyson equation of
and is thus proportional to {f=1/m. The summation over Fig. 3 one can easily verify that all noncrossed diagrams are
E” is restricted to the propagating modgg (Substitution of  included in this way. This approximation is known as the
Eq. (34) into Eq. (23) and usingg(«)=0 yields single-site coherent potential approximati@PA). The self-
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order of magnitude as the contribution of the second non-
X X . e ; AN
AN crossed diagram in Fig. 4. There is thus agriori justifi-

e i . cation for the omission of the crossed diagrams in the strong
scattering regime. Substantial errors in the CPA caused by
et —— the neglect of quantum interference therefore cannot be ex-

cluded.
FIG. 5. Example of a crossed diagram. Crossed diagrams are not
taken into account in the coherent potential approximation. VI. NUMERICAL RESULTS

energy is obtained by Summing over all diagrams of F|g 4: In order to confirm the analytical calculations in the dlrty
limit and explore the not-so-dirty regime, we perform the

ensemble averaging numerically by brute-force calculations
K| (36)  of many realizations of the impurity positions. These calcu-
lations are limited tod=2 (a two-dimensional “impurity

o 115 _ H H
which does not depend oky. Substitution of the lowest- necklace™) and y,=*y. To compare with the analytical

order term of Eq(33) yields a self-consistent equation for '€Sults in the strong scattering regime the conductance
the self-energy. Fory, =+ vy the self-energy in the strong should be sufficiently smaller than the number of conduction

scattering limit is given by channels. On thg other hand, the condgctance should not be
too small to avoid that the number of eigenvalues close to 1
P RN becomes so low that large statistical fluctuations occur. Most
3 =oaNiy—i VA(N,~Np)N2-NZy?], (37)  of our calculations are for 0.0859/N<0.030. Whereas the
analytical calculations are in the limN—o, the numerical
whereN is the total number of propagating plus evanescentalculations are for a finite number of conduction channels
states. The average of the scattering strengthsyis that may give rise to finite-size corrections. The results pre-
S .7./N;. Note thats ™" does indeed not depend am  Sented in this section are obtained o+ 20 channels, which
In order to obtain nontrivial results the imaginary part of are consistent with those fof up to 80(see Sec. VII). All
3 SPA should not vanish. In the strong scattering regime thisconfigurational averages were calculated using an ensemble
is the case when the number of scatterers is larger than tiff 10 000 independent realizations of the impurity positions.
total number of channels, i.eN,>N;. We therefore can The eigenvalues of the transmission matrix can be ob-
allow only a finite number of evanescent states. It is indeedained by calculating the eigenvalues of the matrixT' T'
well known in scattering theory that the cross sectionSof that are equal to T}, as can be seen from E{L7). The
scatterers vanishes without such a cutoff. Another redistribution function is not a convenient function to compute
quirement for a nonvanishing imaginary part Bf™ is a  because of the divergences B0 and T=1. Instead of
limited average scattering strength, i.e., y/¢)2 P(T) we calculate the well-behaved integrated quantity

<4(N,—N7)N7/N?. When In3SP]0 the average con-

chA_za: 2 (7’&2 (G

K

ductance can be calculated from E84): Q(T)= ideT’T’P(T’), (40)
(p) < >
AZ k, = 5 which is a smooth function of. Q(T) is the relative contri-
)= K| \/ _r N; bution to the conductance of all,<T. From Egs.(4) and
(9= 7y J(N;—N7)Nt v% 4(N;=N7)Ny’ (35) it follows that Q(T)=1—y1—T for a disordered bulk

(39) conductor and)(T) = (1/#)arccos(L 2T) for a dirty inter-

- face. In Fig. 6 numerically calculate@(T) for three differ-
where we introduced the normalized scattering strength ent sets of microscopic parameters are compared with the
=my/h%m, which is a dimensionless quantity fd=2. The  analytical results. Figure 6 shows excellent agreement be-
summation ok, over the propagating modes depends on theween analytical and numerical configurational averages.
dimension: It equalsr/4 Nk for d=2 and5Nkg for d=3.  Note that the numerical results differ significantly from the

Crossed diagrams are not included in the CPA, but thewnalytical result for disordered bulk systems.
can be important in the strong scattering regime. The contri- In order to appreciate the limits of the universality and
bution to the self-energy of, for example, the crossed diatest the CPA we study numerically the dependence of the
gram depicted in Fig. 5 equals conductance and the distribution function on the different
microscopic parameters. Instead of calculating the functions
E >< o). (39 P(T) or Q(T) we compute only the average values of three
- "H Ki+K physical quantities that depend characteristicallyPgi). In
Table | the expectation values for the conductag@nd the
The summation over the intermediate states in 8§) is  shot-noise powep as well as for the conductancg,s and
restricted by the cutoff in the integral over evanescent stateghe shot-noise powepys of a normal metal/superconductor
in combination with the momentum conservation at eachunction are given for both a dirty interface and a disordered
vertex. Because of this restriction the self-energy depends dgulk conductor. These expectation values are sufficient to
kj. A simple estimate shows that the contribution to thediscriminate between the two universal distributions. Figure
self-energy of the crossed diagram of Fig. 5 is of the sam& shows the dependence of the average conductance and the

Ya Ya

A A) Ek<G Gy,
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FIG. 6. FunctionQ(T) obtained from three different numerical v [ _-..0. 0 O-50-2-0-5-Q-0-0-]
calculations(symbolg and from the analytical results for a dirty é’ 06l ]
interface(solid line) and for a disordered bulk conduct@tashed %
line). The numerical calculation were carried out usMe 20, N, o 04l
=200, y=0, andN;= 20, y=10 for the squares\= 20, y=60 s
for the circles, andNt=40, y=10 for the diamonds. Configura- & 02_“""""'°”">'"‘)""‘>'"0'"<>“"°""°""°‘“‘>"'<>"'"
tional averaging was done using 10 000 realizations of the disorder. Ag ’ ]
_ _ _ ¥ 00 . ‘ ‘
ratios{p)/{g), {ans)/{9), and{pns)/{(g) on the dimension- 0 20 40 60
¥

less scattering strengtly. Even though the conductance

changes as a function of, the ratios characterizing the dis-
tribution function remain constant which confirms the uni-
versality of P(T). The numerically calculated average con-
ductance deviates from the result obtained in the CPA. Thi
is not unexpected since in the CPA the crossed diagrams a
not taken into account. The difference is, however, surpris
ingly small. A good fit to the numerical calculations can be
obtained by simply multiplying the CPA results by a scaling
factor of order 1. In the present regime the crossed diagra
thus only weakly renormalize the CPA result.

In Figs. 8 and 9 the average conductance and the rati
characterizing the distribution function are plotted as func-
tions of the number of scatterelg and the total number of o
modesNy, respectively. The results confirm thB(T) is  calculation, in contrast to the results for=0 where they
universal and thafg) follows the behavior obtained from the differed only by a scaling factor close to unity. More impor-
CPA up to a scaling factor. Note that the same scaling factotantly, the universality breaks down. Whereas the distribu-

is used in Figs. 7-9. tion function remains universal foy/y<0.6, it becomes

Finally, we consider the dependences on the average SC"’hténuniversal for7y>0.6. The value at which the ratios

tering strengthy. Figure 10 shows that the average conduc-characterizing?(T) start to deviate from the universal val-
tance as a function of/y differs qualitatively from the CPA ues coincides with the value at which the CPA conductance
vanishes. Nonuniversal behavior must be caused by higher-
TABLE |. Expectation values of the propertiesthat are de- order terms in Eq(33). The numerical results thus indicate
scribed by the linear statistia{T) for the distribution function of  that for y/y>0.6 the crossed diagrams do not contribute to
a strongly disordered interface and of a metallic bulk system. Thgpe imaginary part of the self-energy to lowest order in the
physical properties considered are the conductgnaad the shqt- expansion of the Green function. A more detailed study of
noise powerp as well as the conductanggs and the shot-noise  yreakdown of universality is beyond the scope of the present
power pys of a normal metal/superconductor junction. paper, but we note that a similar effect has been found for
disordered bulk systems in the presence of a tunnel bafrier.

FIG. 7. Dependence @h) the average conductan¢g) and(b)
the ratios(p)/{(g), (gns)/{9) and(pns)/2(g) on the dimensionless
§cattering strengthy. The numerical calculations were carried out
psingN=20, Ny=20, N, =200, andy=0.0. Configurational aver-
aging was done using 10 000 realizations of the disor@@rThe
numerically calculated values §§) (filled circles compared with
the CPA resul{dashed lingand with the CPA result multiplied by
a factor 1.14(dotted ling. (b) The numerically calculated values of
Mre ratios(p)/{g) (filled circles, {gns)/{g) (open circleg and

ns/2(g) (diamond$ compared with their universal values given
Og the solid, dashed, and dotted lines, respectively.

(a)/(9) (a)/(9) — : - .
a a(T) interface bulk For y/y—_l _the numerical resu_lts in Fig. 10 indeed become
characteristic for a tunnel barrier.
g T 1 1 In both the analytical and the numerical calculations pre-
p T(1-T) : : sented above the disorder is due to the random positions of
Ons 2T%/(2-T)? 12 1 the scatterers. We carried out additional numerical calcula-
Pns 16T3(1-T)/(2—T)* 32 2 tions in which also the scattering strength)swere chosen at

random, in contrast to the constant value|fgy| used in the
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FIG. 8. Dependence @b) the average conductan¢g) and(b) FIG. 9. Dependence df) the average conductan¢g) and (b)

the ratios(p)/(g), (gns)/(9), and(pns)/2(g) on the number of  the ratios(p)/(g), (gns)/(g), and(pys)/2(g) on the total number

scatterersN, . The numerical calculations were carried out using of propagating and evanescent stalgs. The numerical calcula-

N=20, N;=20, y=10.0, andy=0.0. Configurational averaging tions were carried out usingl=20, N,=200, y=10.0 and y

was done using 10 000 realizations of the disorder. For explanatior:0.0. Configurational averaging was done using 10 000 realiza-

of the symbols and the lines, see Fig. 7. tions of the disorder. For explanation of the symbols and the lines,

see Fig. 7.

other calculations of this section. Also with random scatter-

ing strengths the universal distribution functi(8%) persists, The product of the electron and the hole Green function in

as expected. Eqg. (41) cannot be reduced to a one-particle Green function
Whereas the analytical results of this paper are restrictelly the Ward identities, as was the case in the calculation of

to the strong scattering regime with<N, the numerical the average conductan¢g). Instead, the expectation value

calculations can straightforwardly be carried out for arbitraryof the product has to be calculated explicitly. The configura-

values ofg. In Fig. 11 the conductance and the ratios chartionally averaged two-particle Green function can be written

acterizing the distribution function are plotted as a functionas

of the number of scatterefd; . For N;>N the results are in 1 - - 2

the strong scattering regime. FNf<N the weak scattering <|G|2H "ZH’| >:|<G|2H>| 5|2H ,12H’+|<G|2H>| WlZH ,IZH’|<G;Z”'>| '

regime is reached whe@=<N. For the valuey=10.0 used (42

in the calculations presented in Fig. 11, the regifhe<N

sidered in Ref. 15. In this limit analytical calculatidfgield

: and the hole line are connected by a scattering vertex.
N, eigenstates that are completely reflected,=£0), y g

h h - N letel . To keep the analytical calculations tractable, we will re-
w dereaftl € rerr]rjar:n]n‘g— | states ?‘Le %omp eteytr?nsm|lt- strict ourselves to the self-consistent Born approximation
ted (To=1), which is consistent with the numerical results (SCBA). In the SCBA calculation of the self-energy only the

for N;<N in Fig. 11. In between the weak and strong scat-qt o diagrams of Fig. 4 are taken into account, which in
tering regimes a smooth transition is observed. the strong scattering limit yields

VII. TRANSMISSION PROBABILITIES E§CBA:%[N| y—i /4NINT72_N|272]- (43)
Next we calculate the configurationally averaged trans-
mission probabilities The restrictiony,= = v that was used in the CPA can be
eliminated andy? now equals the mean-square value of the
4 scattering strengths*y2=an§/N|. Note that in the limit
(|t §’|2>:ﬁ_kLki<Gf g/Gf*Q,>_ (41) N,> N for y,= = v the higher-order diagrams in Fig. 4 can
PR m? KKk be neglected and the CPA reduces to the SCBA. Crossed
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FIG. 10. Dependence ¢&) the average conductan¢g) and(b)
the ratios(p)/{g), {gns)/{9), and{pns)/2(g) on the relative aver-

age scattering strength/y. The numerical calculations were car- scatterersN, . The numerical calculations were carried out using

ried out usingN =20, Ny=20, N;=200, andy=10.0. Configura- 5 N\, =20, 5=10.0, andy=0.0. Configurational averaging
tional averaging was done using 10 000 r_eal|zat|ons _Of the d'sorde(/vas done using 10 000 realizations of the disorder. For explanation
For explanation of the symbols and the lines, see Fig. 7. of the symbols and the lines fod,>N, see Fig. 7. The lines for

. . N, <N are the results obtained in Ref. 15 for a low density of strong
diagrams such as the one in Fig. 5 are neglected, however, §atterers.

spite of being of the same order as those taken into account

FIG. 11. Dependence ¢&) the average conductan¢g) and(b)
the ratios(p)/(g), (gns)/(9), and(pns)/2(g) on the number of

in the SCBA. ,

The diagrams for the reducible vertex function in the Ure i 2>: 1— 2(g)k, Si o+ (@k. ki . (46)
SCBA are shown in Fig. 12. These ladder diagrams are in- 5 S K (R S K 2
dependent of the incoming and outgoing modes and can be q L q L

easily summed:

In the SCBA the conductance calculated directly from the
o two-particle Green function is identical to the conductance
L (44) calculated using the one-particle Green function and the
1_02; |<G§|/‘/>|2 Ward identity (20). More generally, the relatior(tptb
K = ((tp>+(t;§))/2 is satisfied in the SCBA. This means that, at

Wi k= W=

where 0=N,9?/A? is the irreducible vertex function. To
lowest order in the expansiof833) the denominator in Eq. ———

. ! . ———
(44) vanishes, which causé¥ to diverge. To eliminate this ! ! : ' ! !
divergence also the second term in E8f8) should be taken ! ' ' : ! '
into account. We only evaluated/ for y=0 andNt=N. | ) I : : I
Under these conditions the self-energy is purely imaginary, )!( + )f( )F + ’F )F )F + ...

which simplifies the calculations and we obtain ' ! ! ! ' '
<g>kL ki : 1 ] ) 1 1

(E kl) FIG. 12. Ladder diagrams that are taken into account in the

Ky calculation of the reducible vertex function matrix. The thick lines

' ' ' o with a right pointing arrow represent a perturbed electron Green
The configurationally averaged reflection probabilities carfunction; those with a left pointing arrow represent a perturbed hole
be calculated from the continuity of the wave functidi): Green function.
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, . alizations of the disorder, normalized Kyg), and summed
0e2%%e, (@) over all outgoing states as a function of the incoming state.
e Y The numerical results agree well with the SCBA calculation
10k ,® ., i for this integrated quantity. The dependence of the average
B s transmission probability as a function of the outgoing state
R s for one specific incoming state, however, is not well de-
® Y scribed by the SCBA result, as illustrated by Fig(d3The
enhanced probabilities fokj=kj and kj=—k| are quite
striking. By performing a similar calculation for a smaller
value of(g) we checked that the peak fef=Kk| is not due
to a small ballistic component. From the relati¢tl) be-
10 08 00 05 1.0 tweent andr it follows that the nondiagonal terms of the
' ' K 7K ' ' reflection probability matrix are equal to the corresponding
transmission probabilities and therefore similar peaks occur
3.0 ‘ o ' ) in the reflection probabilities. Since in the calculation of Fig.
° 13 N,=100N, the deviation from the SCBA result is not
caused by higher order noncrossed diagrams, which can be
20} ° . disregarded foN,>N. Even in the CPA, in which all non-
crossed diagrams are included, all elements in the reducible
- g = 1 vertex function matrixW are identical® which implies that
s oo > the angular dependence of transmission and reflection prob-
1.0 2 N abilities are also in this case given by E¢45) and (46),
M 568600000000 o B respectively. This leaves the crossed diagrams as the origin
of the peaks in the numerical calculations of Fig(t3The
o.of ‘ ‘ . enhanced reflection probabilities fef= —k”’ are analogous
-1.0 0.5 0.0 0.5 1.0 to the enhanced backscattering peak in bulk conductors,
Kk which is due to an interference effect that is described by
crossed diagranfs.A deeper study of the crossed diagrams
FIG. 13. Dependence of thigntegrated average transmission is again beyond the scope of the present paper.
probabilities on the incoming or outgoing wave vectors. The nu-

05}/

) 2
p k“ <|tk”,k1“| >/<g>

e
Y At

merical falculationSﬂere carried out usitfg=20, N;=20, N, VIIl. DISCUSSION
=2000, y=10.0, andy=0.0. Configurational averaging was done . ) )
using 10 000 realizations of the disordé The numerically cal- In this section we compare the results obtained for phase-

culated transmission probabiliti¢giled circles integrated over the coherent electrical transport through dirty interfaces with the
outgoing states as a function of the incoming wave vekfatom-  well-known properties of disordered bulk conductors and
pared with the SCBA resuldashed ling (b) The numerically cal-  discuss the similarities and the differences. Both distribution
culated transmission probabilities as a function of the outgoing statéunctions (4) and (35) for disordered bulk conductors and
kj for incoming statek equal to 0.0kg (open circley 0.4%¢  dirty interfaces, respectively, are bimodal. For dirty inter-
(filled circles, and 0.8%¢ (diamonds compared with the SCBA  faces there is, however, relatively more weight for srifgll
results given by the dashed, solid, and dotted lines, respectively. This is reflected in the expectation values for the physical
quantities. The ratid p)/{(g), for example, equals 1/2 for
least under the restriction?zo andN;=N, the SCBA is dirty interfaces compared to 1/3 for disordered bulk conduc-
consistent with the Ward identit§20), which is a necessary tors. In the case of a bulk disordered normal metal in contact
condition for any physically meaningful approximation. Note with a superconductofgys) equals the conductance in the
that the divergence ofV to lowest order in the expansion normal state and the rati@ys)/(Qns) = 2/3, which is twice
(39) is essential for current conservation. the normal state result. In contrast, for a dirty interface in a
The irreducible vertex function in the CPA consists of all normal-metal in series with a superconduatgks) and(g)
noncrossed diagrams. A calculation similar to that in theare no longer equal (§ns)=32(g)) and the ratio
SCBA shows that in the CPA the denominator in E44) (pns)/{Ons) =3/4, less than twice the normal-state result.
does not vanish Wherj'_sﬁO. This implies that in the strong These differences should be observable experimentally.

scattering regime the CPA does not conserve currentyfor Fo_r disordered bulk conductors, the bimodal distribution

# 0 which we expect to be related to the qualitative deviationfunCtIon (4) has been_ related t_o the joccurrence of universal
) — conductance fluctuatiorf8.We investigate the conductance

from the exact numerical results for>0 in Fig. 10. Atleast  g,ct,ations of dirty interfaces by performing a straightfor-

for y#0, the CPA should be applied to the strong scatteringvard numerical calculation of the variance of the conduc-
limit with care. _ tance Varg)=(g?)—(g)?. Figure 14 shows the depen-
We compare the analytical results in the SCBA fpr dences of(g), Var(g), and the ratios characterizing the

=0 andN;=N with exact numerical calculations that are distribution function on the number of conduction channels.
limited tod=2 andy,= = y. The transmission probabilities As expected, the average conductance is proportional to

are obtained straightforwardly from EL6). Figure 13a)  and the distribution function is universal. The variance of the

shows the transmission probability averaged over 10 000 resonductance is not independent of the number of conduction
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25 : ' : . terersi” equalsT, but another model for the interface rough-
< ness may yield a different expression forWe expect that
2.0 ’,»" ] this will not change the results obtained in this paper quali-
—_ ' @ tatively and that the constraint=1+r is sufficient to de-
% 1.5 _3,»0:‘,/ ] scribe the characteristic properties of interfaces compared to
> . bulk systems. A study of transport through dirty interfaces
g’)» 1.0p ‘.‘:-;/' 1 using random matrix theory might further clarify the origin
of the universal result foP(T) and the nonuniversal result
05 ' -t for the conductance fluctuations.
Y o P The distribution functior{35) for a dirty interface is iden-
0.0£-97 : ; [ : tical to P(T) for two identical tunnel barriers in series sepa-
‘C” 10 (b) | rated by a distance that is much larger than?* despite the
7, 08l ] fact that the two physical s_ystems are very diﬁere_:nt. At this
F [0-0Q..0_0.-0..0..0_.0. moment we have no physical argument to explain this cor-
X- respondence.
v 08¢ 1 In the above analytical treatment there is no qualitative
é ey vy ve difference between the regimgs>1 andg<1, i.e., no lo-
< 04T ] calization transition is observed. This is confirmed by the
f\/’: ........ ZOSNIRHY SHIHP SRR ST, ST, S . numerical calculations of Fig. 14, where the conductance
&, 02F ] varies between 0.3 and 2.4. No changes are observed in the
& universal ratios or in the proportionality betwe@g) andN.
v 0-00 m m = 2 The absence of localization follows from the well-behaved

N maximally crossed diagrarttsand can be understood from
the fact that for an interface the region of scattering has no

FIG. 14. Dependence df) the average conductancg), the spatial extent in the transport direction so there is no space
variance \}arg) and (b) the ratios (p)/(g), (gna/(Q) "and  available in which the wave functions can localize. In other
(pne)/2(g) on the number of conduction channéls The numeri- words, any incipignt bound stat@T is immediate!y destroyed by
cal calculations were carried out usibg=N, N,=10N, 7=10.0 the strong coupling to the continuum states in the leads on

=N, N,;=10N, y=10.0, . ) .
and y=0.0. Configurational averaging was done using 10 000 re'em'}%restlgaeng:ntizgiér:lt(;rr:?jcr(aéflection robabilities calculated in
alizations of the disordea) The numerically calculated values of . . P . L
(g) (filled circles compared with the CPA resultlashed lingand Sec. VIl are quite different from the_ scattering probabilities
with the CPA result multiplied by a factor 1.Xdotted ling as well for dlsorde_red_bulk Conduc_:m?gFor dirty interfaces mo?'t O.f
the reflection is specular in contrast to the smooth distribu-

as the numerically calculated values of g@r((open circles The : ) ! . -
dash-dotted line is a linear fit Vagj~0.041+0.0063N. (b) The  tion over all reflection directions for bulk systems. This al-

numerically calculated values of the ratigs)/(g) (filled circle, ~ MOst complete specular reflection is a direct consequence of
(gne)/(g) (open circle and (pyg)/2(g) (diamonds compared the continuity relatiort=1+r from which it is clear that the
with their universal values given by the solid, dashed, and dottedliagonal terms of the reflection probability matrix are close
lines, respectively. to unity for small transmission. This result is relevant for the
study of electrical transport in metallic multilayers in which

channels, i.e., the conductance fluctuations are not universahe interfaces are sometimes modeled by thin regions of bulk
Instead, Varg) increases linearly wittN, as expected from material with high resistivitie§® Although this description is
classical arguments. In terms of the two-particle diagramsalid for weak scatterirfd*8it is not correct in the strong
that describe the conductance fluctuatidrise nonuniversal scattering regime. Due to quantum interference effects, addi-
behavior is due to the absence of a divergence in the laddeibnal peaks occur in the transmission and reflection prob-

summations. Such a divergence occurs in &) in the = gpjities for kj=k/ andkj=—k/ . Whereas the enhanced re-
calculation of the transmission probabilities but is absent for, > -

the fluctuation diagrams. In the theory of the Conductancéleﬁt'On ;orb ka: _|:t 1S atr;]alogt?]us o ktheh WeII-knownt
fluctuations in bulk conductors the divergence in the laddefnanced backscattering, e other peaks have no counter-
summation is the origin of the universalfyThe fluctuations Earti, in the bulk. The peaks in reflection and transmission for
are also nonuniversal close to the ballistic regir—gg(\')_23 kH:kﬁ will be difficult to resolve eXperimenta”y because of
BecauseP(T) for a dirty interface does not depend on the the large specular reflection and the nonzero ballistic trans-
microscopic details, its calculation seems well suited formission, respectively. The enhanced transmissionIZf‘ewr

methods of random matrix theoty Continuity of the wave —— K/ , on the other hand, might be observable experimentally.

functions on both sides of the scattering region gives rise tqhjs peak is intimately related to the enhanced backscatter-
the additional constraint=1+r on the space of allowed jng via the continuity relatiorf11).

Scattering matrices. By Combining this with the constraint In the ana]ytica| calculations On|y the noncrossed dia-
that ariseS from current Conservaﬁawe f|nd that the trans- grams are eva|uated expncit'y, Whereas the Crossed diagrams
mission amplitude matrix for propagating states can alwayshat correspond to quantum interference are disregarded. Al-
be parametrized ag=[| +ilI'7"Yin which T is a Hermitian  though in the strong scattering regime there isanpriori
matrix. In our specific model for randomly distributédscat-  justification for such a mean-field approach, most of the re-
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sults obtained agree quite well with the numerical CalCUlawhere the Operato,f\'n(;() is a p0|ynomia| of orden in the

tions. The suppression of the shot-noise power, for exampl%perato&. Substituting Eq(A3) into Eq.(22) and exchang-

can be un(_jers_tood on the basis of a CPA or SCBA. CaICUIafng the orders of differentiation, configurational averaging,
tion. Also in disordered bulk conductors quantum mterfer-an taking the trace?(T) can be written as

ence effects are not required to describe the suppression 0
the shot-noise powéf. dq 3
In summary, starting from the Schfimger equation, we  P(T)= f —~eiaT ,7_)<g(,7)>
studied the phase-coherent electrical transport through dirty 2m a7
interfaces. We have shown thR{T) for a dirty interface is (A4)

universal but differs fronP(T) for disordered bulk conduc- The calculation of the distribution function is thus reduced to

tors. Dirty interfaces belong to a universality class differentthe calculation of the average conductance and its depen-
from diffusive bulk conductors. In addition, we have showndence on.

that the conductance fluctuations are nonuniversal, the local- For explicit calculations EqiA4) is cumbersome. To de-
ization transition is absent, and the transmission and reflegive a more convenient expression we divide the distribution
tion probabllltles are different from the bulk. It remains a function is three parts. The first pa?tl(T) contains On|y the

challenge to test these results theoretically by random matrifrst term inside the square brackets in Hf4) and can
theory and experimentally by transport studies of intentioneasily be evaluated as

ally disordered metallic point contacts and wide quantum

wires. _(dq iqT

Note added in proofCarlo Beenakker pointed out to us Pl(T)=f %e N=N&(T). (A5)
that for bulk diffusive conductors much wider than long, the

mean-squared fluctuations are also proportional to the num- The second par®,(T) is the contribution to the distribu-
ber of conducting channeN. We note that the slope of the tion function that comes from the integrable p@noted by
linear dependence is not universal for the dirty interfaces. the horizontal ling of the configurationally averaged conduc-

“(ig)n,
N+E ﬂfnfl
f n!

=1
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= dy Im

(9(m)=Re(g(n))= Pf _—y <f—(y)>, (A7)
APPENDIX: DERIVATION OF EQ. (23) —e T Y77

In this appendix the derivation of E®3) is presented. In  Where(g(y)) is the analytical continuation of the integrable
Eq. (22) the distribution function was written in terms of a Part of(g(#)) in the lower half complex plane and P denotes
power series in the transmission matrix. The first step in théhe principal part. We made use of the fact that the conduc-
derivation is to express higher-order moments in terms of 4ance is real fom=0. P,(T) can be calculated by substitut-
single transmission matrix. Using the Ward identiti@9)  ing Eq.(A7) into Eq.(A6). To evaluate the resulting expres-

and (21) we find for the second-order moment sion we first note that
1 9 d f ( — | M= Mf, _ (M) (A8)
th2_ t_ t -1\ 7 n 7 -1 )
(tptp) —(Em&—m‘*'l tptp—( 7]54‘1 tpt , (Al) n on n
with
with »=m?. Using Eq.(A1) we obtain a recursion relation
for the higher-order moments: M+n
froa(M)= (A9)
n
1 J
(tptg)”“=ﬁ 7]%4‘“ (tptg)”. (A2) The operators that act on powers pfcan thus be replaced

by numbers. Using this property we obtain
By induction we then find from Eq$Al) and(A2) that

R g\ 1 1. d M
fn—l("]_) =_fn—l - 2
n anly—mn 'y an/vM=o \y
(ttT)”“=iH ni+m t.th
Pp n'im=1|"dn PP 1§°°:f M)(n“” 1( y )
“yio MY =YV

R A
=fol 75| teta (A3) (A10)



15872

Substituting Eq(A7) into Eq.(A6) and exchanging the order
of differentiation and integration ovey, Eq. (A6) can be
simplified using Eq(A10) to

dg . < (Q)"_ [ dy Im{g(y))[ y \|"
= | 2te-iaT LV p| 2L SV S
P2(T) JZWe nzl n! PJ—W y y-n/ "’
(A11)
Using the fact that
dg _, . (iq)"
—eigT 2 _
Imj 277_e Y 0 (A12)

for all values ofn and separating the=0 term we find

—_Ta0n dy (9(y)) ( Y )

Po(T)=~{giona(T) +imp | <L 280 of 7 Y

ey 1 1 | 7T .
——<g<0)>5<T>+;T(l_T).m<g(T_l—|o )>
(A13)
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%(n%)(g(oo)k(g(oo)) (A14)
and
pun= [ ey W ()7 g
= —(9()) 8(T)+(g(=))&(T—1). (A15)

The total distribution function is the sum d?,(T),
P,(T), and P5(T). Note that the integrals over of both
P,(T) andP5(T) vanish and thaP(T) is thus properly nor-
malized. In Eq.(23) only P4(T) and P,(T) are taken into
account sincég(«)) vanishes for dirty interfaces. When the
conductance contains only integrable pa$0))=N and
the §(T) terms arising fromP,(T) andP,(T) cancel.

In principle full knowledge ofg( 7)) for » ranging from
0 to « is required to calculat®(T). Since our calculations

where the positive infinitesimal0is added to indicate that for dirty interfaces are limited tg<N they do not describe
the conductance should be calculated just below the redlg(#)) correctly for » approaching zero, which causes in-
axis. correct behavior of the distribution function for small This
The last partP5(T) arises from the contributions of the results in the nonintegrable divergenceTat0 in Eq. (35
nonintegrable parts dig( 7)), which should be treated sepa- even though Eq(23) is properly normalized. To normalize
rately. As an example we consider the contribution fromP(T) correctly a cutoff at smalll was introduced in Eq.
{g(0)), which vanishes for dirty interfaces but remains finite (35). This cutoff is irrelevant for the first- and higher-order

in the limit of a small number of strong scatteré?sSince
(g(=)) is a constant not depending an

moments ofT. A similar cutoff occurs in Eq(4) for disor-
dered bulk conductors.
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