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We perform a numerical calculation of long-range energy fluctuations of two- and three-dimensional Ander-
son models in the ballistic and diffusive regimes. In calculating the energy fluctuations, averages are taken over
different realizations of disorder, and not over energy windows at different levels. For windows ofEvidth
smaller than the critical energl., fluctuations follow the logarithmic behavior characteristic of random
matrix theory(RMT), no matter the degree of disorder. For energies higher Eharfluctuations are nearly
constant and below RMT in the ballistic case, and they are higher than RMT and increase with energy in the
diffusive case. The results allow a reasonably accurate estima&g.ofhe expected behavior of the critical
energy with the system size and energy is reproduced by our numerical results. An efficient implementation of
Kubo's formula has been used to calculate the conductance of the system. In the diffusive regime the numerical
results for the adimensional conductance are in reasonable agreement with the numerical reSyltst fisr
also shown that the asymptotic expression derived by Altshuler and Shklovskii for fluctuations in the diffusive
regime gives results much smaller than those reported [©@04.63-18207)02748-3

I. INTRODUCTION 2 T
S2%(E)= —| In(27E)+y+1+ 1SP(7E) - >Si(7E)

Spectral correlations of disordered quantum systems play

a fundamental role in the study of quantum chaos and in the —cog27E)—Ci(27E) + WZE[1_ ESi(Zﬂ'E):H,
physics of mesoscopic systems. The short-range statistical 77
properties of the quantum level spectra of disordered systems (0]

with extended states are adequately described by means of
random matrix theoryRMT).22In the absence of a magnetic where Si§) and Cik) are the sine and cosine integrals,
field, when time-reversal symmetry is preserved, these shortespectively, andy=0.5772 ... is Euler's constant. Note
range properties are closely simulated by the Gaussian othat as, for sufficiently larg&, the dominant term in Eq1)
thogonal ensembléGOE).%2 In particular, there is a repul- is the logarithm, the dependenceXf on E is much weaker
sion between nearest levels, whose spacings follow Wignethan the linear dependence expected for uncorrelated energy
Dyson statisticg:*~® This is true for diffusive as well as for levels. Long-range fluctuations of the GOE are thus very
ballistic systems, provided that the typical value of the dis-Small, a characteristic known as spectral rigidity. .
order energy exceeds the mean level spacing, which implies Dlsordereq systems vv_|th extended states can Ibe either dif-
that the energy spectra differ drastically from the clean casdUsive or ballistic depending on whether the elastic mean free
The ballistic regime is an intermediate regirather than a  Pathl is smaller or larger than the linear size of the system
crossover pointbetween the diffusive and the clean limits.  "€SPectively. The spectra of quantum Hamiltonians of diffu-
To characterize the statistical properties of the spectra it i ive systems, even though they obey Wigner-Dyson statis-

ics, exhibit much larger long-range fluctuations than the
customary to map each reil spectriigy onto the unfolded GOE (Refs. 3 and 9for energies greater than a critical en-

spectrun{E;} throughE;=N(e;), whereN(e;) is the num-  grgy known as the Thouless enefyThis critical energy
ber of levels up to an energy, and the overline denotes the (D js associated with the inverse transport time through the
average over different disorder realizations. The Spectrundystem, and is proportional to the Fermi veloaity and the

{Ei} has on the average a constant mean spacing equal to djastic mean free path and inversely proportional tb?,
After rescaling, the variance of the number of levdlE) is

calculated in an energy windolEg ,Er+E] (Eg being the
Fermi energy. For the GOE, this variance, which is indepen- D

hugl
. 6 GC = a
dent of Eg, is equal t&

dL?’
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whered is the dimensionality of the system. For energiesof the atomic levelsv; are randomly chosen betweeri/2
greater than the Thouless energy, Al'tshuler and Shklovskiand W/2. For each value of the disord&/, we consider at
obtained that the fluctuations are giver?by least 1000 different realizations. The Schwarz algorithm for
i symmetric band matricé$was used to compute the whole
) E spectrum. We have checked that for all sets of parame¥ers
24E)=cq E ' ©) and L considered, spacings among nearest-neighbor levels
¢ are distributed according to Wigner-Dyson statistics. For
with ¢,=1/47? and c3=2Y%67>. EE is the critical energy very small values oW this is not always the case. The
in normalized units, which will be calculated below. analysis of the results in this limit is also made difficult by
In ballistic systems|(L), there is also a critical energy finite-size oscillations in the density of stafés.
€2 limiting the applicability of RMT®! This critical energy
loses its meaning as an inverse transport thﬁéva/L B. Fluctuations
through the system, which now is disorder independent. At-  As remarked in Sec. |, the standard way of measuring
land, Gefen, and Montambatipredicted that this critical - 52(E) consists first, of transforming real spectra onto un-
energy is given by folded spectra: each real spectre)} is mapped onto an
hoe unfolded spectruE;} throughE;=N(¢;), whereN(e) is
—_. (4)  the averaged number of levels up to an energgecond, the
! variance of the number of levels found in an interval of fixed
It plays a role analogous to the Thouless energy for diffusivdength E is directly obtained from the unfolded spectra. In
systems. This ballistic regime is valid for critical energiesthis section, we present results for the variance of the number
larger than the average level spacing, below which the cleafif levels obtained by a different numerical procedure which
limit sets in. gives no fluctuations in the clean limisee beloyw Of
In this work we carry out a systematic numerical analysiscourse, we have checked that overall features are procedure
of the energy spectra of the Anderson model. We vary théndependent, i.e., our method coincides with the standard one
disorder energyw and the size of the sample in order to When subtleties are ignored. Nevertheless, fine details of the
consider both diffusive and ballistic systems. We will ascer-n'umber variance are better given by our more direct defini-
tain that the elastic mean free path is indeed the key parantlon than by the standard procedure.
eter as long as the long-range energy-level fluctuations are For each value ofV andL, an energy window aroune:
concerned. We also show that the limiting value of logarith-is defined:[ e — 6/2,e-+ 6/2]. Random energies; and e,
mic dependence of the energy fluctuations of ballistic syswithin this interval are chosen. The mean number of levels
tems corresponds to the critical energfy. In contrast to the  Within interval[ e, e;] is given by
case of diffusive systems, the fluctuations of ballistic systems _
are smaller than those of the GOE for energies greater than N=(N(€e1) —N(€2))w, (6)

the critical one, as already anticipated in Ref. 7. The nume”WhereN(e) gives the total number of states below eneegy

cal results for the fluctuations are used to compute the critifOr a generic disorder realizatiod:),, indicates averaging
cal energy both in the ballistic and diffusive cases. The req . jisorder configurations. In tﬁe same way, the mean of

sults forE, follow qualitatively the behavior predicted by the the squared number of levels in this energy interval is given
expressions given above. In the diffusive case the adimery

sional conductance is also calculated and shown to be similary
(in magnitudg to the critical energy, as expecttdf The

B_
€. =

2_ _ 2
numerical results foE. allow us to show that Eq3) gives N"=([N(e1) =N(&2)9w- @
fluctuations much smaller than the numerical results reportegthe variance of the number of levels contained in the energy
in this work. interval[ e;,€,] is simply
Il. MODEL AND METHODS 32(N)=N2—N2. (8)

A. Hamiltonian This provides a value oE?(eg,E) (note thatE=N). The

We compute the energy spectrum of the Anderson Hamilsequence is repeated a large number of times for randomly
tonian selected energy intervals, ,e,] within [ eg— 6/2,ex+ 6/2],
until a relatively smooth value is obtained for the variance of
_ ¥ t the number of levelaveragedover energy intervals contain-
H _Z WiCi C‘+<izj> biCic ® ing the same number of levels. The last step implies averag-
ing over the selected energy region arowpad
where the operatar; destroys an electron on siteandt;; is Note that only fluctuations induced by disorder are taken
the hopping integral between sitesndj (the symbokij)  into account by our method. Therefore, the number fluctua-
restricts the sum to nearest-neighbor gite8Ve take tion is strictly zero for a single spectrum. On the other hand,
tij=t=—1 and consider square and cubic lattices for two-the standard method can be used even in this situation. The
dimensional2D) and 3D systems, respectively. Calculationsvariance is defined by
have been carried out on clusters of sizes ujh 060, for
2D systems, and up tb=16, for 3D systems. The energies 32(E)=[N(E+E)—N(Eg)—E]% 9
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The subtlety within this definition is the way followed for 67202

. . . . D_ Frd-1

unfolding just one spectrum. Sometimes, the asymtotic form Ec= Adm
of N._,.(e) (Weyl formulg (Ref. 4 is used even in the
lower part of the spectrum, and number fluctuations are meaNote that in the diffusive regime the critical energy in nor-
sured relative tdN,_,.(€). Most frequently, a large number malized unitsE; coincides with the adimensional conduc-
of levels is used to measure the average level spacing, andnce of the systef'? The corresponding result for the bal-
then fluctuations relative to the mean value are measured liistic case is
smaller intervals. In this way, it has been proved that crys-

(15

talline spectra are uncorrelated up to some energy extent, and EB:AWVZ(GF) Ld-1 (16
consequently, th&?(E) statistics is Poissot® ¢ 6 '
If the Fermi velocity is replaced by Eq12) and the densit
2I230iss.or( E)=E. (10 y P y EqL2) y

of states at the Fermi energy is approximated byd1lthe

. . . final expressions for the mean free path and for the critical
. Let us remark that our procedure is quite appropriate forenergy can be written in terms of dimensionless magnitudes

disordered systems, as in our case. We have checked that ly, i.e., disorder energied/ are measured in units of the

numerical procedure recovers both the analytical results fol'iop;;ing ,energy lengths in units of the lattice constaat

random series of energy levelsee Eq.(10)] and for the andk in units of,a‘l

eigenvalue series of matrices belonging to the G&&e Eq. '

(1)]. The logarithmic dependence di makes this value

much smaller than the one corresponding to uncorrelated D. Conductance

spectra. In calculating the conductance of the system we use the
standard Kubo formul&!® conveniently implemented for
C. Mean free path and critical energy the problem at hanéf. The static electrical conductivity is
iven b
The ratiol/L is the parameter which controls whether ag y
system is diffusive or ballistic, and hence the type of critical e? - R - N
energy and the fluctuations above this energy. The mean free S=0xx(0)=—2-Trl(fiv,)Im G(E)(fv,)Im G(E)],
path is approximately given By’ (17)
hue where ImG(E) is calculated from the advanced and retarded
| ~UETES S limS ()] (1)  Green’s functions
. CoL . R 1 . R
where 7 is the relaxation time at the Fermi energy. In the Im G(E)= E[GWE)—G‘(E)]. (18)

present case the Fermi velocity can be directly obtained
from the dispersion relation, which in two dimensions is

ex= —2[cosk,) + costk,)]. The result is The velocity (curren} operatorv, is related to the position

operatorx through the equation of motion

fiop=(2\/sir?(k}) +sirf(k;)), 12 s
vE=(2ysir(k;) +sirf(k})) (12) o =[], 19
where the average is carried out over the Fermi surface. IyhereH is the Hamiltonian in Eq(5).

in the square root. On the other hand, the self-en&6st)  clusters to semi-infinite leads with®* channels, and one
is roughly proportional to the diagonal element of the unperatomic orbital per site with the same hopping integral as in

turbed Green'’s functioff the Hamiltonian of Eq(5). Within the one-electron approxi-
) o mation and if linear response is assumed, the exact form of
% (€p)~(W)Goli,i; €F). (13)  the electrical field does not matter. Therefore, an abrupt po-

tential drop at one of the two cluster sides provides the sim-
plest numerical implementation of the Kubo formula. In this
case, operatar, has finite matrix elements on only two ad-
jacent layers, and Green’s functions are just needed for this

i indicates a lattice site and; its random diagonal energy.
For the Anderson model, we arrive at

| ~ & (14) restricted subset of sites owing to the trace appearing in Eq.
W2mrv(ep) (17). Green’s functions are given by
wherev(ep) is the density of states at the Fermi energy. This [E-A-3.(E)-3,(E)]IG(E)=1, (20)

result qualitatively reproduces the coherent potential ap- . .

proximation results reported in Ref. 17. The paraméter ~ WhereX (E) and,(E) are the self-energies introduced by

depends on the disord&¥ and on the |ength of the Systdm the Semi'inﬁnite r|ght and |eft |eadS, reg)ECtiV@)IhUS, the

via the productA=W?-L. evaluation of the matrix elements of ®{E) is efficiently
The critical energy in normalized units is calculated byachieved applying abhU decomposition to the band matrix

multiplying the Thouless energy, E@), by the density of o R

states and by.%. In the diffusive regime this takes the form (IIE-H=2,(E)—2(B)]j), (21
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the GOE fluctuations.

FIG. 1. 3?(er,E) as a function ofE for the 2D Anderson ballistic to the diffusive regimes is smooth. The trends
model with L=50. The results correspond ter=—-2 and shown in Fig. 1 are very general, and can be better exhibited
W2L =20 (circles andW?2L = 160 (squares The thick broken line  on a log-linear plot. Figure 2 shows this type of plot for the
gives the GOE fluctuations. variance2 ?(eg ,E) as a function of the normalized energy.

The solid line corresponds to the result for the GOE. At
wherei andj are sites of tha9 clusters. Self-energies are small E the curves follow the same behavior as the GOE
calculated for any energl using a recurrent algorithm, and until they deviate from it to larger fluctuations in the diffu-
retarded or advanced Green’s functions are obtained usingjve cases, and to smaller fluctuations in the ballistic cases.
the corresponding self-energies in E80). Since lead self- We investigated the variation of the critical energies with
energies add an imaginary part to some diagonal elements ¥ andL. In determiningE. we used curves similar to those
the Hamiltonian, there is no need to add a small imaginarylotted in Fig. 2. The criterium we followed is thit, is the
part to the energ¥ before solving the set of linear algebraic energy at which the numerical results for the fluctuations
equations. The advantages of the procedures followed hedeviate 2% from the GOE. Instead of varyiMy and L
were discussed in detail in Ref. 20. independently, we keefgL (and thus the produck=W>3L)
constant. We choose the two values/fobf Figs. 1 and 2,
one corresponding to the diffusive regim&=160) and the
other to the ballistic regimeA=20), and analyze the change
A. Two dimensions in E; as a function of the remaining free parameter. The
results for the critical energy as a function of the system size

normalized units for the 2D Anderson model witk 50 and for the diffusive regime are ilustrated in Fig. 3. The fitted

er=—2. The squares correspond to the diffusive regimeStraight line isEE=0.14_—0.61. The num_erical results_ for
(W2L=160), and the circles to the ballistic case the conductances are also shown in Fig. 3. The fitted

(WAL =20). The ratiol/L for these two cases is approxi- straight line is in this cgsé$=0.13_—0.22. The agreement
mately 0.2 and 1.7, respectively. The thick broken line givesb?tween the two magmtudeésalculated through completely
the logarithmic behavior of the GOE. As expected, in thedlfferent methodgis excellent. The results do not, however,

diffusive case, fluctuations follow the GOE up to the critical 23"€ quantitatively with that given by EEL5), namely,
energy and then increase beyond the GOE, although at lé_c =0.03.. A S|m|_lar plot forE's[he ballistic case is shown_ in
much lower pace than in the completely uncorrelated casEig. 4. The fitted line is novE;=0.08-—0.12, which again
(see abovk A critical energy which sets a limit to the appli- is_rather different from the analytical result of E(L6),
cability of RMT also exists in the ballistic regime, which ES=0.14..

corresponds to the inverse of the relaxation tiime equiva- We observe significant variations i, with the initial
lently, the imaginary part of the self-enejgyFor energies energyeg. This is a consequence of changes in the Fermi
higher than the critical one, the fluctuations are smaller thawelocity (diffusive cas¢ and in the density of statéballistic
predicted by RMT, and remain almost constant as soon agime, which in the tight-binding model used here depend
they deviate from the logarithmic behavior. For large ener-appreciably on the energy, particularly the former. Numeri-
gies a slow increase of the fluctuations wihis observed. cal results folE., multiplied by a constant factdf.3) in the
This behavior has already been found by several authors idiffusive case and the square of the Fermi velocity, as a
geometrical quantum chaotic billiar@s?*?Our results for  function of the energy are plotted in Fig. 5. Note ti&tis
intermediate values Al indicate that the transition from the roughly proportional tOv,Z:, in qualitative agreement with

lll. RESULTS

In Fig. 1 we show?(eg,E) as a function of energy in
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FIG. 5. Critical energyE. (circles multiplied by a constant
FIG. 3. Critical energyE. (squaresand conductancg (circles  factor 1.3(see text and square of the Fermi velocity? averaged
for the 2D Anderson model as a function of the system size, in thgyer the Fermi surface as defined in E@2) (dashed ling as a
diffusive (D) regime. The results correspond to an energy average@,nction of energy, for the 2D Anderson model in the diffusive
over the range €2.2,-1.8) andW’L=160. The fitted straight regime. The results correspondlte- 40 andW?L = 160. Both mag-
lines areE¢=0.14.—0.61 andS=0.13. - 0.22. nitudes were calculated by averaging for each enerigythe range
(e—0.2e+0.2).
Eqg. (15). It should be noted, however, that as already pointed
out this equation does not quantitatively agree with the nuferent levels are taken, because the region with larger fluc-
merical results. In fact it gives a numerical factor which istyations can quickly dominate. We have checked, however,
three times larger than that used in Fig. 5, #yF=4.2E;.  that if additional averages over energy windows away from
A question of interest is the asymptotic behavior of theregions where fluctuations are abnormally laftfee edges
fluctuations predicted by Altshuler and Shklov3kin the  and center of the bandre taken, the present results are not
diffusive case, Eq(3), for E>E? in two dimensions. By changed.
using the value of the critical energy reported in Fig. 3, and Referring to the results in the ballistic regir(feictuations
the same parameters of Fig. 1, we obtaif(E)~0.004. below the GOE, we note that simulations on quantum cha-
This gives much smaller fluctuations than the numerical reetic billiards (commonly assumed to be ballistic systems
sults of Fig. 1. A source of errors is the actual valueEgt show dissimilar results. In particular, while many authors
However, our numerical results f&, should be rather ac- report fluctuations similar to or larger than the GEJE%28.2°
curate, as indicated by the agreement betwEgrand the other studies obtain fluctuations smaller than the G&#:2’
conductance. On the other hand, we note that the linear bes found here for the ballistic case. Although one cannot
havior predicted in Ref. 3 is not seen in Fig. 1. discard technical reasons in explaining these discrepancies,
An important point to note is that the way to obtain suchsuch as the type of variance or the way in which averages are
clean results is by averaging over different disorder realizaearried out, it is more appealing to ascribe them to differ-
tions only, and keeping the actual initial energy fired. Theences in the behavior of the different billiards. At this point it
fact that the spectra are not translationally invariant in energys interesting to note that the possibility of a chaotic billiard
may blur the results if averages over energy windows at difshowing diffusive behavior cannot be discardad.

4 , * - B. Three dimensions
e 3D systems show the same general trends as 2D systems.
. :// ] Figure 6 depicts the varian&?(eg ,E) versusE for the 3D
e Anderson model with.=10 ande=0.0. The squares cor-
et respond to the diffusive cas&WL =160) and the circles to
w’ gL 7t ] the ballistic regime 2L =20). The mean free path in these
e two cases i$/L=0.23 and 1.8, respectively. The broken line
7 gives the logarithmic behavior of the GOE. We note that
I+ 3 . now fluctuations in the ballistic regime almost coincide with
o the GOE, indicating that, for similar values of the mean free
paths, fluctuations in three dimensional are higher than in
0 0 2'0 4‘0 - 6'0 two dimensions, and that the crossover to the diffusive re-

gime occurs at smaller values bfL.. At high energies the
increase in the fluctuations in the diffusive case with energy
FIG. 4. Critical energy as a function of the system size for theSIOws down probably due to finite-size effects, as already

2D Anderson model in the ballistid®) regime. The results corre- noted in Ref. 20.
spond to an energy average over the range2.2—1.8) and On the other hand, our results show that if the product

W2L =20. The fitted straight line i€2=0.0a.—0.12. WZ2L is kept constant, the critical energy increases 4sas

L
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system Braun and Montambaidxound a reasonable agree-
ﬂzﬁ% ment between Eq(15) and their numerical resultéapart
40 | ﬁ 1 from the finite-size effects mentioned ab@vAgain, E. is a
& crucial parameter. We note, however, that our resultsEfor
are supported by our analysis of the conductance; in fact, had
we used the conductance insteadyf (see Fig. 7, even
30 | f 1 smaller fluctuations would have resulted.

L]

f C. Thermodynamic limit
&

L The results discussed above are valid for mesoscopic sys-
20 | B ] tems(finite L). The question is whether they will still hold in
2 the thermodynamic limit. The answer to this question de-
f pends on how this limit is approached. In the standard pro-
& cedure one increases the size of the systenkeeping all
0l rs | other parameters constant. In this procedure not dflly
e tends to zero, but also the system dizeventually becomes
j@’ larger than the localization length. As a consequence, all
states become localized, and fluctuations follow Poisson’s
e e distribution.
0 0 250 500 750 To00 The other way to approach the thermodynamic limit is
E that proposed here, namely, to kdép (or W2L) constant.
When this is done, the critical energy increasesL4s?
(both in the diffusive and in the ballistic cage$his implies
that, although the region where fluctuations follow the GOE

(circles and WAL — 160 (squares The thick broken line gives the becomes relatively narrower &sis increasednote that the

GOE fluctuations, which is not clearly seen as it almost coincide§Otal number of levels :ncreases Bg)’ ';S absolutg \]/C\ndthd f
with numerical results for the fluctuations in the ballistic case. increases. Consequently, we expect the scenario found for

finite L also to be valid in the limit oL tending to infinity.
predicted by Eq(15). In calculatingE, we used the same Note, howeyer, that althqugh the limiting procedure pro-
criteria and type of curvetsee Fig. 2 of two dimensions. poseq here is methodologically useful, the_ one rele\{ant to the
The numerical results fdg, are shown in Fig. 7, along with experiments is the standard procedure discussed in the pre-
the conductanceS results. The fitted straight lines are ceeding paragraph.
E0=0.079.2—0.28 andS=0.14.2+0.09. Now, although
the agreement between the two calculations is not as good as
in two dimensions, it can be considered as reasonable. Equa- We have performed a systematic numerical analysis of
tion (15) in this case give&?=0.024_2, again significantly ~energy fluctuations in the Anderson model in two and three
smaller than our numerical results for bdiy andS. dimensions, over a wide range of parameters, in the ballistic
As regards the asymptotic behavior predicted in Ref. 3and diffusive regimes. Averages were taken over different
we note that Eq(3) gives, for the parameters of Fig. 6, realizations of disorder. The main conclusions of our study
32(ep ,E)~4x 10 “E*2, which is much smaller than the are the following:(i) Both in two and three dimensions, fluc-
numerical results reported in Fig. 6. In a recent study of thiguations follow the GOE up to a critical enerdy,. (i)
Above E., fluctuations increase with energy and are larger
40 i . than the GOE in the diffusive case, and basically constant
: and smaller than the GOE in the ballistic cai) The nu-
e merical results foE. so obtained qualitatively reproduce the
30 + e 1 expected behavior, namely, they are proportiondl %o in
e the two regimes(iv) Furthermore, in the diffusive reginte.
o’ I e | (the Thouless energyis also proportional to the square of
v e " the Fermi velocity.(v) In diffusive systems, the adimen-
v P sional conductance reasonably agrees \Eith giving sup-
10 b ,/' Prtdl i port to the results of the present investigatiori) The nu-
S merical results foE; were used to show that the asymptotic
expressions for the fluctuations in the diffusive regime, re-
0 160 260 300 ported in Ref. 3, give results much smaller than those found
12 here, both for two and three dimensions.

2 (epE)

FIG. 6. 32(er,E) as a function ofE for the 3D Anderson
model withL = 10. The results correspond éa=0.0 andW?L =20

IV. CONCLUDING REMARKS
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