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Energy fluctuations, Thouless energy, and conductance in the Anderson model in the ballistic
and diffusive regimes
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We perform a numerical calculation of long-range energy fluctuations of two- and three-dimensional Ander-
son models in the ballistic and diffusive regimes. In calculating the energy fluctuations, averages are taken over
different realizations of disorder, and not over energy windows at different levels. For windows of widthE
smaller than the critical energyEc , fluctuations follow the logarithmic behavior characteristic of random
matrix theory~RMT!, no matter the degree of disorder. For energies higher thanEc , fluctuations are nearly
constant and below RMT in the ballistic case, and they are higher than RMT and increase with energy in the
diffusive case. The results allow a reasonably accurate estimate ofEc . The expected behavior of the critical
energy with the system size and energy is reproduced by our numerical results. An efficient implementation of
Kubo’s formula has been used to calculate the conductance of the system. In the diffusive regime the numerical
results for the adimensional conductance are in reasonable agreement with the numerical results forEc . It is
also shown that the asymptotic expression derived by Altshuler and Shklovskii for fluctuations in the diffusive
regime gives results much smaller than those reported here.@S0163-1829~97!02748-3#
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I. INTRODUCTION

Spectral correlations of disordered quantum systems
a fundamental role in the study of quantum chaos and in
physics of mesoscopic systems. The short-range statis
properties of the quantum level spectra of disordered syst
with extended states are adequately described by mean
random matrix theory~RMT!.1,2 In the absence of a magnet
field, when time-reversal symmetry is preserved, these sh
range properties are closely simulated by the Gaussian
thogonal ensemble~GOE!.2,3 In particular, there is a repul
sion between nearest levels, whose spacings follow Wig
Dyson statistics.2,4–6 This is true for diffusive as well as fo
ballistic systems, provided that the typical value of the d
order energy exceeds the mean level spacing, which imp
that the energy spectra differ drastically from the clean ca
The ballistic regime is an intermediate regime~rather than a
crossover point! between the diffusive and the clean limits.7,8

To characterize the statistical properties of the spectra
customary to map each real spectrum$e i% onto the unfolded

spectrum$Ei% throughEi5N̄(e i), whereN(e i) is the num-
ber of levels up to an energye i , and the overline denotes th
average over different disorder realizations. The spect
$Ei% has on the average a constant mean spacing equal
After rescaling, the variance of the number of levelsN(E) is
calculated in an energy window@EF ,EF1E# (EF being the
Fermi energy!. For the GOE, this variance, which is indepe
dent ofEF , is equal to2,6
560163-1829/97/56~24!/15853~7!/$10.00
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S2~E!5
2

p2H ln~2pE!1g111 1
2 Si2~pE!2

p

2
Si~pE!

2cos~2pE!2Ci~2pE!1p2EF12
2

p
Si~2pE!G J ,

~1!

where Si(x) and Ci(x) are the sine and cosine integral
respectively, andg50.5772 . . . is Euler’s constant. Note
that as, for sufficiently largeE, the dominant term in Eq.~1!
is the logarithm, the dependence ofS2 on E is much weaker
than the linear dependence expected for uncorrelated en
levels. Long-range fluctuations of the GOE are thus ve
small, a characteristic known as spectral rigidity.

Disordered systems with extended states can be either
fusive or ballistic depending on whether the elastic mean f
pathl is smaller or larger than the linear size of the systemL,
respectively. The spectra of quantum Hamiltonians of dif
sive systems, even though they obey Wigner-Dyson sta
tics, exhibit much larger long-range fluctuations than t
GOE ~Refs. 3 and 9! for energies greater than a critical en
ergy, known as the Thouless energy.10 This critical energy
ec

D is associated with the inverse transport time through
system, and is proportional to the Fermi velocityvF and the
elastic mean free pathl , and inversely proportional toL2,

ec
D5

\vFl

dL2
, ~2!
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where d is the dimensionality of the system. For energ
greater than the Thouless energy, Al’tshuler and Shklov
obtained that the fluctuations are given by3

S2~E!5cdS E

Ec
DD d/2

, ~3!

with c251/4p2 and c3521/2/6p3. Ec
D is the critical energy

in normalized units, which will be calculated below.
In ballistic systems (l .L), there is also a critical energ

ec
B limiting the applicability of RMT.8,11 This critical energy

loses its meaning as an inverse transport timet f
215vF /L

through the system, which now is disorder independent.
land, Gefen, and Montambaux8 predicted that this critica
energy is given by

ec
B5

\vF

l
. ~4!

It plays a role analogous to the Thouless energy for diffus
systems. This ballistic regime is valid for critical energi
larger than the average level spacing, below which the cl
limit sets in.

In this work we carry out a systematic numerical analy
of the energy spectra of the Anderson model. We vary
disorder energyW and the size of the sample in order
consider both diffusive and ballistic systems. We will asc
tain that the elastic mean free path is indeed the key par
eter as long as the long-range energy-level fluctuations
concerned. We also show that the limiting value of logari
mic dependence of the energy fluctuations of ballistic s
tems corresponds to the critical energyec

B . In contrast to the
case of diffusive systems, the fluctuations of ballistic syste
are smaller than those of the GOE for energies greater
the critical one, as already anticipated in Ref. 7. The num
cal results for the fluctuations are used to compute the c
cal energy both in the ballistic and diffusive cases. The
sults forEc follow qualitatively the behavior predicted by th
expressions given above. In the diffusive case the adim
sional conductance is also calculated and shown to be sim
~in magnitude! to the critical energy, as expected.8,12 The
numerical results forEc allow us to show that Eq.~3! gives
fluctuations much smaller than the numerical results repo
in this work.

II. MODEL AND METHODS

A. Hamiltonian

We compute the energy spectrum of the Anderson Ham
tonian

H5(
i

wici
†ci1(̂

i j &
t i j ci

†cj , ~5!

where the operatorci destroys an electron on sitei , andt i j is
the hopping integral between sitesi and j ~the symbol̂ i j &
restricts the sum to nearest-neighbor sites!. We take
t i j 5t521 and consider square and cubic lattices for tw
dimensional~2D! and 3D systems, respectively. Calculatio
have been carried out on clusters of sizes up toL560, for
2D systems, and up toL516, for 3D systems. The energie
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of the atomic levelswi are randomly chosen between2W/2
and W/2. For each value of the disorderW, we consider at
least 1000 different realizations. The Schwarz algorithm
symmetric band matrices13 was used to compute the who
spectrum. We have checked that for all sets of parameterW
and L considered, spacings among nearest-neighbor le
are distributed according to Wigner-Dyson statistics. F
very small values ofW this is not always the case. Th
analysis of the results in this limit is also made difficult b
finite-size oscillations in the density of states.14

B. Fluctuations

As remarked in Sec. I, the standard way of measur
S2(E) consists first, of transforming real spectra onto u
folded spectra: each real spectrum$e i% is mapped onto an
unfolded spectrum$Ei% throughEi5N̄(e i), whereN̄(e) is
the averaged number of levels up to an energye. Second, the
variance of the number of levels found in an interval of fix
length E is directly obtained from the unfolded spectra.
this section, we present results for the variance of the num
of levels obtained by a different numerical procedure wh
gives no fluctuations in the clean limit~see below!. Of
course, we have checked that overall features are proce
independent, i.e., our method coincides with the standard
when subtleties are ignored. Nevertheless, fine details of
number variance are better given by our more direct defi
tion than by the standard procedure.

For each value ofW andL, an energy window aroundeF
is defined:@eF2d/2,eF1d/2#. Random energiese1 and e2
within this interval are chosen. The mean number of lev
within interval @e1 ,e2# is given by

N̄5^N~e1!2N~e2!&W , ~6!

whereN(e) gives the total number of states below energye
for a generic disorder realization;^ &W indicates averaging
over disorder configurations. In the same way, the mean
the squared number of levels in this energy interval is giv
by

N2̄5^@N~e1!2N~e2!#2&W . ~7!

The variance of the number of levels contained in the ene
interval @e1 ,e2# is simply

S2~N̄!5N2̄2N̄2. ~8!

This provides a value ofS2(eF ,E) ~note thatE5N̄). The
sequence is repeated a large number of times for rando
selected energy intervals@e1 ,e2# within @eF2d/2,eF1d/2#,
until a relatively smooth value is obtained for the variance
the number of levelsaveragedover energy intervals contain
ing the same number of levels. The last step implies ave
ing over the selected energy region aroundeF .

Note that only fluctuations induced by disorder are tak
into account by our method. Therefore, the number fluct
tion is strictly zero for a single spectrum. On the other ha
the standard method can be used even in this situation.
variance is defined by

S2~E!5@N~EF1E!2N~EF!2E#2. ~9!



r
rm

e
r
a
d
ys
, a

fo
t
f

te

a
a
fr

he

is

.

er

.

hi
ap

by

r-
c-
l-

ical
des
e

the
r

ed

in
-

of
po-
im-
is
-
this
Eq.

y

x

56 15 855ENERGY FLUCTUATIONS, THOULESS ENERGY, AND . . .
The subtlety within this definition is the way followed fo
unfolding just one spectrum. Sometimes, the asymtotic fo
of Ne→`(e) ~Weyl formula! ~Ref. 4! is used even in the
lower part of the spectrum, and number fluctuations are m
sured relative toNe→`(e). Most frequently, a large numbe
of levels is used to measure the average level spacing,
then fluctuations relative to the mean value are measure
smaller intervals. In this way, it has been proved that cr
talline spectra are uncorrelated up to some energy extent
consequently, theS2(E) statistics is Poisson:15

SPoisson
2 ~E!5E. ~10!

Let us remark that our procedure is quite appropriate
disordered systems, as in our case. We have checked tha
numerical procedure recovers both the analytical results
random series of energy levels@see Eq.~10!# and for the
eigenvalue series of matrices belonging to the GOE@see Eq.
~1!#. The logarithmic dependence onE makes this value
much smaller than the one corresponding to uncorrela
spectra.

C. Mean free path and critical energy

The ratio l /L is the parameter which controls whether
system is diffusive or ballistic, and hence the type of critic
energy and the fluctuations above this energy. The mean
path is approximately given by16,17

l'vFtF5
\vF

2uImS~eF!u
, ~11!

wheretF is the relaxation time at the Fermi energy. In t
present case the Fermi velocityvF can be directly obtained
from the dispersion relation, which in two dimensions
ek522@cos(kx)1cos(ky)#. The result is

\vF5^2Asin2~kx
F!1sin2~ky

F!&, ~12!

where the average is carried out over the Fermi surface
three dimensions, an additional term (kz) has to be inserted
in the square root. On the other hand, the self-energyS(eF)
is roughly proportional to the diagonal element of the unp
turbed Green’s function,16

S~eF!'^wi
2&G0~ i ,i ;eF!. ~13!

i indicates a lattice site andwi its random diagonal energy
For the Anderson model, we arrive at

l'
6\vF

W2pn~eF!
, ~14!

wheren(eF) is the density of states at the Fermi energy. T
result qualitatively reproduces the coherent potential
proximation results reported in Ref. 17. The parameterl /L
depends on the disorderW and on the length of the systemL
via the productA5W2L.

The critical energy in normalized units is calculated
multiplying the Thouless energy, Eq.~2!, by the density of
states and byLd. In the diffusive regime this takes the form
a-
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Ec
D5

6\2vF
2

Adp
Ld21. ~15!

Note that in the diffusive regime the critical energy in no
malized unitsEc coincides with the adimensional condu
tance of the system.8,12 The corresponding result for the ba
listic case is

Ec
B5

Apn2~eF!

6
Ld21. ~16!

If the Fermi velocity is replaced by Eq.~12! and the density
of states at the Fermi energy is approximated by 1/4d, the
final expressions for the mean free path and for the crit
energy can be written in terms of dimensionless magnitu
only, i.e., disorder energiesW are measured in units of th
hopping energyt, lengths in units of the lattice constanta,
andk in units of a21.

D. Conductance

In calculating the conductance of the system we use
standard Kubo formula18,19 conveniently implemented fo
the problem at hand.20 The static electrical conductivity is
given by

S5sxx~0!522
e2

h
Tr@~\ v̂x!Im Ĝ~E!~\ v̂x!Im Ĝ~E!#,

~17!

where ImĜ(E) is calculated from the advanced and retard
Green’s functions

Im Ĝ~E!5
1

2i
@Ĝ1~E!2Ĝ2~E!#. ~18!

The velocity ~current! operatorv̂x is related to the position
operatorx̂ through the equation of motion

i\ v̂x5@Ĥ,x̂#, ~19!

whereH is the Hamiltonian in Eq.~5!.
In carrying out numerical calculations, we connectedLd

clusters to semi-infinite leads withLd21 channels, and one
atomic orbital per site with the same hopping integral as
the Hamiltonian of Eq.~5!. Within the one-electron approxi
mation and if linear response is assumed, the exact form
the electrical field does not matter. Therefore, an abrupt
tential drop at one of the two cluster sides provides the s
plest numerical implementation of the Kubo formula. In th
case, operatorv̂x has finite matrix elements on only two ad
jacent layers, and Green’s functions are just needed for
restricted subset of sites owing to the trace appearing in
~17!. Green’s functions are given by

@E2Ĥ2Ŝ r~E!2Ŝ l~E!#Ĝ~E!5I , ~20!

whereŜ r(E) and Ŝ l(E) are the self-energies introduced b
the semi-infinite right and left leads, respectively.21 Thus, the
evaluation of the matrix elements of ImĜ(E) is efficiently
achieved applying anLU decomposition to the band matri

^ i uE2Ĥ2Ŝ r~E!2Ŝ l~E!u j &, ~21!
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where i and j are sites of theLd clusters. Self-energies ar
calculated for any energyE using a recurrent algorithm, an
retarded or advanced Green’s functions are obtained u
the corresponding self-energies in Eq.~20!. Since lead self-
energies add an imaginary part to some diagonal elemen
the Hamiltonian, there is no need to add a small imagin
part to the energyE before solving the set of linear algebra
equations. The advantages of the procedures followed
were discussed in detail in Ref. 20.

III. RESULTS

A. Two dimensions

In Fig. 1 we showS2(eF ,E) as a function of energy in
normalized units for the 2D Anderson model withL550 and
eF522. The squares correspond to the diffusive regi
(W2L5160), and the circles to the ballistic cas
(W2L520). The ratiol /L for these two cases is approx
mately 0.2 and 1.7, respectively. The thick broken line giv
the logarithmic behavior of the GOE. As expected, in t
diffusive case, fluctuations follow the GOE up to the critic
energy and then increase beyond the GOE, although
much lower pace than in the completely uncorrelated c
~see above!. A critical energy which sets a limit to the appl
cability of RMT also exists in the ballistic regime, whic
corresponds to the inverse of the relaxation time~or, equiva-
lently, the imaginary part of the self-energy!. For energies
higher than the critical one, the fluctuations are smaller t
predicted by RMT, and remain almost constant as soon
they deviate from the logarithmic behavior. For large en
gies a slow increase of the fluctuations withE is observed.
This behavior has already been found by several author
geometrical quantum chaotic billiards.22,24,23Our results for
intermediate values ofW indicate that the transition from th

FIG. 1. S2(eF ,E) as a function ofE for the 2D Anderson
model with L550. The results correspond toeF522 and
W2L520 ~circles! andW2L5160 ~squares!. The thick broken line
gives the GOE fluctuations.
ng
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ballistic to the diffusive regimes is smooth. The tren
shown in Fig. 1 are very general, and can be better exhib
on a log-linear plot. Figure 2 shows this type of plot for th
varianceS2(eF ,E) as a function of the normalized energ
The solid line corresponds to the result for the GOE.
small E the curves follow the same behavior as the GO
until they deviate from it to larger fluctuations in the diffu
sive cases, and to smaller fluctuations in the ballistic cas

We investigated the variation of the critical energies w
W andL. In determiningEc we used curves similar to thos
plotted in Fig. 2. The criterium we followed is thatEc is the
energy at which the numerical results for the fluctuatio
deviate 2% from the GOE. Instead of varyingW and L
independently, we keepl /L ~and thus the productA5W2L)
constant. We choose the two values ofA of Figs. 1 and 2,
one corresponding to the diffusive regime (A5160) and the
other to the ballistic regime (A520), and analyze the chang
in Ec as a function of the remaining free parameter. T
results for the critical energy as a function of the system s
for the diffusive regime are ilustrated in Fig. 3. The fitte
straight line isEc

D50.14L20.61. The numerical results fo
the conductanceS are also shown in Fig. 3. The fitte
straight line is in this case,S50.13L20.22. The agreemen
between the two magnitudes~calculated through completel
different methods! is excellent. The results do not, howeve
agree quantitatively with that given by Eq.~15!, namely,
Ec

D50.03L. A similar plot for the ballistic case is shown i
Fig. 4. The fitted line is nowEc

B50.06L20.12, which again
is rather different from the analytical result of Eq.~16!,
Ec

B50.18L.
We observe significant variations inEc with the initial

energyeF . This is a consequence of changes in the Fe
velocity ~diffusive case! and in the density of states~ballistic
regime!, which in the tight-binding model used here depe
appreciably on the energy, particularly the former. Nume
cal results forEc , multiplied by a constant factor~1.3! in the
diffusive case and the square of the Fermi velocity, a
function of the energy are plotted in Fig. 5. Note thatEc is
roughly proportional tovF

2 , in qualitative agreement with

FIG. 2. S2(eF ,E) as a function ofE for the Anderson model on
a logarithmic scale. The results correspond toL550 andeF522
in two dimensions andL510 and eF50.0 in three dimensions
W2L520 ~squares! and W2L5160 ~circles!. The solid line gives
the GOE fluctuations.
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Eq. ~15!. It should be noted, however, that as already poin
out this equation does not quantitatively agree with the
merical results. In fact it gives a numerical factor which
three times larger than that used in Fig. 5, i.e.,\2vF

254.2Ec .
A question of interest is the asymptotic behavior of t

fluctuations predicted by Altshuler and Shklovskii3 in the
diffusive case, Eq.~3!, for E@Ec

D in two dimensions. By
using the value of the critical energy reported in Fig. 3, a
the same parameters of Fig. 1, we obtainS2(E)'0.004E.
This gives much smaller fluctuations than the numerical
sults of Fig. 1. A source of errors is the actual value ofEc .
However, our numerical results forEc should be rather ac
curate, as indicated by the agreement betweenEc and the
conductance. On the other hand, we note that the linear
havior predicted in Ref. 3 is not seen in Fig. 1.

An important point to note is that the way to obtain su
clean results is by averaging over different disorder real
tions only, and keeping the actual initial energy fired. T
fact that the spectra are not translationally invariant in ene
may blur the results if averages over energy windows at

FIG. 3. Critical energyEc ~squares! and conductanceS ~circles!
for the 2D Anderson model as a function of the system size, in
diffusive (D) regime. The results correspond to an energy aver
over the range (22.2,21.8) and W2L5160. The fitted straight
lines areEc

D50.14L20.61 andS50.13L20.22.

FIG. 4. Critical energy as a function of the system size for
2D Anderson model in the ballistic (B) regime. The results corre
spond to an energy average over the range (22.2,21.8) and
W2L520. The fitted straight line isEc

B50.06L20.12.
d
-

d

-

e-

-

y
f-

ferent levels are taken, because the region with larger fl
tuations can quickly dominate. We have checked, howe
that if additional averages over energy windows away fr
regions where fluctuations are abnormally large~the edges
and center of the band! are taken, the present results are n
changed.

Referring to the results in the ballistic regime~fluctuations
below the GOE!, we note that simulations on quantum ch
otic billiards ~commonly assumed to be ballistic system!
show dissimilar results. In particular, while many autho
report fluctuations similar to or larger than the GOE,25,26,28,29

other studies obtain fluctuations smaller than the GOE,22,24,27

as found here for the ballistic case. Although one can
discard technical reasons in explaining these discrepan
such as the type of variance or the way in which averages
carried out, it is more appealing to ascribe them to diff
ences in the behavior of the different billiards. At this point
is interesting to note that the possibility of a chaotic billia
showing diffusive behavior cannot be discarded.23

B. Three dimensions

3D systems show the same general trends as 2D syst
Figure 6 depicts the varianceS2(eF ,E) versusE for the 3D
Anderson model withL510 andeF50.0. The squares cor
respond to the diffusive case (W2L5160) and the circles to
the ballistic regime (W2L520). The mean free path in thes
two cases isl /L50.23 and 1.8, respectively. The broken lin
gives the logarithmic behavior of the GOE. We note th
now fluctuations in the ballistic regime almost coincide w
the GOE, indicating that, for similar values of the mean fr
paths, fluctuations in three dimensional are higher than
two dimensions, and that the crossover to the diffusive
gime occurs at smaller values ofl /L. At high energies the
increase in the fluctuations in the diffusive case with ene
slows down probably due to finite-size effects, as alrea
noted in Ref. 20.

On the other hand, our results show that if the prod
W2L is kept constant, the critical energy increases asL2, as

FIG. 5. Critical energyEc ~circles! multiplied by a constant
factor 1.3~see text! and square of the Fermi velocityvF

2 averaged
over the Fermi surface as defined in Eq.~12! ~dashed line! as a
function of energy, for the 2D Anderson model in the diffusiv
regime. The results correspond toL540 andW2L5160. Both mag-
nitudes were calculated by averaging for each energye in the range
(e20.2,e10.2).
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predicted by Eq.~15!. In calculatingEc we used the same
criteria and type of curves~see Fig. 2! of two dimensions.
The numerical results forEc are shown in Fig. 7, along with
the conductanceS results. The fitted straight lines ar
Ec

D50.075L220.28 andS50.14L210.09. Now, although
the agreement between the two calculations is not as goo
in two dimensions, it can be considered as reasonable. E
tion ~15! in this case givesEc

D50.028L2, again significantly
smaller than our numerical results for bothEc andS.

As regards the asymptotic behavior predicted in Ref.
we note that Eq.~3! gives, for the parameters of Fig. 6
S2(eF ,E)'431024E3/2, which is much smaller than th
numerical results reported in Fig. 6. In a recent study of t

FIG. 6. S2(eF ,E) as a function ofE for the 3D Anderson
model withL510. The results correspond toeF50.0 andW2L520
~circles! andW2L5160 ~squares!. The thick broken line gives the
GOE fluctuations, which is not clearly seen as it almost coinci
with numerical results for the fluctuations in the ballistic case.

FIG. 7. Critical energyEc ~squares! and conductanceS ~tri-
angles! for the 3D Anderson model as a function of the system s
in the diffusive (D) regime. The results correspond to an ener
average over the range (20.2,0.2) andW2L5160. The fitted
straight lines areEc

D50.075L220.28 andS50.14L210.09.
as
a-

,

s

system Braun and Montambaux30 found a reasonable agree
ment between Eq.~15! and their numerical results~apart
from the finite-size effects mentioned above!. Again,Ec is a
crucial parameter. We note, however, that our results forEc
are supported by our analysis of the conductance; in fact,
we used the conductance instead ofEc ~see Fig. 7!, even
smaller fluctuations would have resulted.

C. Thermodynamic limit

The results discussed above are valid for mesoscopic
tems~finite L). The question is whether they will still hold in
the thermodynamic limit. The answer to this question d
pends on how this limit is approached. In the standard p
cedure one increases the size of the systemL, keeping all
other parameters constant. In this procedure not onlyl /L
tends to zero, but also the system sizeL eventually becomes
larger than the localization length. As a consequence,
states become localized, and fluctuations follow Poisso
distribution.

The other way to approach the thermodynamic limit
that proposed here, namely, to keepl /L ~or W2L) constant.
When this is done, the critical energy increases asLd21

~both in the diffusive and in the ballistic cases!. This implies
that, although the region where fluctuations follow the GO
becomes relatively narrower asL is increased~note that the
total number of levels increases asLd), its absolute width
increases. Consequently, we expect the scenario found
finite L also to be valid in the limit ofL tending to infinity.
Note, however, that although the limiting procedure p
posed here is methodologically useful, the one relevant to
experiments is the standard procedure discussed in the
ceeding paragraph.

IV. CONCLUDING REMARKS

We have performed a systematic numerical analysis
energy fluctuations in the Anderson model in two and th
dimensions, over a wide range of parameters, in the balli
and diffusive regimes. Averages were taken over differ
realizations of disorder. The main conclusions of our stu
are the following:~i! Both in two and three dimensions, fluc
tuations follow the GOE up to a critical energyEc . ~ii !
Above Ec , fluctuations increase with energy and are larg
than the GOE in the diffusive case, and basically const
and smaller than the GOE in the ballistic case.~iii ! The nu-
merical results forEc so obtained qualitatively reproduce th
expected behavior, namely, they are proportional toLd21 in
the two regimes.~iv! Furthermore, in the diffusive regimeEc
~the Thouless energy! is also proportional to the square o
the Fermi velocity.~v! In diffusive systems, the adimen
sional conductance reasonably agrees withEc , giving sup-
port to the results of the present investigation.~vi! The nu-
merical results forEc were used to show that the asympto
expressions for the fluctuations in the diffusive regime,
ported in Ref. 3, give results much smaller than those fou
here, both for two and three dimensions.
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