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We present a rigorous quantum-mechanical description of the miniband transport in semiconductor super-
lattices under the mutual influence of high electric and magnetic fields aligned parallel to the growth direction.
Strong current oscillations appear due to Landau and Wannier-Stark quantization of the electronic states and
due to the scattering on polar-optical phonons. The combined influence of an electric and magnetic field on
magnetophonon and electrophonon resonances is treated by a lateral electron distribution function, which is the
solution of a quantum-kinetic equation. The lateral electron heating due to the field dependent coupling
between longitudinal and transverse degrees of freedom via the distribution function is essential to understand
miniband transport properties of superlattices. Intracollisional field effects are taken into account. Strong
magnetic fields lead to a pronounced enhancement of Wannier-Stark current oscillations. The experimentally
detected crossover in the temperature dependence of the current is reproduced. The influence of an electric field
on magnetophonon resonances is investigated.
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I. INTRODUCTION rise to a complete quantization of the energy spectrum and a
reduction in the dimensionality due to the magnetic-field-
Two quite different transport regimes have been discrimi-induced quantization of the in-plane motion. In this case the
nated in semiconductor superlattiogg3.’s). At low electric  Hamiltonian of the system decouples into two separable
fields, i.e., whemhQ)=efd<<A (where() is the Bloch fre- parts: One refers to the motion along the SL axis under the
guency,£ the electric fieldd the SL period, and the mini-  influence of the SL potential and the electric field, and the
band width the states are extended, and the current increasegher one describes the in-planey) motion in the presence
linearly with increasing field. This is the so-called mobility of the magnetic field. The carrier motion is characterized by
or miniband transport regime. If, on the other hand, thetwo characteristic frequencigshe Bloch frequency) and
Bloch frequency is larger than some characteristic collisiorthe cyclotron frequency.=eH/m*c) so that phase locking
broadening (>1/7), electrons approach the minizone may occur, if their ratio is a rational numbeDue to the
boundary, where the effective mass is negative, and eventisuperimposed periodic motions in the transverse plane and
ally undergo Bragg diffraction leading to electric-field- along the SL axis, the current exhibits pronounced structures
induced localized states. The spatial overlap between theskat depend on the ratio between the two frequeneieand
localized Stark-ladder states decreases with increasing field. Combined Stark-cyclotron or Stark-cyclotron-phonon
and with it the transition probability. In this so-called hop- resonances are predicted to occur under the condition
ping regime, the band conduction model breaks down, andlw.=1Q or nw.=|1Q *+ wy|, respectively, wherev, is the
transport is due to scattering mediated carrier transitions besptic-phonon frequency ana,| are integer numbers.
tween Wannier-Stark ladder states. Negative differential con- There are only few experimental and theoretical studies
ductivity (NDC) may occur. Recently, the existence of Bloch dealing with this subject. Noguckit al® treated transport in
oscillations in SL’s has been demonstrated by electro-opti¢the mobility regime under high magnetic fields transverse to
experiments? and by a direct observation of the submillime- the interfaces and detected clear magnetophonon resonances.
ter wave emission from spatial carrier oscillatidriseglect-  These resonances are magnified in SL’s, because the phonon
ing Wannier-Stark localization and interminiband transitionsscattering rate is enhanced due to the peaked structure of the
such Bloch oscillations have been studied by solving thealensity of states. On the other hand, they observed a suppres-
Boltzmann transport equation in the relaxation timesion of optical-phonon scattering when the magnetic field is
approximatiorft strong enough A<%w;) to create real forbidden gaps.
Another interesting subject is the magnetotransport inThese effects have been studied theoretically on the basis of
SL’s that manifests such fundamental phenomena as quathe balance equation methéd.
tum interference and electron localization. It is the aim of the At high electric fields, when hopping is the dominant
present paper to consider miniband transport under the maransport mechanism, Stark-cyclotron resonances have been
tual influence of both an electricg] and a magnetic ) reported in an experimental woPKTheir theoretical analysis
field aligned parallel to the growth axis of the SL. This givesis presented in Refs. 9 and 10. From the temperature depen-
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dence of the current it has been concluded that acoustidunction is calculated from a suitable quantum-kinetic equa-
phonon-assistedquasielastit scattering is not dominafit. tion.

Combined Stark-cyclotron resonances have also been identi-

fied in photocurrent measuremenhtsAs the magnetic field Il. BASIC THEORY

was increased, the intensity of the Stark transitions was en-

hanced and conversely, Landau transitions became more pro- Th?‘ mobility transport reg'ime(l'7-<1) was thoroughly
nounced with increasing electric field. It has been poimednvesngated within the semiclassical Boltzmann transport

18,19 : s
out that disorder or Coulomb interaction may cause a cou':nOdeI' In the opposite cas@ 7> 1, when Wannier-Stark

pling of the lateral and longitudinal electron motion, which Iocallzat_lon (WSL) prevails, the Boltzmann approach be-
leads to anticrossings. comes inadequate and must be replaced by a quantum-

onlv few th tical treated qal i ftransport theory, which allows the determination of the non-
nly Tew theoretical papers treated galvanomagnetic €faq,ijibriym distribution function. In high electric fields the
fects in SL's in the hopping transport regif&!? by em-

> , X . distribution function of electrons differs strikingly from its
ploying the Wannier-Stark representation of the Hamil-gqyilibrium form and has to be calculated from a kinetic

tonian. The interest of the authors focused on the fielgation. If constant electric and magnetic fields are applied
dependence of the scattering matrix element. The electrog, the SL structure the Laplace transformed distribution
distribution was treated by the mean energy gain metfioti, function f(k,s) is the solution of the equatiofsee, e.g.,
which is claimed to be a fairly good approximation if the Refs. 20,21

intrawell relaxation is much faster than interwell hopping. In

this approximation the coupling between the longitudinal and el .
transverse carrier motion via the field dependent distribution szf(k,SFE AWC(K’ k
function is not adequately treated. However, the consider- K

ation of this coupling is essential to understand the nonsepgyhere the operatats\fv encloses both scattering in and scat-
rable influence of electric and magnetic fields on the mini-tering out contributions:

band transport. Furthermore, the determination of the
nonequilibrium distribution function and the related current
density is a serious theoretical problem that has to be solved.
On the one hand it has been pointed out that the electric field
reduces the coupling between quantum wells and tends &/ exhibits a characteristic dependence on the electric and
localize the electronic wave functions. On the other hand, theénagnetic fields and was calculated in Ref. 22. At the pres-
electric field leads also to a field-dependent energy transfegnce of a magnetic field the scattering probability is an op-
to the lateral degrees of freedom, which has not been treategfator defined by

in most previous theoretical works. The importance of this )

lateral electron heating, making the high-field miniband Nl _ / ! / ;

transport effectively a t%lree-dimgnsional groblem, has been W(K',K|s)=W(k',ks)+ 7 e lelk T ATV

stressed by Gerhardt The coupling between the hopping .
transport along the SL axis and the in-plane motion mainly —e[k=A(V . &)

determines the temperature dependence of the minibandiacoliisional field effects due to both electric and magnetic
transport in a SL. Other than in narrow band semiconductorse|ds are included. This expression allows the simultaneous
where the Iatergl momentum distribution functiogk,) IS treatment of arbitrarily strong electric and magnetic fields. In
nearly constant; a strong temperature dependence of thezq (3) ¢(k) is the superlattice dispersion relatiof, the
current has been observed in SkRef. 17. From miniband  ector potential of the magnetic field in the symmetric
transport measuremen(at 7=0) two different temperature  g5,ge, andW the transition rate, which depends on the elec-
regimes have been discriminatedAt low temperatures and  yric and magnetic fields and which plays a fundamental role
sufficiently high electric fields electrons diffuse through the ne transport. Without any scatterin ¢— ) the wave
crystal by hopping processes and the current increases Wilfyctor component along the field direction changes with time
increasing temperature. Above a characteristic temperatuieaccording tok,(t) = ko + e£t/%, which results in an oscilla-

the eigenfunctions extend_ov_er many SL periods and the CUlsry drift velocity (v,=de/dkk,). The frequency of these
rent starts to decrease with increasing temperature._A_ the%‘scillations ink space is Ze&/#G,, whereGy is the short-
retical study of the measured temperature charaCteristics g yector of the reciprocal lattice along thedirection. In
quires a consistent treatment of field effects in bOth transpotk,e one-band case this periodic motion is quantized and leads
regimes and a calculation of the lateral electron distribution o \Wannier-Stark ladder. The time averaged current van-
TUHCt'On frofm a k:lnelnc equation. \éV|tr|1 res_pef_ctléo t?]e Tuwal‘lishes unless scattering induced transitions between Stark lev-
Influence of parallel magnetic and electric fields the knowl-g\g 5ceyr. Therefore, the identification of the main scattering

edge of the nonequilibrium distribution function is necessary, o cesses is crucial for the calculation of the current. Here

i_n order to understand, why a magnetic field affects t_ran_siwe focus on optical-phonon scattering described by théFro
tions between Stark ladder states, and why an electric f|elﬁch Hamiltonian
changes magnetophonon resonances. ’

In this paper we present a rigorous quantum theory of the 1
high-field miniband transport in SL’s. Intracollisional field He pp=—=> fiwd yhlala,_,+H.c], (4)
effects are included and the nonequilibrium distribution &P V2N kg @ TRk

s)f(k’,s), ((H)]

AW(K' K[$)=W(K' k|S)— S « > W(K,K'|s). (2)
k"
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where v, is the phonon frequencyy, the electron-phonon &ﬁ(k’,k|s) . .

coupling constant, anal, (b,) are the electrofphonon) field o e—g[AW(k' Kls)—AW(K' k [s)]. (9
operators. The envisaged nonperturbative inclusion of exter- z

nal electric and magnetic fields requires a due treatment gt js seen from the ansatZ) that the boundary conditiof®)

intracollisional field effects, i.e., a consideration of field de-js only fulfilled when the last term on the right hand side of
pendent scattering rates. Using diagrammatic techniquesq. (7) vanishes:

such a scattering rate was obtaine@fft

. , > AWKk, |s)f(K',s)=0. (10)
W(K' kls)=2 Re| dt e 5> |y 2 [(Ng+1)e 'ed %
0 q
This equation can be used to derive an integral equation for
: i (12 the lateral distribution functiom(k, ,s) (cf. Ref. 16. For
Twgt _ _ - 1
Nge ™ ]exp{ ﬁj_t,sz{s[k+q Fr this purpose a new operatby, is defined by

+A(IV)]—e[k— FT—A(in)]}} Ok’ K+ q—Ft s f(k,s)=n(k, ,s)+ > Fy(k',kls)nk,,s), (11
k/

®)  which we compare with Eq(7) [under the conditior{10)]

wheres is an adiabatic parametéhe Laplace transformed 2nd obtain

time variable, F=eé/# and Ng= U expfiowg/kgT) —1] is ~ ~ . R

the phonon distribution function. Equati¢f) takes into ac- Fo(k' K|s)=F(k',k|s)+ >, Fi(K K'|S)F(K"K|s).
count intracollisional field effects due to both electric and K’

magnetic fields. The Houston representatibnof the scat- (12

tering probabilityW has been derived to the lowest order in T4 derive an equation fan(k,) we insert Eq(11) into Eq.

the electron-phonon coupling and for low carrier concentray10) and arrive at an expression that can be cast into the form
tions, where correlation effects can be neglected.

As mentioned above the motion of electrons perpendicu- .
lar to the layers is strictly periodic when scattering is ne- 2 AW, (k" k, [s)n(k] ,s)=0, (13
glected so that periodic boundary conditions can be imposed K’
. . 6 ~
along thek, directiort whereW, itself satisfies the integral equation
f(ky k+Az,5)=1(k, k;,9), (6) . ) )
AW, (K’ Kk, [s)=AW(K" k, |s)+ 2, Fi(k',K'|s
where A, is the reciprocal lattice vector. This periodicity (KK, ]s) (Kkuls) kE il I®)
condition can be used to simplify the equation fgk). To

this end we introduce a lateral distribution function XAW(K" K, [s)

n(k, ,s)= Zsz(k,s), which allows a reformulation of the ki- R R

netic equatior(1) in such a way that the boundary condition =AW(k’,kL|s)+2" F(k'K"|s)

(6) is automatically fulfilled. The simplification results from K

the fact that already one degree of freedgramely,k,) has X AW, (K" K, |s). (14)

been eliminated and that spherical symmetry applies to the

remaining parn(k, ,s) of the distribution functionn(k, ,s) Now we insert Eq.(9) into the k, derivative of Eq.(12)
describes the heating of the lateral electron motion andnd compare the result with the difference
strongly deviates from its equilibrium expression if high w;, (k' ,k)—W,(k’,k, ) expressed by using E¢L4). We ob-
electric fields are applied. To derive an equationrfgk, ,s) tain

we make the ansatz

oF (K Kls) 4

. = —[AW, (K’ k|s)— AW, (k' k, |s)],
f(k,s)=n(k,,s)+ >, F(k' K/s)f(k',s) e eg[ e R (15)
k!

which completely agrees with Eq9). From Egs.(9) and
(15 we conclude that an iteration of EL4) results in an
asymptotic expansion &/, with respect to the electric field.
with In the hopping regime, whef 7>1, it is a reasonable ap-
proximation to retain only the first term in this expansion so
that we can identify the quantitfW,; with AW in Eq. (13).
Physically it is obvious that for the considered field align-
R ments the lateral distribution functiam(k, ,s) does not de-
Owing to Egs.(1) and(7) the newly introduced operatdét pend on the angle but only @k, |. This will be confirmed by
must satisfy the equation the calculation of the scattering probabili$/ in the next

#k, .
+—=> AW(K k. |s)f(K',s), 7
el W

A\?V(k',kgs)zg AW(K' K|s). (8)
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section. In this case the second term on the right hand side of a3 = < _
Eq. (3) does not give any contribution and we obtain from W= 5 f dquf day| 7qz|2h(“’qz) _Z g,(q, )e'9z927
Eq. (13 o 1=
a3 ) 27/d
=5 f d°q, fo da,
> WK k|s)n(k! ,s)—W(k,k'|s)n(k, ,s)]=0. © ©
ky k' i T
(16) Xn;m |7q1+2wn/d|zh(quJrZﬂ-n/d)I:Zx gi(q) eI,

(18)
This is a convenient final form of the quantum-kinetic equa-
tion because already one degree of freednamely,k,) has
been eliminated. Together with the normalization condition
for n(k,) the linear integral equatiofil6) has a unique so-
lution. As we will show in Sec. IV the current density can
likewise be calculated from this special distribution function.

Here g,(q,) are the Fourier coefficients af(qg). In the
restricted g, interval (0<qg,<2w/d) the factor
Yo, 2mniel 2N(wq, 1 2mmva) depends only weakly ow,, so
that thel =0 term dominates the sum in Eq.(18), and we
obtain

a3
WE(E) jd3CI|?’qZ|2h(qu)g|=O(ql)_ (19)

Making use of the equation for the Fourier coefficignt g,
lll. SCATTERING ON POLAR-OPTICAL PHONONS

d [2n/d

We will focus on the particular case of scattering on Gr=o(dL)=5— da.g(d. .9z, (20)
polar-optical phonons with a narrow phonon bandwidth so 0
that resonant-type current anomalies are not essentialind considering only dispersionless optical phonons
smoothed out by an integration over the phonon dispersior(.qu_> wp), we arrive at the following expression for the
There are many different models for the electron-phonon inggnsition probability:
teraction in SL’s, which do not agree with each other and
are, therefore, the subject of some controversial discussions. o ) _
A due consideration of the electric-field dependent overlapV(k' .K|s)=2T'wj Re| dt e S[(Ng+1)e o'+ Npe'“o']
of wave functions localized in neighboring wells via the 0
form factor is inevitable to decide whether optical-phonon 2a/d i (2
mediated current anomalies should occur in experiments or Xf d*q, fo dqzexp< gfﬁtlsz{S[k“Lq
not. On the basis of the dielectric continuum model Shon and
Nazaren& obtained very small form factors and related cur-
rent contributions resulting from LO-phonon scattering. This
indicates that a realistic description of the scattering on
polar-optical phonons in SL’s is necessary to derive reliable X 8(k' —k—qg+Ft), (21)
guantitative results. However, to keep our presentation trans-
parent and simple we do not go into a detailed analysis 0¥vhere
optical-phonon modes in the layers and rely on the simple
bulk phonon model, which already reproduces the main r
gualitative features of the electron-phonon interaction in a

.SL' In this case they Sl‘ém ;n Eq.(5) is expressec_i by an is an average of the electron-phonon coupling constant along
integral (2. .. —(a/2m)°fd"q. . .). The exponential term o folq direction. The replacement of the scattering matrix
in Eq. () is periodic inq; (q,—0,+2/d) and depends on  glement by an averaged screened coupling constant is only a
q. only via e(k, +q,) so that the characteristic transverse cryde approximation which allows us here, however, to de-
electron and phonon momenta are of the same order of magjye 3 number of analytical results. As tigeintegration has
nitude. Denoting the exponential term in E) by g(q) and  peen extended over the entire momentum space, the lattice
the remainingg-dependent factor byy|*h(wg) the right  constanta enters this average and not the SL peribd

—Fr+A(iV)]—e[k— FT—A(in)]})

a (2nla )
= Z_’_ 0 qu| 'YqL:O,qZ| (22)

hand side of Eq(5) has the following structure: The motion along the SL axis is not affected by the mag-
netic field and is characterized by the tight-binding disper-
sion relation,
a3
W= (5) f &®gl v¢|*h(@q)g(q). (g A
e(ky) =5 [1—codkd)]. (23

We neglect the weak, dependence imq and yq and con-  Thek, andk, dependencies separate from each other so that
sider the Fourier representation @fg) with respect tag,: the 7 integral is easily calculated in EqR1). We obtain
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L
i

W(k',k|s)=2T w3 Refo dt e S{(Ng+1)e ot f A2k, am(K (32

) A and
+N0e"“0‘]exp[ hQ(cosk d—cok,d)
Uno(ky)=2+2mZe (10" 2(k,1g)D). (33

Ot
7) ] J d®q F(k, .k ,q.t). (29 Inserting this result into Eq24) we obtain the final expres-
sion for the transition rate

X sin

The Green'’s functior is defined by o
W(k’,k|s):81“w0e*(kl|8) ~(K/1g)

it
F(k, k|, t)=exp[— e[k, +q, +A(IVL) °° . :
SRERAY q_L| ﬁ{ [ 38 q_L kJ_ ] XRef dt e—st[(N0+1)e—|w0t+Noelwot]
0

—s[kL—A(inl)]}] Sk, +q, (29 A [t
X ex |m(cosk;d—cod<zd)sm -
Its Laplace transformed components satisfy the differential

equation < .
% E (—1)n gl ~mact
i nn’=0
s— —{s[k, +q +A>V, )]—s[k, —A(iV, ) ]
et T T ATTI )Tl ZATTD X Lo(2(k, 1)Ly (2(K{15)2). (34)
XF(k, ki ,q.]s)= Sk, +q, (26)  Equation(34) shows that the scattering is isotropic in the
. ) plane and does not introduce any angular dependence of the

which we solve by making use of the ansatz distribution function. Therefore, it is possible to expand

n(k,) in orthogonal Laguerre polynomials,
Fke ki auls)=2 ane(auls)vs (ko) (k'y),
. (@27 n(k)=2exg—(k, |B>2>2 (= 1)"(2(K,1g) N,

with normalized orthogonal wave function, , which are (35

solutions of the eigenvalue problem The kinetic equatiori16) is used to determine the unknown

e[k+ A V) ]9 (K ) =E, hy(K,). (28) coefficientsN,. The imposed normalization of the lateral
* * electron distribution function
Inserting the ansat27) into Eq. (26), the coefficientsa,

are easily calculated. From an inverse Laplace transforma-
tion we obtain n(k.)=1 (36)
Fk, Kk ,q.|t)= E ex h (Eyr — Ex)}wf(kL)zpw(ki) E converted into the conditionEﬁ;oNn:l, where
AN

=(a?27l3)N,.
Now we are in the position to derive an explicit form of
X f oK gy (K] —ay) gy (KT). (290  the kinetic equatiori16). To this end Eq(34) is inserted into
Eqg. (16). Thek,,k, integrals are elementary and lead to the
In the symmetric gaug€A(r)=e[ Hxr]/2kc} Eq. (28) has  function
the solution

e—ilﬂt, (37)

A Ot A
_12
m+|m|+1 G(t)=Jp (hﬂsm—) Izz_w f|(m

> (0

E)\—Emn ﬁ(})c(

which is periodid G(t+2#/Q)=G(t)] and may, therefore,
Jin+1) ... (n+]m) be Fourier transformed as indicated. The Fourier coefficients
f, depend on the electric field and are given by

wn,m(ka ¢) = 2\/;

m]!
A 1(n t
Hml! _ 2 :
25 (|m|+ )21 |m| o — (klg)2 n!| f,(—)——J dtcoglt)Jg —sm—)
X (21g) S P by nQ) o hQ~ 2
XLI"(2(klg)?)e ™™, 3D - _f dx J (—smx) (38)
with lg=+%/m*w. being the magnetic length and
n=0,1,2...,m=0,£1,+2,... is thediscrete set of quan- Physically, the Fourier transformatid7) simply means a

tum numbers. It is straightforward to calculate the Green’sswitching to the Stark-ladder representation, which is appro-
function (29) by making use of the equations priate in the hopping transport regime. In this representation
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all states are completely discrete so that the expression for IV. CALCULATION OF THE CURRENT
the current and the kinetic equation exhibit a singular struc- I -
ture. In this case meaningful results can only be obtained ié '!'he current d‘?”s'ty is calculated from the electron distri-
one reintroduces the neglected phonon dispersion. Thi ution function via

would allow a consistent microscopic consideration of the

hopping transport in this field configuration. Here, however, j=— —

we prefer a phenomenological approach and identify the hVi(1B2)
variable s of the Laplace transformation in E¢34) with
some effective scattering raterl/which leads to a colli-
sional broadening of Landau and Stark levels. Putting ever
thing together we obtain from Eqgl6), (34), and (37) the

e(k)Vif(k), (42

whereV is the crystal volume. This expression has been
obtained by an integration by parts and allows a straightfor-
Yward use of the kinetic equatiofi). In our context it is
expedient to use another form, which expresses the current

following set of homogeneous linear equations gy density by the lateral distribution function directly. This is
e accomplished by inserting E(L1) into (42) and considering
DR (i 1 Eq. (15 and Eq.(13). Finally, we arrive at a representation
W1 A 2 (n —n)y—lk—1]? for the current
1 . n ~ ,
- J2= = 22 AWK Kn(k])e(K), (43)
S+[(n"—n)y—lk+1]? Kk!

_ which has already the asymptotic fortj,{ 1/€) relevant in
Ny the NDC regime. To the leading order in the asymptotic
expansion of the current with respect to the electric field, we

N ] identify the renormalized scattering raté with W and con-

x{ex;{g[(n’—n)y—lx]

sider again Eq(13), which yields

—exp{— g[(n’—n)y—lx]

=0, 3 o Q2

=— d3kf Bk WK k)n(k) )[e(k) —&(K)].
Here 6=1/wgt is the broadening parametet;,=w./wq Iz S(ZW)GJ ( In(kp)le(k’) —e (k)]
(k=Qlwg) the parameter of the magnetielectrig field, (44)
and B=fwy/kgT. In deriving Eq.(39 the smoothk, de-

pendence of the scattering out term has been negl&tted.] N€ second term on the right hand side of B).is propor-

Adding th lizati ditio”_ N, =1, Eq. (39) tional to 8y » so that it does not give any contribution to the
) g the l?orma|za lon conaditio n=0""n""=» _q',, current density44). An explicit form for the current density

gives us an inhomogeneous set of linear equationNfar . can be derived from Eq44) by inserting Eq(34) and Eq.

which has a unique solution. In the limit of vanishing mag- (35) into Eq. (44) and by calculating the,, k. integrals,

netic fields ¢y—0) the sum oven’ in Eq. (39) can be con- : . .
verted into an integral so that the spectrum becomes contim\f\-/hICh again results in the factd®(t) [cf. Eq. (37)]. We

ous and one can choge- + 0. Another convenient form of obtain
Eq. (39 is obtained by making use of the substitution

Np— vy, with N,= vpexp(— Byn): Jz_ @ S [ Refxdt st ~mogt
lo Tan=o 0
> > “l(i - x[efe ot — el ]G(1), (45)
noolio= \RQJ 24 [(n —n)y—lk—1]2 _
with
4 1 efﬁ(n+n’)/2 . 3.2
S+[(n"—n)y—lk+1]? L _NMwd r (46)
JO E eﬁ—l
X {e Plni2y , —ePlKizy, 1=, (40)

being a reference current density.

In the quasiclassical limit, when the hopping length is
much smaller than the localization length( <A), there is
only a weak field dependence iB(t) which can be ne-
glected:

In the limit of high electric fields and narrow bandwidths
(A/AQ<1), only thef,_, component survives in Eq40)
and one gets the solution,= const. Exploiting the normal-
ization condition we obtain

Nn=25in)‘(@) g AY(nt12 (41) At

2 G(t)%Jé(ﬁ). (47)
This is the thermal equilibrium distribution function, which

has been used in Ref. 9 to study resonance phenomena in the this quasiclassical limit the intracollisional field effect
hopping transport regime. In general, the lateral distributiordoes not play any significant role and the lateral distribution
function strongly deviates from E@41) and has to be cal- function is given by Eq(41). Then thet integral in Eq.(45)
culated from Eq(39) or Eq. (40). is elementary and we obtain
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FIG. 1. Current density,/]j,, as a function of the electric-field

parameter Q) /A for a«=1, B=10, 6§=0.05 and different

magnetic-field parametens= ./ wo. The dashed, dash-dotted, and  FIG. 2. Temperature dependence of the current density calcu-
solid lines are calculated from Eg&9) and(50) with y=0, 0.25, lated from Egs.(39) and (50) (solid line) for «=0.2, y=0.5,

and 0.5, respectively. Peaks due to Wannier-Stark transitions d@t{/A=1.5, andé=0.05. The dashed line is obtained from Eg.
#Q/A=1/n are marked by vertical lines. The reference current(48) by using the equilibrium distribution functiof1).
densityjzozennf‘ngazd/A has been introduced.

dash-dotted lines. The magnetic-field mediated increase of
the current around the Stark ladder is related to a dimension-
ality reduction and the corresponding peaked density of
states, which results from the quantization of the in-plane
—H[(n"—n)y+1]}, (48)  motion. Indeed, it has been shof®rihat oscillatory current
anomalies in two-dimensional SL's are much more pro-
nounced than in the three-dimensional counterparts. This di-
H(X) =K(/1I— (X @)2)0 (a—|X|). (49  mensionality effect has been identified in experiméhtgp. _
The combined effect of the electric-field-induced localization
HereK is the complete elliptic integral of the first kind and and the magnetic field related dimensionality reduction gives
a=Al/fiwy a bandwidth parameter. In the quasiclassical casgise to a longitudinal magnetoresistance, which is negative
the band transport dominates and there are no resonancgger a substantial range of magnetic fields. In addition to the
associated with the Wannier-Stark ladder. enhanced Wannier-Stark transitions, Fig. 1 exhibits also
Beyond the field interval, where the semiclassical treatpeaks due to magnetophonon resonants structures
ment applies, the electric field dependenc&¢f) has to be  5h5ye4,0/A=1 and between the Stark laddleThe inten-
retained. In this general case one might exploit 87) and  jyy of these peaks is modulated by the electric field.
obtains from Eq(45), The temperature dependence of the current density, as
calculated from Eq49.39) and(50), is shown in Fig. 2 by the
solid line (where the parametersa=0.2, y=0.5,
S+[(n"—n)y—lk—1]2 AQ/A=1.5, and6=0.05 have been usgdAt low tempera-
tures the current density decreases exponentially with de-
creasing temperature. This clearly designates the hopping
transport regime. AtT=0 the current remains nonzero,
which is a consequence of the nonanalytic field dependence
This equation together with Ed39) [or Eq. (40)] are the  of the current densityj,~&¥%exp(—C/€)]. Such a depen-

g - ’
2 —yze*BV’Zsinh'Bz—y > e A™IH[(n'—n)y—1]¢e®

Jo am nn’=0

with

eb

jo ™«

iz 7500 A c
2 ) D
"o/ &,

1

[0 —n)y—lk+ 12| (50

main theoretical results of our paper. dence is also known from the Franz-Keldysh effect, and is
Figure 1 shows the electric field dependence of the curdue to the energy supply by the electric field. With increas-
rent density calculated from Eq&39) and (50) for «=1, ing temperature the current reaches a maximum followed by

B=10, and 6=0.05. The current density is expressed ina second temperature regime, where the carrier transport is
units of j,,=enmt* w3l'a?d/A. Without any magnetic field due to more or less extended states so that the current de-
(v=0, dashed lingthere are only smooth oscillations due to creases with increasing temperature. In this band transport
transitions between Wannier-Stark levels. These oscillatoryegime the semiclassical Boltzmann transport model be-
current anomalies in the NDC regime are smooth due to theomes applicable. Both temperature regimes were observed
finite collisional broadening parameters£0.05). Sup- in experiments! In Fig. 2 the dashed line has been calcu-
pressed local current maxima appear &/A=1/(al) with  lated from Eq.(48). This approximation, which is formally

| being a positive integer. The positions of these fieldequivalent to the mean energy gain method, leads to an over-
strengths are marked by vertical lines in Fig. 1. Applicationestimate of the band transport character at high temperatures.
of a magnetic field leads to a pronounced enhancement &ith an increasing bandwidth parameterEq. (41) com-
these Stark transitions as shown in Fig. 1 by the solid angletely fails to approximate the lateral distribution function



15834 P. KLEINERT AND V. V. BRYKSIN 56

the LO-phonon scattering is stronger when the temperature

1/51/4 1/3 1/2
06 becomes higher.
< (1)
X
Z o4 = = V. SUMMARY
g . @ .
2 L In summary we have presented a quantum-kinetic de-
= \/ scription of the interplay between Landau and Stark quanti-
?:’ 0.2 A zation in the high-field miniband transport of SL’s. High
3 @) electric and magnetic fields aligned parallel to the SL axis
Wf lead to a complete localization of all electronic states. Hop-
0 ping transport is only possible when electrons are scattered
0 025 05 075 1 on impurities or phonons. Current maxima are observed at
Magnetic field we/wo combined magnetophonon and electro-phonon resonances,

which appear ahw.=1Q=* wy. Due to the dimensionality
FIG. 3. Current density,/j,, as a function of the magnetic- reduction by the magnetic field the transport becomes effec-

field parametetw,/w, for B=1 and 6=0.1. For curveq1), (2), tively one dimensional, which leads to a pronounced en-
and (3) the bandwidth and field parameters arev=1, hancement of Wannier-Stark current oscillations. The ampli-
iQ/A=0.5), (@=1,A0/A=1), and @=0.5,A0/A=1), respec- tudes of magnetophonon and electrophonon resonances show
tively. The main peak positions at= w./wy=1/n are indicated by  a quite different temperature behavior. Magnetophonon reso-
thin vertical linesj,,=ennt ng’azd/A is a suitable reference cur- nance peaks are most pronounced at high temperatures, when
rent density. optical-phonon scattering is strong. Contrary, the observation

of electrophonon resonances requires low lattice tempera-

; 0,12 4 ppi .
and the current-temperature dependence calculated from E}%J_re_s. Other theoretical papéP arrived at similar con-
(50) together with Eq(39) deviates even qualitatively from Clusions but neglected the intracollisional field effects and/or
results obtained from Eq48). the lateral electron heating described by the electron distri-

The magnetic-field dependence of the current density i%)ution function. However, a due consideration of these ef-
shown in Fig. 3 for3=1 ands=0.1. Curveg1), (2), and(3) ects is inevitable in order to understand, why the magnetic

where calculated with ¢=1, #Q/A=05), (=1, field influences the electric-field driven electron motion

_ _ - . ! along the SL axis and conversely, why an electric field af-
nQ/A=1), and @=0.5,AQ/A=1), respectively. Electric- fects the magnetophonon resonances. This coupling between

field modified, broad magneto-phonon resonances appear gfe |ongitudinal and transverse degrees of freedom is de-
magnetic fields satisfying the conditiany=I«x*1, where  gcriped by a lateral distribution function, which is the solu-
n,I are integers. The main peaks are due to transitions bgjon of the quantum-kinetic equatiof89). As a result the
tween different Landau levels associated withlthe® Stark  electric and magnetic-field effects as well as their tempera-
ladder state. Their position is marked by vertical lines. Ature dependence are not separable. Three main peculiarities
comparison between curveé$) and (2) shows that in the of the miniband transport have been attributed to a coupling
considered NDC region the current density is lower at highebetween the longitudinal and in-plane motion described by
electric fields. A decrease of the current is also observed(k,): (i) the magnetic-field mediated enhancement of
when the miniband width decreadé®)— (3)]. Thisis dueto  Wannier-Stark oscillations due to the dimensionality reduc-
the bandwidth dependence of the current. With increasingion and the associated peak structure of the density of states,
electric field the peak ab.= w, is enhanced, similar to the (i) a decrease of the current due to a suppression of optical-
enhancement of Wannier-Stark oscillations by a magneti®honon scattering onckw. becomes larger than the mini-
field. However, the peak ab.=wy/2 behaves quite differ- band widthA so that real gaps appear in the energy spectrum
ently and decreases with increasing electric field. Thereforedf the lateral electron motiorfjii) a crossover in the tem-
we conclude that the effects exerted by the electric field ar@erature dependence of the current as observed in experi-
not independent of the magnetic field. The mutual influencénents.

of the electric and magnetic fields on the current density We presenteq a 'genergl framev_vork for a quantum-
described by the lateral distribution function is not separablef[.ransport.theory |'n'SL S ‘.”‘t high electric and magnetic fields
Curve (1) exhibits additional structures aty=3/4 in which |r_1tra_coll_|5|onal f|e_:ld gffects are accounted for. The
(n=2/=1) and 2/3 =3 =2), which result from transi- e_Iect_ron dlstr_lbutlon function is c_alculated from a quantum-

: . . kinetic equation. It has been pointed out that a consequent
thns between different Stark levels. A r_eductlon of the band'microscopic approach requires the consideration of the pho-
width parameterx leads to a suppression of the current atyo gispersion, which removes the singular structure of the
high magnetic fields. This is shown by cur@®, where for - rent.

y=1 the miniband widthA is smaller than the cyclotron  gtark-cyclotron resonance effects have been meabimed
energyf o, so that forbidden gaps appear, which leads to ghe superlattice transport assisted by quasielastic scattering.
gradual reduction of the optical-phonon scattering until atat low temperatures the elastic scattering is mainly due to
wo+A<w, itis completely forbidden. This observation is in jonized background impurities and layer fluctuatiérigo
accordance with other theoretical wérand experiment$.  analyze these experimental results elastic scattering mecha-
The oscillation amplitudes of the current density increasenisms have to be incorporated into our approach. This is
with increasing temperatur@ot shown in Fig. B because straightforward and will be done in the near future.
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