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High-field miniband transport in semiconductor superlattices in parallel electric
and magnetic fields

P. Kleinert
Paul-Drude-Institut fu¨r Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany

V. V. Bryksin
Physical Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia

~Received 14 May 1997!

We present a rigorous quantum-mechanical description of the miniband transport in semiconductor super-
lattices under the mutual influence of high electric and magnetic fields aligned parallel to the growth direction.
Strong current oscillations appear due to Landau and Wannier-Stark quantization of the electronic states and
due to the scattering on polar-optical phonons. The combined influence of an electric and magnetic field on
magnetophonon and electrophonon resonances is treated by a lateral electron distribution function, which is the
solution of a quantum-kinetic equation. The lateral electron heating due to the field dependent coupling
between longitudinal and transverse degrees of freedom via the distribution function is essential to understand
miniband transport properties of superlattices. Intracollisional field effects are taken into account. Strong
magnetic fields lead to a pronounced enhancement of Wannier-Stark current oscillations. The experimentally
detected crossover in the temperature dependence of the current is reproduced. The influence of an electric field
on magnetophonon resonances is investigated.
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I. INTRODUCTION

Two quite different transport regimes have been discri
nated in semiconductor superlattices~SL’s!. At low electric
fields, i.e., when\V5eEd!D ~whereV is the Bloch fre-
quency,E the electric field,d the SL period, andD the mini-
band width! the states are extended, and the current incre
linearly with increasing field. This is the so-called mobili
or miniband transport regime. If, on the other hand,
Bloch frequency is larger than some characteristic collis
broadening (V.1/t), electrons approach the minizon
boundary, where the effective mass is negative, and eve
ally undergo Bragg diffraction leading to electric-field
induced localized states. The spatial overlap between th
localized Stark-ladder states decreases with increasing
and with it the transition probability. In this so-called ho
ping regime, the band conduction model breaks down,
transport is due to scattering mediated carrier transitions
tween Wannier-Stark ladder states. Negative differential c
ductivity ~NDC! may occur. Recently, the existence of Blo
oscillations in SL’s has been demonstrated by electro-o
experiments1,2 and by a direct observation of the submillim
ter wave emission from spatial carrier oscillations.3 Neglect-
ing Wannier-Stark localization and interminiband transitio
such Bloch oscillations have been studied by solving
Boltzmann transport equation in the relaxation tim
approximation.4

Another interesting subject is the magnetotransport
SL’s that manifests such fundamental phenomena as q
tum interference and electron localization. It is the aim of
present paper to consider miniband transport under the
tual influence of both an electric (E) and a magnetic (H)
field aligned parallel to the growth axis of the SL. This giv
560163-1829/97/56~24!/15827~9!/$10.00
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rise to a complete quantization of the energy spectrum an
reduction in the dimensionality due to the magnetic-fie
induced quantization of the in-plane motion. In this case
Hamiltonian of the system decouples into two separa
parts: One refers to the motion along the SL axis under
influence of the SL potential and the electric field, and t
other one describes the in-plane (x,y) motion in the presence
of the magnetic field. The carrier motion is characterized
two characteristic frequencies~the Bloch frequencyV and
the cyclotron frequencyvc5eH/m* c) so that phase locking
may occur, if their ratio is a rational number.5 Due to the
superimposed periodic motions in the transverse plane
along the SL axis, the current exhibits pronounced structu
that depend on the ratio between the two frequenciesvc and
V. Combined Stark-cyclotron or Stark-cyclotron-phon
resonances are predicted to occur under the condi
nvc5 lV or nvc5u lV6v0u, respectively, wherev0 is the
optic-phonon frequency andn,l are integer numbers.

There are only few experimental and theoretical stud
dealing with this subject. Noguchiet al.6 treated transport in
the mobility regime under high magnetic fields transverse
the interfaces and detected clear magnetophonon resona
These resonances are magnified in SL’s, because the ph
scattering rate is enhanced due to the peaked structure o
density of states. On the other hand, they observed a sup
sion of optical-phonon scattering when the magnetic field
strong enough (D,\vc) to create real forbidden gaps
These effects have been studied theoretically on the bas
the balance equation method.7

At high electric fields, when hopping is the domina
transport mechanism, Stark-cyclotron resonances have
reported in an experimental work.8 Their theoretical analysis
is presented in Refs. 9 and 10. From the temperature de
15 827 © 1997 The American Physical Society
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15 828 56P. KLEINERT AND V. V. BRYKSIN
dence of the current it has been concluded that acou
phonon-assisted~quasielastic! scattering is not dominant.8

Combined Stark-cyclotron resonances have also been id
fied in photocurrent measurements.11 As the magnetic field
was increased, the intensity of the Stark transitions was
hanced and conversely, Landau transitions became more
nounced with increasing electric field. It has been poin
out that disorder or Coulomb interaction may cause a c
pling of the lateral and longitudinal electron motion, whic
leads to anticrossings.11

Only few theoretical papers treated galvanomagnetic
fects in SL’s in the hopping transport regime9,10,12 by em-
ploying the Wannier-Stark representation of the Ham
tonian. The interest of the authors focused on the fi
dependence of the scattering matrix element. The elec
distribution was treated by the mean energy gain method,13,14

which is claimed to be a fairly good approximation if th
intrawell relaxation is much faster than interwell hopping.
this approximation the coupling between the longitudinal a
transverse carrier motion via the field dependent distribu
function is not adequately treated. However, the consid
ation of this coupling is essential to understand the nonse
rable influence of electric and magnetic fields on the m
band transport. Furthermore, the determination of
nonequilibrium distribution function and the related curre
density is a serious theoretical problem that has to be sol
On the one hand it has been pointed out that the electric
reduces the coupling between quantum wells and tend
localize the electronic wave functions. On the other hand,
electric field leads also to a field-dependent energy tran
to the lateral degrees of freedom, which has not been tre
in most previous theoretical works. The importance of t
lateral electron heating, making the high-field miniba
transport effectively a three-dimensional problem, has b
stressed by Gerhardts.15 The coupling between the hoppin
transport along the SL axis and the in-plane motion mai
determines the temperature dependence of the minib
transport in a SL. Other than in narrow band semiconduct
where the lateral momentum distribution functionn(k') is
nearly constant,16 a strong temperature dependence of
current has been observed in SL’s~Ref. 17!. From miniband
transport measurements~atH50) two different temperature
regimes have been discriminated.17 At low temperatures and
sufficiently high electric fields electrons diffuse through t
crystal by hopping processes and the current increases
increasing temperature. Above a characteristic tempera
the eigenfunctions extend over many SL periods and the
rent starts to decrease with increasing temperature. A th
retical study of the measured temperature characteristic
quires a consistent treatment of field effects in both trans
regimes and a calculation of the lateral electron distribut
function from a kinetic equation. With respect to the mutu
influence of parallel magnetic and electric fields the kno
edge of the nonequilibrium distribution function is necess
in order to understand, why a magnetic field affects tran
tions between Stark ladder states, and why an electric fi
changes magnetophonon resonances.

In this paper we present a rigorous quantum theory of
high-field miniband transport in SL’s. Intracollisional fiel
effects are included and the nonequilibrium distributi
ic-
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function is calculated from a suitable quantum-kinetic eq
tion.

II. BASIC THEORY

The mobility transport regime (Vt!1) was thoroughly
investigated within the semiclassical Boltzmann transp
model.18,19In the opposite caseVt @1, when Wannier-Stark
localization ~WSL! prevails, the Boltzmann approach b
comes inadequate and must be replaced by a quan
transport theory, which allows the determination of the no
equilibrium distribution function. In high electric fields th
distribution function of electrons differs strikingly from it
equilibrium form and has to be calculated from a kine
equation. If constant electric and magnetic fields are app
to the SL structure the Laplace transformed distribut
function f (k,s) is the solution of the equation~see, e.g.,
Refs. 20,21!

eEW
\

¹kf ~k,s!5(
k8

DŴ~k8,kus! f ~k8,s!, ~1!

where the operatorDŴ encloses both scattering in and sca
tering out contributions:

DŴ~k8,kus!5Ŵ~k8,kus!2dk8,k (
k9

Ŵ~k,k9us!. ~2!

Ŵ exhibits a characteristic dependence on the electric
magnetic fields and was calculated in Ref. 22. At the pr
ence of a magnetic field the scattering probability is an
erator defined by

Ŵ~k8,kus!5W~k8,kus!1
i

\
dkk8$«@k81A~ i¹k8!#

2«@k2A~ i¹k!#%. ~3!

Intracollisional field effects due to both electric and magne
fields are included. This expression allows the simultane
treatment of arbitrarily strong electric and magnetic fields.
Eq. ~3! «(k) is the superlattice dispersion relation,A the
vector potential of the magnetic field in the symmet
gauge, andW the transition rate, which depends on the ele
tric and magnetic fields and which plays a fundamental r
in the transport. Without any scattering (Vt→`) the wave
vector component along the field direction changes with ti
t according tokz(t)5k01eEt/\, which results in an oscilla-
tory drift velocity (vz5]«/]\kz). The frequency of these
oscillations ink space is 2peE/\G0, whereG0 is the short-
est vector of the reciprocal lattice along theE direction. In
the one-band case this periodic motion is quantized and le
to the Wannier-Stark ladder. The time averaged current v
ishes unless scattering induced transitions between Stark
els occur. Therefore, the identification of the main scatter
processes is crucial for the calculation of the current. H
we focus on optical-phonon scattering described by the Fr¨h-
lich Hamiltonian,

He-ph5
1

A2N
(
k,q

\vq@gqbq
†ak

†ak2q1H.c.#, ~4!
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56 15 829HIGH-FIELD MINIBAND TRANSPORT IN . . .
wherevq is the phonon frequency,gq the electron-phonon
coupling constant, andak (bk) are the electron~phonon! field
operators. The envisaged nonperturbative inclusion of ex
nal electric and magnetic fields requires a due treatmen
intracollisional field effects, i.e., a consideration of field d
pendent scattering rates. Using diagrammatic techniq
such a scattering rate was obtained in22,23

W~k8,kus!52 ReE
0

`

dt e2st(
q

vq
2ugqu2@~Nq11!e2 ivqt

1Nqe
ivqt#expH i

\E2t/2

t/2

dt$«@k1q2Ft

1A~ i¹k!#2«@k2Ft2A~ i¹k!#%J dk8,k1q2Ft ,

~5!

wheres is an adiabatic parameter~the Laplace transformed
time variable!, F5eEW/\ and Nq51/@exp(\vq /kBT)21# is
the phonon distribution function. Equation~5! takes into ac-
count intracollisional field effects due to both electric a
magnetic fields. The Houston representation~5! of the scat-
tering probabilityW has been derived to the lowest order
the electron-phonon coupling and for low carrier concen
tions, where correlation effects can be neglected.

As mentioned above the motion of electrons perpend
lar to the layers is strictly periodic when scattering is n
glected so that periodic boundary conditions can be impo
along thekz direction16

f ~k' ,kz1Lz ,s!5 f ~k' ,kz ,s!, ~6!

where Lz is the reciprocal lattice vector. This periodicit
condition can be used to simplify the equation forf (k). To
this end we introduce a lateral distribution functio
n(k' ,s)5(kz

f (k,s), which allows a reformulation of the ki
netic equation~1! in such a way that the boundary conditio
~6! is automatically fulfilled. The simplification results from
the fact that already one degree of freedom~namely,kz) has
been eliminated and that spherical symmetry applies to
remaining partn(k' ,s) of the distribution function.n(k' ,s)
describes the heating of the lateral electron motion
strongly deviates from its equilibrium expression if hig
electric fields are applied. To derive an equation forn(k' ,s)
we make the ansatz

f ~k,s!5n~k' ,s!1(
k8

F̂~k8,kus! f ~k8,s!

1
\kz

eE(k8
DŴ~k8,k'us! f ~k8,s!, ~7!

with

DŴ~k8,k'us!5(
kz

DŴ~k8,kus!. ~8!

Owing to Eqs.~1! and ~7! the newly introduced operatorF̂
must satisfy the equation
r-
of
-
es

-

-
-
d

e

d

]F̂~k8,kus!

]kz
5

\

eE @DŴ~k8,kus!2DŴ~k8,k'us!#. ~9!

It is seen from the ansatz~7! that the boundary condition~6!
is only fulfilled when the last term on the right hand side
Eq. ~7! vanishes:

(
k8

DŴ~k8,k'us! f ~k8,s!50. ~10!

This equation can be used to derive an integral equation
the lateral distribution functionn(k' ,s) ~cf. Ref. 16!. For
this purpose a new operatorF̂1 is defined by

f ~k,s!5n~k' ,s!1(
k8

F̂1~k8,kus!n~k'8 ,s!, ~11!

which we compare with Eq.~7! @under the condition~10!#
and obtain

F̂1~k8,kus!5F̂~k8,kus!1(
k9

F̂1~k8,k9us!F̂~k9,kus!.

~12!

To derive an equation forn(k') we insert Eq.~11! into Eq.
~10! and arrive at an expression that can be cast into the f

(
k8

DŴ1~k8,k'us!n~k'8 ,s!50, ~13!

whereŴ1 itself satisfies the integral equation

DŴ1~k8,k'us!5DŴ~k8,k'us!1(
k9

F̂1~k8,k9us!

3DŴ~k9,k'us!

5DŴ~k8,k'us!1(
k9

F̂~k8,k9us!

3DŴ1~k9,k'us!. ~14!

Now we insert Eq.~9! into the kz derivative of Eq.~12!
and compare the result with the differenc
Ŵ1(k8,k)2Ŵ1(k8,k') expressed by using Eq.~14!. We ob-
tain

]F̂1~k8,kus!

]kz
5

\

eE @DŴ1~k8,kus!2DŴ1~k8,k'us!#,

~15!

which completely agrees with Eq.~9!. From Eqs.~9! and
~15! we conclude that an iteration of Eq.~14! results in an
asymptotic expansion ofŴ1 with respect to the electric field
In the hopping regime, whenVt@1, it is a reasonable ap
proximation to retain only the first term in this expansion
that we can identify the quantityDŴ1 with DŴ in Eq. ~13!.
Physically it is obvious that for the considered field alig
ments the lateral distribution functionn(k' ,s) does not de-
pend on the angle but only onuk'u. This will be confirmed by
the calculation of the scattering probabilityW in the next
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15 830 56P. KLEINERT AND V. V. BRYKSIN
section. In this case the second term on the right hand sid
Eq. ~3! does not give any contribution and we obtain fro
Eq. ~13!

(
kz ,k8

@W~k8,kus!n~k'8 ,s!2W~k,k8us!n~k' ,s!#50.

~16!

This is a convenient final form of the quantum-kinetic equ
tion because already one degree of freedom~namely,kz) has
been eliminated. Together with the normalization condit
for n(k') the linear integral equation~16! has a unique so
lution. As we will show in Sec. IV the current density ca
likewise be calculated from this special distribution functio

III. SCATTERING ON POLAR-OPTICAL PHONONS

We will focus on the particular case of scattering
polar-optical phonons with a narrow phonon bandwidth
that resonant-type current anomalies are not essent
smoothed out by an integration over the phonon dispers
There are many different models for the electron-phonon
teraction in SL’s, which do not agree with each other a
are, therefore, the subject of some controversial discussi
A due consideration of the electric-field dependent over
of wave functions localized in neighboring wells via th
form factor is inevitable to decide whether optical-phon
mediated current anomalies should occur in experiment
not. On the basis of the dielectric continuum model Shon
Nazareno10 obtained very small form factors and related cu
rent contributions resulting from LO-phonon scattering. T
indicates that a realistic description of the scattering
polar-optical phonons in SL’s is necessary to derive relia
quantitative results. However, to keep our presentation tra
parent and simple we do not go into a detailed analysis
optical-phonon modes in the layers and rely on the sim
bulk phonon model, which already reproduces the m
qualitative features of the electron-phonon interaction in
SL. In this case theq sum in Eq.~5! is expressed by an
integral „(q . . .→(a/2p)3*d3q . . . …. The exponential term
in Eq. ~5! is periodic inqz (qz→qz12p/d) and depends on
q' only via «(k'1q') so that the characteristic transver
electron and phonon momenta are of the same order of m
nitude. Denoting the exponential term in Eq.~5! by g(q) and
the remainingq-dependent factor byugqu2h(vq) the right
hand side of Eq.~5! has the following structure:

W5S a

2p D 3E d3qugqu2h~vq!g~q!. ~17!

We neglect the weakq' dependence invq andgq and con-
sider the Fourier representation ofg(q) with respect toqz :
of

-

n

.

o
lly
n.
-
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s.

p

or
d

-
s
n
e
s-
f

le
n
a

g-

W5S a

2p D 3E d2q'E
2`

`

dqzugqz
u2h~vqz

! (
l 52`

`

gl~q'!eilq zd/2p

5S a

2p D 3E d2q'E
0

2p/d

dqz

3 (
n52`

`

ugqz12pn/du2h~vqz12pn/d! (
l 52`

`

gl~q'!eilq zd/2p.

~18!

Here gl(q') are the Fourier coefficients ofg(q). In the
restricted qz interval (0<qz<2p/d) the factor
ugqz12pn/du2h(vqz12pn/d) depends only weakly onqz , so

that thel 50 term dominates thel sum in Eq.~18!, and we
obtain

W>S a

2p D 3E d3qugqz
u2h~vqz

!gl 50~q'!. ~19!

Making use of the equation for the Fourier coefficientgl 50,

gl 50~q'!5
d

2pE0

2p/d

dqzg~q' ,qz!, ~20!

and considering only dispersionless optical phono
(vqz
→v0), we arrive at the following expression for th

transition probability:

W~k8,kus!52Gv0
2 ReE

0

`

dt e2st@~N011!e2 iv0t1N0eiv0t#

3E d2q'E
0

2p/d

dqzexpS i

\E2t/2

t/2

dt$«@k1q

2Ft1A~ i¹k!#2«@k2Ft2A~ i¹k!#% D
3d~k82k2q1Ft !, ~21!

where

G5
a

2pE0

2p/a

dqzugq'50,qz
u2 ~22!

is an average of the electron-phonon coupling constant a
the field direction. The replacement of the scattering ma
element by an averaged screened coupling constant is o
crude approximation which allows us here, however, to
rive a number of analytical results. As theq integration has
been extended over the entire momentum space, the la
constanta enters this average and not the SL periodd.

The motion along the SL axis is not affected by the ma
netic field and is characterized by the tight-binding disp
sion relation,

«~kz!5
D

2
@12cos~kzd!#. ~23!

Thek' andkz dependencies separate from each other so
the t integral is easily calculated in Eq.~21!. We obtain
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W~k8,kus!52Gv0
2 ReE

0

`

dt e2st@~N011!e2 iv0t

1N0eiv0t#expH i
D

\V
~coskz8d2coskzd!

3sinS Vt

2 D J E d2q'F~k' ,k'8 ,q'ut !. ~24!

The Green’s functionF is defined by

F~k' ,k'8 ,q'ut !5expH i t

\
$«@k'1q'1A~ i¹k'

!#

2«@k'2A~ i¹k'
!#%J dk

'8 ,k'1q'
. ~25!

Its Laplace transformed components satisfy the differen
equation

H s2
i

\
$«@k'1q'1A~ i¹k'

!#2«@k'2A~ i¹k'
!#%J

3F~k' ,k'8 ,q'us!5dk
'8 ,k'1q'

, ~26!

which we solve by making use of the ansatz

F~k' ,k'8 ,q'us!5(
ll8

all8~q'us!cl* ~k'!cl8~k8'!,

~27!

with normalized orthogonal wave functionscl , which are
solutions of the eigenvalue problem

«@k1A~ i¹k!#cl~k'!5Elcl~k'!. ~28!

Inserting the ansatz~27! into Eq. ~26!, the coefficientsall8
are easily calculated. From an inverse Laplace transfor
tion we obtain

F~k' ,k'8 ,q'ut !5(
ll8

expH i t

\
~El82El!J cl* ~k'!cl8~k'8 !

3E d2k'9 cl~k'9 2q'!cl8
* ~k'9 !. ~29!

In the symmetric gauge$A(r)5e@HW 3r#/2\c% Eq. ~28! has
the solution

El[Em,n5\vcS n1
m1umu11

2 D , ~30!

cn,m~k,f!52Ap
A~n11! . . . ~n1umu!

umu!

3~2l B
2 !~ umu11!/2kumue2~klB!2 n! umu!

~n1umu!!

3Ln
umu

„2~klB!2
…e2 imf, ~31!

with l B5A\/m* vc being the magnetic length an
n50,1,2, . . . , m50,61,62, . . . is thediscrete set of quan
tum numbers. It is straightforward to calculate the Gree
function ~29! by making use of the equations
l

a-

s

E d2k'cnm~k'!5
~21!n

A2p l B
2

dm,0 , ~32!

and

cn0~k'!52A2p l B
2e2~k' l B!2

Ln„2~k'l B!2
…. ~33!

Inserting this result into Eq.~24! we obtain the final expres
sion for the transition rate

W~k8,kus!58Gv0
2e2~k' l B!22~k'8 l B!2

3ReE
0

`

dt e2st@~N011!e2 iv0t1N0eiv0t#

3expH i
D

\V
~coskz8d2coskzd!sinS Vt

2 D J
3 (

nn850

`

~21!n2n8ei ~n82n!vct

3Ln„2~k'l B!2
…Ln8„2~k'8 l B!2

…. ~34!

Equation~34! shows that the scattering is isotropic in thek'

plane and does not introduce any angular dependence o
distribution function. Therefore, it is possible to expa
n(k') in orthogonal Laguerre polynomials,

n~k'!52exp„2~k'l B!2
…(
n50

`

~21!nLn„2~k'l B!2
…Nn .

~35!

The kinetic equation~16! is used to determine the unknow
coefficientsNn . The imposed normalization of the later
electron distribution function

a2

~2p!2E d2k'n~k'!51 ~36!

is converted into the condition(n50
` Ñn51, where

Ñn5(a2/2p l B
2)Nn .

Now we are in the position to derive an explicit form o
the kinetic equation~16!. To this end Eq.~34! is inserted into
Eq. ~16!. Thekz ,kz8 integrals are elementary and lead to t
function

G~ t !5J0
2S D

\V
sin

Vt

2 D5 (
l 52`

`

f l S D

\V De2 i l Vt, ~37!

which is periodic@G(t12p/V)5G(t)# and may, therefore
be Fourier transformed as indicated. The Fourier coefficie
f l depend on the electric field and are given by

f l S D

\V D5
1

pE0

p

dtcos~ l t !J0
2S D

\V
sin

t

2D
5

1

pE0

p

dx Jl
2S D

\V
sinxD . ~38!

Physically, the Fourier transformation~37! simply means a
switching to the Stark-ladder representation, which is app
priate in the hopping transport regime. In this representa
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15 832 56P. KLEINERT AND V. V. BRYKSIN
all states are completely discrete so that the expression
the current and the kinetic equation exhibit a singular str
ture. In this case meaningful results can only be obtaine
one reintroduces the neglected phonon dispersion. T
would allow a consistent microscopic consideration of
hopping transport in this field configuration. Here, howev
we prefer a phenomenological approach and identify
variable s of the Laplace transformation in Eq.~34! with
some effective scattering rate 1/t, which leads to a colli-
sional broadening of Landau and Stark levels. Putting eve
thing together we obtain from Eqs.~16!, ~34!, and ~37! the
following set of homogeneous linear equations forÑn :

(
n850

`

(
l 52`

`

f l S D

\V D F 1

d21@~n82n!g2 lk21#2

1
1

d21@~n82n!g2 lk11#2G
3H expFb2 @~n82n!g2 lk#GÑn8

2expF2
b

2
@~n82n!g2 lk#GÑnJ

50. ~39!

Here d51/v0t is the broadening parameter,g5vc /v0
(k5V/v0) the parameter of the magnetic~electric! field,
and b5\v0 /kBT. In deriving Eq.~39! the smoothk' de-
pendence of the scattering out term has been neglect24

Adding the normalization condition(n50
` Ñn51, Eq. ~39!

gives us an inhomogeneous set of linear equations forÑn ,
which has a unique solution. In the limit of vanishing ma
netic fields (g→0) the sum overn8 in Eq. ~39! can be con-
verted into an integral so that the spectrum becomes con
ous and one can chosed→10. Another convenient form o
Eq. ~39! is obtained by making use of the substitutio
Ñn→nn with Ñn5nnexp(2bgn):

(
n850

`

(
l 52`

`

f l S D

\V D F 1

d21@~n82n!g2 lk21#2

1
1

d21@~n82n!g2 lk11#2Ge2b~n1n8!/2

3$e2b lk/2nn82eb lk/2nn%50. ~40!

In the limit of high electric fields and narrow bandwidth
(D/\V!1), only the f l 50 component survives in Eq.~40!
and one gets the solutionnn5const. Exploiting the normal-
ization condition we obtain

Ñn52sinhS bg

2 De2bg~n11/2!. ~41!

This is the thermal equilibrium distribution function, whic
has been used in Ref. 9 to study resonance phenomena
hopping transport regime. In general, the lateral distribut
function strongly deviates from Eq.~41! and has to be cal
culated from Eq.~39! or Eq. ~40!.
or
-
if
is

e
,
e

y-

.

-

u-

the
n

IV. CALCULATION OF THE CURRENT

The current density is calculated from the electron dis
bution function via

j52
e

\V (
k~1BZ!

«~k!¹kf ~k!, ~42!

where V is the crystal volume. This expression has be
obtained by an integration by parts and allows a straight
ward use of the kinetic equation~1!. In our context it is
expedient to use another form, which expresses the cur
density by the lateral distribution function directly. This
accomplished by inserting Eq.~11! into ~42! and considering
Eq. ~15! and Eq.~13!. Finally, we arrive at a representatio
for the current

j z52
n

E(kk8
DŴ1~k8,k!n~k'8 !«~k!, ~43!

which has already the asymptotic form (j z;1/E) relevant in
the NDC regime. To the leading order in the asympto
expansion of the current with respect to the electric field,
identify the renormalized scattering rateŴ1 with Ŵ and con-
sider again Eq.~13!, which yields

j z5
n

E
V0

2

~2p!6E d3kE d3k8Ŵ~k8,k!n~k'8 !@«~k8!2«~k!#.

~44!

The second term on the right hand side of Eq.~3! is propor-
tional todk,k8 so that it does not give any contribution to th
current density~44!. An explicit form for the current density
j z can be derived from Eq.~44! by inserting Eq.~34! and Eq.

~35! into Eq. ~44! and by calculating thekz , kz8 integrals,
which again results in the factorG(t) @cf. Eq. ~37!#. We
obtain

j z

j 0
5

vc

p (
nn850

`

Ñn8 ReE
0

`

dt e2st1 i ~n82n!vct

3@ebe2 iv0t2eiv0t#G~ t !, ~45!

with

j 05
n

E

m* v0
3a2G

eb21
~46!

being a reference current density.
In the quasiclassical limit, when the hopping length

much smaller than the localization length (\V!D), there is
only a weak field dependence inG(t) which can be ne-
glected:

G~ t !'J0
2S Dt

2\ D . ~47!

In this quasiclassical limit the intracollisional field effe
does not play any significant role and the lateral distribut
function is given by Eq.~41!. Then thet integral in Eq.~45!
is elementary and we obtain
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j z

j 0
5

4g

ap2
e2bg/2sinh

bg

2 (
nn850

`

e2bgn8$H@~n82n!g21#eb

2H@~n82n!g11#%, ~48!

with

H~x!5K„A12~x/a!2
…Q~a2uxu!. ~49!

HereK is the complete elliptic integral of the first kind an
a5D/\v0 a bandwidth parameter. In the quasiclassical c
the band transport dominates and there are no resona
associated with the Wannier-Stark ladder.

Beyond the field interval, where the semiclassical tre
ment applies, the electric field dependence ofG(t) has to be
retained. In this general case one might exploit Eq.~37! and
obtains from Eq.~45!,

j z

j 0
5

gd

p (
l 52`

`

f l S D

\V D (
nn850

`

Ñn8F eb

d21@~n82n!g2 lk21#2

2
1

d21@~n82n!g2 lk11#2G . ~50!

This equation together with Eq.~39! @or Eq. ~40!# are the
main theoretical results of our paper.

Figure 1 shows the electric field dependence of the c
rent density calculated from Eqs.~39! and ~50! for a51,
b510, and d50.05. The current density is expressed
units of j zo5enm* v0

3Ga2d/D. Without any magnetic field
(g50, dashed line! there are only smooth oscillations due
transitions between Wannier-Stark levels. These oscilla
current anomalies in the NDC regime are smooth due to
finite collisional broadening parameter (d50.05). Sup-
pressed local current maxima appear at\V/D51/(a l ) with
l being a positive integer. The positions of these fie
strengths are marked by vertical lines in Fig. 1. Applicati
of a magnetic field leads to a pronounced enhancemen
these Stark transitions as shown in Fig. 1 by the solid

FIG. 1. Current densityj z / j zo as a function of the electric-field
parameter \V/D for a51, b510, d50.05, and different
magnetic-field parametersg5vc /v0. The dashed, dash-dotted, an
solid lines are calculated from Eqs.~39! and ~50! with g50, 0.25,
and 0.5, respectively. Peaks due to Wannier-Stark transition
\V/D51/n are marked by vertical lines. The reference curre
density j zo5enm* v0

3Ga2d/D has been introduced.
e
ces

t-

r-

ry
e

of
d

dash-dotted lines. The magnetic-field mediated increase
the current around the Stark ladder is related to a dimens
ality reduction and the corresponding peaked density
states, which results from the quantization of the in-pla
motion. Indeed, it has been shown25 that oscillatory current
anomalies in two-dimensional SL’s are much more p
nounced than in the three-dimensional counterparts. This
mensionality effect has been identified in experiments,11 too.
The combined effect of the electric-field-induced localizati
and the magnetic field related dimensionality reduction gi
rise to a longitudinal magnetoresistance, which is nega
over a substantial range of magnetic fields. In addition to
enhanced Wannier-Stark transitions, Fig. 1 exhibits a
peaks due to magnetophonon resonances~all structures
above\V/D51 and between the Stark ladder!. The inten-
sity of these peaks is modulated by the electric field.

The temperature dependence of the current density
calculated from Eqs.~39! and~50!, is shown in Fig. 2 by the
solid line ~where the parametersa50.2, g50.5,
\V/D51.5, andd50.05 have been used!. At low tempera-
tures the current density decreases exponentially with
creasing temperature. This clearly designates the hop
transport regime. AtT50 the current remains nonzero
which is a consequence of the nonanalytic field depende
of the current density@ j z;E3/2exp(2C/E)#. Such a depen-
dence is also known from the Franz-Keldysh effect, and
due to the energy supply by the electric field. With increa
ing temperature the current reaches a maximum followed
a second temperature regime, where the carrier transpo
due to more or less extended states so that the curren
creases with increasing temperature. In this band trans
regime the semiclassical Boltzmann transport model
comes applicable. Both temperature regimes were obse
in experiments.17 In Fig. 2 the dashed line has been calc
lated from Eq.~48!. This approximation, which is formally
equivalent to the mean energy gain method, leads to an o
estimate of the band transport character at high temperatu
With an increasing bandwidth parametera Eq. ~41! com-
pletely fails to approximate the lateral distribution functio

at
t

FIG. 2. Temperature dependence of the current density ca
lated from Eqs.~39! and ~50! ~solid line! for a50.2, g50.5,
\V/D51.5, andd50.05. The dashed line is obtained from E
~48! by using the equilibrium distribution function~41!.
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and the current-temperature dependence calculated from
~50! together with Eq.~39! deviates even qualitatively from
results obtained from Eq.~48!.

The magnetic-field dependence of the current densit
shown in Fig. 3 forb51 andd50.1. Curves~1!, ~2!, and~3!
where calculated with (a51, \V/D50.5), (a51,
\V/D51), and (a50.5, \V/D51), respectively. Electric-
field modified, broad magneto-phonon resonances appe
magnetic fields satisfying the conditionng5 lk61, where
n,l are integers. The main peaks are due to transitions
tween different Landau levels associated with thel 50 Stark
ladder state. Their position is marked by vertical lines.
comparison between curves~1! and ~2! shows that in the
considered NDC region the current density is lower at hig
electric fields. A decrease of the current is also obser
when the miniband width decreases@~2!→~3!#. This is due to
the bandwidth dependence of the current. With increas
electric field the peak atvc5v0 is enhanced, similar to the
enhancement of Wannier-Stark oscillations by a magn
field. However, the peak atvc5v0/2 behaves quite differ-
ently and decreases with increasing electric field. Theref
we conclude that the effects exerted by the electric field
not independent of the magnetic field. The mutual influen
of the electric and magnetic fields on the current den
described by the lateral distribution function is not separa
Curve ~1! exhibits additional structures atg53/4
(n52,l 51) and 2/3 (n53,l 52), which result from transi-
tions between different Stark levels. A reduction of the ba
width parametera leads to a suppression of the current
high magnetic fields. This is shown by curve~3!, where for
g51 the miniband widthD is smaller than the cyclotron
energy\vc so that forbidden gaps appear, which leads t
gradual reduction of the optical-phonon scattering until
v01D,vc it is completely forbidden. This observation is
accordance with other theoretical work7 and experiments.6

The oscillation amplitudes of the current density increa
with increasing temperature~not shown in Fig. 3! because

FIG. 3. Current densityj z / j zo as a function of the magnetic
field parametervc /v0 for b51 andd50.1. For curves~1!, ~2!,
and ~3! the bandwidth and field parameters are (a51,
\V/D50.5), (a51, \V/D51), and (a50.5,\V/D51), respec-
tively. The main peak positions atg5vc /v051/n are indicated by
thin vertical lines.j zo5enm* v0

3Ga2d/D is a suitable reference cur
rent density.
q.

is

at

e-

r
d

g

ic

e,
re
e
y
e.

-
t

a
t

e

the LO-phonon scattering is stronger when the tempera
becomes higher.

V. SUMMARY

In summary we have presented a quantum-kinetic
scription of the interplay between Landau and Stark qua
zation in the high-field miniband transport of SL’s. Hig
electric and magnetic fields aligned parallel to the SL a
lead to a complete localization of all electronic states. Ho
ping transport is only possible when electrons are scatte
on impurities or phonons. Current maxima are observed
combined magnetophonon and electro-phonon resonan
which appear atnvc5 lV6v0. Due to the dimensionality
reduction by the magnetic field the transport becomes ef
tively one dimensional, which leads to a pronounced
hancement of Wannier-Stark current oscillations. The am
tudes of magnetophonon and electrophonon resonances
a quite different temperature behavior. Magnetophonon re
nance peaks are most pronounced at high temperatures,
optical-phonon scattering is strong. Contrary, the observa
of electrophonon resonances requires low lattice temp
tures. Other theoretical papers7,9,10,12arrived at similar con-
clusions but neglected the intracollisional field effects and
the lateral electron heating described by the electron dis
bution function. However, a due consideration of these
fects is inevitable in order to understand, why the magne
field influences the electric-field driven electron motio
along the SL axis and conversely, why an electric field
fects the magnetophonon resonances. This coupling betw
the longitudinal and transverse degrees of freedom is
scribed by a lateral distribution function, which is the sol
tion of the quantum-kinetic equation~39!. As a result the
electric and magnetic-field effects as well as their tempe
ture dependence are not separable. Three main peculia
of the miniband transport have been attributed to a coup
between the longitudinal and in-plane motion described
n(k'): ~i! the magnetic-field mediated enhancement
Wannier-Stark oscillations due to the dimensionality red
tion and the associated peak structure of the density of sta
~ii ! a decrease of the current due to a suppression of opt
phonon scattering once\vc becomes larger than the min
band widthD so that real gaps appear in the energy spectr
of the lateral electron motion,~iii ! a crossover in the tem
perature dependence of the current as observed in ex
ments.

We presented a general framework for a quantu
transport theory in SL’s at high electric and magnetic fie
in which intracollisional field effects are accounted for. T
electron distribution function is calculated from a quantu
kinetic equation. It has been pointed out that a consequ
microscopic approach requires the consideration of the p
non dispersion, which removes the singular structure of
current.

Stark-cyclotron resonance effects have been measure8 in
the superlattice transport assisted by quasielastic scatte
At low temperatures the elastic scattering is mainly due
ionized background impurities and layer fluctuations.8 To
analyze these experimental results elastic scattering me
nisms have to be incorporated into our approach. This
straightforward and will be done in the near future.
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