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Double-layered quantum dots in a magnetic field:
The ground state and the far-infrared response

O. Mayrock, S. A. Mikhailov,* T. Darnhofer, and U. Ro¨ssler
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040, Regensburg, Germany

~Received 22 May 1997!

We investigate the ground-state properties, the far-infrared~FIR! response, and the collective modes of a
square lattice of double-layered quantum dots by applying classical and quantum-mechanical concepts. Using
classical self-consistent linear response theory for the dot array we derive analytic results for the magnetoab-
sorption spectrum and the frequencies, linewidths, and oscillator strengths of the optical and acoustic collective
modes including the effect of intercell and intracell interactions. Within the full quantum-mechanical calcula-
tion ~applying density-functional theory with the local-density approximation! for a single double-layered
quantum dot we obtain numerically ground-state properties and the FIR excitation frequencies. We use a
quantum dot model with a realistic distribution of background charge, which accounts for surface states and
total charge neutrality. In both approaches we study the dependence of the oscillator strengths of the acoustic
mode on the asymmetry of the double-layered system in order to give information on the condition for
experimental detection.@S0163-1829~97!03848-4#
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I. INTRODUCTION

Far-infrared~FIR! response and collective excitations
low-dimensional electron systems~ES! have been inten-
sively studied, both theoretically and experimentally, dur
the past two decades. Magnetoplasma excitations have
observed in single-layered two-dimensional~2D! ES in Si
metal-oxide-semiconductor field-effect transistors and
GaAs/AlxGa12xAs heterostructures,1 in one-dimensional
~1D! ES in quantum-wire structures~for reviews see, e.g.
Refs. 2 and 3! and in zero-dimensional ES in quantum-d
structures.4

In multilayered low-dimensional ES the higher number
degrees of freedom gives rise to additional modes. In dou
layered structures one has, besides an optical mode,
in-phase motion of the charge density in both layers~which
corresponds to the single dot mode!, as an additional feature
an acoustic mode with out-of-phase motion. Optical a
acoustic magnetoplasma modes have been observe
double-layered 2D systems5,6 ~using Raman scattering! and
in double-layered quantum wire arrays7–9 ~using FIR trans-
mission technique!. In recent FIR transmission experiments10

with an array of double-layered dots observation of an aco
tic mode has been mentioned. Theoretically, the problem
plasma oscillations in double-layered quantum wires
been considered in Refs. 11–13.

The main problem in detecting the acoustic mode in
FIR spectrum of double-layered systems is its small osc
tor strength. It differs from zero only in the asymmetric ca
~when upper and lower system are not identical! and its
value depends on the system parameters. Theoretical st
can be helpful to find the conditions for the observability
the acoustic modes.

In this paper we investigate the FIR response and col
tive modes of a square lattice of double-layered quan
dots. In Sec. II the problem is studied within the classi
self-consistent linear response approach. We calculate
560163-1829/97/56~24!/15760~10!/$10.00
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lytically the magnetoabsorption and excitation spectra of
system, the dependencies of the linewidths and oscilla
strengths of the collective modes on magnetic field, a
other parameters of the structure. An influence of the in
cell interaction on the excitation spectrum is discussed.
Sec. III we perform full quantum-mechanical calculatio
within density-functional theory in the local-density approx
mation of the ground-state properties and the FIR excita
frequencies of a single double-layered quantum dot in
random-phase approximation~RPA! formalism. This ap-
proach has been extensively used for calculations of
properties of single-layered dots with electrons a
holes.14–18 Our quantum-mechanical model of the dot i
cludes a realistic distribution of a background charge, wh
accounts for surface states andtotal charge neutrality. We
discuss the differences in the results from classical
quantum-mechanical calculations and study the oscilla
strength of the acoustic mode in order to give information
the condition for its experimental detection. In Sec. IV w
make conclusions and compare our results with the exp
mental data of Ref. 10. Throughout the paper we use
effective-mass approximation and neglect spin effects.
layers are assumed to be infinitely thin, and the tunneling
electrons between the dots is neglected.

II. CLASSICAL APPROACH

A. Qualitative consideration

Before starting the discussion of an analytic quantitat
model we briefly outline the qualitative features of the stru
ture. The double-layered quantum-dot system can be con
ered as two disks with the radiiR1 andR2 , and 2D equilib-
rium charge densitiesns,1 andns,2 separated by a distanceD
in the z ~or growth! direction. The negative charge of ele
trons in dots is assumed to be compensated by a neutral
positive background with the same shape. Charge-den
plasma oscillations in the system arise when the mobile e
15 760 © 1997 The American Physical Society
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56 15 761DOUBLE-LAYERED QUANTUM DOTS IN A MAGNETIC . . .
trons in the discs are displaced in a lateral direction byxj
relative to the positive background. The restoring for
which acts on electrons of thej th layer consists of two con
tributions. The first contribution is due to the charge dens
fluctuation in the same~j th! layer. It depends onns, j andRj ,
and is proportional to the displacementxj . In the absence o
the second layer this restoring force results in single-
plasma oscillations with a frequencyv0}(ns, j /Rj )

1/2. The
second contribution is due to the charge-density fluctuati
in the other~kth, kÞ j ! layer. It depends onns,k , Rk , and
xk , as well as on the distance between the dotsD. This
contribution decreases as 1/D3 whenD→` due to the dipole
force between the layers. The double-layered quantum
structure is thus a system of two coupled harmonic osc
tors and maintains two types of oscillations. In a symme
system ~ns,15ns,2 , R15R2! the high-frequency~optical!
mode corresponds to in-phase oscillations, the low-freque
~acoustic! mode—to out-of-phase oscillations of the char
in the two layers. In the limit of smallD the frequency of the
optical mode increases by a factor of& over that of a single
dot, due to a doubling of the restoring force in two laye
The frequency of the acoustic mode tends to zero becaus
the total compensation of the Coulomb restoring force i
symmetric system in the limitD→0.

This simple classical picture gives the general descrip
of the plasma oscillations in the system, but does not
scribe some peculiarities of the excitation spectrum that a
in a quantum-mechanical treatment of the problem. Th
new features will be discussed in detail in Sec. III.

B. Formalism

The periodic array of double-layered quantum dots
modeled19 by assuming an equilibrium electron density
2D electrons N0(r ,z)5N1

0(r )d(z2z1)1N2
0(r )d(z2z2)

which is a periodic function ofr5(x,y),

Nj
0~r !5(

k,l
nj

0~r2ak,l !5(
G

Nj ,G
0 eiG•r. ~1!

The functionsnj
0(r )[nj

0(r ), j 51,2 describe a density pro
file inside the dots in the planesz5z1 andz5z2 ;

Nj ,G
0 5

1

a2 E
cell

nj
0~r !e2 iG•rdr[^nj

0~r !e2 iG•r& ~2!

are Fourier components ofNj
0(r ), ak,l5a(k,l ) and

Gm,n5(2p/a)(m,n) are the lattice and reciprocal lattic
vectors respectively,a is the lattice period, and the angula
brackets mean the average over an elementary cell.
background dielectric constante is assumed to be uniform in
all the space and the structure is placed in a perpendic
magnetic fieldB5(0,0,B). The electric field of an externa
electromagnetic wave,Ea

ext}exp(2ivt), a5$x,y%, is as-
sumed to be uniform and parallel to the planez50. Both the
lattice constant a and the distance between the do
D5uz22z1u are assumed to be small as compared with
wavelength of lightl52pc/vAe, c is the velocity of light.

An incident electromagnetic wave results in fluctuatio
of the charge density and the induced potential, which
related by the Poisson equation~quasistatic approximation!
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Dw ind524p$r1d~z2z1!1r2d~z2z2!%/e. ~3!

Expanding all quantities in Fourier series we obtain relatio
between the Fourier components of the induced electric fi
and the induced charge densities in the planesz5zj , j 51,2,

Ea
ind~r ,zj !52 (

GÞ0

2p iGa

eG (
k51

2

rk,GeiG•r2Guzj 2zku, ~4!

whereG5uGu. The relation between the charge density flu
tuations r j ,G and the total electric field Ea

tot(r ,zj )
5Ea

ind(r ,zj )1Ea
ext(zj ) inside the dots can be found from th

continuity equation and the local Ohm’s law,

r j ,G5Ga^sab
~ j ! ~r !Eb

tot~r ,zj !e
2 iG•r&/v. ~5!

Here sab
( j ) (v,r ) is the frequency and magnetic-field

dependent conductivity tensor assumed to be proportiona
the local electron densitynj

0(r ) in a dot of thej th layer. The
validity of the local Ohm’s law implies that the valuevF /v
~vF /vc in a strong magnetic field! is small as compared with
the typical scale of changing the electric field inside the d
~here vc is the cyclotron frequency andvF is the Fermi
velocity of electrons in the dots!.

Substituting Eq.~5! into Eqs.~4!, we obtain a system o
coupled integral equations for the induced electric field
side the dots. This system is solved approximately by
method proposed in Ref. 19. Assuming that the induced~and
total! electric fieldinside the dotsis uniform ~consistent with
assuming the local Ohm’s law!, multiplying the first of the
Eqs.~4! by n1

0(r ) and the second one byn2
0(r ) and integrat-

ing over the elementary cell, we obtain relations between
total electric fields inside the dotsE6

tot(zj) and the external
field E6

ext,

z1,1
6 ~v!E6

tot~z1!1z1,2
6 ~v!E6

tot~z2!5E6
ext, ~6!

z2,1
6 ~v!E6

tot~z1!1z2,2
6 ~v!E6

tot~z2!5E6
ext. ~7!

For the square lattice of circular dots these relations can
written in terms of the6 circular components of the electri
field E65(Ex7 iEy)/&, where the upper sign correspond
to the polarization of the cyclotron resonance of electrons
D!l, we haveE6

ext(z1)'E6
ext(z2)'E6

ext. The functionsz j ,k
6

in Eqs.~6! and ~7! are defined as

z j ,k
6 ~v!5d j ,k1

p i ^s6
~k!&

ve (
GÞ0

Gb j~G!bk* ~G!e2Guzj 2zku,

~8!

wheres65sxx6 isxy . The form factorsb j (G) are deter-
mined by the Fourier components of the equilibrium electr
densities in the dots,

b j~G!5
^nj

0~r !eiG–r&

^nj
0~r !&

; ~9!

bk* (G) means the complex conjugate, for circular do
b j (G) are real. Equation~8! generalizes the definition~Ref.
19! of the response function of the single-layered dot latti

Using Eqs.~6! and ~7! we find the total electric field in-
side the dots, as well as the macroscopic conductivity
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fined ass6
macro5(^ j 6

(1)&1^ j 6
(2)&)/E6

ext. The absorption coef-
ficient L6(v) is then determined by the real part ofs6

macro,
so that we have

L6~v!5ReF ^s6
~1!&~z2,2

6 2z1,2
6 !1^s6

~2!&~z1,1
6 2z2,1

6 !

z1,1
6 z2,2

6 2z1,2
6 z2,1

6 G .

~10!

The spectrum of collective excitations is determined by ze
of the denominator of Eq.~10!,

z1,1
6 ~v!z2,2

6 ~v!2z1,2
6 ~v!z2,1

6 ~v!50. ~11!

Using the Drude expressions for the conductivity
the presence of a magnetic field,̂s6

( j )&5 i f jns, je
2/

@mj* (v7vc, j1 ig j )#, we rewrite Eq.~8! for z functions in
the form

z j ,k
6 ~v!5d j ,k2

V j ,k
2

v~v7vc,k1 igk!
, ~12!

where e, mj* , and g j are the charge, effective mass a
momentum relaxation rate of electrons in thej th layer, re-
spectively,vc, j5eB/mj* c is the cyclotron frequency, and

V j ,k
2 5

p^nk
0~r !&e2

mk* e (
GÞ0

Gb j~G!bk* ~G!e2Guzj 2zku.

~13!

The average density over the cell^nj
0(r )& can be written as

^nj
0(r )&5 f jns, j , wherens, j is the average carrier density i

the dots, andf j5pRj
2/a2 is the area filling factor. Equation

~8!–~13! provide a functional dependence of the absorpt
and excitation spectra of the system on the equilibrium e
tron density and other physical and geometrical parame
of the structure.

C. Analysis of results

1. Absorption and excitation spectra:
Optical and acoustic modes

Figure 1 exhibits magnetic-field-dependent absorpt
spectra ~a! and collective mode frequencies~b! of the
double-layered quantum-dot structure at different elect
densitiesns,1 andns,2 in two layers. The spectrum consists
two, optical and acoustic, modes for each~6! circular polar-
ization. If the cyclotron masses of electrons in different la
ers are the same~but other parameters, e.g., electron den
ties or radii, are different! the dispersion relation, Eq.~11!
gives the following expressions for the frequencies of the6
polarized optical and acoustic modes of the structure
v6

opt,ac@g j :

v6
opt,ac56vc/21A~vc/2!21Vopt,ac

2 , ~14!

where

Vopt,ac
2 5

V1,1
2 1V2,2

2

2
6AS V1,1

2 2V2,2
2

2 D 2

1V1,2
2 V2,1

2 .

~15!
s

n
c-
rs

n
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The upper~lower! sign in Eq.~15! corresponds to the optica
~acoustic! mode. For identical dots, we haveV1,1

2 5V2,2
2 ,

V1,2
2 5V2,1

2 , and the frequenciesVopt,ac assume the simple
form

Vopt,ac
2 5

p f nse
2

m* e (
GÞ0

Gub~G!u2~16e2GD!. ~16!

2. Intercell interaction

Equations~15! and ~16! take into account an interactio
of plasma modes in different dots both withinthe sameel-
ementary cell~intracell interaction! and indifferentelemen-
tary cells ~intercell interaction!. The intercell interaction is
relatively small and can be estimated as follows. Applyi
the transformation

(
G

F~G!5E a2dq

~2p!2 F~q!(
l ,m

eiqal ,m ~17!

to Eq.~16! ~we restrict ourselves to the symmetric case no!
we obtain

Vopt,ac
2 5

pnse
2R2

2m* e (
l ,m

E
0

`

q2dq~16e2qD!ub~q!u2J0~qal ,m!,

~18!

whereal ,m5aAl 21m2. The term of the sum withl 5m50
does not depend ona and describes the frequencies of mod
in a single cell. All other terms of the sum~with l 21m2

FIG. 1. Magnetic field dependence of~a! the absorption spec
trum and ~b! the frequencies of the optical~upper curves! and
acoustic~lower curves!1~solid curves! and2(dashed curves) po
larized excitation modes in a double-layered quantum-dot struct
Effective masses of electrons in the dots, as well as the dot radi
assumed to be identical; the average area densities of electro
the dots arens,1 and ns,2 . The frequencyv0 is defined as
v0

253p2(ns,11ns,2)e
2/8m* eR, the density asymmetry paramete

a is a[(ns,12ns,2)/(ns,11ns,2)50.4. The intracell interaction pa
rameter isD intra50.4, g/v050.1.
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56 15 763DOUBLE-LAYERED QUANTUM DOTS IN A MAGNETIC . . .
Þ0! give corrections due to the inter-cell interaction. Assu
ing for simplicity that the density profiles in the dots a
given by

n1
0~r !5n2

0~r !5 3
2 ns~12r 2/R2!1/2 ~19!

~an oblate spheroid model20,21! we obtain
b(G)5(9p/2)1/2J3/2(GR)/(GR)3/2, and

Vopt,ac
2 5v0

2$16D intra2D inter
opt,ac%. ~20!

Here v0 is the frequency of the dipole plasma mode in
single dot atB50, v0

253p2nse
2/4m* eR.20,21 For R, D!a

the intercell interaction can be expressed by

D inter
opt 5

4h~3/2!

3p

R3

a3 , D inter
ac 5

3h~5/2!

p

R3D2

a5 , ~21!

where h(z)5(( l 21m2)2z ~the sum is taken over alll ,m
excluding l 5m50!; h(3/2)59.03, h(5/2)55.09. D inter

opt

agrees with that obtained for a single-dot array.22,23,19For the
acoustic mode the intercell correction has an additional sm
factor ;D2/a2!1 compared to the optical mode. This
because the dipole moment of the acoustic mode in a s
metric double-layered dot structure is zero, and the inter
interaction is due to higher multipole moments.

The intercell interaction in typical single-layered stru
tures does not usually exceed several percents.23 This is
equally valid for the optical modes in double-layer
quantum-dot structures. For the acoustic modes the inte
interaction is even smaller. We neglect below the terms
sponsible for the intercell interaction and consider only
single cell of a double-layered quantum-dot structure.

It should be noted that the intercell interaction leads
another type of ‘‘acoustic’’ modes in an array of doubl
layered~as well as of single-layered! quantum dots. These
modes correspond to out-of-phase oscillations of an elec
density inadjacentdots within the same layer, and are cha
acterized by a finite lateral quasi-wave-vectorq. We do not
consider these modes here as due to inequalitya!l they
cannot be seen in FIR experiments.

3. Intracell interaction

The intracell interaction of modesD intra in Eq. ~20! is a
function ofD/R. For the dots with the density profile of Eq
~19! it has the form

D intra~z!53E
0

` dx

x
J3/2

2 ~x!e2xz, z5D/R, ~22!

with D intra(z@1)'4/3pz3 and D intra(z!1)'12(3z/
p)ln(2/z). Figure 2 shows the dependence of the frequ
cies, Eq.~20!, on the ratioD/R in a single cell (a→`).
When D→` the intracell interaction parameterD intra tends
to zero as 1/D3, which reflects the dipole character of th
Coulomb interaction between the modes in the dots within
elementary cell. WhenD tends to zero, the frequency of th
optical mode increases, as compared to a limit of decoup
dots, by a factor of&. The frequency of the acoustic mod
vanishes in the limitD→0. This result agrees with classic
calculations for a double-layered quantum-wire structur12
-

ll

-
ll

ell
-

a

o

n
-

-

n

d

as well as for other structures with two spatially separa
plasma subsystems, such as, e.g., metal-dielectric-m
systems.24

The classical model used here~see also Ref. 12! does not
describe correctly the behavior of the acoustic mode in
limit of the very smallD. The quantum-mechanical calcula
tions of Sec. III give the finite value of the acoustic mo
frequency atD→0. This effect can be interpreted both qua
tum mechanically~see Sec. III! and classically~within the
framework of thenonlocalhydrodynamic theory!. In the hy-
drodynamic approach25 the frequency of the 2D plasmons i
a single layer is given by the formula

v2~q!5
2pnse

2

m!e
q1s2q2. ~23!

The first term in Eq.~23! is due to the Coulomb restorin
force, the second one~neglected in our local classical theory!
is due to the compressibility of the 2DES. The velocitys is
defined by the relationm!s25]p/]ns , wherep is a ‘‘two-
dimensional’’ pressure, and for an ideal 2D Fermi gas equ
s5vF /&. In a system of neutral particles (e250) s would
be the thermodynamic speed of sound. In a double-laye
system an additional factor 2/@11coth(qD/2)# arises in the
first term in the spectrum of the acoustic mode. Due to t
factor the first term vanishes in the limit of smallD, i.e., the
Coulomb restoring force disappears, while the last~com-
pressibility! factor remains finite. In the double-layered d
structures the wave vectorq is discretized,q.1/R, which
leads to a finite frequency of the acoustic mode atD→0.
Comparing two contributions to the spectrum of the acou
mode one can see that the compressibility term can be
glected if D@aB/2, whereaB is the effective Bohr radius
Our local classical approach thus correctly describes the
tical mode at allD and the acoustic mode atD.aB .

4. Linewidths

The damping of the6 polarized optical and acousti
modes~14! can be found from the dispersion equation~11!
and is given by the expressions

FIG. 2. Optical~solid! and acoustic~dashed! mode frequencies
in a double-layered quantum-dot structure with identical parame
at B50, as a function of the distance between layers. Intercell
teraction is neglected. Inset shows the dependence of the intr
interaction parameterD intra on D/R.
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Im v6
opt,ac52

g

2 F16
vc/2

A~vc/2!21Vopt,ac
2 G . ~24!

As in the case of single-layered dots, the damping of the1
polarized optical and acoustic modes increases by a facto
2 with increasing magnetic field, while the damping of the2
polarized~edge-magnetoplasmon! modes decreases with in
creasingB.

In our quasistatic model we neglect the radiative effe
that result in an additional contribution to the linewidth, E
~24!. As has been shown in Ref. 19, the use of the full s
tem of Maxwell equations instead of the Poisson equation~3!
leads to the replacement ofg in Eq. ~24! by g1G, whereG
is the radiative decay of modes. The radiative effect is du
a coherentdipole radiation of plasma modes; for theoptical
mode in the double-layered quantum-dot structure the ra
tive decayGopt is determined, similar to a single-layere
case,19 by the expression

Gopt5
2p f ~ns,11ns,2!e

2

m!cAe
, a!l, D!l. ~25!

The radiative decay of theacousticmodeGac in a double-
layered quantum-dot structure is much smaller, due t
smaller dipole moment of the acoustic mode, and vanishe
a symmetric structure.

5. Oscillator strengths

The oscillator strength of the acoustic mode is mu
smaller than that of the optical mode~see Fig. 1!. Assuming
again that the dots differ from each other only by the elect
density we find from Eq.~10! at B50,

f opt,ac5
1

2 H 16
D intra1a2~12D intra!

@D intra
2 1a2~12D intra

2 !#1/2J ; ~26!

the oscillator strengthsf opt and f ac are normalized by the
condition f opt1 f ac51. The dependence off opt and f ac on the
density asymmetry parametera[(ns,12ns,2)/(ns,11ns,2) at
different values ofD intra is shown in Fig. 3. The oscillato

FIG. 3. Oscillator strengths of the optical~solid curves! and
acoustic~dashed curves! modes atB50 as a function of the density
asymmetry parametera[(ns,12ns,2)/(ns,11ns,2) at different val-
ues of the intracell interactionD intra .
of

s
.
-

to

a-

a
in

h

n

strength of the acoustic mode vanishes ata51 ~when there
are no electrons in one of the dots! and ata50 ~when the
dots are identical!. The acoustic mode has a maximum osc
lator strength when

a5amax5
D intra

11D intra
. ~27!

At a5amax one has

f opt,ac~amax!5
1

2 F16
2D intra

1/2

11D intra
G .

The best conditions for experimental detection of the aco
tic mode are thus determined by Eq.~27!.

D. Discussion

Within our classical model we obtain an analytic descr
tion of the main features of the system: the absorption sp
trum, the magnetic-field dependence of the excitation f
quencies in systems with different physical and geometr
parameters, the influence of the intercell interaction on
excitation spectrum, and linewidths and oscillator streng
of the optical and acoustic modes. The classical model d
not describe, however, effects conditioned by nonlocal a
quantum corrections, which will be considered in the ne
section.

III. QUANTUM-MECHANICAL CALCULATION

A. Model

1. Main assumptions

In the quantum-mechanical model we calculate both
ground-state properties and the electromagnetic respons
the system. We restrict ourselves to a single elementary
of our periodic double-layered quantum-dot array, neglect
the intercell interaction. We assume that the dots have a
cular symmetry and considerN mobile electrons in an exter
nal potentialVext(r ,z)[Vext(r ,z), r5(r ,w). We neglect the
tunneling of electrons between dots inz direction, which
implies that the distanceD between dots exceeds the pe
etration length of the electron wave function under the b
rier \/A2m!VB ~hereVB is the height of the barrier betwee
dots!. We neglect also the spatial spreading of the electro
wave functions inz direction by assuming a charge distrib
tion according to Eq.~1!. Thus we consider only Coulomb
coupling between the layers. The Hartree and exchan
correlation electron-electron interaction are taken into
count in the framework of the density-functional theory
the local-density approximation. Calculating the electrom
netic response in the RPA formalism we neglect the radia
effects. The sizes of the system and the distance betwee
dots are again assumed to be much smaller than the w
length of light.

2. External potential

In a number of papers on single-layered quant
dots14–18 the external potential has been modeled by a pa
bolic confinement;a2r 2 with some nonparabolic correc
tions ~}r 4, r 6, etc!. The coefficients of the expansion hav
been assumed to be independent external parameters o
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problem. For thedouble-layeredquantum dot one has t
make more accurate assumptions on the origin of the late
external potential. In principle, the external potent
Vext(r ,z) is conditioned by a neutralizing background char
~positively charged ionized donors and negatively char
surface states!, as well as by rectangular potential wells
the growth direction and the potential steps at the late
boundaries due to the work function at the interface se
conductor vacuum. As electrons occupy only the pla
z5zj ~which means that the potential in growth direction
effectively taken into account!, we need only to model the
lateral confinement potential with a dependence onD. We
assume that the background charge distribution in the sys
has the form

rext
0 ~r ,z!5(

j 51

2 FeNj
1

pR2 Q~R2r !2
eN j

2

2pR
d~R2r !Gd~z2zj !.

~28!

Thus, in our model the neutralizing background charge c
sists in two positively charged sheets with the radiusR and
the total number of positive chargesN j

1 , and two negatively
charged ‘‘guard’’ rings with the radiusR and the total num-
ber of negative chargesN j

2 to model the surface states. W
choose the number of mobile electrons in each dot to
Nj5N j

12N j
2 to achieve charge neutrality. In all calcula

tions we assume that the number of surface charges is s
ciently large, so that the radius of the areas occupied by
mobile electronsRe

j is smaller than the geometrical radius
the dotsR. Under these conditions the potential steps at
lateral boundaries semiconductor vacuum do not influe
the properties of the system. The external potentialVext(r ,z)
is then determined by the Poisson equation with the ba
ground charge distribution given by Eq.~28!.

In a recent work Steinebach, Heitmann, and Gu
mundsson13 have applied the density functional formalism
similar to that used in our paper, to a problem of doub
layered quantum wires. They have assumed that the exte
potentialsVext(r ,zj ) are expanded in power series withinde-
pendentcoefficients. As seen however from the above d
cussion, the expansion coefficients in two layerscannot be
considered as independent quantities: in real structures the
curvature of the external potential in the middle of one la
obviously depends on the background charge density in
other layer, as well as on the interlayer distanceD. As a
result, theD dependence of the collective mode frequenc
in Ref. 13 does not agree with the well-known results~e.g.,
the frequency of the optical mode does not depend onD!,
and contradicts the classical solution of the same prob
given by Shikin, Demel, and Heitmann.12

3. Ground state

In order to calculate single-particle wave functionsfl
j (r ),

energy levelsel
j and the ground-state density

nj
0~r !52(

l
f ~el

j !ufl
j ~r !u2 ~29!

we use the Kohn-Sham formalism of the density-functio
theory. Heref (e) is the Fermi distribution function, and th
factor 2 takes into account the spin degeneracy of the sta
al,
l
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Considering only the Coulomb coupling between the d
one can obtain a system of two coupled Kohn-Sham eq
tions

F T̂1Vext~r ,zj !1 (
k51

2

@VH
jk~r !1VXC

jk ~r !#Gfl
j ~r !

5el
j fl

j ~r !, j 51,2, ~30!

where T̂ is the kinetic-energy operator which includes t
vector potential in finite magnetic fieldB, and

VH
jk~r !5

e2

e E dr 8
nk

0~r 8!

Aur2r 8u21~zj2zk!
2

~31!

is the Hartree potential. The exchange-correlation poten
VXC

jk (r ) is assumed to be diagonal in the layer indice
VXC

jk 5d jkVXC
j , and is estimated in the local-density approx

mation,

VXC
j ~r !5

d

dnj
0 E dr 8nj

0~r 8!eXC„nj
0~r 8!…, ~32!

whereeXC is the exchange-correlation energy of the hom
geneous 2DEG per electron,26 and d means the variationa
derivative.

To obtain a self-consistent solution of Eqs.~29!–~32! we
use the circular symmetry of the problem and expand
Kohn-Sham orbitalsfl

j (r )5Rnm
j (r )eimw in the complete set

of eigenfunctions of the two-dimensional harmonic oscilla
with a curvature of the external potential in the centers of
dots. A numerical diagonalization provides the coefficie
of the expansion. The procedure of calculating the grou
state density, Eq.~29!, and the total potentialVext1VH1VXC
is done iteratively until self-consistency is achieved.

4. Electromagnetic response

The response of the system to an external uniform
electric field Ea

ext}exp(2ivt) is described within the RPA
formalism.27 The charge density fluctuations in laye
r j (r ,v) satisfy the integral equation,

(
k51

2 E dr 8J jk~r ,r 8,v!rk~r 8,v!

5e2E dr 8x j~r ,r 8,v!Fext~r 8,v!, ~33!

where Fext(r ,v)52Ea
ext

•r is the potential of the externa
field, andx j (r ,r 8,v) is the susceptibility of a noninteractin
electron gas,

x j~r ,r 8,v!5 lim
G→0

2(
lm

f ~el
j !2 f ~em

j !

el
j 2em

j 1\v1 iG

3fl
j* ~r !fm

j ~r !fm
j* ~r 8!fl

j ~r 8!. ~34!

The one-particle statesfl
j (r ) and the one-particle energie

el
j are taken from the solution of the Kohn-Sham system

Eqs. ~29!–~32!, and J jk(r ,r 8,v) is a response function o
the system,
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J jk~r ,r 8,v!5d jkFd~r2r 8!2x j~r ,r 8,v!
dVXC

j

dnj
0 G

2
e2

e E dr 9
x j~r ,r 9,v!

Aur 82r 9u21~zj2zk!
2

.

~35!

From the solution of the integral equation~33! we find the
dipole moment

Pa5 (
k51

2 E drxark~r ,v![aab~v!Ea
ext ~36!

and the polarizability of the whole systemaab(v). The ab-
sorption spectrum is then determined by the antihermi
part (aab2aba

! )/2 of the polarizability tensor.
To solve the integral equation~33! we expand the relevan

quantities into Fourier series with respect to the angular
ordinatew. Thus, it reduces to a set of equations with diffe
ent angular momentum quantum numberl . In the uniform
external ac electric field only the dipole modes withl 561
are excited. After discretization of the variabler we obtain
instead of Eq.~33! a set of linear equations,

M̂XW 5CW , ~37!

where the matrixM̂ comes from the kernelJ, XW is the vector
of the unknown charge-density fluctuation, andCW is a known
vector due to the right-hand side of Eq.~33!. Then Eq.~37! is
diagonalized numerically. The excitation spectrum of t
system is determined by the equation

det M̂50. ~38!

The RPA formalism,27 which we use to calculate the FIR
response of the system, generally yields good results in
high-density electron gas,pnsaB

2.1. Actually this approach
has a wider region of applicability, at least in quantum do
This is supported by the fact that our calculations for pa
bolic dots reproduce the statement of the generalized K
theorem,28,22 which is exact in all orders of the paramet
(aBAns)

21. Below we use the RPA also atpnsaB
2&1.

B. Results

1. Ground state

The calculated ground-state density and self-consis
potential atB50 are shown in Fig. 4 for the following sys
tem. The number of positive charges in layers isN 1

15220,
N 2

15147, the number of mobile electrons isN1560,
N2540, so thatNj /N j

1 is the same in both layers. Th
geometrical radius of the dots has been taken to beR5100
nm, and the distanceD550 nm. The solid curves on th
potential plots show the external confining potent
Vext(r ,zj ). The logarithmic divergency of the potential at th
boundary of the system is due to the negatively char
‘‘guard’’ rings. The dashed curves show the self-consist
potential calculated in the Hartree approximation. Includ
exchange-correlation terms results only in small change
ground-state properties, but has no effect on the respo
n

-

e

he

.
-
n

nt

l

d
t

g
of
se

properties for all systems considered here. The dotted cu
show the parabolic part of the external potential.

2. Electromagnetic response

The absorption spectra obtained from the quantu
mechanical calculation do not essentially differ from those
Fig. 1~a!. Additional features found in the magnetic-field d
pendence of the resonance frequencies are due to non
bolicities in the lateral potential and non-local and quant
corrections neglected in the classical model. Calculations
dots with a relatively large number of electrons~Fig. 5! re-
veal the nonlocal Bernstein modes29 at magnetic fields which
occur at the intersection of both the optical and acoustic1
polarized ~upper! modes with the second harmonic of th
cyclotron resonance 2vc . In a system with only few elec-

FIG. 4. The ground-state properties~density and self-consisten
potential! for a system withN 1

15220, N 2
15147, N1560,

N2540, R5100 nm,D550 nm atB50 ~Nj /N j
1 is the same in

both layers!.

FIG. 5. Magnetic-field dependencies of the collective mode f
quencies for a system with the same parameters as in Fig. 4.
2vc line is drawn to identify Bernstein modes.
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56 15 767DOUBLE-LAYERED QUANTUM DOTS IN A MAGNETIC . . .
trons per dot we have seen a splitting of both the optical
acoustic modes, similar to that found for quantum-dot heli
in Ref. 30.

Figure 6 shows theD dependence of the optical- an
acoustic-mode frequencies atB50. The general behavio
agrees with the results of the classical calculation and w
the calculations for other double-layered systems:12,24 as the
Coulomb coupling increases for decreasingD, the frequency
of the optical mode increases~by a factor of& at D→0!, the
frequency of the acoustic mode decreases@Fig. 6~a!#. How-
ever, one sees two additional features in the results of
quantum-mechanical calculation. First, in contrast to
classical result, the frequency of the acoustic mode does
tend to zero atD→0. The reason for this has been alrea
discussed in Sec. II. From the quantum-mechanical poin
view the finite value of the acoustic-mode frequency atD50
is due to finite single-particle energy differencesel

j 2em
j ; see

Eq. ~34!. This interpretation is supported by comparison w
a RPA calculation for double-layeredinfinite 2DES. We take
analytic formulas for the frequencies of the optical a
acoustic modes of the double-layered infinite 2DE
vopt,ac(q,D) ~derived from the Poisson equation and t
known Stern formula31 for the polarizability of the 2DES!,
and replace the wave vectorq of plasmons by 1/Re , where
Re is the calculated radius of the disk of mobile electro
@see insets in Figs. 6~a!,~b!#. The resultingD dependencies
vopt,ac(Re

21 ,D) are shown in Figs. 6~a!,~b! by thin solid~op-
tical! and dashed~acoustic mode! curves. A good agreemen
is found with the dot results, especially for dots with a lar
number of electrons@Fig. 6~a!#. The offset of the acoustic
mode frequency atD→0 in the 2DES is due to the Landa

FIG. 6. Dependence of optical~solid line with circles! and
acoustic~dashed line with circles! mode frequencies on the inte
layer distanceD for ~a! N15N2560,N 1

15N 2
15200,R5100 nm

(Re'70 nm); and~b! N15N2510, N 1
15N 2

15200, R5100 nm
(Re'40 nm). Comparison is made with RPA results obtained
infinite 2DEG~see text!. Insets show the distribution of equilibrium
charge density with contributions of~1! positive background,~2!
surface states, and~3! mobile electrons inside the dot.
d

h

e
e
ot

of

,

s

damping32 at the edge of the continuum of single-partic
statesv,qvF1\q2/2m!, q51/Re .

Another new feature which is seen in our quantu
mechanical calculation is a nonmonotonic behavior of
acoustic mode in a structure with smallN. This feature is
seen neither in classical models nor in the quantu
mechanical RPA results for an infinite 2DES~with q51/Re!.
We believe that the reason for this behavior is a violation
the local charge neutrality in a small object like a quantu
dot, which is taken into account in our full quantum
mechanical approach but is ignored in the simpler schem
Indeed, both in the classical and in the quantum-mechan
RPA approach for an infinite 2DES, it is assumed that
equilibrium the system is locally neutral. The resonance f
quencies are then determined by restoring forces that a
when the system deviates from the equilibrium. TheD de-
pendence of the resonance frequencies is only due to thD
dependence of the Coulomb restoring force. In small obje
like double-layered quantum dots, there is nolocal charge
neutrality in each dot even in equilibrium@see the equilib-
rium charge-density distributions in the insets of Fig
6~a!,~b!. Therefore, the ground-state properties of the sys
~in particular, the single-particle energiesel

j !# depend onD
due to quadrupole and higher multipole interaction betwe
the dots in equilibrium. As a result, the single-particle ex
tation spectrum is pushed up whenD decreases, and due t
this effect the collective modesvopt andvac are also slightly
pushed up as compared with models which assume the l
charge neutrality. Consistent with this interpretation is t
tendency found by comparing Figs. 6~a! and ~b!: the viola-
tion of local charge neutrality is stronger for the system w
a smaller number of electrons and so is the deviation fr
the results from the infinite double-layered 2DEG.

Oscillator strengths of the optical and acoustic modes
culated in the quantum-mechanical model are shown in F
7. They are in a good qualitative agreement with the res
of the classical calculation~Fig. 3!. A quantitative compari-
son of the classical and quantum-mechanical results is
possible as the radius of the mobile electron diskRe depends
on the density asymmetry parametera in the quantum
model.

A picture of charge-density fluctuations in the two laye
~Fig. 8! allows us to illustrate the behavior of the oscillat
strength of the acoustic mode. For largerD or weaker Cou-

r

FIG. 7. Oscillator strengths of the acoustic mode from t
quantum-mechanical model forD/R51 andD/R50.5. The param-
eters in the calculation are chosen under the condition thatNj /N j

1

is the same in both layers~N 1520,N1
15200,N 252,4,6,. . . ,16,

N 2
1510N2!.
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15 768 56MAYROCK, MIKHAILOV, DARNHOFER, AND RÖSSLER
lomb coupling~left panel of Fig. 8! the excitation is stronge
localized in the upper layer~whose eigenfrequency is close
to the acoustic mode frequency! than for smallerD ~right
panel!. As a consequence the compensation of indu
charge density due to out-of-phase motion in upper
lower layer is less efficient~e.g., the induced dipole momen
and thus the oscillator strength is larger! for largerD. In the
case of a larger distanceD, also the positions of the maxim
of the induced density fluctuations deviate stronger from
values ofDw50 and 180° for the optical and acoustic mod
respectively, which also gives a contribution to this effe
Thus, beside in a splitting of the collective excitations in
optical and acoustic modes, the Coulomb coupling betw
the layers results also in a stronger participation in the e
tation of the otherwise less affected layer in each case.

IV. CONCLUSION

By applying classical and quantum-mechanical conce
we have studied the spectrum of collective excitations
double-layered quantum dots. It consists of two modes,
optical mode and the acoustic mode, which correspond
in-phase and out-of-phase oscillations of the electron den
in the layers, respectively. TheB dispersion of the modes
Eq. ~14!, is quite similar to those in a single quantum d
The dependence of the optical- and acoustic-mode freq
cies on the interlayer distanceD is due to the interdot Cou

FIG. 8. Patterns of the induced charge density fluctuations
the acoustic mode, corresponding to the data points indicated in
7 ~N1520, N1

15200,N2514, N2
15140!.
ur
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lomb coupling. The quantum-mechanical results~Figs. 5 and
6! differ from the classical ones~Figs. 1 and 2! by ~i! show-
ing the Bernstein modes~due to nonlocal effects!, ~ii ! by the
nonmonotonic behavior of the acoustic-mode frequenc
versusD, which can be ascribed to the violation of the loc
charge neutrality in our microscopic dot model, and~iii ! a
nonvanishing acoustic-mode frequency forD→0. The oscil-
lator strength of the acoustic mode~Figs. 3 and 7! is always
smaller than that of the optical mode and vanishes in
limit of identical dots. We have derived an optimum cond
tion for the observation of the acoustic mode~27!.

An additional mode found in FIR experiments10 has been
interpreted as an acoustic mode observable due to a s
asymmetry in the electron density in a double-layered
system ~the values ns,157.731011 cm22, ns,257.0
31011 cm22 have been determined from the Landau-lev
filling factor dependent periodic oscillations of the frequen
of thev2

opt mode!. The intensity of this mode was about 10
of the optical mode. As follows, however, from our resul
Eq. ~26!, Figs. 3 and 7, the oscillator strength of the acous
mode would be practically negligible under the experimen
conditions ~a'0.046, D intra'0.4!. We believe, therefore
that the mode observed in Ref. 10 isnot the acoustic plasma
mode and should be due to another reason.

The electron effective mass which can be extracted fr
experimental data of Ref. 10 for the optical mode, give
valuem* 50.085m0 , which is larger than the effective mas
of 3D electrons at the bottom of the conduction band
GaAsm* 50.067m0 due to the quantum-size effect and th
nonparabolicity of the GaAs conduction band. It is intere
ing that the experimental points identified in Ref. 10 as
acoustic mode fit ideally to a linev5eB/m* c with
m* 50.067m0 . This would correspond to the cyclotron res
nance of 3D electrons of the GaAs substrate.

To conclude, we have calculated the ground-state pro
ties, the FIR absorption and excitation spectra of a squ
lattice of double-layered quantum dots. We have discus
the dependencies of the observable values, intercell and
tracell interactions in the system, collisional and radiat
dampings of the optical and acoustic modes, influence of
electroneutrality of the system on the excitation spectru
We have calculated the oscillator strengths of the optical
acoustic modes and found the conditions of the best ob
vation of the acoustic mode.
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