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Double-layered quantum dots in a magnetic field:
The ground state and the far-infrared response
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We investigate the ground-state properties, the far-infr@fé®) response, and the collective modes of a
square lattice of double-layered quantum dots by applying classical and quantum-mechanical concepts. Using
classical self-consistent linear response theory for the dot array we derive analytic results for the magnetoab-
sorption spectrum and the frequencies, linewidths, and oscillator strengths of the optical and acoustic collective
modes including the effect of intercell and intracell interactions. Within the full quantum-mechanical calcula-
tion (applying density-functional theory with the local-density approximatifon a single double-layered
guantum dot we obtain numerically ground-state properties and the FIR excitation frequencies. We use a
guantum dot model with a realistic distribution of background charge, which accounts for surface states and
total charge neutrality. In both approaches we study the dependence of the oscillator strengths of the acoustic
mode on the asymmetry of the double-layered system in order to give information on the condition for
experimental detectionS0163-182(07)03848-4

[. INTRODUCTION Iytically the magnetoabsorption and excitation spectra of the

system, the dependencies of the linewidths and oscillator

Far-infrared(FIR) response and collective excitations in strengths of the collective modes on magnetic field, and
low-dimensional electron system&S) have been inten- other parameters of the structure. An influence of the inter-
sively studied, both theoretically and experimentally, duringcell interaction on the excitation spectrum is discusse_d. In
the past two decades. Magnetoplasma excitations have be&§¢. Ill we perform full quantum-mechanical calculations
observed in single-layered two-dimensio@D) ES in Si  Within density-functional theory in the local-density approxi-

metal-oxide-semiconductor field-effect transistors and ination of the ground-state properties and the FIR excitation

GaAs/ALGa, ,As heterostructures, in  one-dimensional frequencies of a smglg do_uble-layered ql_Jantum _dot in the

(1D) ES in quantum-wire structuredor reviews see, e.g., 'andom-phase approximatioRPA) formalism. This ap-

Refs. 2 and Band in zero-dimensional ES in quantum-dot proach has been extensively used for calculations of the
struc.ture P properties of single-layered dots with electrons and

In multilayered low-dimensional ES the higher number tholes?“‘w Our quantum-mechanical model of the dot in-
q ffy d . ‘se 10 additional 9 des. In doubl cludes a realistic distribution of a background charge, which
egrees ot freedom gives rise to additional modes. In doublessqnts for surface states atutal charge neutrality. We

layered structures one has, besides an optical mode, witliqess the differences in the results from classical and
in-phase motion of the charge density in both layevbich  q,antum-mechanical calculations and study the oscillator
corresponds to the single dot modas an additional feature syrength of the acoustic mode in order to give information on
an acoustic mode with out-of-phase motion. Optical anghe condition for its experimental detection. In Sec. IV we
acoustic magnetoplasma modes have been observed jRake conclusions and compare our results with the experi-
double-layered 2D syster (using Raman scatteringnd  mental data of Ref. 10. Throughout the paper we use the
in double-layered quantum wire arrdys (using FIR trans- effective-mass approximation and neglect spin effects. 2D
mission technique In recent FIR transmission experimefits  layers are assumed to be infinitely thin, and the tunneling of
with an array of double-layered dots observation of an acouselectrons between the dots is neglected.
tic mode has been mentioned. Theoretically, the problem of
plasma oscillations in double-layered quantum wires has
been considered in Refs. 11-13. Il. CLASSICAL APPROACH

The main problem in detecting the acoustic mode in the
FIR spectrum of double-layered systems is its small oscilla-
tor strength. It differs from zero only in the asymmetric case Before starting the discussion of an analytic quantitative
(when upper and lower system are not idenjicahd its model we briefly outline the qualitative features of the struc-
value depends on the system parameters. Theoretical studiege. The double-layered quantum-dot system can be consid-
can be helpful to find the conditions for the observability of ered as two disks with the radi; andR,, and 2D equilib-
the acoustic modes. rium charge densitiess ; andng , separated by a distan€e

In this paper we investigate the FIR response and collecn the z (or growth direction. The negative charge of elec-
tive modes of a square lattice of double-layered quantuntrons in dots is assumed to be compensated by a neutralizing
dots. In Sec. Il the problem is studied within the classicalpositive background with the same shape. Charge-density
self-consistent linear response approach. We calculate anplasma oscillations in the system arise when the mobile elec-

A. Qualitative consideration
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tron§ in the discs are displaced in a lateral direct_ionxpy A@ing=—41{p18(2—21) + p,8(z2— 2,)} €. (3)
relative to the positive background. The restoring force ) o ] ) ) )
which acts on electrons of theh layer consists of two con- Expanding all quqnt|t|es in Fourier series we obtain relgtlc_)ns
tributions. The first contribution is due to the charge densitypetween the Fourier components of the induced electric field
fluctuation in the saméth) layer. It depends on,; andR;, ~ and the induced charge densities in the plares; , j=1.2,

and is proportional to the displacemeqt In the absence of oric 2

the second layer this restoring force results in single-dot ind/ . o\ _ _ @ iG-r—Glz;—z{

plasma oscillations with a frequenayy(ng;/R;)"2% The Ea(r.2) (;o eG E—:1 Pre® @
second contribution is due to the charge-density fluctuations . .

in the other(kth, k#]) layer. It depends om ., R,, and WhgreG=|G|. The relation between thg Chqrge dgtnsny fluc-
X, as well as on the distance between the ddtsThis ~ Malions pjq and the total electric field E,(r,z)
contribution decreases aDffwhenD — due to the dipole  =Ea"(r,z)+EZ(z) inside the dots can be found from the
force between the layers. The double-layered quantum-déontinuity equation and the local Ohm's law,

structure is thus a system of two coupled harmonic oscilla- B ) ot CiGr

tors and maintains two types of oscillations. In a symmetric Pi,G_Ga<‘7ab’(r Ep(r.z)e ) w. ®)
system (ng;=ns,, R;=R;) the high-frequency(optical

p 2 o o A Here o{)(w,r) is the frequency and magnetic-field-
Mmode corresponds lo In-phase oscifiations, the Iow- re(wencéfependent conductivity tensor assumed to be proportional to
(acousti¢ mode—to out-of-phase oscillations of the charge

in the two layers. In the limit of smal the frequency of the the_ chal electron densm;{j (r) ina dpt of thejth layer. The
optical mode increases by a factorv® over that of a single validity .Of the local Ohm sllav_v implies that the valm&/w.
dot, due to a doubling of the restoring force in two Iayers.(vF/“’C.In astrong magneyc fie)ds smaI_I as Compf”‘red with
The frequency of the acoustic mode tends to zero because %ﬂe typlca_l scale of changing the electric f|el_d inside the .dOtS
the total compensation of the Coulomb restoring force in a Ere w; 1S the cyclqtron frequency and is the Fermi
symmetric system in the limib—0. velocity of electrons in the dais

This simple classical picture gives the general description Subsu'tutmg Eq(5) ".“O Egs.(4), we obtain a system Of.
of the plasma oscillations in the system, but does not de(-:.OUpleOI integral equations f(_)r the induced el_ectrlc field in-
scribe some peculiarities of the excitation spectrum that arisgIde the dots. This system is solved approximately by the

in a gquantum-mechanical treatment of the problem. Thes??th‘)(lj p;qpof.S(Tg. in_geft.h19dﬁis.sum_ipg that th("f ipdtfee;?ih
new features will be discussed in detail in Sec. Ill. otal) electric fieldinside the dotss uniform (consistent wi

assuming the local Ohm’s lawmultiplying the first of the

Egs.(4) by n{(r) and the second one l)(r) and integrat-

ing over the elementary cell, we obtain relations between the
The periodic array of double-layered quantum dots istotal electric fields inside the doEtﬁt(zj) and the external

modeled® by assuming an equilibrium electron density of field gext

2D electrons No(r,z)=N3(r)8(z—z1) +N3(r) 8(z— z,) -

which is a periodic function of = (x,y), {1 0)ER(2)) + & f 0)ER (2,) =ET, (6)

B. Formalism

{52 0)ER(2) + L A 0)ER(29) = ES. @

For the square lattice of circular dots these relations can be
written in terms of thex circular components of the electric
field E. = (Ex+IE,)/v2, where the upper sign corresponds
to the polarization of the cyclotron resonance of electrons; as
D<\, we haveEZ(z;) ~E¥{(z,) ~EZ. The functionsl;’,

NP =2 nj(r—aq)=2 Njce'®". )

The functionsn?(r)=n(r), j=1,2 describe a density pro-
file inside the dots in the planes=z; andz=z,;

N?cf; n(r)e”'®dr=(nd(r)e '¢") (2)  in Egs.(6) and(7) are defined as
' cell
: 0 7Ti<(r@>
are Fourier components ofN;(r), a=a(k,l) and gjtk(w)zgj F— > GBJ(G)B:(G)e—G\zj—zkI,
Gmn=(2m/a)(m,n) are the lattice and reciprocal lattice ' ' we  G#0
vectors respectivelya is the lattice period, and the angular (8

brackets mean the average over an elementary cell. Thghere 0. = o, *ic,,. The form factorss;(G) are deter-

background dielectric constaais assumed to be uniform i mined by the Fourier components of the equilibrium electron
all the space and the structure is placed in a perpendiculgfensities in the dots

magnetic fieldB=(0,0B). The electric field of an external
electromagnetic waveE®'<exp(—iwt), a={x,y}, is as- (n?(r)eiG'r>
sumed to be uniform and parallel to the plae0. Both the Bi(G)=— 5~ 9
latti ; (ny(r))
attice constanta and the distance between the dots
D=|z,—2z,| are assumed to be small as compared with theg; (G) means the complex conjugate, for circular dots
wavelength of lightx =27c/w /e, ¢ is the velocity of light. B;(G) are real. Equatiori8) generalizes the definitio(Ref.

An incident electromagnetic wave results in fluctuations19) of the response function of the single-layered dot lattice.
of the charge density and the induced potential, which are Using Egs.(6) and (7) we find the total electric field in-
related by the Poisson equati@quasistatic approximation  side the dots, as well as the macroscopic conductivity de-
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fined aso Y+ (j@))/E®. The absorption coef-
ficient A . (w) is then determined by the real part @,
so that we have

Ai(w):R{w

= (]

(1)

-+

Moo= i)+ (0PN (50

{ials0 Lo
(10

The spectrum of collective excitations is determined by zeros

of the denominator of Eq10),

(@) A 0) = (1A 0) {5 4(w)=0. (11)

Using the Drude expressions for the conductivity in
the presence of a magnetic field,od)=if;ng;e?/
[Mf(0F wej+i7;)], we rewrite Eq.(8) for ¢ functions in
the form

2
Qj,k

GO=00 gosaiaiy 12

where e, mj*, and y; are the charge, effective mass and
momentum relaxation rate of electrons in tith layer, re-
spectively,wcyj=eB/m]*c is the cyclotron frequency, and

m(nQ(r))e?

mg €

2

k= c;o GB;(G)Br (G)e Cla=d,

13

The average density over the c@ﬂ?(r)) can be written as
<n?(r))=fjns,j , whereng ; is the average carrier density in

MAYROCK, MIKHAILOV, DARNHOFER, AND ROSSLER

o 0.5 1 1.5 2 2.5 3
co/u)o
2.5
(b)
ob
(+)
+
1.5 +)
1r \\\‘\~\
0.5[ \\\\\\‘\\;‘ ) I T
(o)
(o] 0.5 1 1.5 2 2.5 3
0)0/0)0

FIG. 1. Magnetic field dependence @) the absorption spec-
trum and (b) the frequencies of the opticdupper curves and
acousticlower curve$+(solid curvegand—(dashed curves) po-
larized excitation modes in a double-layered quantum-dot structure.
Effective masses of electrons in the dots, as well as the dot radii are
assumed to be identical; the average area densities of electrons in
the dots areng; and ny,. The frequencyw, is defined as
wg=3m%(Ng1+ N5 ) €°/8M* €R, the density asymmetry parameter
ais a=(ng;—Ngp)/(Ng1+Ng2) =0.4. The intracell interaction pa-
rameter isA ;.= 0.4, v/ wy=0.1.

the dots, and ;= wR?/a? is the area filling factor. Equations The upperlower) sign in Eq.(15) corresponds to the optical
(8)—(13) provide a functional dependence of the absorptior(@cousti¢ mode. For identical dots, we havey =5,
and excitation spectra of the system on the equilibrium elecQ: ,=Q3,, and the frequencieQ qp»c assume the simple
tron density and other physical and geometrical parametef®rm

of the structure.

C. Analysis of results

1. Absorption and excitation spectra:
Optical and acoustic modes

Figure 1 exhibits magnetic-field-dependent absorption

spectra (a) and collective mode frequencie) of the
double-layered quantum-dot structure at different electro
densitiesng ; andng, in two layers. The spectrum consists of
two, optical and acoustic, modes for edch) circular polar-

ization. If the cyclotron masses of electrons in different lay-
ers are the samg@ut other parameters, e.g., electron densi-

ties or radii, are differentthe dispersion relation, Eq11)
gives the following expressions for the frequencies of the
polarized optical and acoustic modes of the structure
0P I

0P+ 02+ \(0/2)2+ Qg a0 (14
where
03,+03, [[07,-0%;7
(z)pt,ac:—i - 5 +Q§,ZQ§,1'
2 2
(19

mfnge?
pac e

0

> GlB(G)|*(1xe CP).  (16)
G#0
2. Intercell interaction

Equations(15) and (16) take into account an interaction
of plasma modes in different dots both withime sameel-

rglamentary cellintracell interaction and indifferentelemen-

tary cells (intercell interaction). The intercell interaction is
relatively small and can be estimated as follows. Applying
the transformation

[ &

> F(G)= (2m)?

G

F(q);n g% m (17)

b Eq.(16) (we restrict ourselves to the symmetric case how

we obtain

mNee’R? »
R T fo a*dq(1=e”%)|B(a)|*Jo(qa,m),
(18)

Wherea|'m=a\/lz+ m?. The term of the sum with=m=0
does not depend amand describes the frequencies of modes
in a single cell. All other terms of the surfwith 12+ m?
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#0) give corrections due to the inter-cell interaction. Assum- 1.5
ing for simplicity that the density profiles in the dots are optical
given by
nd(r)=nd(r)=32ny(1-r?R??2 (19 80 S —
. . ~ I
(an  oblate  spheroid mod&f) we  obtain < L
B(G)=(97/2)Y215,(GR)/(GR)*? and ol
[e) - .
Q |/ acoustic g
Qgpt,ac: wé{liAintra_Ai?ggra . (20) 0.5 // ol
Here w is the frequency of the dipole plasma mode in a / "
single dot aB=0, w5=37’ne?/4m* eR.?**?'ForR, D<a e e
the intercell interaction can be expressed by 0 : :
0 0.5 1 1.5
o _AIEDR 3R RD? D/R
inter ™ 357 g3’ Tinter T a® FIG. 2. Optical(solid) and acousti¢dashedl mode frequencies

in a double-layered quantum-dot structure with identical parameters
where 5(2)==(1?+m?) "% (the sum is taken over allm  atB=0, as a function of the distance between layers. Intercell in-
excluding |=m=0); 7(3/2)=9.03, 7(5/2)=5.09. A teraction is neglected. Inset shows the dependence of the intracell
agrees with that obtained for a single-dot arfa§>'°For the interaction parametek,, on D/R.

acoustic mode the intercell correction has an additional small ) )
factor ~D%a2<1 compared to the optical mode. This is @ Well as for other structures with two spatially separated

because the dipole moment of the acoustic mode in a synflasma_subsystems, such as, e.g., metal-dielectric-metal

. . . 4
metric double-layered dot structure is zero, and the intercefystems’ _
interaction is due to hlgher mu'tipole moments. The classical model used hd@e also Ref. J)Zﬂoes not

The intercell interaction in typical single-layered struc- describe correctly the behavior of the acoustic mode in the
tures does not usually exceed several percenthis is  limit of the very smallD. The quantum-mechanical calcula-
equally valid for the optical modes in double-layeredtions of Sec. Il give the finite value of the acoustic mode
quantum-dot structures. For the acoustic modes the intercefiequency aD— 0. This effect can be interpreted both quan-
interaction is even smaller. We neglect below the terms retum mechanically(see Sec. 1)l and classically(within the
sponsible for the intercell interaction and consider only affamework of thenonlocalhydrodynamic theony In the hy-
single cell of a double-layered quantum-dot structure. drodynamic approaéhthe frequency of the 2D plasmons in

It should be noted that the intercell interaction leads to? single layer is given by the formula

another type of “acoustic’ modes in an array of double- 262
layered(as well as of single-layeredjuantum dots. These w?(q)= W*S q+s%q2. (23
modes correspond to out-of-phase oscillations of an electron m-e

densi_ty inadjace_n_tdots within the_ same layer, and are char- e first term in Eq.(23) is due to the Coulomb restoring
acterized by a finite lateral quasi-wave-veatprWe do not  force the second on@eglected in our local classical thepry
consider these modes here as due to inequalish they s que to the compressibility of the 2DES. The velocitis

cannot be seen in FIR experiments. defined by the relatiom*s?=dp/dng, wherep is a “two-
, ) dimensional” pressure, and for an ideal 2D Fermi gas equals
3. Intracell interaction s=vg/v2. In a system of neutral particleg{=0) s would

The intracell interaction of mode&,,, in Eqg. (20) is a  be the thermodynamic speed of sound. In a double-layered
function of D/R. For the dots with the density profile of Eq. system an additional factor [2/+ coth@D/2)] arises in the
(19 it has the form first term in the spectrum of the acoustic mode. Due to this

factor the first term vanishes in the limit of small i.e., the
=dx , s Coulomb restoring force disappears, while the lasim-
Aintra(z):3f0 < Ja¥e ™ z=D/R, (22 pressibility factor remains finite. In the double-layered dot
structures the wave vectay is discretized,g=1/R, which
with  Apa(z>1)=~4/372°  and  Aja(z<1)~1—(3z/ leads to a finite frequency of the acoustic modeDat:0.
m)In(2/z). Figure 2 shows the dependence of the frequenComparing two contributions to the spectrum of the acoustic
cies, Eq.(20), on the ratioD/R in a single cell 6— ). mode one can see that the compressibility term can be ne-
WhenD— o the intracell interaction parametdv,,, tends 9glected if D>ag/2, whereag is the effective Bohr radius.
to zero as I, which reflects the dipole character of the Our local classical approach thus correctly describes the op-
Coulomb interaction between the modes in the dots within afical mode at alD and the acoustic mode Bt>ag.
elementary cell. WheD tends to zero, the frequency of the
optical mode increases, as compared to a limit of decoupled
dots, by a factor o¥2. The frequency of the acoustic mode  The damping of the+ polarized optical and acoustic
vanishes in the limiD— 0. This result agrees with classical modes(14) can be found from the dispersion equatidr)
calculations for a double-layered quantum-wire structére, and is given by the expressions

4, Linewidths
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1 strength of the acoustic mode vanishesratl (when there
. are no electrons in one of the dpend ata=0 (when the
optical dots are identical The acoustic mode has a maximum oscil-
0.75] Ajptya=0-1 A4ra=0-5 . lator strength when
(&} A
(1 intra
“— A== (27)
=~ 05 me 1+ Ajnira
o
) At @= apyay 0Ne has
A . =05
U L ntra L] 1 2Ai1r1/t2ra
,//” T e aCOUStIC foptya({amax): A 1i— .
S ’ Aintra 03 | \\\‘\\\ 2 1+ Aintra
0 B St The best conditions for experimental detection of the acous-
0 0.25 0.5 0.75 1 tic mode are thus determined by 7).
o

D. Discussion
FIG. 3. Oscillator strengths of the opticéolid curve$ and
acousticgldashed curvesnodes aB=0 as a function of the density
asymmetry parameter=(ns;—nNs,)/(Ns,+ng) at different val-
ues of the intracell interaction ., .

Within our classical model we obtain an analytic descrip-
tion of the main features of the system: the absorption spec-
trum, the magnetic-field dependence of the excitation fre-
quencies in systems with different physical and geometrical
parameters, the influence of the intercell interaction on the
1+ w,/2 (24) excitation spectrum, and linewidths and oscillator strengths

- m ' of the optical and acoustic modes. The classical model does
' not describe, however, effects conditioned by nonlocal and

As in the case of single-layered dots, the damping of-the quantum corrections, which will be considered in the next
polarized optical and acoustic modes increases by a factor @ection.
2 with increasing magnetic field, while the damping of the

Y
im oo —

polarized(edge-magnetoplasmpmodes decreases with in- IIl. QUANTUM-MECHANICAL CALCULATION
creasingB.
In our quasistatic model we neglect the radiative effects A. Model

that result in an additional contribution to the linewidth, Eq.
(24). As has been shown in Ref. 19, the use of the full sys- .
tem of Maxwell equations instead of the Poisson equ&Bdn In the quantum-m.echanlcal model we calcu]ate both the
leads to the replacement ¢fin Eq. (24) by y+T, where[ ~ ground-state properties and the electromagnetic response of
is the radiative decay of modes. The radiative effect is due té1€ System. We restrict ourselves to a single elementary cell
a coherentlipole radiation of plasma modes; for tluptical ~ Of our periodic double-layered quantum-dot array, neglecting
mode in the double-layered quantum-dot structure the radidhe intercell interaction. We assume that the dots have a cir-
tive decayT, is determined, similar to a single-layered cular symmetry and considé&f mobile electrons in an exter-

1. Main assumptions

case'® by the expression nal potentialVe(r,z) =Ve«(r,2), r=(r,¢). We neglect the
tunneling of electrons between dots indirection, which
27t (Ng 1+ Ng ) €2 implies that the distanc® between dots exceeds the pen-
opt= - \/_ , a<\, D<A\ (25 etration length of the electron wave function under the bar-
m*cye

rier i/«2m*Vyg (hereVy is the height of the barrier between
The radiative decay of thacousticmodel,. in a double- ~ dots. We neglect also the spatial spreading of the electronic
layered quantum-dot structure is much smaller, due to ¥/ave functions ire direction by assuming a charge distribu-
smaller dipole moment of the acoustic mode, and vanishes ifon according to Eq(1). Thus we consider only Coulomb

a symmetric structure. coupling between the layers. The Hartree and exchange-
correlation electron-electron interaction are taken into ac-
5. Oscillator strengths count in the framework of the density-functional theory in

The oscillator strength of the acoustic mode is muchthe local-density approximation. Calculating the electromag-

ller than that of th tical modsee Fig. 1. A . netic response in the RPA formalism we neglect the radiative
smatier than hat of the optical mogsee Fig. SSUMING  oftects. The sizes of the system and the distance between the
again that the dots differ from each other only by the electroqjots are again assumed to be much smaller than the wave-
density we find from Eq(10) at B=0, length of light

f e Ajntrat az(l_Aintra) .
opt,ac 2 _[AZ +a2(1—A2 ]1/2 ’

intra mtra)

(26) 2. External potential

In a number of papers on single-layered quantum
the oscillator strength$,,; and f,. are normalized by the dots*~18the external potential has been modeled by a para-
conditionf o+ f .= 1. The dependence 6f,; andf,.on the  bolic confinement~a,r? with some nonparabolic correc-
density asymmetry parameter=(ng;—ngo)/(Ns;+Ngy) at  tions (cr?, 18, eto. The coefficients of the expansion have
different values ofA;,,, is shown in Fig. 3. The oscillator been assumed to be independent external parameters of the
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problem. For thedouble-layeredquantum dot one has to Considering only the Coulomb coupling between the dots
make more accurate assumptions on the origin of the laterabne can obtain a system of two coupled Kohn-Sham equa-
external potential. In principle, the external potentialtions
Veulr,2) is conditioned by a neutralizing background charge

(positively charged ionized donors and negatively charged 2

. : T ) jk jk j
surface statdsas well as by rectangular potential wells in T+Vext(r,z])+k21 [VH(N) +Vxc(r)]|#i(r)
the growth direction and the potential steps at the lateral o
boundaries due to the work function at the interface semi- =ell(r), =12, (30

conductor vacuum. As electrons occupy only the planes A o o

z=2z; (which means that the potential in growth direction iswhere T is the kinetic-energy operator which includes the
effectively taken into accountwe need only to model the Vector potential in finite magnetic field, and

lateral confinement potential with a dependencelonWe

assume that the background charge distribution in the system ViK(r)= e_2 J , nE(r') (31)
has the form H € =1+ (z-2,)?
0 3 2 ej\fj+ eNj is the Hartree potential. The exchange-correlation potential
Pext(“z)_gl Rz O(R-1—5—28(R-T1)|8(2=7). V() is assumed to be diagonal in the layer indices,
(28) Vik = 5ikV&c, and is estimated in the local-density approxi-

. - mation,
Thus, in our model the neutralizing background charge con-

sists in two positively charged sheets with the radfuand . S
the total number of positive chargd&' , and two negatively Vie(r)= 50 f dr'nd(r")exc(nd(r')), (32
charged “guard” rings with the radiuR and the total num- )
ber of negative charge¥| to model the surface states. We where ec is the exchange-correlation energy of the homo-
choose the number of mobile electrons in each dot to bgeneous 2DEG per electréhand 6§ means the variational
N;=N] =N to achieve charge neutrality. In all calcula- derivative.
tions we assume that the number of surface charges is suffi- To obtain a self-consistent solution of E429)—(32) we
ciently large, so that the radius of the areas occupied by these the circular symmetry of the problem and expand the
mobile electrondR., is smaller than the geometrical radius of Kohn-Sham orbitalsp} (r) =R/, (r)e'™? in the complete set
the dotsR. Under these conditions the potential steps at thef eigenfunctions of the two-dimensional harmonic oscillator
lateral boundaries semiconductor vacuum do not influencwith a curvature of the external potential in the centers of the
the properties of the system. The external poteMig)r,z) dots. A numerical diagonalization provides the coefficients
is then determined by the Poisson equation with the backef the expansion. The procedure of calculating the ground
ground charge distribution given by E@®8). state density, Eq29), and the total potentiaf o+ Vi + Vxc
In a recent work Steinebach, Heitmann, and Gud4s done iteratively until self-consistency is achieved.
mundssoft have applied the density functional formalism,
similar to that used in our paper, to a problem of double- 4. Electromagnetic response
layered quantum wires. They have assumed that the external The response of the system to an external uniform ac
potentialsVe(r,z;) are expanded in power series witte-  glectric field E&exp(—iwt) is described within the RPA
pend_entcoeffluents. .As seen howevgr from the above dis<ormalism2” The charge density fluctuations in layers
cussion, the expansion coefﬁuent_s_ in two layeasinot be pi(r,) satisfy the integral equation,
considered as independent quantiti@s real structures the
curvature of the external potential in the middle of one layer 2
obviously depends on the background charge density in the E j dr'Ej(r,r',w)p(r’, o)
other layer, as well as on the interlayer distaiize As a k=1
result, theD dependence of the collective mode frequencies
in Ref. 13 does not agree with the well-known resuésg., =e2J dr/ )i (r,r" @)@ ey(r’, o), (33
the frequency of the optical mode does not dependon
and contradicts the classical solution of the same probleryhere ¢ext(r,w):—E§Xt-r is the potential of the external
given by Shikin, Demel, and Heitmarif. field, andy!(r,r’, ) is the susceptibility of a noninteracting
electron gas,
3. Ground state
In order to calculate single-particle wave functiapig(r), i1 )= lim 22 f(fjx)_f(eju)
energy levelse) and the ground-state density AT ro in € —€,Fho+il

X G (NGNS (1)L, (34)
The one-particle state$§\(r) and the one-particle energies
we use the Kohn-Sham formalism of the density-functionale} are taken from the solution of the Kohn-Sham system of

theory. Heref(¢) is the Fermi distribution function, and the Egs. (29)—(32), and E.(r,r’,w) is a response function of
factor 2 takes into account the spin degeneracy of the statethe system,

nf(n)=23 H(eD)|(n)]” (29
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— ’ _ ’ j ’ 5V]XC — E
:jk(r.r ,w)—5jk S(r=r")y=xMr,r ,w)w e E
j = 3
Z 3
2 j " E
_e_fdr,, X (r,r",w) &5 3
€ \/|r’—r”|2+(zj—zk)2 o 260 500 750 r [A] 1000
500 T T
(35 T =sof ;
—_— //'
From the solution of the integral equati¢83) we find the = o ———
. = ___ £ """ =Tl 3
dipole moment & -esof
= _s00 . . . ]
o 250 500 750 r [A] 1000

2
P.=2 fdfxapk(f,w)faag(w)Efth (36)
k=1

and the polarizability of the whole system,;(w). The ab-

sorption spectrum is then determined by the antihermitian g

part (a,z— aj,)/2 of the polarizability tensor. oS 550 =50 750 £ Al 1000
To solve the integral equatigB3) we expand the relevant 500 ¢ -

guantities into Fourier series with respect to the angular co-

ordinatee. Thus, it reduces to a set of equations with differ-

ent angular momentum quantum numibern the uniform

external ac electric field only the dipole modes with +1 —s00 & 0 =55 oo T IA oo

are excited. After discretization of the variablewve obtain

instead of Eq(33) a set of linear equations,

density 1A

nlvsbies bl

—_—— external potential E
250 F -------- parabolic approximation -
______ self-consistent potential 1

potential [meV]
Q

FIG. 4. The ground-state propertiedensity and self-consistent
o potentia) for a system with 'y =220, Nj =147, N;=60,
MX=C, (37)  N,=40, R=100 nm,D=50 nm atB=0 (V;/N/|" is the same in

o - both layers.
where the matrixM comes from the kerné, X is the vector

of the unknown charge-density fluctuation, ahds a known ; :
) X : properties for all systems considered here. The dotted curves
vector due to the right-hand side of E§3). Then Eq(37) is show the parabolic part of the external potential.

diagonalized numerically. The excitation spectrum of the
system is determined by the equation
2. Electromagnetic response

detM=0. (38 The absorption spectra obtained from the quantum-

o7 mechanical calculation do not essentially differ from those of
The RPA formalisnf,’ which we use to calculate the FIR £iq 1.5 additional features found in the magnetic-field de-
response of the system, generally yields good results in thgengence of the resonance frequencies are due to nonpara-
high-density electron gasinsag>1. Actually this approach  pgjicities in the lateral potential and non-local and quantum
has a wider region of applicability, at least in quantum dots corrections neglected in the classical model. Calculations for
This is supported by the fact that our calculations for paraggts with a relatively large number of electrofiEg. 5 re-

bolic dots reproduce the statement of the generalized Kohpeg) the nonlocal Bernstein mod@at magnetic fields which
theorent®*? which is exact in all orders of the parameter occyr at the intersection of both the optical and acoustic
(agyng) ~*. Below we use the RPA also atnsag=1. polarized (uppe) modes with the second harmonic of the

cyclotron resonanced.. In a system with only few elec-
B. Results

1. Ground state 10

The calculated ground-state density and seIf—consistentB[T]j i;) ]
potential atB=0 are shown in Fig. 4 for the following sys- 751 e e -]
tem. The number of positive charges in layers\ig =220, + o
N3 =147, the number of mobile electrons ;=60, + o

N>=40, so thatV //\/j+ is the same in both layers. The 5; v LtLee 20
geometrical radius of the dots has been taken t&bs€100 i oo L

nm, and the distanc® =50 nm. The solid curves on the 25F *o0 + o 7
potential plots show the external confining potential [ I + weak abs.
Vex(r.Z;). The logarithmic divergency of the potential at the A .+* S o’ . ° Istrong abs. ]
boundary of the system is due to the negatively charged 9, 5 10 15 b[meV] 20

“guard” rings. The dashed curves show the self-consistent

potential calculated in the Hartree approximation. Including FIG. 5. Magnetic-field dependencies of the collective mode fre-
exchange-correlation terms results only in small changes ajuencies for a system with the same parameters as in Fig. 4. The
ground-state properties, but has no effect on the responsk, line is drawn to identify Bernstein modes.
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FIG. 7. Oscillator strengths of the acoustic mode from the
guantum-mechanical model foR=1 andD/R=0.5. The param-

o e = 1 eters in the calculation are chosen under the condition/\‘,fjnéu\/j+
T 2 ] is the same in both layefsV’; =20, N7 =200, N',=2,4,6,. . . ,16,
5L § ] N3 =10\5).
&5 Tr 2
£ t damping? at the edge of the continuum of single-particle
oL , - statesw<qug+#£9%2m*, q=1/R,.
0 250 500 750 D[A] 1000 Another new feature which is seen in our quantum-

mechanical calculation is a nonmonotonic behavior of the
acoustic mode in a structure with small This feature is
seen neither in classical models nor in the quantum-
mechanical RPA results for an infinite 2DES8ith q=1/R,).

We believe that the reason for this behavior is a violation of

FIG. 6. Dependence of opticdkolid line with circle$ and
acoustic(dashed line with circlosmode frequencies on the inter-
layer distancd® for (a) N;=MN,=60, '] =N =200, R=100 nm
(Re=70 nm); and(b) N;=N,=10, N{ =N, =200, R=100 nm
(Re=40 nm). Comparison is made with RPA results obtained forthe local charae neutrality in a small obiect like a quantum
infinite 2DEG (see text Insets show the distribution of equilibrium 9 Y J q

charge density with contributions @) positive background(2) dot, hWh.'Chl IS takenh |bnto_ apcoun':j !n (r)]ur .fuII | quanr'ium-
surface states, an@) mobile electrons inside the dot. mechanical approach but Is ignored In the simpler schemes.

Indeed, both in the classical and in the quantum-mechanical
o . RPA approach for an infinite 2DES, it is assumed that in
trons per dot we have seen a splitting of both the optical an@quilibrium the system is locally neutral. The resonance fre-
acoustic modes, similar to that found for quantum-dot heliumyuencies are then determined by restoring forces that arise
in Ref. 30. when the system deviates from the equilibrium. Thele-
Figure 6 shows thed dependence of the optical- and pendence of the resonance frequencies is only due t®the
acoustic-mode frequencies Bt=0. The general behavior dependence of the Coulomb restoring force. In small objects,
agrees with the results of the classical calculation and withike double-layered quantum dots, there is Inoal charge
the calculations for other double-layered systéfté:as the neutrality in each dot even in equilibriufisee the equilib-
Coulomb coupling increases for decreasingthe frequency rium charge-density distributions in the insets of Figs.
of the optical mode increasésy a factor ofv2 atD—0), the  6(a),(b). Therefore, the ground-state properties of the system
frequency of the acoustic mode decreaidéig. 6@)]. How-  (in particular, the single-particle energies)] depend orD
ever, one sees two additional features in the results of thgue to quadrupole and higher multipole interaction between
quantum-mechanical calculation. First, in contrast to thehe dots in equilibrium. As a result, the single-particle exci-
classical result, the frequency of the acoustic mode does n@htion spectrum is pushed up whBndecreases, and due to
tend to zero aD—0. The reason for this has been alreadythis effect the collective modas,,, and w,. are also slightly
discussed in Sec. Il. From the quantum-mechanical point ohushed up as compared with models which assume the local
view the finite value of the acoustic-mode frequencpatO  charge neutrality. Consistent with this interpretation is the
is due to finite single-particle energy differenags- eJM , see  tendency found by comparing Figsa and (b): the viola-
Eq.(34). This interpretation is supported by comparison withtion of local charge neutrality is stronger for the system with
a RPA calculation for double-layerégfinite 2DES. We take  a smaller number of electrons and so is the deviation from
analytic formulas for the frequencies of the optical andthe results from the infinite double-layered 2DEG.
acoustic modes of the double-layered infinite 2DES, Oscillator strengths of the optical and acoustic modes cal-
woptafd,D) (derived from the Poisson equation and theculated in the quantum-mechanical model are shown in Fig.
known Stern formul¥ for the polarizability of the 2DES 7. They are in a good qualitative agreement with the results
and replace the wave vectgrof plasmons by R, where of the classical calculatio(Fig. 3). A quantitative compari-
Re is the calculated radius of the disk of mobile electronsson of the classical and quantum-mechanical results is im-
[see insets in Figs.(8),(b)]. The resultingD dependencies possible as the radius of the mobile electron dgldepends
woptya&Rgl,D) are shown in Figs. @),(b) by thin solid(op- on the density asymmetry parametar in the quantum
tical) and dashedacoustic modecurves. A good agreement model.
is found with the dot results, especially for dots with a large A picture of charge-density fluctuations in the two layers
number of electrongFig. 6(a)]. The offset of the acoustic- (Fig. 8 allows us to illustrate the behavior of the oscillator
mode frequency dD—0 in the 2DES is due to the Landau strength of the acoustic mode. For lardror weaker Cou-
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lomb coupling. The quantum-mechanical res(fggs. 5 and

6) differ from the classical oned=igs. 1 and 2 by (i) show-

ing the Bernstein modegslue to nonlocal effecis(ii) by the
nonmonotonic behavior of the acoustic-mode frequencies
versusD, which can be ascribed to the violation of the local
charge neutrality in our microscopic dot model, aiid) a
nonvanishing acoustic-mode frequency 0. The oscil-
lator strength of the acoustic mogl€igs. 3 and Y is always
smaller than that of the optical mode and vanishes in the
limit of identical dots. We have derived an optimum condi-
tion for the observation of the acoustic mo@).

An additional mode found in FIR experimeHt$ias been
interpreted as an acoustic mode observable due to a slight
asymmetry in the electron density in a double-layered dot
system (the values ng;=7.7x10"cm™2 ng,=7.0
x 10' cm™2 have been determined from the Landau-level
filling factor dependent periodic oscillations of the frequency
of the w°™ mode. The intensity of this mode was about 10%
of the optical mode. As follows, however, from our results,
D/R = 1 05 Eq. (26), Figs. 3 and 7 the osci!lator strength of the a_coustic

) mode would be practically negligible under the experimental
conditions (a=~0.046, A;ws~0.4). We believe, therefore,

FIG. 8. Patterns of the induced charge density fluctuations fo'fhat the mode observed in Ref. 10nist the acoustic plasma
the acoustic mode, corresponding to the data points indicated in Fi%ode and should be due to aﬁother reason

7 (M1=20, Ny =200, N,=14, Nj =140).

Induced density fluctuations:

The electron effective mass which can be extracted from
experimental data of Ref. 10 for the optical mode, give the
valuem* =0.085n,, which is larger than the effective mass
) . of 3D electrons at the bottom of the conduction band in
to the acoustic mode frequencthan for smallerD (right aAsm* =0.067m, due to the quantum-size effect and the

pane). As a consequence the compensation of induce onparabolicity of the GaAs conduction band. It is interest-

charge density due to out-of-phase motion in upper an%g that the experimental points identified in Ref. 10 as the
lower layer is less efficiente.g., the induced dipole moment acoustic mode fit ideally to a linev=eB/m*c with

and tthJS tlhe osc(;l_lattor ;rquthﬂ"s Iargi;tjr IargefrtIrDI. In thg m* =0.067m,. This would correspond to the cyclotron reso-
case or a larger distand#, also the positions of th€ maxima - -0 of 3D electrons of the GaAs substrate.

of lthe |n(f1Auce_dodenZ|t1y81:I)t|(;tuatrl]ons dgv;ate dstronger_ from dthe To conclude, we have calculated the ground-state proper-
values ol g=1u an or the optical and acoustic mode, jjo5 the FIR absorption and excitation spectra of a square

respective]y, V.VhiCh allsc_) gives a contribption to th_is eff.eCt'Iattice of double-layered quantum dots. We have discussed

Thtgs, lbes(ljde in atgpllttlr(;g oft;[]heccolllectnée exc:t_aﬂogstlntothe dependencies of the observable values, intercell and in-
optical and acoustic modes, the L.oulomb coupiing DEWEERq| interactions in the system, collisional and radiative
the_ layers results al_so In a stronger participation in the exC'Ejampings of the optical and acoustic modes, influence of the
tation of the otherwise less affected layer in each case.  gjectroneutrality of the system on the excitation spectrum.
We have calculated the oscillator strengths of the optical and

IV. CONCLUSION acoustic modes and found the conditions of the best obser-

. . . vation of the acoustic mode.
By applying classical and quantum-mechanical concepts

we have studied the spectrum of collective excitations in
double-layered quantum dots. It consists of two modes, the
optical mode and the acoustic mode, which correspond to
in-phase and out-of-phase oscillations of the electron density This work was supported by the Deutsche Forschungsge-
in the layers, respectively. TH®8 dispersion of the modes, meinschaffSFB 348 and the NATO Science Program. One
Eq. (14), is quite similar to those in a single quantum dot. of us(S.M.) acknowledges the support of the Alexander von
The dependence of the optical- and acoustic-mode frequefdumboldt Foundation. We thank the authors of Ref. 13 for
cies on the interlayer distand® is due to the interdot Cou- communicating their results prior to publication.

lomb coupling(left panel of Fig. 8 the excitation is stronger
localized in the upper laygwhose eigenfrequency is closer
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