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Shell-filling effects and Coulomb degeneracy in planar quantum-dot structures
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We investigate the influence of electron-electron interactions on the electronic properties of quantum dots in
a regime where the energy-level separation is comparable to or larger than the Coulomb charging energy at low
temperature (e2/2C@kBT). A self-consistent three-dimensional solution of Schro¨dinger and Poisson equation
within the local-density approximation is implemented to study the formation of shell structure in highly
symmetric quantum dots which is in good agreement with recent experimental results@Taruchaet al., Phys.
Rev. Lett.77, 3613 ~1996!# For asymmetric quantum dots, we show that the shell structure disappears, and
features due to electron-electron interaction lead to the accidental formation of an isolated electron shell called
‘‘Coulomb degeneracy’’ in the energy spectrum.@S0163-1829~97!02648-9#
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I. INTRODUCTION

Quasi-zero-dimensional systems, such as quantum d
have been the subject of intense research in recent yea1,2

owing to the development of sophisticated patterning a
nanofabrication techniques that make possible the realiza
of systems of very small and precise dimensions with ch
acteristic sizes comparable to the de Broglie wavelength
carriers.3–6 Because the capacitanceC associated with such
systems is extremely small (.10216 F), the single-electron
charging energy given bye2/2C could be of the order of a
few meV, which at low enough temperature, i.e., fore2/2C
@kBT, leads to the observation of ‘‘Coulomb blockade’’ an
single-electron tunneling.7–9 The distribution of electron
states in the dot has an important bearing on its electros
and transport properties. In metallic dots, because of
large electron effective mass, single-particle states are ba
resolved so that the energy spectrum is a quasicontinu
making the single-electron charging energy entirely due
the Coulomb repulsion from the electrons in the dot–this
the Coulomb blockade regime described by the ortho
theory.10 On the other hand, semiconductor quantum do
which can be grown with precise dimensions of a few hu
dred angstroms, have usually lower electron effective ma
that result in well-quantized energies whose separationDE is
comparable to the Coulomb charging energye2/2C. The
level separation, in addition to the Coulomb repulsio
makes an additional contribution to the single-electr
charging energy of the dot—this is the quantized regime
this regime, owing to the three-dimensional~3D! quantum
confinement of electrons, quantum dots~QD’s! may be con-
sidered as analogs of natural atoms with two fundame
differences: in atoms, the Coulomb field is spherical a
quantized in units of the elementary charge because of
discreteness of nuclear charge, while in QD’s the confin
potential may have arbitrary geometry and is continuous
terms of the elementary charge. However, in highly symm
ric QD’s, the quantized energies may exhibit orbital deg
eracies and form shells when occupied by electrons, a
560163-1829/97/56~24!/15752~8!/$10.00
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atoms.11 The filling of successive shells in QD’s depends
factors such as electron-electron interaction and the elec
spin.7

In this work, we investigate the influence of the confinin
potential and the role of electron-electron interaction in
formation of shell structure in planar quantum dots~PQD’s!
achieved by confining a two-dimensional electron g
~2DEG! by means of patterned gates.12,13 We consider two
PQD configurations: a square-gate dot which when em
has a nearly circularly symmetric confining potential, and
quad-gate dot which has a rectangular symmetry. For
purpose, we solve self-consistently the 3D Schro¨dinger and
Poisson equations. Our model generalizes previous
proaches which tackle similar problems in recent years
either excluding exchange-correlation effects,14 or neglecting
quantization effects normal to the heterointerface,15 or as-
suming the adiabatic approximation where the separation
tween the quantized levels in the dot,DE, is comparable to
kBT,8 or finally by considering dots with large numberN
(>70) of electrons.9 We consider PQD’s withDE.e2/2C
@kBT and smallN (<20) and use an efficient techniqu
called the iterative extraction orthogonalization meth
~IEOM!, to solve the 3D Schro¨dinger equation.8 The ability
of this method to generate an arbitrarily small number
eigenstates makes it suitable for the simulation of nanost
tures exhibiting a small number of occupied states. We so
the single-particle Schro¨dinger equation, and include many
body exchange-correlation effects under the local-density
proximation~LDA !. We neglect Coulombic fluctuations du
to ionized impurities in the dot, and assume abrupt interfa
at the GaAs-Al0.3Ga0.7As boundary.

In Sec. II we describe the two dot structures. In Sec.
we discuss the computational model and briefly review
IEOM method for solving Schro¨dinger equation. We also
discuss the method of determining the equilibrium elect
population of the dot from an evaluation of the Gibbs fr
energy.1,2 In Sec. IV we discuss the boundary conditio
imposed on the potential and the wave functions in the v
ous regions of the device. We present our results in Sec
15 752 © 1997 The American Physical Society
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56 15 753SHELL-FILLING EFFECTS AND COULOMB . . .
where for the square-gate dot we obtain deep physical
sights in the formation of shell structure in agreement w
the recent experimental findings of Taruchaet al.7 Further-
more, we discuss the variations in the shell structure in
duced by an asymmetric confining potential, in a rectangu
quad-gate device. We show that the electron-electron in
action leads to an effect called ‘‘Coulomb degeneracy’’ th
results from a collapse of states on the Fermi level due
electron-electron interaction. We calculate the addition en
gies and the gate-dot capacitance for the two devices. F
these findings, we draw conclusions in Sec. VI.

II. DOT STRUCTURES

The devices investigated here are shown in Fig. 1. T
consist of an inverted GaAs/Al0.3Ga0.7As heterostructure tha
confines the electrons to a 2D gas at the interface. In
model, the simulated structure consists of a 22.5-nm laye
undoped Al0.3Ga0.7As followed by a 125-nm layer of un
doped GaAs and finally an 18-nm GaAs cap layer. The
layer is uniformly doped to 531018 cm23 so that the
conduction-band edge is just above the Fermi level at
GaAs-cap-layer–undoped GaAs boundary. The inverted
erostructure is grown on a GaAs substrate and charge co
is achieved by varying the voltage on the back gateVback.
We assume a negligible voltage drop across the subst
hence we applyVback directly to the bottom of the
Al0.3Ga0.7As layer. The first quantum dot shown in Fig. 1~a!
has a 2403240 nm2 square open area at the top bordered
a 65-nm-thick gate. This device is only of academic imp
tance, since the barriers are too thick to allow electron inj
tion through tunneling. However, it is well suited to stud
properties such as electronic spectrum and dot filling. T
quad-gate device has four gate pads with 45-nm stubs
truding into the channel; the dimensions of the open area
the top are 2303408 nm2. Electron charging of the dot is
possible through tunnel injection from the adjacent tw
dimensional regions through the 70-nm opening between
stubs along thex direction. The separation between the pa
along the~longer! z direction is 90 nm.

III. COMPUTATIONAL MODEL

In order to study the electronic properties of the quant
dot, the Schro¨dinger equation is solved in the central 0
region. The Hamiltonian reads

FIG. 1. Schematic representation of~a! a square and~b! a quad-
gate quantum-dot device with layer structure.
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2
¹F 1

m* ~r !
¹G1Ec~r !1mxc~n!, ~1!

wherem* (r ) is the position-dependent effective mass of t
electron in the different materials,Ec(r )5f(r )1DEos is the
conduction-band edge, wheref~r ! is the electrostatic poten
tial, DEos is the conduction-band offset, andmxc@n# is the
exchange and correlation potential as parametrized by C
erley and Alder16 ~see the Appendix!.

The 3D Poisson equation for the electrostatic poten
f~r ! reads

¹@e~r !¹f~r !#52r~r !, ~2!

where the charge densityr~r ! is given by e@p(r )2n(r )
1ND

1(r )2NA
2(r )#. Heree~r ! is the permittivity of the ma-

terial and is a function ofy only throughout this work,p(r )
is the hole concentration,n(r ) is the electron concentration
and ND

1(r ) and NA
1(r ) are the ionized donor and accept

concentrations, respectively. Electron wave functions
tained from the Schro¨dinger equation are used to calcula
n(r ) inside the dot, and a classical charge density obey
Thomas-Fermi distributions are used in the regions outs
the dot. In the dot

n~r !5(
i

f ~Ei !uc i~r !u2, ~3!

where f (Ei) is the occupation probability of the levelEi . If
the dot is in strong diffusive contact with the reservoi
f (Ei) is the Fermi-Dirac distribution function. Otherwise
f (Ei) is evaluated from the grand canonical ensemble
imposing the condition on Gibbs distribution that only a
integer number of electronsN can occupy the dot.1,10

We map the device onto a three-dimensional grid made
rectangular parallelepipeds; with 36333336 grid points~for
the square-gate device! along x3y3z. We solve Poisson’s
equation using an iterative Newton’s technique, in which
new solution for the potentialfnew is combined with the
solutionfold obtained from the previous iteration by using
simple relaxation technique to get the potentialf5(1
2a)fold1afnew. The relaxation parametera is usually be-
tween 0.95 and 0.99. In solving the Schro¨dinger equation we
use the IEOM developed by Kosloff and Tal-Ezer.17 This
method is fast and efficient, compared to conventional eig
value solvers, when solving for a few eigenvalues~e.g., 20!,
and is consequently suitable for quantum dot calculation8

The basic idea behind the method is the construction o
functional of the HamiltonianF(Ĥ) that extracts the lowes
eigenvalue state~the ground state! from a trial wave func-
tion, ua&, consisting of a mixture of basis statesum&, i.e.,

F~Ĥ !ua&5(
m

um&F~Em!^mua&5u0&F~E0!^0ua&

1 (
m51

um&F~Em!^mua&. ~4!

If F(Em) decreases with increasingEm , the term containing
the lowest state dominates over the second term. He
when F(Ĥ) is successively applied to the updated wa
function, the higher-order contributions inm>1 eigenstates
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15 754 56SATYADEV NAGARAJA et al.
become negligible and the ground state emerges prog
sively. TheM higher excited states are obtained by apply
F(Ĥ) to M different guess states and by orthogonalizi
them with a Gram-Schmidt technique after each iterati
The chosen functional, however, must have a well-beha
Taylor expansion; an exponential form exp(2gĤ) satisfies
this criterion.

In practice, Schro¨dinger and Poisson equations are solv
until self-consistency is obtained—when the difference
tween the calculated eigenenergies, in successive iterat
is smaller than 1026 eV and the residue in the Poisson equ
tion is 105 V cm22 per grid point, which determines the po
tential to an accuracy of less than 1026 eV. It should be
pointed out that the self-consistency of the Poiss
Schrödinger equations does not guarantee that the numbe
electronsN in the dot is an integer. From a general stan
point N is determined by minimizing the Gibbs free ener
F(N) with respect toN for each gate bias configuration
F(N)52kBT ln Z is derived from the partition functionZ
for the grand canonical ensemble,8 which reads

Z~N!5(
$ni %

expF (
i 51

`

niEi2EH~N!2mN

kBT
G , ~5!

where the summation is over all possible electron configu
tions at constantN5( ini and ni is either 0, 1, 2 reflecting
the occupancy of the levelEi . Double counting of the Cou
lombic interaction is avoided by subtracting the Hartree
ergy for N electrons,

EH~N!5
1

2 E E r~rW !r~rW8!

urW2rW8u
drW drW8, ~6!

in the evaluation ofZ. The computation ofF(N) requires the
evaluation ofZ by considering all configurations with th
occupation of levels positioned severalkBT from the Fermi
level EF . This approach is computationally expensive f
level separationDE@kBT, as in the present case~i.e., DE
.100kBT!. Therefore, we determineN by minimizing
F(N) only when a level is close (.kBT) to EF . When the
lowest unoccupied level is far away~i.e., severalkBT! from
the Fermi level,N is simply twice the number of eigenleve
below EF .

IV. BOUNDARY CONDITIONS

For computation purposes, the device is divided into
gions of various dimensionalities characterizing the degr
of freedom of electrons in their respective regions. We
sume that the wave functions vanish at the boundary surf
of each of the regions. This condition has to be used w
caution in the quad-gate device, where the higher states
tend deeper into the barriers under the stubs. However,
small-N problem such as the present one, the states of in
est are well confined and do vanish at the boundary sur
of the dot.

The potential is determined by Dirichlet boundary con
tions on the exposed surfaces at the top and bottom of
structure where the Fermi-level pinning modifies t
Schottky barrier heights byfs2VG , whereVG is the gate
s-
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bias. In the lateralx-z directions von Neumann conditions
where the electric field vanishes at a distance far eno
from the dot, are assumed. Hence, solving rigorously
Poisson Equation~2! by imposing the equipotential boundar
conditions at the gates eliminates the need to include exp
itly the effect of the image charge as a correction to
electron-electron interaction.

V. RESULTS

Figure 2~a! shows the conduction-band edge at the GaA
Al0.3Ga0.7As interface for the square-gate structure in the l
eral x-z plane, and Fig. 2~b! shows the variation of the
conduction-band edge perpendicular~along they direction!
to the heterojunction, for an empty dot atT50.25 K. The
confinement in thex-z plane is parabolic with a barrie
height of about 50 meV over a distance of 1800 Å. In they
direction, the confinement is defined by the conduction-ba
offset of 255 meV between GaAs and Al0.3Ga0.7As and a
large electrostaticy field, Fy.35 kV/cm, in GaAs. Conse-
quently, the energy levels are spaced 30–40 meV apart a
the y direction, and 1 meV apart in thex-z plane. Further-
more, the parabolic confinement in the lateralx-z plane in-
duces a quadratic variation of the conduction-band e

FIG. 2. Conduction-band edge of the square-gate dot
Vback50.9735 V atT50.25 K ~a! on the x-z plane ~b! along the
vertical y direction through the center of the dot.
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56 15 755SHELL-FILLING EFFECTS AND COULOMB . . .
along they direction~150 Å<y<1100 Å! in the charge-free
region in GaAs@Fig. 2~b!#, as opposed to a linear variatio
that would be expected if the system were translation
invariant in thex-z plane.

The inset in Fig. 3 shows the energy spectrum of
square-gate dot atN50 with the corresponding degenera
states for each level. We label states as (nx ,ny ,nz), where
nx , ny , andnz are the nodes along thex, y, andz directions,
respectively.ny is zero throughout this work, since the larg
spacing between states along they direction precludes state
other than the ground state from being occupied. Becaus
the parabolic shape of the external potential~arising from the
gates and the ions! the six lowest localized wave function
achieve the 2D harmonic-oscillator symmetry in the em
dot, i.e., when the many-body effects are neglected.14 The
~0,0,0! state is the ground state with spin degeneracy o
consequently it can be occupied by two electrons. T
~1,0,0! and ~0,0,1! states are degenerate since they are id
tical except for a 90° symmetry rotation and accommod
four electrons. The~2,0,0! and ~0,0,2! states are degenera
and constitute the third level accommodating six electro
As with the ~1,0,0! and~0,0,1! states, the~2,0,0! and~0,0,2!
states are identical except for a 90° symmetry rotation. T
~1,0,1! being of a different symmetry is slightly split~and
higher in energy! from the~0,0,2! and~2,0,0! states. A simi-
lar situation arises in the fifth level which accommoda
eight electrons: the~0,0,3! and the~3,0,0! differ by a 90°
symmetry rotation; so also the~1,0,2! and the~2,0,1! states;
the ~1,0,2! and the~2,0,1! states are slightly higher in energ
than ~0,0,3! and the~3,0,0!-states.

The variation of the single-particle energy levels as
function of the back-gate voltageVback, for the square-gate
device, is shown in Fig. 3. The lowest ten states in the fig
form the first four levels with degeneracies 1, 2, 3, and
with filling of two, four, six, and eight electrons, respe
tively. Also shown in the figure is the effect of exchang
correlation energyEXC on the single-particle levels. The lev
els are seen to be shifted to the left~shown in solid lines in
Fig. 3!, i.e., to lower values ofVback, upon the inclusion of
EXC , due to the attractive nature ofEXC . It is to be noted

FIG. 3. Variation of the single-particle energy levels withVback

for the square-gate dot. The zero of the energy scale is the F
level. The effect of the exchange-correlation energyEca is discern-
able as a shift that increases withVback in the energy levels to lowe
voltages. The inset shows the schematic of the energy spectrum
the empty (N50) dot with level ordering.
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that this shift is not constant but increases with the numbe
electrons in the dot, as is expected.

It is seen in Fig. 3 that at low values ofVback, i.e.,
<0.985 V, the energy levels are equally spaced about 3 m
apart. AtVback50.980 V, the lowest energy levelE0 is about
2 meV, i.e., about 100kBT above the Fermi level and is no
occupied. AsVback increases,E0 lowers towards the Ferm
level, and atVback>0.985 V, is occupied with the first elec
tron. At this stage,E0 does not continue to lower with in
creasingVback, but sticks to the Fermi level, as droppin
below the Fermi level would fully occupy the level with tw
electrons. This cannot happen untilVback is large enough to
overcome the Coulomb repulsion due to the first elect
already in the dot, which occurs atVback50.9874 V for
which E0 is fully occupied and falls below the Fermi level.
is seen that in theVback interval required for chargingE0 , the
upper levels follow more or less the behavior ofE0 . A fur-
ther increase inVback causes an abrupt lowering ofE0 and
the upper levels, as the first shell is completely filled and
dot prepares to take on the third electron. The energy le
continue to decrease with increasingVback until E1 is par-
tially occupied with one electron, i.e.,N53 at
Vback>0.993 V. Notice that the increase inVback required for
the N52 to N53 transition, i.e.,DV55.6 mV, is greater
thanDV52.4 mV required for theN51 to N52 transition
because, aside from overcoming the Coulomb repulsion
to two electrons in the dot, the lowering of the levelE1
towards the Fermi level requires additional energy. Sim
to the behavior ofE0 , E1 sticks to the Fermi level untilVback
is large enough to fully charge the shell with four electro
which occurs atVback50.9982 V on the figure. Further in
crease inVback causes an abrupt lowering ofE1 , similar to
the behavior ofE0 at Vback50.9874 V. The charging of leve
E2 is similar toE0 andE1 but E2 remains on the Fermi leve
over a longer voltage range, i.e.,DV59.6 mV (1.0026
<Vback<1.0122 V), sinceE2 can accommodate six elec
trons, thereby requiring a greater increment inVback to fully
charge the shell.

Three observations can be made from the data provide
Fig. 3: Firstly, there is an abrupt lowering of energy leve
at those values ofVbackcorresponding to the filling of a shell
which lead to a steplike behavior of the energy spectru
This steplike behavior is similar to the results obtained
Stopa18 with a different approach for analyzing the chargin
properties of large QD’s characterized by a large numbe
electrons (N>70). It is however different from the results o
Jovanovic and Leburton8 that show a relatively smooth spec
tra in large dots in the regime wheree2/2C@DE and kBT
@DE. Secondly, the width of each step is proportional to t
energy required to charge completely each of the constitu
degenerate states of a level, and hence is proportional to
degeneracy of the level. Lastly, the energy levels get clo
asVback increases which is due to a decrease in the dept
the confining potential caused by the Hartree energy, acc
panied by an increase in the dot area.

It is worthwhile mentioning that the sticking of a level t
the Fermi level is a direct consequence of the LDA whi
cannot resolve individual spins. Hence, in our model it is n
possible to determine the order in which the constituent
generate states of a level are occupied by single spin e

mi
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15 756 56SATYADEV NAGARAJA et al.
trons. Consequently, a level is constrained to remain at
Fermi level untilVback is large enough to fully charge thi
level. This constraint is removed if the model assigns in
vidual levels to each spin state, like in the local spin-dens
approximation,19 for instance, since it would then be possib
to determine exactly the occupancy of the individual s
states at their crossings with the Fermi level as they are l
ered with increasingVback. However, this investigation is
beyond the scope of this paper and will be addressed
future work.20

Another feature evident from Fig. 3 is the splitting of th
~1,0,1! and ~2,0,0!-~0,0,2! states in the third level for 0.985
<Vback<1.00 V and the~2,0,1!-~1,0,2! and ~0,0,3!-~3,0,0!
states in the fourth level for 0.985<Vback<1.01 V. This par-
tial lifting of degeneracy in the third and the fourth levels
a consequence of the anhamonicity in the confining poten
introduced by the many-body effects in the dot. The circu
symmetry of the potential is lost, thereby increasing
separation between the~1,0,1! state and the~2,0,0!-~0,0,2!
pair states~which continue to be degenerate as they are id
tical, but for a 90° symmetry rotation! in the third level, and
between the~3,0,0!-~0,0,3! pair and the~2,0,1!-~1,0,2! pair
states in the fourth level. Notice that atVback>1.01 V the
split states merge again because of the Coulomb repul
during the charging of the~2,0,0!-~0,0,2! levels which pre-
vents the~1,0,1! state from crossing the former pair states

Figure 4 shows, on a semilogarithmic scale, the profile
c000(x;y,z) at the heterointerface as a function ofx2. The
variation of ln@c000(x;y,z)# with x2 is linear over 500 Å
from the center of the dot forN50, unlike that forN58
which is only piecewise linear over that range. The line
variation of ln@c000(x;y,z)# is to be expected for the ground
state wave function, which in a harmonic potential varies
e2ax2

. The piecewise linear behavior of ln@c000(x;y,z)# is
further evidence for the distortion in the confining potent
due to electron-electron interaction.

Figure 5 shows the potential profile along thex direction
for increasing values ofVback. The zero of the energy scal
is the Fermi level. Each of the curves corresponds to
potential calculated just after the addition of an electron
the dot, starting fromN51 ~the highest curve! to N514 ~the
lowest curve!. It is seen that the potential energy drops,

FIG. 4. Variation of lnc000(x;z,y) with x2 ~x50 is the center
of the dot! for N50 ~solid line! andN58 ~dot-dashed line!.
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expected, whenVback is increased to charge the dot wit
electrons. The potential also flattens, as mentioned bef
with increasingN reflecting the Coulomb interaction. Th
remarkable feature here is the grouping of the poten
curves in a series of tight potential ‘‘bunches’’ that are i
dicative of the shell structure in the dot. A closer examin
tion reveals the ‘‘bunching’’ of the first two curves for th
first shell, the next four curves corresponding to the filling
the second shell (N56) and the next six curves correspon
ing to the filling of the third shell (N512), and so on. This
is the clearest manifestation of ‘‘shell filling.’’

Figure 6 shows the Coulomb staircase as a function
Vback for the first eighteen electrons in the square dot. Ea
step indicates the increment inVback ~and hence the energy!
required to add an electron to the dot. Unlike the conv
tional Coulomb blockade effects, the steps of the stairc
are of unequal width with wide steps corresponding to
complete filling of a shell. Indeed the steps are grouped
cording to the degenerate single-particle orbitals with w
steps indicating a jump to the next orbital, starting with tw
electrons, then four, six, etc. Also noticeable is the gene
trend for the steps to become narrower with highVback,
which results from an increase in the dot capacitance du
an expansion of the dot, as well as a decrease in the ene
level spacings due to decreased confinement.

FIG. 5. Conduction-band edge along thex direction in the cen-
ter of the square-gate dot, forN ranging from 1 to 14. The shel
structure of the dot energies is manifested in the bunching of
conduction-band bottom for variousN.

FIG. 6. Coulomb staircase for the square-gate quantum dot;
top gates are fixed at21.9 V.
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56 15 757SHELL-FILLING EFFECTS AND COULOMB . . .
In contrast to the square-gate dot, the quad-gate dot
picted in Fig. 1~b! has no energy level degeneracies, a
hence no shell structure, due to its rectangular geometr
shown schematically in the inset of Fig. 7 with the orderi
of the energy levels.

Figure 7 shows the variation of the single-particle ene
spectrum withVback for the quad-gate dot. The variation
qualitatively similar to the square-gate device except t
each curve now represents a spin-degenerate level tha
duces the shell structure to a simple superposition of dou
degenerate~due to spin! states. Because the ratio between
sides of the rectangle is incommensurable, accidental de
eracies of states are absent from this spectrum. How
careful observation of the energy spectrum shows sev
interesting features such as a convergence between
~0,0,2! and the~1,0,0! states, and several anticrossings
high-gate biases, i.e., atVback50.958 V between the fourth
and fifth levels and atVback50.961 V between the third an
the fourth, and the fifth and the sixth levels. The form
effect is due to the presence of openings in the large m
pads along the longer gate axis which makes the variatio
the ~1,0,0! state more rapid than the variation of the~0,0,2!
state, with the back gate potential. As a result of the differ
confinement, these levels would cross on the Fermi le
when the lower~0,0,2! state is being filled with electrons
However, this level crossing is not possible if~0,0,2! is only
partially filled with one electron because that would imp
that the ~1,0,0! state would immediately accept two ele
trons, which is prohibited by Coulomb interaction. Ther
fore, because of Coulomb repulsion between carriers, the
levels are constrained to remain on the Fermi level and
pear to be almost degenerate. We call this configura
‘‘Coulomb degeneracy.’’ It is to be noted that our mod
does not provide a complete degeneracy as the two level
still separated at the Fermi level by a few hundredths o
meV during the charging of the~1,0,0! level. A situation
similar to this ‘‘Coulomb degeneracy’’ is encountered
atomic physics when two outer orbitals with different pa
ties are degenerate: the energetically favorable config
tion for two electrons is the configuration with one electr
on each orbital of parallel spin because it minimizes the C

FIG. 7. Variation of the single-particle energy levels withVback

for the quad-gate dot. The zero of the energy scale correspon
the Fermi level. The inset shows the schematic of the energy s
trum of the empty (N50) dot with level ordering.
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lomb repulsion between the two particles and maximizes
exchange interaction.21 In the present context the same re
soning would lead to one electron in each of the~1,0,0! and
~0,0,2! states with parallel spins, which also minimizes Co
lomb repulsion and maximizes exchange interaction. T
could be accomplished by imposing the partial occupation
the ~1,0,0! state subsequent to the partial occupation of
~0,0,2! state. However this subtle behavior cannot be
scribed within the LDA wherein the exchange-correlati
energy is only a function of the electron density, but not
their individual spin. This task will be addressed in our f
ture work.20

There are additional interesting features in the spectr
of the quad-gate dot. Since the filling of the~0,0,2! and the
~1,0,0! states proceeds sequentially, the variation of the
per levels are delineated into two distinct patterns: the
ergy levels characterized by the quantum numbernx50, i.e.,
the fifth and seventh levels, now follow the variation of th
lowest three levels@the ~0,0,2! state in particular# with the
same quantum numbernx50, while the sixth level@i.e., the
~1,0,1! state# with the quantum numbernx51 follows the
variation of the fourth level@i.e., the~1,0,0! state#. This leads
to anticrossings seen atVback>0.958 and 0.961 V.

Figure 8 shows the variation withVback of the potential
profile along thez axis which corresponds to the longer sid
of the rectangle. By comparison with Fig. 5 for the squa
gate, it is seen that the shell ‘‘bunching’’ effect has no
disappeared, but the profiles for the fifth, sixth, seventh,
eighth electrons appear to be bunched due to Coulomb
generacy. This effect is also evident for 0.95
<Vback<0.959 V in Fig. 9 which shows the Coulomb stai
case as a function ofVback. Aside from the regular series o
long and short steps reflecting the successive charging
separated and doubly degenerate states, the Coulomb
case shows a grouping of steps with identical widths forN
55, 6, and 7 electrons.

The change in the Fermi level in the dotDm upon the
addition of an electron to the dot containingN electrons is
the addition energygiven by e2/Cs(N)5m(N11)2m(N),
whereCs(N) is the self-capacitance of the dot. Since the d
is not in diffusive contact with the outside environment, t

to
c-

FIG. 8. Conduction-band edge, along thez direction in the cen-
ter of the quad-gate dot forN ranging from 1 to 11 showing the
bunching of the conduction band edge for the fifth, sixth, seven
and eighth electron under Coulomb degeneracy.
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Fermi level in the dot is not fixed, and consequentlym(N) is
evaluated as the difference between the Fermi level in the
leads and the minimum of the bare potential energy in
dot. Figure 10~a! shows the variation of addition energy as
function ofN in the square-gate dot. Each peak indicates
filling of a shell and corresponds to the wide steps in
Coulomb staircase of Fig. 6. Between the peaks, the add
energy remains small with the overall decreasing trend
high Vback. However, two additional peaks atN510 and 16
appear in the diagram, which indeed correspond to wi
steps within the orbital grouping in the Coulomb stairca
These anomalously large addition energies are caused b
splitting of the degenerate~1,0,1! from the ~2,0,0!-~0,0,2!
pair ~at N510! and the~2,0,1!-~1,0,2! pair from the~0,0,3!-
~3,0,0! pair ~at N516!, due to the anharmonicity in the con
fining potential induced by the many-body interaction,
mentioned before. Indeed a detailed analysis shows tha
~1,0,1! state is higher in energy than the~2,0,0!-~0,0,2! pair
bearing the tenth electron. Similarly, the~2,0,1!-~1,0,2! pair
is higher in energy than the~0,0,3!-~3,0,0! pair which bear
the sixteenth electron. These general features in the add
energy spectrum, e.g., high peaks for the shell filling and
N516 peak, have indeed been observed by Taruchaet al.,
although in a vertical quantum dot with a circular cro
section.7 It is worth mentioning that the experimental da
show more peaks than the theory because of spin effects
Hund’s rule in shell filling. At this stage, our model cann
account for these effects because the present LDA does
distinguish between individual spin states in the calculat
of the exchange-correlation energy as mentioned before.
us also mention that the experimental data for the circu
geometry show a minimum instead of a peak atN510 in the
addition energy diagram, which may be due to spin effe
offsetting the influence of anharmonicity in the potential.

In addition to the self capacitance, a gate-dot capacita
Cg(N) may also be defined asCg(N)5DQ/DV
5e/@Vback(N11)2Vback(N)#. In fact, Cg is just the recip-
rocal of the voltage step in the Coulomb staircase aside f
the scaling factore. The shell splitting atN510 and 16 is
also evident as a dip inCg .

Figure 10~b! shows the variation of the addition energy
a function of N for the quad-gate dot. The lifting of th
degeneracy between single-particle levels by the rectang
symmetry of the dot is apparent in the peaking of addit

FIG. 9. Coulomb staircase for the quad-gate quantum dot;
top gates are fixed at21.9 V.
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energy peaks, but of decreasing amplitude, forN52, 4, and
8. The Coulomb degeneracy effect is seen in the lower a
tion energies forN55, 6, and 7.

VI. CONCLUSIONS

We have investigated the effect of the confining poten
symmetry and the electron-electron interaction on the e
tronic properties of two quantum-dot configurations in t
quantized regime. We have confirmed the formation of sh
structure in highly symmetric dots which is in good agre
ment with experimental data. In addition, we have been a
to provide deep physical insight into the shell structure a
specifically, the ‘‘bunching’’ of the self-consistent electro
static potential profile during the charging of the dot cor
sponding to the filling of a shell. Our analysis has also be
able to investigate fine physical details such as anomalo
large addition energies atN510 and 16 which are due to
lifting of degeneracies in the third and fourth shells caus
by anharmonicity in the potential. In asymmetric quantu
dots, the shell structure vanishes but under particular c

e

FIG. 10. Addition energy as a function of the electron numbeN
in ~a! the square-gate dot. The peaks correspond to the additi
energy required to add an electron to another level in the dot.~b!
The quad-gate dot. The Coulomb degeneracy effect is seen as a
charging energy atN56.
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finement we have shown that electron-electron interac
leads an anomalous shell caused by Coulomb degenerac
merging of two energy levels caused by electron repuls
during the charging of the dot which has its analogy
atomic physics.
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APPENDIX

Here we give the expressions for the exchange and co
lation potential6 mxc(n) that we have used in the Hami
tonian:

mxc~n!5
d

dn
@nexc~n!#, ~A1!

whereexc(n) is the sum of the exchangeeex(n) and correla-
tion ecorr(n) energies per electron, derived from LDA i.e
exc(n)5eex(n)1ecorr(n)

ex~n!5
20.4582

r s
, ~A2!

r s is expressed in terms of the effective Bohr radius in Ga
a0* 5e ra0 /m* @here e r is the dielectric constant of GaAs
(513.2) andm* , the effective mass of electron in GaAs
(50.067m0)# and the local electron concentration,n(r ) as
in
-

d L

n
b

n
a

n

s,

-

e-

,

r s5F 3

4pn~r !G
1/3 1

a0*
. ~A3!

The correlation energy, however, is dependent on whe
we are in the high (r s!1) or low (r s@1) density regime.
The correlation energy is parametrized as16

ecorr5
B

11CAr s1Dr s

~r s>1!,

ecorr5E1F ln r s1Grs1Hr s ln r s ~r s,1!,

B520.1423, C51.0529, D50.3334,

E520.0480, F50.0311, G520.0116, H50.0020.

The energies and potentials are expressed in scaled at
units, i.e., 2Ry* 52Rym* /(m0e r

2). The exchange correlation
potentialmxc , which is given by Eq.~A1!, turns out to be

mxc5mex1mcorr,

mex52
0.611

r s
,

mcorr5ecorr1
r s

3

BF C

2Ar s

1DG
@11CAr s1Dr s#

2
~r s>1!,

mcorr5ecorr2
r s

3

F

r s
1G1H~11 ln r S! ~r s,1!.
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