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We investigate the influence of electron-electron interactions on the electronic properties of quantum dots in
a regime where the energy-level separation is comparable to or larger than the Coulomb charging energy at low
temperature €2/2C>kgT). A self-consistent three-dimensional solution of Sdimger and Poisson equation
within the local-density approximation is implemented to study the formation of shell structure in highly
symmetric quantum dots which is in good agreement with recent experimental {@antehaet al, Phys.
Rev. Lett.77, 3613(1996] For asymmetric quantum dots, we show that the shell structure disappears, and
features due to electron-electron interaction lead to the accidental formation of an isolated electron shell called
“Coulomb degeneracy” in the energy spectruf50163-18207)02648-9

I.  INTRODUCTION atoms! The filling of successive shells in QD’s depends on
factors such as electron-electron interaction and the electron
Quasi-zero-dimensional systems, such as quantum dotspin/

have been the subject of intense research in recent Y2ars, In this work, we investigate the influence of the confining
owing to the development of sophisticated patterning angotential and the role of electron-electron interaction in the
nanofabrication techniques that make possible the realizatioiormation of shell structure in planar quantum dQD’s)
of systems of very small and precise dimensions with charachieved by confining a two-dimensional electron gas
acteristic sizes comparable to the de Broglie wavelength of2DEG) by means of patterned gatEs-3 We consider two
carriers’=® Because the capacitaneassociated with such PQD configurations: a square-gate dot which when empty
systems is extremely smal=10 !¢ F), the single-electron has a nearly circularly symmetric confining potential, and a
charging energy given bg?/2C could be of the order of a quad-gate dot which has a rectangular symmetry. For this
few meV, which at low enough temperature, i.e., &f2C  purpose, we solve self-consistently the 3D Sdmger and
>kgT, leads to the observation of “Coulomb blockade” and Poisson equations. Our model generalizes previous ap-
single-electron tunnelin§:® The distribution of electron proaches which tackle similar problems in recent years by
states in the dot has an important bearing on its electrostatigither excluding exchange-correlation effettsy neglecting
and transport properties. In metallic dots, because of thguantization effects normal to the heterointerfatey as-
large electron effective mass, single-particle states are bareuming the adiabatic approximation where the separation be-
resolved so that the energy spectrum is a quasicontinuuntween the quantized levels in the daiE, is comparable to
making the single-electron charging energy entirely due tdkgT,® or finally by considering dots with large numbsr
the Coulomb repulsion from the electrons in the dot—this is(=70) of electrons.We consider PQD’s withA E=e?/2C
the Coulomb blockade regime described by the orthodoxkgT and smallN (<20) and use an efficient technique,
theory® On the other hand, semiconductor quantum dotscalled the iterative extraction orthogonalization method
which can be grown with precise dimensions of a few hun{IEOM), to solve the 3D Schiinger equatiofi. The ability
dred angstroms, have usually lower electron effective massesf this method to generate an arbitrarily small number of
that result in well-quantized energies whose separdtigns  eigenstates makes it suitable for the simulation of nanostruc-
comparable to the Coulomb charging enemff/2C. The tures exhibiting a small number of occupied states. We solve
level separation, in addition to the Coulomb repulsion,the single-particle Schdinger equation, and include many-
makes an additional contribution to the single-electronbody exchange-correlation effects under the local-density ap-
charging energy of the dot—this is the quantized regime. Irproximation(LDA). We neglect Coulombic fluctuations due
this regime, owing to the three-dimension8D) quantum to ionized impurities in the dot, and assume abrupt interfaces
confinement of electrons, quantum déBD’s) may be con-  at the GaAs-Af :Ga -As boundary.
sidered as analogs of natural atoms with two fundamental In Sec. Il we describe the two dot structures. In Sec. IlI
differences: in atoms, the Coulomb field is spherical andve discuss the computational model and briefly review the
quantized in units of the elementary charge because of th&EOM method for solving Schidinger equation. We also
discreteness of nuclear charge, while in QD’s the confiningliscuss the method of determining the equilibrium electron
potential may have arbitrary geometry and is continuous irpopulation of the dot from an evaluation of the Gibbs free
terms of the elementary charge. However, in highly symmetenergy*? In Sec. IV we discuss the boundary conditions
ric QD’s, the quantized energies may exhibit orbital degenimposed on the potential and the wave functions in the vari-
eracies and form shells when occupied by electrons, as iaus regions of the device. We present our results in Sec. V,
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wherem* (r) is the position-dependent effective mass of the
electron in the different materialg.(r) = ¢(r) + AEis the
conduction-band edge, whed#r) is the electrostatic poten-
tial, AE,s is the conduction-band offset, andn] is the
exchange and correlation potential as parametrized by Cep-
erley and Aldef® (see the Appendix

Back Gate

Back Gate The 3D Poisson equation for the electrostatic potential
@(r) reads

gate quantum-dot device with layer structure. Ve(r)Ve(r)]=—p(r) )

FIG. 1. Schematic representation(af a square antb) a quad-

where for the square-gate dot we obtain deep physical inwhere the charge density(r) is given by e[p(r) —n(r)

+ hd . o
sights in the formation of shell structure in agreement with+ND(r)__NA(r)]' Here (r) is the permittivity of the ma-
the recent experimental findings of Tarukigal. Further-  terial and is a function of only throughout this workp(r)
more, we discuss the variations in the shell structure introiS the Dole concegtratlorm(r) is the electron concentration,
duced by an asymmetric confining potential, in a rectangulafd No(r) andN,(r) are the ionized donor and acceptor
quad-gate device. We show that the electron-electron inte€oncentrations, respectively. Electron wave functions ob-
action leads to an effect called “Coulomb degeneracy” thati@ined from the Schdinger equation are used to calculate
results from a collapse of states on the Fermi level due t&(r) inside the dot, and a classical charge density obeying
electron-electron interaction. We calculate the addition ener] homas-Fermi distributions are used in the regions outside
gies and the gate-dot capacitance for the two devices. Frof€ dot. In the dot

these findings, we draw conclusions in Sec. VI.

n<r>=2i fED|i(n)]?, 3)

Il. DOT STRUCTURES wheref(E;) is the occupation probability of the levEl . If

The devices investigated here are shown in Fig. 1. The)t/he dot is in strong diffusive contact with the reservoirs,
consist of an inverted GaAs/fGa, -As heterostructure that f(E;) _is the Fermi-Dirac distribution funcFion. Otherwise,
confines the electrons to a 2D gas at the interface. In ouf(Ei) is evaluated from the grand canonical ensemble by
model, the simulated structure consists of a 22.5-nm layer df"Posing the condition on Gibbs distribution thl%t only an
undoped A} Ga, As followed by a 125-nm layer of un- integer number of glectrorN can occupy th_e dat! _
doped GaAs and finally an 18-nm GaAs cap layer. The cap We map the device onto a three-dimensional grid made of
layer is uniformly doped to %10 cm 3 so that the rectangular parallelepipeds; with 383X 36 grid points(for
conduction-band edge is just above the Fermi level at théhe square-gate devicalongxxyxz. We solve Poisson’s
GaAs-cap-layer—undoped GaAs boundary. The inverted hegguation using an iterative Newton’s technique, in which the
erostructure is grown on a GaAs substrate and charge contrBEW Solution for the potential, is combined with the
is achieved by varying the voltage on the back gdtg,.  SOlUtion ¢qq obtained from the previous iteration by using a
We assume a negligible voltage drop across the substratéfmple relaxation technique to get the potentiak (1
hence we applyVy, directly to the bottom of the —@)®oat @dnew. The relaxation parameteris usually be-

Al Ga -As layer. The first quantum dot shown in Figal — fween 0.95 and 0.99. In solving the Scilimger equation we
has a 24& 240 nnf square open area at the top bordered byuse the IEOM developed by Kosloff and Tal-E2érThis
a 65-nm-thick gate. This device is only of academic impor_method is fast and efficient, compared to conventional eigen-
tance, since the barriers are too thick to allow electron injecvalue solvers, when solving for a few eigenvalies., 20,
tion through tunneling. However, it is well suited to study @nd is consequently suitable for quantum dot calculations.
properties such as electronic spectrum and dot filling. The The basic idea behind the method is the construction of a
quad-gate device has four gate pads with 45-nm stubs prdunctional of the Hamiltoniar(H) that extracts the lowest
truding into the channel; the dimensions of the open area ofligenvalue statéthe ground stafefrom a trial wave func-
the top are 238408 nnf. Electron charging of the dot is tion, |a), consisting of a mixture of basis statgs), i.e.,
possible through tunnel injection from the adjacent two-
dimensional regions through the 70-nrr_1 opening between the F(H)|a>=2 IM)F(E)(m|a)=|0)F(Eg){0| )
stubs along the direction. The separation between the pads m
along the(longen z direction is 90 nm.

+ 2 [M)F(Em)(m|a). (4)
lll. - COMPUTATIONAL MODEL If F(E,) decreases with increasirtty,, the term containing
In order to study the electronic properties of the quantunthe lowest state dominates over the second term. Hence,

dot, the Schrdinger equation is solved in the central 0D when F(H) is successively applied to the updated wave
region. The Hamiltonian reads function, the higher-order contributions m=1 eigenstates
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become negligible and the ground state emerges progres- a)
sively. TheM higher excited states are obtained by applying
F(H) to M different guess states and by orthogonalizing
them with a Gram-Schmidt technique after each iteration.

The chosen functional, however, must have a well-behaved
Taylor expansion; an exponential form expgH) satisfies 0,02 N
this criterion.

In practice, Schidinger and Poisson equations are solved
until self-consistency is obtained—when the difference be-
tween the calculated eigenenergies, in successive iterations, — -0.03.
is smaller than 106 eV and the residue in the Poisson equa-
tion is 1 V cm™2 per grid point, which determines the po-
tential to an accuracy of less than F0eV. It should be
pointed out that the self-consistency of the Poisson-
Schralinger equations does not guarantee that the number of
electronsN in the dot is an integer. From a general stand-
point N is determined by minimizing the Gibbs free energy
F(N) with respect toN for each gate bias configuration. b)
F(N)=—kgT In Z is derived from the partition functiod 1
for the grand canonical ensemBleyhich reads
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where the summation is over all possible electron configura-
tions at constanN=2X;n; andn; is either 0, 1, 2 reflecting
the occupancy of the levé;. Double counting of the Cou-
lombic interaction is avoided by subtracting the Hartree en-
ergy forN electrons,
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in the evaluation oZ. The computation of (N) requires the FIG. 2. Conduction-band edge of the square-gate dot for

evaluation ofZ by considering all configurations with the V,,,=0.9735V atT=0.25K (a) on thex-z plane (b) along the
occupation of levels positioned sevekg/T from the Fermi  verticaly direction through the center of the dot.
level Ex. This approach is computationally expensive for

level separatiol\E>kgT, as in the present cagee., AE bias. In the laterak-z directions von Neumann conditions,

—100kgT). Therefore. we determindd by minimizin where the electric field vanishes at a distance far enough
B/ L y 9 from the dot, are assumed. Hence, solving rigorously the
F(N) only wher! a level IS close=¢ k_BT) to E¢. When the Poisson EquatiofR) by imposing the equipotential boundary
lowest unoccupied level is far awdye., severakgT) from  qngitions at the gates eliminates the need to include explic-
the Fermi levelN is simply twice the number of eigenlevels itly the effect of the image charge as a correction to the

below Eg. electron-electron interaction.

IV. BOUNDARY CONDITIONS V. RESULTS

For computation purposes, the device is divided into re- Figure 2a) shows the conduction-band edge at the GaAs-
gions of various dimensionalities characterizing the degreedlq Ga ;As interface for the square-gate structure in the lat-
of freedom of electrons in their respective regions. We aseral x-z plane, and Fig. @) shows the variation of the
sume that the wave functions vanish at the boundary surface®nduction-band edge perpendicu(atong they direction
of each of the regions. This condition has to be used witho the heterojunction, for an empty dot &&=0.25 K. The
caution in the quad-gate device, where the higher states exonfinement in thex-z plane is parabolic with a barrier
tend deeper into the barriers under the stubs. However, in leight of about 50 meV over a distance of 1800 A. In yhe
smallN problem such as the present one, the states of intedirection, the confinement is defined by the conduction-band
est are well confined and do vanish at the boundary surfaceffset of 255 meV between GaAs and AGag -As and a
of the dot. large electrostatiy field, Fy=35 kV/cm, in GaAs. Conse-

The potential is determined by Dirichlet boundary condi-quently, the energy levels are spaced 30—40 meV apart along
tions on the exposed surfaces at the top and bottom of thihe y direction, and 1 meV apart in the z plane. Further-
structure where the Fermi-level pinning modifies themore, the parabolic confinement in the latexat plane in-
Schottky barrier heights by,—V, whereVg is the gate duces a quadratic variation of the conduction-band edge
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x10° that this shift is not constant but increases with the number of
) ) ) ) ) toa @ electrons in the dot, as is expected.
——— It is seen in Fig. 3 that at low values of., i.e.,
oo 002 =<0.985V, the energy levels are equally spaced about 3 meV
apart. AtVp,=0.980 V, the lowest energy levEl, is about
o0 2 meV, i.e., about 10R;T above the Fermi level and is not
] occupied. AsV,,. increasesk, lowers towards the Fermi
] level, and atV,,4=0.985 V, is occupied with the first elec-
tron. At this stageE, does not continue to lower with in-
- creasingVpack, but sticks to the Fermi level, as dropping
below the Fermi level would fully occupy the level with two
electrons. This cannot happen unti),.. is large enough to
. . . . . overcome the Coulomb repulsion due to the first electron
vback(c/ons) 1.01 1.02 already in the dot, which occurs at,,,=0.9874V for
which E, is fully occupied and falls below the Fermi level. It
FIG. 3. Variation of the single-particle energy levels With,x s seen that in th¥,interval required for charging,, the
for the square-gate dot. The zero of the energy scgle i§ the Ferpipper levels follow more or less the behaviorEf. A fur-
level. The effect of_the exchange-cqrrelatlon eneligyis discern-  ther increase iV, CAUSES an abrupt lowering &, and
able as a shift that increases Wiflac,In the energy levels to lower - oy har jevels, as the first shell is completely filled and the
voltages. The inset shoyvs the schem_atlc of the energy spectrum f%{ot prepares to take on the third electron. The energy levels
the empty N=0) dot with level ordering. . L . L .
continue to decrease with increasiNg,q until E; is par-
along they direction (150 A<y=<1100 A) in the charge-free tially occupied with one electron, ie.,N=3 at
region in GaAgFig. 2(b)], as opposed to a linear variation Vpae=0.993 V. Notice that the increase W, required for
that would be expected if the system were translationallthe N=2 to N=3 transition, i.e., AV=5.6 mV, is greater
invariant in thex-z plane. thanAV=2.4 mV required for theN=1 to N=2 transition
The inset in Fig. 3 shows the energy spectrum of thebecause, aside from overcoming the Coulomb repulsion due
square-gate dot dtl=0 with the corresponding degenerate to two electrons in the dot, the lowering of the levg]
states for each level. We label states Bg,(y.,n,), where  towards the Fermi level requires additional energy. Similar
ny, Ny, andn, are the nodes along the y, andz directions,  to the behavior of, E; sticks to the Fermi level untVp
respectivelyn, is zero throughout this work, since the large js large enough to fully charge the shell with four electrons
spacing between states along theirection precludes states hich occurs atvy,,q=0.9982 V on the figure. Further in-
other than t_he ground state from being oqcupled. Because @fease iNVacx CAUSES an abrupt lowering &, similar to
the parabolic shape of the external potentizising fromthe 14 behavior 0E, atVy,,=0.9874 V. The charging of level

gates and the ionghe six lowest localized wave functions g simijar toE, andE, but E, remains on the Fermi level
achieve the 2D harmonic-oscillator symmetry in the empty

dot, i.e., when the many-body effects are negledfethe O'o' 2 longer voltage range, i.eAV=9.6mV (1.0026
(0,0,0 state is the grour¥d sta¥e with spin deggeneracy only'svba‘?kgl'0122 V), sinceE, can accommodate six elec-
consequently it can be occupied by two electrons. ThdOnS: thereby requiring a greater incremen/ig to fully
(1,0,0 and (0,0, states are degenerate since they are idencharge the shell. o
tical except for a 90° symmetry rotation and accommodate Three qbservatlons_ can be made frorr_1 the data provided in
four electrons. Thé2,0,0 and (0,0,2 states are degenerate Fig. 3: Firstly, there is an abrup_t lowering _o_f energy levels
and constitute the third level accommodating six electronsat those values df . corresponding to the filling of a shell,
As with the(1,0,0 and(0,0,)) states, th&2,0,0 and(0,0,2 which lead to a steplike behavior of the energy spectrum.
states are identical except for a 90° symmetry rotation. Thdhis steplike behavior is similar to the results obtained by
(1,0,) being of a different symmetry is slightly spliand Stopa?® with a different approach for analyzing the charging
higher in energyfrom the(0,0,2 and(2,0,0 states. A simi- properties of large QD’s characterized by a large number of
lar situation arises in the fifth level which accommodateselectrons N=70). It is however different from the results of
eight electrons: th€0,0,3 and the(3,0,0 differ by a 90°  Jovanovic and Leburtdrthat show a relatively smooth spec-
symmetry rotation; so also th&,0,2 and the(2,0,1) states; tra in large dots in the regime wheg2/2C>AE andkgT
the (1,0,2 and the(2,0,]) states are slightly higher in energy > AE. Secondly, the width of each step is proportional to the
than (0,0,3 and the(3,0,0-states. energy required to charge completely each of the constituent
The variation of the single-particle energy levels as adegenerate states of a level, and hence is proportional to the
function of the back-gate voltagé,..., for the square-gate degeneracy of the level. Lastly, the energy levels get closer
device, is shown in Fig. 3. The lowest ten states in the figurasV,, increases which is due to a decrease in the depth of
form the first four levels with degeneracies 1, 2, 3, and 4the confining potential caused by the Hartree energy, accom-
with filling of two, four, six, and eight electrons, respec- panied by an increase in the dot area.
tively. Also shown in the figure is the effect of exchange- It is worthwhile mentioning that the sticking of a level to
correlation energ¥yc on the single-particle levels. The lev- the Fermi level is a direct consequence of the LDA which
els are seen to be shifted to the I&ghown in solid lines in  cannot resolve individual spins. Hence, in our model it is not
Fig. 3, i.e., to lower values o¥,. upon the inclusion of possible to determine the order in which the constituent de-
Exc, due to the attractive nature &yc. It is to be noted generate states of a level are occupied by single spin elec-

—— with Exc

-=--= without E,

{0.0.1), (1,000

t'os 0.99
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x FIG. 5. Conduction-band edge along thelirection in the cen-

FIG. 4. Variation of IngeqX;2,y) with x2 (x=0 is the center ter of the square-gate dot, fd\ ranging from 1 to 14. The shell
of the doj for N=0 (solid line) andN=8 (dot-dashed ling structure of the dot energies is manifested in the bunching of the

conduction-band bottom for various.

trons. Consequently, a level is constrained to remain at th@xpected, whenV,. is increased to charge the dot with
Fermi level until Vi, is large enough to fully charge this gjectrons. The potential also flattens, as mentioned before,
level. This constraint is removed if the model assigns indiith increasingN reflecting the Coulomb interaction. The
vidual levels to each spin state, like in the local spin-densityemarkable feature here is the grouping of the potential
approximation’? for instance, since it would then be possible o rves in a series of tight potential “bunches” that are in-
to determine exactly the occupancy of the individual spingicative of the shell structure in the dot. A closer examina-
states at their crossings with the Fermi level as they are l0wgon reveals the “bunching” of the first two curves for the
ered with increasing/paq. However, this investigation is  first shell, the next four curves corresponding to the filling of
beyond the scope of this paper and will be addressed in e second shellN=6) and the next six curves correspond-

20
future work _ o » ing to the filling of the third shell I\=12), and so on. This
Another feature evident from Fig. 3 is the splitting of the i the clearest manifestation of “shell filling.”

(1,0,) and(2,0,0-(0,0,2 states in the third level for 0.985  Figyre 6 shows the Coulomb staircase as a function of
<Vpao=1.00 V and the(2,0,-(1,0,2 and (0,0,3-(3,00 v, __ for the first eighteen electrons in the square dot. Each
states in the fourth level for 0.988Vp,<1.01 V. This par-  giep indicates the increment ¥y, (and hence the energy
tial lifting of degeneracy in the third and the fourth levels is required to add an electron to the dot. Unlike the conven-
a consequence of the anhamonicity in the confining potentiajonal Coulomb blockade effects, the steps of the staircase
introduced by the many-body effects in the dot. The circularyre of unequal width with wide steps corresponding to the
symmetry of the potential is lost, thereby increasing thezomplete filling of a shell. Indeed the steps are grouped ac-
separation between th@,0,) state and th€2,0,0-(0,0,2  ¢ording to the degenerate single-particle orbitals with wide
pair stateswhich continue to be degenerate as they are idengie s indicating a jump to the next orbital, starting with two
tical, but for a 90° symmetry rotatignin the third level, and  gjectrons, then four, six, etc. Also noticeable is the general
between the&(3,0,0-(0,0,3 pair and the(2,0,1-(1,0,2 pair  yeng for the steps to become narrower with higha,
states in the fourth level. Notice that ¥f,q=1.01V the  \hich results from an increase in the dot capacitance due to
split states merge again because of the Coulomb repulsiog, expansion of the dot, as well as a decrease in the energy-

during the charging of th€2,0,0-(0,0,2 levels which pre- |eye| spacings due to decreased confinement.
vents the(1,0,]) state from crossing the former pair states.

Figure 4 shows, on a semilogarithmic scale, the profile of
Yood X;Y,2) at the heterointerface as a function>df. The 20}
variation of IfgydX;y,2)] with x2 is linear over 500 A 18}
from the center of the dot foN=0, unlike that forN=8
which is only piecewise linear over that range. The linear
variation of Irf oo X;Y,2)] is to be expected for the ground-
state wave function, which in a harmonic potential varies as

e The piecewise linear behavior of[lyoo(X;y,2)] is
further evidence for the distortion in the confining potential
due to electron-electron interaction.

Figure 5 shows the potential profile along thelirection
for increasing values o¥,,.. The zero of the energy scale
is the Fermi level. Each of the curves corresponds to the
potential calculated just after the addition of an electron to
the dot, starting fronN=1 (the highest curveto N= 14 (the FIG. 6. Coulomb staircase for the square-gate quantum dot; the
lowest curve. It is seen that the potential energy drops, astop gates are fixed at 1.9 V.

Number of electrons, N
>

98 0.99 101 T.02

1
Vback (Volts)
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FIG. 7. Variation of the single-particle energy levels with, FIG. 8. Conduction-band edge, along thdirection in the cen-

for the quad-gate dot. The zero of the energy scale corresponds {@r of the quad-gate dot fd¥ ranging from 1 to 11 showing the
the Fermi level. The inset shows the schematic of the energy spegunching of the conduction band edge for the fifth, sixth, seventh,
trum of the empty K=0) dot with level ordering. and eighth electron under Coulomb degeneracy.

In contrast to the square-gate dot, the quad-gate dot déomb repulsion between the two particles and maximizes the
picted in Fig. 1b) has no energy level degeneracies, andgexchange interactioft. In the present context the same rea-
hence no shell structure, due to its rectangular geometry &9ning would lead to one electron in each of {ti,0 and
shown schematically in the inset of Fig. 7 with the ordering(0,0,2 states with parallel spins, which also minimizes Cou-
of the energy levels. lomb repulsion and maximizes exchange interaction. This

Figure 7 shows the variation of the single-particle energycould be accomplished by imposing the partial occupation of
spectrum withV,,.. for the quad-gate dot. The variation is the (1,0,0 state subsequent to the partial occupation of the
qualitatively similar to the square-gate device except that0.0,2 state. However this subtle behavior cannot be de-
each curve now represents a spin-degenerate level that récribed within the LDA wherein the exchange-correlation
duces the shell structure to a simple superposition of doublgnergy is only a function of the electron density, but not of
degeneratédue to spin states. Because the ratio between thetheir individual spin. This task will be addressed in our fu-
sides of the rectangle is incommensurable, accidental degeHire work?®
eracies of states are absent from this spectrum. However There are additional interesting features in the spectrum
careful observation of the energy spectrum shows severdf the quad-gate dot. Since the filling of t@0,2 and the
interesting features such as a convergence between thé.0,0 states proceeds sequentially, the variation of the up-
(0,0,2 and the(1,0,0 states, and several anticrossings atPer levels are delineated into two distinct patterns: the en-
high-gate biases, i.e., &t,=0.958 V between the fourth €rgy levels characterized by the quantum number0, i.e.,
and fifth levels and a¥,,4=0.961 V between the third and the fifth and seventh levels, now follow the variation of the
the fourth, and the fifth and the sixth levels. The formerlowest three levelthe (0,0,2 state in particuldrwith the
effect is due to the presence of openings in the large metfiame quantum numbex= 0, while the sixth leve[i.e., the
pads along the longer gate axis which makes the variation dfL,0,) statd with the quantum numben,=1 follows the
the (1,0,0 state more rapid than the variation of tt@&0,2 variation of the fourth levdi.e., the(1,0,0 statd. This leads
state, with the back gate potential. As a result of the different0 anticrossings seen ¥,&=0.958 and 0.961 V.
confinement, these levels would cross on the Fermi level Figure 8 shows the variation withp,c of the potential
when the lower(0,0,2 state is being filled with electrons. profile along thez axis which corresponds to the longer side
However, this level crossing is not possiblg@£0,2 is only ~ of the rectangle. By comparison with Fig. 5 for the square
partially filled with one electron because that would imply gate, it is seen that the shell “bunching” effect has now
that the (1,0,0 state would immediately accept two elec- disappeared, but the profiles for the fifth, sixth, seventh, and
trons, which is prohibited by Coulomb interaction. There-e€ighth electrons appear to be bunched due to Coulomb de-
fore, because of Coulomb repulsion between carriers, the twgeneracy. This effect is also evident for 0.954
levels are constrained to remain on the Fermi level and ap=Vpacx=0.959 V in Fig. 9 which shows the Coulomb stair-
pear to be almost degenerate. We call this configuratiogase as a function &fy,.. Aside from the regular series of
“Coulomb degeneracy.” It is to be noted that our model long and short steps reflecting the successive charging of
does not provide a complete degeneracy as the two levels ageparated and doubly degenerate states, the Coulomb stair-
still separated at the Fermi level by a few hundredths of &ase shows a grouping of steps with identical widthsNor
meV during the charging of thé1,0,0 level. A situation =5, 6, and 7 electrons.
similar to this “Coulomb degeneracy” is encountered in The change in the Fermi level in the daj upon the
atomic physics when two outer orbitals with different pari- addition of an electron to the dot containiig electrons is
ties are degenerate: the energetically favorable configurdhe addition energygiven by e?/Cy(N)=u(N+1)— wu(N),
tion for two electrons is the configuration with one electronwhereC¢(N) is the self-capacitance of the dot. Since the dot
on each orbital of parallel spin because it minimizes the Couis not in diffusive contact with the outside environment, the
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FIG. 9. Coulomb staircase for the quad-gate quantum dot; the
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Fermi level in the dot is not fixed, and consequentfiN) is
evaluated as the difference between the Fermi level in the 2D b)
leads and the minimum of the bare potential energy in the
dot. Figure 10a) shows the variation of addition energy as a
function of N in the square-gate dot. Each peak indicates the
filing of a shell and corresponds to the wide steps in the
Coulomb staircase of Fig. 6. Between the peaks, the addition
energy remains small with the overall decreasing trend at
high V... However, two additional peaks Bit=10 and 16
appear in the diagram, which indeed correspond to wider
steps within the orbital grouping in the Coulomb staircase.
These anomalously large addition energies are caused by the
splitting of the degeneratél,0,1) from the (2,0,0-(0,0,2 1f
pair (at N=10) and the(2,0,7-(1,0,2 pair from the(0,0,3-
(3,0,0 pair (at N= 16), due to the anharmonicity in the con- L
fining potential induced by the many-body interaction, as Yo 1 2 3
mentioned before. Indeed a detailed analysis shows that the

(1,0, state is higher in energy than tii2,0,0-(0,0,2 pair FIG. 10. Addition energy as a function of the electron nuniber
bearing the tenth electron. Similarly, tii2,0,1-(1,0,2 pair  in (g the square-gate dot. The peaks correspond to the additional
is higher in energy than th,0,3-(3,0,0 pair which bear energy required to add an electron to another level in the (bpt.
the sixteenth electron. These general features in the additiorhe quad-gate dot. The Coulomb degeneracy effect is seen as a low
energy spectrum, e.g., high peaks for the shell filling and theharging energy al=6.
N=16 peak, have indeed been observed by Taratel,
although in a vertical quantum dot with a circular crossenergy peaks, but of decreasing amplitude,Met 2, 4, and
section’ It is worth mentioning that the experimental data 8. The Coulomb degeneracy effect is seen in the lower addi-
show more peaks than the theory because of spin effects atidn energies foN=5, 6, and 7.
Hund'’s rule in shell filling. At this stage, our model cannot
account for these effects because the present LDA does not
distinguish between individual spin states in the calculation
of the exchange-correlation energy as mentioned before. Let We have investigated the effect of the confining potential
us also mention that the experimental data for the circulasymmetry and the electron-electron interaction on the elec-
geometry show a minimum instead of a peaklat 10 in the  tronic properties of two quantum-dot configurations in the
addition energy diagram, which may be due to spin effectgjuantized regime. We have confirmed the formation of shell
offsetting the influence of anharmonicity in the potential.  structure in highly symmetric dots which is in good agree-
In addition to the self capacitance, a gate-dot capacitancament with experimental data. In addition, we have been able
Cg(N) may also be defined asCy(N)=AQ/AV  to provide deep physical insight into the shell structure and
=e/[Vpac N+1)—=VpaadN) ]. In fact, Cy is just the recip-  specifically, the “bunching” of the self-consistent electro-
rocal of the voltage step in the Coulomb staircase aside fromstatic potential profile during the charging of the dot corre-
the scaling factoe. The shell splitting aN=10 and 16 is sponding to the filling of a shell. Our analysis has also been
also evident as a dip i€. able to investigate fine physical details such as anomalously
Figure 1@b) shows the variation of the addition energy aslarge addition energies &=10 and 16 which are due to
a function of N for the quad-gate dot. The lifting of the lifting of degeneracies in the third and fourth shells caused
degeneracy between single-particle levels by the rectanguldmy anharmonicity in the potential. In asymmetric quantum
symmetry of the dot is apparent in the peaking of additiondots, the shell structure vanishes but under particular con-
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finement we have shown that electron-electron interaction 113 1

leads an anomalous shell caused by Coulomb degeneracy—a Ms=

merging of two energy levels caused by electron repulsion

during the charging of the dot which has its analogy inThe correlation energy, however, is dependent on whether

atomic physics. we are in the highrs<1) or low (rs>1) density regime.
The correlation energy is parametrized®as

3

amn(n) -

ay’
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APPENDIX E=—0.0480, F=0.0311, G=—0.0116, H=0.0020.
Here we give the expressions for the exchange and corr

lation potential ,(n) that we have used in the Hamil %he energies and potentials are expressed in scaled atomic

units, i.e., Ry =2Rym*/(moer2). The exchange correlation

tonian: potential u,., which is given by Eq(A1), turns out to be

d

Mx(N)= dn [Nex(N)], (A1) Mexe= MexT Meorn

wheree,,(n) is the sum of the exchangg,(n) and correla- _ 0611
tion €. (N) energies per electron, derived from LDA i.e., #ex r¢ '
€xc(N) = €c,(N) + €cordN) c

—0.4582 Bl— +D

eln)=——, (A2) PN
s Mcorr= Ecorr T E \/— 5 r<=1),

rsis expressed in terms of the effective Bohr radius in GaAs, [1+Crst+Drg]
ay =e€a,/m* [heree, is the dielectric constant of GaAs F
(=13.2) andm*, the effective mass of electron in GaAs Ko™ €con— Ts —+G+H(1+Inrg (re<i).
(=0.06"ng)] and the local electron concentratiar(r) as 31
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