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Pade approximants for the ground-state energy of closed-shell quantum dots
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Analytic approximations to the ground-state energy of closed-shell quantunindmtder of electrons from
2 to 210 are presented in the form of two-point Paajgproximants. These Padpproximants are constructed
from the small- and large-density limits of the energy. We estimated that the maximum error, reached for
intermediate densities, is3%. Within the present approximation the ground state is found to be unpolarized.
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Quantum dots arartificial atoms which have been a sub- wherewy is the dot frequency3= (ue 7«22 (hwy) is
ject of intense theoretical and experimental research in receat measure for the strength of the effective electron-electron
yearst They offer the very interesting possibility of varying interaction,u is the electron effective mass, ardhe dielec-
the parameters characterizing the dot in a broad range, anflc constant of the material the electrons are moving in. We
also of fixing at will the r_1umber of eI_ec’grorN confined in ,se the oscillator's natural units, i.a/f/(rwg) for length,
the dot. External magnetic and electric fields can be added tgwo for energy, etc. Notice thaB is the only parameter

generate new static and dynamical effects. : I : :
For very strong confinemerthigh electron densitigshe Sgéenr:ilg”tgitr?:glst?enrﬁlm. By varying g we modify the

one-particle Hamiltonian dominates over the Coulomb repul- Following referenced® we will construct two-point Pade

sion, which can thus be treated as a perturbation. On the X ts f th ; X £ th .
other hand, when the confinement is soft and the electroffPP’OXIMants from the Seres expansions of the energy

density becomes small, correlation effects start to play ak'€/A—0 ands— limits,
important role, leading at very small densities to
crystallization? as envisaged by WignérSignals of the

= 3 64 ...
crystal phase can be seen even in the level structure of the €lg-0=bot by e+, )
N=2,3,4 systems in one dimensidryr in the “geometry”
of the wave functionsthe spatial distribution of the electron e|ﬁﬁm=/32{ao+a2//32+a4//34+ s 3)

probability) of the three-electron system in two dimensiéns.
In the present paper, we exploit the fact that the ground-

state energy can be computed analytically in both the largein which by is the energy oN free electrons in the quadratic

and small-density limits, from which we construct an esti-potential, by=(Wq|=; |7 —F;| V), a is the classical

mate for the energy for arbitrary electron density by meangharmonic plus Coulombenergy of theN-electron system,

of a two-point Pad@pproximant. The idea was applied long a,=3,4,/2 is the zero-point energy of the classical cluster,

ago to the three-dimensionéhfinite) electron systefiWe e thew, are the small-oscillation frequencies around the

have used it recently to compute the low-lying energy levelssquilibrium configurationg— 0 will be called the oscillator

of N=<5 electrons in a quantum dbgnd is extended here to |imit, and 8— o the Wigner limit indicating that a finité}

dots containing as many as 210 electrons. analog of the Wigner crystah Wigner “cluster”) is formed
One may ask why an interpolant should be a good apin this limit.

proximation to the ground-state energy. The reason is that \ye computed the coefficients, bs, a,, anda, for dots

the energy is a very smooth function of the density. FORyith up to 210 electrons. Higher coefficients could, in prin-

small systems, it was noticed in Ref. 4 that the low-densityciple, be obtained although the calculations become rather

picture is valid up to surprisingly high densities, and in Ref.inyolved. From these coefficients we may construct the fol-

7 it was stressed that the regions of convergence of botfyying approximants interpolating between the expansions
limiting expansions for the energy overlap. Below, we will for 3.0 andg— :

argue that these regions also overlap for lafgeralues.
We study quantum dots consisting Mfelectrons moving
in two dimensions under the action of a parabolic potential P A 3)
The Hamiltonian describing the system may be written in
dimensionless form as
1

(bz/ag)B+[ag/(bg—az)]1B8% )"
(4)

_ 24
H 1 =bgt+apB| 1 1t

-
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b3,83 TABLE I. The coefficientshy, bz, ag, anda, for closed-shell
P =by+ uantum dots.
+3dA)=bo 1+0:18+028°+q3B° :
, 1+q,8 N by /N2 by /N4 ag/N°? a, /N>
+a 1- , 5

oB 1+0g,8+ q2B2+ C13,33 ©) 2 0.707107 0.372611 0.375 0.784567

6 0.680414 0.531250 0.674147 0.738995

where  g=a0/(bo—a5),  d1=adz2/bs, and Qs 12 0673575 0591525  0.793317  0.698756

=(agq1—b3)/(bg—a,). P32 andP, ; are the first two terms 20 0.670820
of the second-diagonal Padequencg P, 4(B)}. The la-
belss,t in Py; mean that we are taking+1 coefficients
from the B—0 series and+ 1 coefficients from thgg— oo
series to construct the approximant. We will use E4sand

(5) to estimate the ground-state energy of lelectron dot.

In what follows, we restrict the analysis to closed-shell
guantum dots, i.e., systems in which theythe” oscillator 110 0.667424 0.685913 0.977103 0.616908
shells are filled fo3=0, which will simplify our calculation ~ 132 ~ 0.667298 = 0.689909 ~ 0.984691  0.613269
significantly. The number of electrons is thus restricted to the 156 0.667201 0.693262 0.991046 0.610032
following values: N=Ng(Napart 1). The energy in the 182 ~ 0.667124  0.696118  0.996267  0.607227
B=0 limit is bg=N(2Nguet+1)/3. For these systems, there 210 0.667063 0.698572 1.00107 0.605239
is only one level starting frone=b, at 8=0. Its angular
momentum and spin are, respectively: 0 andS=0. This o
will be the ground-state for smaB. On the other hand, for (ng.n ):f d°r,d f2|¢ FORlSFIR (O
very large values oB the leading contributions to the energy 102 [Fi—Fp Tt t P
(i.e., the coefficients; anda,) are independent of the spin
state of the system. Thus, we may undoubtedly construct the 42r-d2r
small;8 and largeg expansions for the lowest rotational in- \](nl,nz):f 1—2¢:1(Fl)¢:2(r2)¢n2(rl)d’nl(rz)-

0.623655 0.856344 0.671474
30 0.669439 0.643709 0.895843 0.653428
42 0.668648 0.657442 0.922532 0.639116
56 0.668153 0.667452 0.941733 0.633269
72 0.667823 0.675071 0.956422 0.626248
90 0.667592 0.681068 0.967894 0.620456

variant (L=0), unpolarized $=0) state. In the rest of the [F1— 1]
paper, this will be called the “ground” state, although it is (10)
possible that higher spin states become lower in energy for
intermediate densities® Both 1(ny,n,) and J(ny,n,) can be reduced to sums of
Let us compute the coefficiebt . The wave function for ~Products ofl’ functions. N
B=0 is given by the Slater determinant The numerical results for the coefficiertits are presented
in Table I. Notice thagrﬁa simple Thomas-Fermi estimate for
1 1 o N N the present problem shows the scaling property:
P(Lx (D) $a(N)x+ (N) ere(N, B) =N32er(1N¥128) and, consequently, the; co-
1 (Dx-(1) ... $1(N)x-(N) efficient should exhibit a7 behavior in the larged limit,
Vo= o . (6) which is satisfied by the results shown in Table I.
The classical energies of tlié-electron clusters, i.e., the
Pua(Dx+(1) e PN x (N) coefficientsa,, were computed by means of a Monte Carlo
N2UL) X - cen N2UN) X - technique with Newton optimizatiort: e values are also
dna(1)x-(1) nia(N) x-(N) hni ith N imizatiorf:*3The val |

) . shown in Table I. For larg®, the Thomas-Fermi approxi-
where we numbered sequentially the harmonic wave funcgation predicts the dependenag~1.062 N5 We may

tions (orbitaly ¢y, . .. ,dnp; andy., x— are the spin-Up  gpain another estimate fay, from the classical energy of a
and spln-do_wn f_unct|ons. The explicit form of the one- hexagonal lattice structure, yieldiag~0.968N%2. In Table
electron orbitals is l, it is shown that the coefficienta, of the finite systems
. follow the N%3 law whenN=30.
<1’>k,|=Ck,||\f““-lk”(fz)@r 217, (7 Once the configuration of minimum energy of the classi-
cal problem is found, the small-oscillation problem is solved
whereC, ;= Vk!/[ w(k+[l[)!], and for the composed index in order to compute the frequenctésnd, consequently, to
n=(k,1) we defined the following sequential ord¢(0,0)},  find a,. The results are shown in the last column of Table I.
10,1, (0,—1)},{(1,0, (0,2, (0,—2)}, ... ,etc, i.e., increas- A very rough estimate of the zero-point energy is obtained
ing |1] inside a shell with positivé-orbitals are taken first. from the dispersion relation of the longitudinal mode of a
The energy corresponding @y, is A =1+2k+|l|. In  hexagonal lattice in the(1,0) direction, yielding a,
terms of these energies we hawg=3\ . The coefficient ~0.78N%“ The results in Table | make evident tN&* law
b; can be written as for N=30.
An evident conclusion that can be extracted from Table |
is that the properties of quantum dots wii» 100 are dic-
b3:% |(nl’”l)+4n§n2 |(n1’”2)_2n1§<:n2 J(ny,nz), tated by theN—o asymptotics. With other words, the
(8) ground-state energy for such a dot should be accurately de-
scribed by aP, 5 approximant in whichby~% N2 b,
where ~0.7 N4 ay~1.0 N°3 and a,~0.6 N%4 In this sense,
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TABLE Il. The angular momentum and the coefficiebtsand

b; for the lowest spatially antisymmetrispin-polarized state.
N J bo /N2 bg /N4
2 1 1.06066 0.186307
8 6 0 0.952579 0.378007
% 12 6 0.962250 0.428734
= 20 5 0.950329 0.486891
30 12 0.949386 0.508812
42 18 0.947863 0.525187
56 10 0.944959 0.538148
72 36 0.946083 0.544753
90 12 0.943998 0.555149
FIG. 1. Small- and larggs expansiongdashed curvesand the We show in Fig. 2 the “convergence” of the Pade-
P43 approximant(solid curve for the ground state of the 42- quence, i.e., the relative difference between®hg and the
electron system. P3, approximants for the 42-electron system. This figure

suggests that the relative error of th&, ; approximant

these dots are more “infinite” than “mesoscopic,” and their should not exceed 3% over the entire intervad 8<<«. The
properties will be very well reproduced by statistical theo-pattern is similar to the one encountered in small datad
ries. therefore we expect this to be an estimate of the actual error.

Another very general property following from the results  Finally, we turn ourselves to the question of the absolute
shown in Table | is the fact that the regions of convergenceround state of the system. In the present approximation, the
of the expansion$2) and (3) overlap. As an example, we energy for large3 is independent of the polarization state of
show in Fig. 1 theP, 3 approximant(solid curve along with  the system. The leading approximation to the energy is again
the smallg and largeB expansions for the energglashed given by Eq.(2), whereay anda, are shown in Table I. For
curves for the quantum dot with 42 electrons. The intermediate 8 values, however, spatially antisymmetric
asymptotic curves almost intersect one anotheBat0.8.  states may be favored as they minimize the Coulomb repul-
This smoothness of the dependence oh 3 guarantees that sion. We may easily compute the coefficiebisand b; at
an interpolant will be a very good approximation to the ac-least for the lowest antisymmetric statefx& 1. This state is
tual energy at any intermediate value @f The same prop- built up by placing one electron per orbital. If there are free
erty was shown to holdfor the ground-state and the excited orbitals in the last shell, the occupancy of the orbitals will
levels of small dots witiN<5. For large dots, this seems to lead to a maximal angular momentuiund’s rulg. For the
be a general property that follows from the scaling lawscoefficientb; we have now the expression
obeyed by the coefficients. Indeed, we can obtain a naive
estimate of the radii of convergence of the sef®sand(3)
by comparing consecutive terms. The snm@alexpansion is — _
expected to work whetB< 8= (bo/bs) 3~N~12 while P2 n1§<:n2 t(M0,n2)=3N1.N2)}, (0
the largeg expansion will be valid for g>p.,
=(a,/ay)Y?>~N"524 Because8,=j.., the regions of con-

. where the sum runs over the occupied states.
vergence will overlap.

In Table Il, the angular momentum of such antisymmetric
states and the coefficierlty andb; are given as function of
0.030 , . . . . N. Padeapproximants are constructed in the same way as for
unpolarized states.

We show in Fig 3 a comparison between the estimated
energies of the polarized and unpolarized states for the dot
with 42 electrons. Both curves become very closefder1,
but the unpolarized state is always the lowest state for@any
We found that this is the case for @l values shown in
Table Il, which implies that in the present approximation the
unpolarized state corresponds to the absolute ground-state
for closed-shell quantum dots. This agrees with recent
quantum-mechanical density functional calculatiths.

In conclusion, we have obtained Paajgproximants to the
ground-state energy oN electrons (2N=210) which

B move in two dimensions and are confined by a parabolic
potential. The approximants are asymptotically exact in both

FIG. 2. Relative difference between tis, and theP,; ap-  the high- and low-density limits. The maximum relative error
proximants for the 42-electron system. for intermediate densities is estimated to be only a few per-
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: : : : a,/N%4=0.573+0.475N?—0.160N, (13
A bo/N32=2/3+0.083N, (14)

Al y ] bs/N74=0.731-0.471NY2—0.046N. (15)

e(B)/N**

ForN=6 the fit to all the coefficients has a relative error that

.l | is smaller than 0.2%.

| L ] In principle, the Padapproximant method could equally

A g i well be applied to other dot configuratioffise., non para-

: bolic confinement, quasi-two-dimensional systgnos to

oL : - . f . : . ', other problems such as, for example, metallic clusters,

ions in traps®~2!etc. In these cases, more numerical work
P will be required to compute the coefficiertg, b, ag, and

a,.
FIG. 3. Energy estimates for the polarizedhshed curveand 2
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