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Padéapproximants for the ground-state energy of closed-shell quantum dots
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Analytic approximations to the ground-state energy of closed-shell quantum dots~number of electrons from
2 to 210! are presented in the form of two-point Pade´ approximants. These Pade´ approximants are constructed
from the small- and large-density limits of the energy. We estimated that the maximum error, reached for
intermediate densities, is<3%. Within the present approximation the ground state is found to be unpolarized.
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Quantum dots areartificial atoms, which have been a sub
ject of intense theoretical and experimental research in re
years.1 They offer the very interesting possibility of varyin
the parameters characterizing the dot in a broad range,
also of fixing at will the number of electronsN confined in
the dot. External magnetic and electric fields can be adde
generate new static and dynamical effects.

For very strong confinement~high electron densities! the
one-particle Hamiltonian dominates over the Coulomb rep
sion, which can thus be treated as a perturbation. On
other hand, when the confinement is soft and the elec
density becomes small, correlation effects start to play
important role, leading at very small densities
crystallization,2 as envisaged by Wigner.3 Signals of the
crystal phase can be seen even in the level structure o
N52,3,4 systems in one dimension,4 or in the ‘‘geometry’’
of the wave functions~the spatial distribution of the electro
probability! of the three-electron system in two dimension5

In the present paper, we exploit the fact that the grou
state energy can be computed analytically in both the la
and small-density limits, from which we construct an es
mate for the energy for arbitrary electron density by me
of a two-point Pade´ approximant. The idea was applied lon
ago to the three-dimensional~infinite! electron system.6 We
have used it recently to compute the low-lying energy lev
of N<5 electrons in a quantum dot,7 and is extended here t
dots containing as many as 210 electrons.

One may ask why an interpolant should be a good
proximation to the ground-state energy. The reason is
the energy is a very smooth function of the density. F
small systems, it was noticed in Ref. 4 that the low-dens
picture is valid up to surprisingly high densities, and in R
7 it was stressed that the regions of convergence of b
limiting expansions for the energy overlap. Below, we w
argue that these regions also overlap for largerN values.

We study quantum dots consisting ofN electrons moving
in two dimensions under the action of a parabolic potent
The Hamiltonian describing the system may be written
dimensionless form as

h5
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wherev0 is the dot frequency,b35A(me4/k2\2)/(\v0) is
a measure for the strength of the effective electron-elec
interaction,m is the electron effective mass, andk the dielec-
tric constant of the material the electrons are moving in. W
use the oscillator’s natural units, i.e.,A\/(mv0) for length,
\v0 for energy, etc. Notice thatb is the only parameter
entering the Hamiltonianh. By varying b we modify the
‘‘density’’ of the system.

Following references,7,8 we will construct two-point Pade´
approximants from the series expansions of the energye in
the b→0 andb→` limits,

eub→05b01b3b31b6b61••• , ~2!

eub→`5b2$a01a2 /b21a4 /b41•••%, ~3!

in which b0 is the energy ofN free electrons in the quadrati
potential, b35^C0u( i , j urW i2rW j u21uC0&, a0 is the classical
~harmonic plus Coulomb! energy of theN-electron system,
a25( iv i /2 is the zero-point energy of the classical clust
i.e., thev i are the small-oscillation frequencies around t
equilibrium configuration.b→0 will be called the oscillator
limit, and b→` the Wigner limit indicating that a finite-N
analog of the Wigner crystal~a Wigner ‘‘cluster’’! is formed
in this limit.

We computed the coefficientsb0 , b3 , a0 , anda2 for dots
with up to 210 electrons. Higher coefficients could, in pri
ciple, be obtained although the calculations become ra
involved. From these coefficients we may construct the f
lowing approximants interpolating between the expansi
for b→0 andb→`:

P3,2~b!

5b01a0b2H 12
1

11~b3 /a0!b1@a0 /~b02a2!#b2 J ,

~4!
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P4,3~b!5b01
b3b3

11q1b1q2b21q3b3

1a0b2H 12
11q1b

11q1b1q2b21q3b3 J , ~5!

where q25a0 /(b02a2), q15a0q2 /b3 , and q3
5(a0q12b3)/(b02a2). P3,2 andP4,3 are the first two terms
of the second-diagonal Pade´ sequence$Ps11,s(b)%. The la-
bels s,t in Ps,t mean that we are takings11 coefficients
from theb→0 series andt11 coefficients from theb→`
series to construct the approximant. We will use Eqs.~4! and
~5! to estimate the ground-state energy of theN-electron dot.

In what follows, we restrict the analysis to closed-sh
quantum dots, i.e., systems in which the firstNshell oscillator
shells are filled forb50, which will simplify our calculation
significantly. The number of electrons is thus restricted to
following values: N5Nshell(Nshell11). The energy in the
b50 limit is b05N(2Nshell11)/3. For these systems, the
is only one level starting frome5b0 at b50. Its angular
momentum and spin are, respectively,L50 andS50. This
will be the ground-state for smallb. On the other hand, fo
very large values ofb the leading contributions to the energ
~i.e., the coefficientsa0 anda2! are independent of the spi
state of the system. Thus, we may undoubtedly construct
small-b and large-b expansions for the lowest rotational in
variant (L50), unpolarized (S50) state. In the rest of the
paper, this will be called the ‘‘ground’’ state, although it
possible that higher spin states become lower in energy
intermediate densities.9,10

Let us compute the coefficientb3 . The wave function for
b50 is given by the Slater determinant

C05U f1~1!x1~1! . . . f1~N!x1~N!

f1~1!x2~1! . . . f1~N!x2~N!

. . .

fN/2~1!x1~1! . . . fN/2~N!x1~N!

fN/2~1!x2~1! . . . fN/2~N!x2~N!

U , ~6!

where we numbered sequentially the harmonic wave fu
tions ~orbitals! f1 , . . . ,fN/2 ; and x1 , x2 are the spin-up
and spin-down functions. The explicit form of the on
electron orbitals is

fk,l5Ck,u l ur
u l uLk

u l u~r 2!e2r 2/2eil u, ~7!

whereCk,u l u5Ak!/ @p(k1u l u)! #, and for the composed inde
n5(k,l ) we defined the following sequential order:$~0,0!%,
$~0,1!, (0,21)%, $~1,0!, ~0,2!, (0,22)%, . . . , etc, i.e., increas-
ing u l u inside a shell with positive-l orbitals are taken first
The energy corresponding tofk,l is lk,l5112k1u l u. In
terms of these energies we haveb05(nlk,l . The coefficient
b3 can be written as

b35(
n1

I ~n1 ,n1!14 (
n1,n2

I ~n1 ,n2!22 (
n1,n2

J~n1 ,n2!,

~8!

where
l

e

he

or

c-

I ~n1 ,n2!5E d2r 1d2r 2

urW12rW2u
ufn1

~rW1!u2ufn2
~rW2!u2, ~9!

J~n1 ,n2!5E d2r 1d2r 2

urW12rW2u
fn1

* ~rW1!fn2
* ~rW2!fn2

~rW1!fn1
~rW2!.

~10!

Both I (n1 ,n2) and J(n1 ,n2) can be reduced to sums o
products ofG functions.

The numerical results for the coefficientsb3 are presented
in Table I. Notice that a simple Thomas-Fermi estimate
the present problem11 shows the scaling property
eTF(N,b)5N3/2eTF(1,N1/12b) and, consequently, theb3 co-
efficient should exhibit aN7/4 behavior in the large-N limit,
which is satisfied by the results shown in Table I.

The classical energies of theN-electron clusters, i.e., the
coefficientsa0 , were computed by means of a Monte Car
technique with Newton optimization.12,13The values are also
shown in Table I. For largeN, the Thomas-Fermi approxi
mation predicts the dependencea0'1.062 N5/3. We may
obtain another estimate fora0 from the classical energy of a
hexagonal lattice structure, yieldinga0'0.968N5/3. In Table
I, it is shown that the coefficientsa0 of the finite systems
follow the N5/3 law whenN>30.

Once the configuration of minimum energy of the clas
cal problem is found, the small-oscillation problem is solv
in order to compute the frequencies13 and, consequently, to
find a2 . The results are shown in the last column of Table
A very rough estimate of the zero-point energy is obtain
from the dispersion relation of the longitudinal mode of
hexagonal lattice in the~1,0! direction, yielding a2
'0.78N5/4. The results in Table I make evident theN5/4 law
for N>30.

An evident conclusion that can be extracted from Tabl
is that the properties of quantum dots withN.100 are dic-
tated by theN→` asymptotics. With other words, th
ground-state energy for such a dot should be accurately
scribed by aP4,3 approximant in whichb0' 2

3 N3/2, b3
'0.7 N7/4, a0'1.0 N5/3 and a2'0.6 N5/4. In this sense,

TABLE I. The coefficientsb0 , b3 , a0 , anda2 for closed-shell
quantum dots.

N b0 /N3/2 b3 /N7/4 a0 /N5/3 a2 /N5/4

2 0.707107 0.372611 0.375 0.784567
6 0.680414 0.531250 0.674147 0.738995

12 0.673575 0.591525 0.793317 0.698756
20 0.670820 0.623655 0.856344 0.671474
30 0.669439 0.643709 0.895843 0.653428
42 0.668648 0.657442 0.922532 0.639116
56 0.668153 0.667452 0.941733 0.633269
72 0.667823 0.675071 0.956422 0.626248
90 0.667592 0.681068 0.967894 0.620456

110 0.667424 0.685913 0.977103 0.616908
132 0.667298 0.689909 0.984691 0.613269
156 0.667201 0.693262 0.991046 0.610032
182 0.667124 0.696118 0.996267 0.607227
210 0.667063 0.698572 1.00107 0.605239
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15 742 56GONZALEZ, PARTOENS, AND PEETERS
these dots are more ‘‘infinite’’ than ‘‘mesoscopic,’’ and the
properties will be very well reproduced by statistical the
ries.

Another very general property following from the resul
shown in Table I is the fact that the regions of convergen
of the expansions~2! and ~3! overlap. As an example, we
show in Fig. 1 theP4,3 approximant~solid curve! along with
the small-b and large-b expansions for the energy~dashed
curves! for the quantum dot with 42 electrons. Th
asymptotic curves almost intersect one another atb'0.8.
This smoothness of the dependence ofe on b guarantees tha
an interpolant will be a very good approximation to the a
tual energy at any intermediate value ofb. The same prop-
erty was shown to hold7 for the ground-state and the excite
levels of small dots withN<5. For large dots, this seems t
be a general property that follows from the scaling la
obeyed by the coefficients. Indeed, we can obtain a na
estimate of the radii of convergence of the series~2! and~3!
by comparing consecutive terms. The small-b expansion is
expected to work whenb,b05(b0 /b3)1/3'N21/12, while
the large-b expansion will be valid for b.b`

5(a2 /a0)1/2'N25/24. Becauseb0>b` , the regions of con-
vergence will overlap.

FIG. 2. Relative difference between theP3,2 and theP4,3 ap-
proximants for the 42-electron system.

FIG. 1. Small- and large-b expansions~dashed curves! and the
P4,3 approximant~solid curve! for the ground state of the 42
electron system.
-

e

-
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We show in Fig. 2 the ‘‘convergence’’ of the Pade´ se-
quence, i.e., the relative difference between theP4,3 and the
P3,2 approximants for the 42-electron system. This figu
suggests that the relative error of theP4,3 approximant
should not exceed 3% over the entire interval 0<b,`. The
pattern is similar to the one encountered in small dots,7 and
therefore we expect this to be an estimate of the actual e

Finally, we turn ourselves to the question of the absol
ground state of the system. In the present approximation,
energy for largeb is independent of the polarization state
the system. The leading approximation to the energy is ag
given by Eq.~2!, wherea0 anda2 are shown in Table I. For
intermediate b values, however, spatially antisymmetr
states may be favored as they minimize the Coulomb re
sion. We may easily compute the coefficientsb0 and b3 at
least for the lowest antisymmetric state atb!1. This state is
built up by placing one electron per orbital. If there are fr
orbitals in the last shell, the occupancy of the orbitals w
lead to a maximal angular momentum~Hund’s rule!. For the
coefficientb3 we have now the expression

b35 (
n1,n2

$I ~n1 ,n2!2J~n1 ,n2!%, ~11!

where the sum runs over the occupied states.
In Table II, the angular momentum of such antisymmet

states and the coefficientsb0 andb3 are given as function of
N. Pade´ approximants are constructed in the same way as
unpolarized states.

We show in Fig. 3 a comparison between the estimat
energies of the polarized and unpolarized states for the
with 42 electrons. Both curves become very close forb>1,
but the unpolarized state is always the lowest state for anb.
We found that this is the case for allN values shown in
Table II, which implies that in the present approximation t
unpolarized state corresponds to the absolute ground-
for closed-shell quantum dots. This agrees with rec
quantum-mechanical density functional calculations.10

In conclusion, we have obtained Pade´ approximants to the
ground-state energy ofN electrons (2<N<210) which
move in two dimensions and are confined by a parab
potential. The approximants are asymptotically exact in b
the high- and low-density limits. The maximum relative err
for intermediate densities is estimated to be only a few p

TABLE II. The angular momentum and the coefficientsb0 and
b3 for the lowest spatially antisymmetric~spin-polarized! state.

N J b0 /N3/2 b3 /N7/4

2 1 1.06066 0.186307
6 0 0.952579 0.378007

12 6 0.962250 0.428734
20 5 0.950329 0.486891
30 12 0.949386 0.508812
42 18 0.947863 0.525187
56 10 0.944959 0.538148
72 36 0.946083 0.544753
90 12 0.943998 0.555149
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56 15 743PADÉ APPROXIMANTS FOR THE GROUND-STATE . . .
cent of the actual energy. This is also a typical accura
reached in density-functional calculations when the corre
tions are strong.14,15

To increase the usefulness of the present results we w
able to fit the coefficients in Table I as follows:

a0 /N5/351.06220.875/N1/220.185/N, ~12!

FIG. 3. Energy estimates for the polarized~dashed curve! and
unpolarized~solid curve! states for a quantum dot with 42 electrons
y
a-

re

a2 /N5/450.57310.475/N1/220.160/N, ~13!

b0 /N3/252/310.083/N, ~14!

b3 /N7/450.73120.471/N1/220.046/N. ~15!

For N>6 the fit to all the coefficients has a relative error th
is smaller than 0.2%.

In principle, the Pade´-approximant method could equall
well be applied to other dot configurations~i.e., non para-
bolic confinement, quasi-two-dimensional systems! or to
other problems such as, for example, metallic clusters,16–18

ions in traps,19–21 etc. In these cases, more numerical wo
will be required to compute the coefficientsb0 , b3 , a0 , and
a2 .
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