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Quadratic induced polarization by an external heavy charge in an electron gas
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We have studied the many-body nonlinear interactions between a heavy ion and a solid, modeled by jellium.
Once the retarded prescription for the quadratic response function of the medium is obtained, a derivation of
the second-order nonlinear induced polarization charge, proportional to (Z1)2 (Z1 being the ion charge!, and
the potential that it originates are presented. These magnitudes are evaluated numerically using the full
random-phase approximation to describe the shielded interaction. A comparison with the linear contribution
allows us to discuss the validity of the perturbative approach.@S0163-1829~97!07447-X#
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I. INTRODUCTION

A swift charged particle penetrating a solid causes an
cillating distortion in the electronic density of the medium
Pioneering work on dynamic screening was performed
Neufeld and Ritchie.1 They were the first to present th
evaluation of the induced potential and the density wake
using a local dielectric function as the linear response of
medium. Since this work much research has been oriente
the study of these quantities.2–5 In the late seventies, Ech
enique, Ritchie, and Brandt4 studied the spatial distribution
of the wake within the plasmon-pole approximation to t
dielectric function. Then, Mazarro, Echenique, and Ritch5

calculated the wake potential and density fluctuations in
full random-phase approximation~RPA!, also on the basis o
a linear response of the medium. All these previous stud
are based upon a linear response of the target. This hap
to be a good approximation when the velocity of the proj
tile is much greater than the average velocity of target e
trons~typically vF , the Fermi velocity!; however, in the case
of projectiles moving with smaller velocities, nonlinearitie
play an important role for metallic densities (2,r s,6).
There exists a variety of experimental conditions where th
is a need for a nonlinear theory of the electronic polarizat
and wake potential. Experimental evidence of the importa
of nonlinear effects was first presented by Barkas a
co-workers.6 They measured the different ranges in the st
ping power suffered by positive and negative pions, wh
linear theories predicted to be the same.

The Coulomb explosion of OH1 ions in carbon foils7 also
indicates that the linear wake potential is not enough to
plain the experimental data, higher-order contributions to
induced potential being important. An approximate theory
the nonlinear wake was developed by Faibis and co-work7

by using Coulomb scattering, but a nonlinear theory that
counted for collective phenomena was presented by
bensen and Sigmund8 in the static electron gas approxim
tion. Nonlinear hydrodynamical descriptions of the wa
potential have been formulated recently. Arnau a
560163-1829/97/56~24!/15654~11!/$10.00
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Zaremba,9 by introducing a phenomenological friction pa
rameter, obtained results in the low-velocity regime. Dora
Crawford, and Flores10 have used the hydrodynamical mod
to perform a perturbative expansion in the electronic den
up to the first nonlinear term with respect to the charge of
probe in its high-velocity regime. It has been also show11

that the second-order wake coincides, within a nonlin
quantum hydrodynamical model, with plasmon-pole-like a
proximations to the corresponding full RPA scheme.

The analytical study of the quadratic response function
an electron gas has enabled to calculate, within the RPA,
magnitude of various nonlinear effects such as the first n
linear contribution to the energy loss of a charg
particle,12–15 double plasmon excitation probabilities,16 and,
in particular, the second-order electronic wake.17,18 Analyti-
cal evaluations of the triple vertex fermion loop were do
by Cenni and Saracco19 and Richardson and Ashcroft.20 Ex-
plicit expressions for the imaginary part of this loop ha
been given in Refs. 14 and 15, in terms of a sum of part
and hole states. Recently, Rommel and Kalman21 have stud-
ied the conservation sum rules and the frequency momen
the quadratic density response function.

In this paper we present a diagrammatic approach
evaluate the second-order induced potential and polariza
ity charge distribution when a charged particle penetrate
homogeneous electron gas. Our calculations are valid
nonrelativistic arbitrary velocities, and are performed in t
full RPA. Section II is devoted to the quantum theory of t
induced potential. In Sec. III we derive the quadratic induc
potential and we also define the retarded second-order
sponse function. In Sec. IV numerical results for the spa
distribution of the quadratic induced polarization charge a
potential for different velocities and electron densities a
presented; comparison with the linear wake and previous
proaches is done and the validity of the perturbative tre
ment is discussed. The most relevant conclusions of
work are presented in Sec. V. Finally, an Appendix with t
prescription to pass from the time-ordered to the retar
quadratic response function is added.
15 654 © 1997 The American Physical Society
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II. QUANTUM THEORY OF THE INDUCED POTENTIAL

We consider a point chargeZ1e moving with constant
velocity v through an isotropic homogeneous electron g
embedded in a uniformly distributed positive backgroun
the so-calledjellium model. The electric potential operato
at point r , induced by the electron gas, which is disturb
due to the interaction with the external charge, and the p
tive background is~we use atomic units throughout, i.e
e25\5me51)

V~r !52(
re

1

ur2reu
1VBG, ~2.1!

wherere represents the electron position operator, andVBG,
the interaction between a test positive unit charge atr and
the positive background. In the representation of sec
quantization the induced potential reads

V~r !52V21 (
k,q,l

8vqe
2 iq•ral,k1q

† al,k , ~2.2!

whereal,k
† andal,k are the creation and annihilation oper

tors for electrons, respectively, of well-defined momentumk
and spin statel, V is the normalization volume andvq is the
Fourier transform of the electron-electron bare Coulomb
teraction,

vq5
4p

q2 . ~2.3!

The comma on the summation indicates that the term w
q50 is not considered, since it is canceled with the con
bution from the positive uniform background. In the follow
ing equations the sum over electron spin states will be
plicitly considered.

The induced potential, also known as the wake poten
is found as the mean value of the electric potential of E
~2.1!:

f~r ,t !5
^F0uVH~r ,t !uF0&

^F0uF0&
, ~2.4!

VH(r ,t) being the electric potential in the Heisenberg rep
sentation, anduF0&, the Heisenberg ground state of the to
interacting system.

We consider that the external charged particle has a m
much greater than the electronic one, so that recoil effect
the collisions will be neglected and the incoming ion will b
treated as an external source of energy and momen
Therefore, the Hamiltonian of this system has a term rela
to the electron gas and a second one that describes the
action between the ion and the electron gas. In the repre
tation of second quantization this Hamiltonian reads

H5He1Hi 2e . ~2.5!

He represents the interacting electron gas Hamiltonian:

He5H01He2e , ~2.6!

whereH0 is the free electron gas Hamiltonian,
s
,
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H05(
k

vkak
†ak , ~2.7!

with vk5k2/2, and

He2e5
1

2V (
p,p1 ,q

8vqap2q
† apap11q

† ap1
~2.8!

gives the electron-electron interaction.Hi 2e represents the
interaction between the heavy ion and the electron gas:

Hi 2e52
Z1

V (
k,q

8vqe
2 iq•vtakak1q

† . ~2.9!

Our system is irreversible due to the explicit time depe
dence in the interaction with the external charge.

Treating the interaction between the ion and the elect
gas separately from the interactions between the electron
the metal, the above picture allows us to rewrite Eq.~2.4! in
the following way:

f~r ,t !5
^C0uU†~ t,2`!VI~r ,t !U~ t,2`!uC0&

^C0uU†~ t,2`!U~ t,2`!uC0&
,

~2.10!

where uC0& represents the ground state of the interact
electron Hamiltonian of Eq.~2.6! andU(t1 ,t0) is the evolu-
tion operator.22 The I superscript indicates that the operato
are considered in the Interaction representation where
total electronic Hamiltonian of Eq.~2.6! is included in the
ground state and in the time evolution of the operators,
the perturbation comes from the interaction with the exter
ion. To evaluate the induced potential, the electron-elect
interaction and the interaction with the external charge
be studied separately when this representation is conside
In this way, the screening of the induced electronic dens
may be studied up to infinite order in the electron-electr
interaction on the basis of quantum field theory in order
get the self-consistency. Finally, by expanding the evolut
operatorU up to second order in the external charge (Z1),
the quadratic correction to the wake potential can be
tained, after some rearrangement:

f~r ,t !5
^C0uVI~r ,t !uC0&

^C0uC0&
1 i E

2`

`

dt1Q~ t2t1!

3
^C0u@Hi 2e

I ~ t1!,VI~r ,t !#uC0&

^C0uC0&

2E
2`

` E
2`

`

dt1dt2Q~ t2t1!Q~ t12t2!

3
^C0u†@VI~r ,t !,Hi 2e

I ~ t1!#,Hi 2e
I ~ t2!‡uC0&

^C0uC0&
,

~2.11!

where @a,b#5ab2ba. The first term does not contribute
since it corresponds to the induced potential without a
external perturbation. The second and third terms repre
the linear and quadratic contributions to the induced pot
tial, respectively.
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A. The linear induced potential

After the introduction of Eqs.~2.2! and ~2.9! into Eq.
~2.11!, the induced potential is up to the first order in the i
charge:

f1~r ,t !5
Z1

V2E
2`

`

dt1(
q,q1

vqvq1
eiq•reiq1•vt1xq

R~ t,t1!,

~2.12!

where

xq
R~ t,t1!52 iQ~ t2t1!

^C0u@nq
I ~ t !,n

q
I ~ t1!#uC0&

^C0uC0&
~2.13!

is the retarded density-density correlation function, and

nq
I ~ t !5V21(

k
@ak

I ~ t !#†ak1q
I ~ t !, ~2.14!

is the Fourier transform of the number density fluctuat
operator. The exact linear density response function of
medium is represented through the above-defined den
density retarded correlation function. The causality of
response function is preserved due to the retarded wa
which it is defined. Furthermore, it is interesting to analy
the relation that exists between the time-ordered respo
function,

xq
TO~ t,t1!52 i

^C0uT@nq
I ~ t !nq

I ~ t1!#uC0&

^C0uC0&
, ~2.15!

and the retarded one. After making the time Fourier trans
mation on both functions, the Lehmann representation23 can
be used to conclude that the retarded response function
be obtained from the time-ordered one once all the imagin
parts of the frequencies are turned to be positive.

The Gell-Mann and Low and Wick theorems may be us
in order to evaluate the linear time-ordered response, and
defined prescription allows us to obtain the retarded one
straight way. The Fourier transform of the density-dens
correlation function of Eq.~2.15!, xq @hereq represents the
tetramomentum (q,v)#, can be represented diagrammatica
by a full two-point vertex or bubble. In the RPA it is ap
proximated by summing over the infinite set of diagra
containing a string of empty bubbles.24

We already know the prescription to go from the tim
ordered response function to the retarded one. Thus,
extending to the continuum phase space on the momen
variable, the result we obtain for the induced potential is

f1~r ,t !5Z1E d3q

~2p!3
ei ~q•r2vt !vq@~eq,v

R !2121#,

~2.16!

wherev5q•v andeq
R represents the retarded dielectric fun

tion of the medium, in the RPA:

eq
R512vq~xq

0!R, ~2.17!

(xq
0)R representing the so-called retarded linear density

sponse function of the noninteracting electron gas.24
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Equation~2.16! exactly coincides with the standard e
pression for the linear induced potential.25

For high velocities of the ion, the zero-point motion of th
electron gas can be neglected and it can be considered, t
fore, as if it were at rest. Thus, in this approximation
momenta of the electrons are set equal to zero and Eq.~2.17!
leads to the well-known static electron gas approximation
the dielectric function:

eq
R512

vp
2

~v1 ih!22~aq
sg!2 , ~2.18!

whereaq
sg5q2/2, h is an infinitesimal positive quantity an

vp5A4pn0 represents the plasma frequency for the elect
gas.

Finally, the velocity distribution of the electron ga
which is completely neglected in the static electron gas
proximation, can be accounted for approximately by int
ducing the plasmon-pole approximation to the response fu
tion, which is the same as Eq.~2.18! but with

aq
pp5Ab2q21q4/4, ~2.19!

where

b25
3

5
qF

2 ~2.20!

represents the mean-square velocity of the electron gas
qF is the Fermi momentum defined by the equilibrium ho
electronic densityn0 as (3p2n0)1/3. This approximation can
also be obtained from a hydrodynamic model if the v
Weiszacker term is included to account for the individu
electron behavior.

III. THE QUADRATIC INDUCED POTENTIAL

In the present section we will analyze the term that
proportional to the second power of the ion charge in
expression of the induced potential of Eq.~2.11!:

f2~r ,t !52E
2`

` E
2`

`

dt1dt2Q~ t2t1!Q~ t12t2!

3
^C0u†@VI~r ,t !,Hi 2e

I ~ t1!#,Hi 2e
I ~ t2!‡uC0&

^C0uC0&
.

~3.1!

In the representation of second quantization,

f2~r ,t !5
Z1

2

V2E
2`

`

dt1dt2 (
q,q1 ,q2

vqvq1
vq2

3eiq•reiq1•vt1eiq2•vt2Yq,q1 ,q2

R ~ t,t1 ,t2!, ~3.2!

which is written in terms of the retarded quadratic respo
function of the medium:
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Yq,q1 ,q2

R ~ t,t1 ,t2!

5Q~ t2t1!Q~ t12t2!

3
^C0u†@nq

I ~ t !,nq1

I ~ t1!#,nq2

I ~ t2!‡uC0&

^C0uC0&
.

~3.3!

This function contains the product of three electronic d
sity operators. The quantum field theory for systems in eq
librium cannot be applied in order to evaluate the defin
retarded quadratic response function in a direct way;
should use, instead, the Keldysh26 formalism, which is ad-
equate for irreversible processes. However, a method sim
to the one considered in the previous section may be use
the study of the relationship between the retarded quad
response function and the following time-ordered one:

Yq,q1 ,q2

TO ~ t,t1 ,t2!5
1

2

^C0uT@nq
I ~ t !nq1

I ~ t1!nq2

I ~ t2!#uC0&

^C0uC0&
.

~3.4!

After using the Lehmann representation~see the Appen-
dix!, defining the frequenciesv, v1, andv2 as the Fourier
transform variables oft, t1, and t2, respectively, and per
forming the integrations over the time variables of Eq.~3.2!,
we find

f2~r ,t !5Z1
2E dq

~2p!3

dq1

~2p!3
eiq•~r2vt !vqvq1

vq1q1
Yq,q1 ,q1q1

R

3~v,v1 ,2v2v1!, ~3.5!

wherev5q•v and v15q1•v. As demonstrated in the Ap
pendix, when these frequencies are turned intov1 ih,
v12 ih, andv22 ih in the time-ordered quadratic respon
function we get the retarded one. A change in theq1 wave-
vector sign makes all the frequency imaginary parts posi
in the retarded function, resulting, therefore, in the usual
tarded prescription.

Thus, as we did in the evaluation of the linear induc
potential, we can apply the defined prescription to derive
second orderYR after the evaluation of the correspondin
time-ordered response function. In the RPA, the triple ver
is approximated by three legs with an infinite sum of em
bubbles, already defined in the previous section, and
fermion empty triple vertex loop:17

Mq,q1
522i E d4k

~2p!4
Gk

0Gk1q
0 Gk1q1

0 , ~3.6!

Gq
0 being the free particle propagator.
The three point functionsMq,q1

andMq,q2q1
, represented

diagrammatically by empty triangle diagrams with their lin
running in opposite directions, give the same contributi
and we define the symmetrized function:

Mq,q1

s 5
1

2
$Mq,q1

1Mq,q2q1
%. ~3.7!
-
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Once we take into account all the previous consideratio
the expression we have for the quadratic response functio

Yq,2q1 ,q2q1

R ~v,2v1 ,2v1v1!

5~eq,v
R !21~eq1,v1

R !21~eq2q1 ,v2v1

R !21~Mq,v;q1 ,v1

R !s.

~3.8!

The expression for the induced potential up to seco
order in the ion charge is

f2~r ,t !5Z1
2E d3q

~2p!3
ei ~q•r2vt !vqE d3q1

~2p!3

3vq1
vq2q1

~eq,v
R !21~eq1,v1

R !21

3~eq2q1 ,v2v1

R !21~Mq,v;q1 ,v1

R !s. ~3.9!

Once we have obtained the potential induced by the he
ion, the evaluation of the quadratic polarization induc
charge is direct, after using the Poisson equation:

dn2~r ,t !52Z1
2E d3q

~2p!3
ei ~q•r2vt !E d3q1

~2p!3

3vq1
vq2q1

~eq,v
R !21~eq1,v1

R !21

3~eq2q1 ,v2v1

R !21~Mq,v;q1 ,v1

R !s. ~3.10!

The most important nonlinear contribution corresponds
the spatial range close to the ion. Therefore, the derivativ
the potential will change in an important way when it
evaluated at the position of the charged particle. The ene
that the ion loses when it excites the medium can be ev
ated through the induced electric field,E52“f, at the po-
sition of the ion, and one obtains from Eqs.~2.16! and~3.9!
the same contributions for the stopping as derived in Refs
and 15.

For high velocities, one can set allk equal to zero in Eq.
~3.6! to obtain the static electron gas approximation
(Mq,q1

R )s:

~Mq,q1

R !s52n0$v1~v2v1!vq
22v~v2v1!

3vq1

2 2vv1vq2q1

2 1~v2v1!vqvq1

1v1
2vqvq2q1

1v2vq1
vq2q1

2vqvq1
vq2q1

3~vq1vq1
1vq2q1

!%$@~v1 ih!22~aq
sg!2#

3@~v11 ih!22~aq1

sg!2#

3@~v2v11 ih!22~aq2q1

sg !2#%21, ~3.11!

with vq5q2/2. In the plasmon-pole approximationaq
sg must

be replaced in Eq.~3.11! by aq
pp .18
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IV. RESULTS

In this section, results for the quadratic induced polari
tion density and potential are presented, as obtained in
full RPA.

The first-order induced density at the position of lo
velocity ions givesdn1.n0, as will be shown. This indicate
that the linear theory is not enough to obtain this magnitu
On the other hand, the induced electronic density decre
very fast as the velocity of the ion is increased, where
linear approximation becomes valid. The analysis of the n
linear terms has to be made with regard to magnitudes c
acterizing our interacting system:v, the velocity of the in-
coming charged particle, andr s„r s5(3/4n0p)1/3

…, the
electron density parameter. Also, the perturbation beco
larger as the ion charge is increased; nevertheless, in
following discussion a projectile of unit charge will be co
sidered.

In Figs. 1~a! and 1~b! first- and second-order contribution
to the induced electron density at the position of the ion
presented, as a function ofr s , for projectile velocities of 0.5
and 2 times the Bohr velocity. It is obvious from these fi
ures that nonlinear corrections are smaller for higher elec
densities of the medium~lower r s), which is due to the well-

FIG. 1. First-~dashed line! and second-~dotted line! order in-
duced density, as derived from the RPA, at the position of the io
charge unity (Z151) moving with velocities~a! v50.5 and~b!
v52, as a function ofr s . The total induced density, up to secon
order in the ion charge, is represented by a solid line. Nonlin
effects are less important as the velocity of the ion and/or the e
tronic density of the medium increase.
-
he

e.
es
e
-
r-

es
he

e

-
n

known fact that at higher densities the kinetic energy of
electron gas increases and the potential energy of the
becomes, therefore, a relatively smaller perturbation.18–26

This can be seen in Fig. 1~a!, where the second-order contr
bution gains the linear one at a certainr s value. On the other
hand, nonlinear effects are less important as the ion velo
increases, so that the quadratic contribution is always lo
than the linear one forv52, as shown in Fig. 1~b!. In the
high-velocity limit of the incoming ion (v@vF), it corre-
sponds to the highr s range in Fig. 1~b!; the relative induced
density at the position of the ion is constant with respec
the density of the medium as shown in this figure and will
explained later.

In Fig. 2 we present the evaluation of the linear and q
dratic induced densities at the position of the charged p
ticle, as it passes through a medium with a density param
equal to that of aluminum,r s52.07, as a function of the
velocity of the ion. It is easy to see that when the velocity
the incoming ion is lower than the characteristic velocity
the electrons in the metalvF , the induced density remain
almost constant. This velocity range corresponds to a hig
nonlinear regime, where the quadratic contribution is lar
than the linear one. This indicates the breakdown of the p
turbation theory in order to evaluate the induced density
the position of the ion. For velocities higher thanvF , the
quadratic induced density decreases faster than the linea
and becomes lower for a certain velocity, recovering, the
fore, the applicability of the perturbation theory in the hig
velocity regime.

With the assumption of independent, individual, elas
electron scattering the induced density at the position o
heavy particle of chargeZ1 is given by the following
expression:27

dn

n0
5

2pm

12e22pm, ~4.1!

with m5Z1 /v. For high velocities and small ion charges, w
can expand this result up to second order inZ1 /v to obtain

f

r
c-

FIG. 2. First~dashed line! and second~solid line! -order induced
density, as derived from the RPA, at the position of an ion of cha
unity moving in a medium ofr s52.07, as a function of the velocity
of the ion. First- and second-order scattering theory results~Ref. 25!
are represented by dotted and dashed-dotted lines. When the v
ity of the ion is higher thanvF the scattering theory results coincid
with the RPA.
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dn

n0
5

pZ1

v
1

p2Z1
2

3v2 1O~Z1 /v !3. ~4.2!

It can be proved that the first term coincides with t
linear contribution obtained in the high-velocity regime4

The second term also coincides with the calculated quad
contribution of Eq.~3.10! when the velocity of the ion is
high compared withvF , as can be seen in Fig. 2. In th
high-velocity range there is, therefore, no contribution
this quantity coming from collective excitations,plasmons.

The induced electronic density is very strong close to
position of the ion. Thus, the range of validity of the line
perturbation theory decreases when the induced densi
the position of the ion is analyzed. For a slow ion, the
duced density at its position will be given by the bou
state28 that the positive charged ion can have, but this is
studied here. We would need to go to infinite order29 in the
interaction with the external ion in order to get this result

It is interesting to study the contribution to the induc
polarization charge obtained by two different approximatio
to the RPA: the plasmon-pole and the static electron gas
both cases we are approximating all the excitations of
system to plasmons with an extended dispersion curve
for large momentum emulates the contribution coming fr
the particle-hole spectrum in the RPA. Therefore, these m
els are only meaningful at high velocities of the ion, wh
plasmon excitation is possible. We have an strong peak
at the plasmon threshold velocity, when the ion has eno
energy to excite a real plasmon. In Fig. 3 we can analyze
differences on the magnitudes and positions of the pe
when the mentioned models are considered. The lowest
locity needed to excite a plasmon corresponds to the s
electron gas approximation and the higher one to the R
As the momentum phase space where the maximum en
transfer line,v5uquv, close to the plasmon dispersion cur
is longer in the plasmon-pole approximation, due to the
ear term included in its dispersion relation, it is reasonabl
think that this model will have the most striking antiscree
ing effect. On the other hand, the momentum range wh

FIG. 3. Second-order induced density at the position of an ion
charge unity moving in a medium ofr s52.07 as a function of the
velocity, obtained from different approximations: RPA~full line!,
plasmon-pole~dashed line!, and static electron gas~dotted line!.
The approximating models give correct results for velocities o
2.5.
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the plasmon is well defined is, in the RPA, much shorter th
in the other models, so that there is not such a peak whe
plasmon is excited in this approximation. Nevertheless, th
models are not good enough in this velocity range, in wh
particle-hole excitations should be included in a proper w

Figures 4~a!, 4~b!, and 4~c! exhibit the linear and qua
dratic induced polarization charge, as derived from the RP
along the trajectory of the projectile in a medium wi
r s52.07 and for three velocities of the ion,v50.5, 2, and 4.
For a velocity lower thanvF Fig. 4~a! shows that the main

f

r

FIG. 4. First-~dashed line! and second-~dotted line! order in-
duced density, as derived in the RPA, along the axis of motion
a particle of charge unity (Z151) moving with a velocity~a!
v50.5, ~b! v52, and~c! v54 in a medium ofr s52.07. The total
induced density, up to the second order in the ion charge, is re
sented by a solid line. At high velocities, oscillations in front a
behind the ion are obvious.



th
an
-
ind
la
ri
-
th
e
at

m
ng

ed

e

a
e
ce
th
ud
uc
am

en-
um
n
Fig.
is

atic
ver
ties

r
he

nes
en-
, a
the
ith
igs.
ve
tial
e,
nd,
par-

und
.
ear
t be

n-
c-

be
he
ion

cal
n of

ion

y of

io

d
e

15 660 56BERGARA, CAMPILLO, PITARKE, AND ECHENIQUE
induced density is concentrated around the position of
ion, which makes nonlinear effects become very import
close to this region. In Figs. 4~b! and 4~c! one sees distinc
tive oscillations of the induced density in the region beh
the particle once the ion has enough energy to excite a p
mon. The wavelength of the oscillation in the linear cont
bution is .2pv/vp .4 However, when quadratic contribu
tions are analyzed the present wavelength is just half of
previous one,.pv/vp . Preceding the particle, a bow wav
with smaller amplitude appears, both linear and quadr
contributions having the same wavelength,.2p/v. This is
the de Broglie wavelength of an electron in the mediu
viewed from the rest frame of the ion and after sufferi
from a frontal collision with it.

We will do a similar analysis in order to study the induc
potential. Figures 5~a! and 5~b! show the first- and the
second-order contribution to the wake potential for two v
locities of the ion,v50.5 and 2 as a function of ther s pa-
rameter of the medium. It is obvious that quadratic terms
for these velocities always smaller than the linear on
which is not the case for the induced density. The indu
density is a highly nonlinear magnitude at the position of
ion, but as the induced potential is an integrated magnit
of the density over the whole space, it becomes m
smoother when the wake potential is evaluated at the s
position.

FIG. 5. First-~dashed line! and second-~dotted line! order in-
duced potential, as derived from the RPA, at the position of an
of charge unity (Z151) moving with velocities~a! v50.5 and~b!
v52, as a function ofr s . The total induced potential, up to secon
order in the ion charge, is represented by a solid line. The nonlin
contribution appears to be always lower than the linear one.
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Figure 6 exhibits the linear and quadratic induced pot
tials at the position of a projectile passing through a medi
of r s52.07 as a function of the velocity of the ion. We ca
make the same comments as for the induced density in
2, but it is interesting to remark that perturbation theory
valid to evaluate the induced potential, since the quadr
contribution remains much smaller than the linear one o
the whole range of projectile velocities and electron densi
of the medium.

Figures 7~a!, 7~b!, and 7~c! show first- and second-orde
contributions to the wake potential for three velocities of t
ion, one is lower than the plasmon threshold (v50.5) and
the other two are higher (v52 and 4). As observed for the
induced density, the plasmon threshold velocity determi
the separation between two different regimes. When the
ergy of the projectile is just enough to excite a plasmon
characteristic oscillation appears trailing the position of
ion, both in the linear and the quadratic contributions, w
the same wavelengths than for the induced density in F
4~b! and 4~c!. It is interesting to remark that we can obser
a high maximum peak for the quadratic induced poten
behind the position of the ion in the low velocity rang
which is absent in the linear contribution. On the other ha
the quadratic contribution has a bow wave preceding the
ticle when its velocity is larger thanvF . The origin and the
wavelength of this oscillation are the same as those we fo
in the induced density (.2p/v), but not so pronounced
Although these oscillations are also present in the lin
wake, they have such a small amplitude that they canno
observed in the linear case.

Figure 8~a! displays the linear and quadratic wake pote
tial surface as calculated for a projectile moving with velo
ity v52 in a medium withr s52.07. Figure 8~b! shows a
detail of the quadratic contribution to the wake. It can
seen that it is only significant on the moving axis of t
projectile, decaying much faster than the linear contribut
out from this axis.

V. CONCLUSIONS

First of all, we have developed a many-body theoreti
scheme to derive the retarded quadratic response functio

FIG. 6. First-~dashed line! and second-~dotted line! order in-
duced potential, as derived from the RPA, at the position of an
of charge unity moving in a medium ofr s52.07, as a function of
the velocity of the ion. Nonlinear effects decrease as the velocit
the ion increases.
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a homogeneous electron gas. This function is the main in
dient to evaluate, for a wide range of nonrelativistic velo
ties of the incoming particle, the quadratic contribution to t
induced density and potential in the full random-phase
proximation.

It has been shown that both linear and quadratic contr
tions to the wake potential exhibit in the region behind t
particle oscillations with different wavelengths, 2pv/vp and
pv/vp ; nonlinearities being most important along the a
of motion. At low velocities the wake potential is diminishe

FIG. 7. First-~dashed line! and second-~dotted line! order in-
duced potential in the RPA along the axis of motion for a particle
charge unity (Z151) moving with a velocityv50.5 ~a!, v52 ~b!,
andv54 ~c! in a medium ofr s52.07. The total induced potentia
up to second order in the ion charge, is represented by a solid
The nonlinear wake presents the same kind of oscillations as
induced density.
e-
-
e
-

u-

at the position of the ion, as a consequence of the nonlin
ity of the response of the medium, which makes the fi
minimum deeper, and, on the other hand, the wavelength
the oscillations behind the particle is smaller. At higher v
locities the nonlinearity of the wake is negligible. As for th
potential, the wavelength of the oscillations in the induc
electron density is smaller, as a consequence of the non
earity of the response.
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FIG. 8. ~a! Linear and second-order surface potential in cyl
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charge unity moving withv52 in a medium ofr s52.07, as derived
in the RPA.~b! A detailed figure of second-order surface potenti
It is obvious that the quadratic contribution is significant only
the moving axis of the projectile.
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APPENDIX

In this appendix we will study the analytic relation that exists between the time-ordered quadratic response functi

Yq,q1 ,q2

TO ~ t,t1 ,t2!5
1

2

^C0uT@nq
I ~ t !nq1

I ~ t1!nq2

I ~ t2!#uC0&

^C0uC0&
~A1!

and the retarded one:

Yq,q1 ,q2

R ~ t,t1 ,t2!5
1

2
H Q~ t2t1!Q~ t12t2!

^C0u†@nq
I ~ t !,nq1

I ~ t1!#,nq2

I ~ t2!‡uC0&

^C0uC0&

1Q~ t2t2!Q~ t22t1!
^C0u†@nq

I ~ t !,nq2

I ~ t2!#,nq1

I ~ t1!‡uC0&

^C0uC0&
J , ~A2!

which appears in the evaluation of the second-order induced potential of Eq.~4.2!. The diagrammatic method of the quantu
field theory may be considered in order to obtain the time-ordered response function. Then, the relation between both
can be applied in order to obtain the retarded response function, in which we are interested.

We can observe that the quadratic response function appearing in Eq.~3.2! corresponds to the first term in Eq.~A2!.
However, the symmetrized expression with respect to (q1 ,t1) and (q2 ,t2) will be used, as explicitly indicated in Eq.~A2!.
Both set of variables are internal in the integral expression for the induced potential. Therefore, we can make the
operation without any change in the final result. The new split function is more symmetric and it is easier to compare
symmetrized time-ordered one, which is the main aim of this appendix.

First of all, theYTO function, which corresponds to the following expanded expression, will be analyzed:

Yq,q1 ,q2

TO ~ t,t1 ,t2!5
1

2
H Q~ t2t1!Q~ t12t2!

^C0unq
I ~ t !nq1

I ~ t1!nq2

I ~ t2!uC0&

^C0uC0&

1Q~ t12t !Q~ t2t2!
^C0unq1

I ~ t1!nq
I ~ t !nq2

I ~ t2!uC0&

^C0uC0&

1Q~ t12t !Q~ t22t !
^C0unq1

I ~ t1!nq2

I ~ t2!nq
I ~ t !uC0&

^C0uC0&
11⇔2J , ~A3!

where (1⇔2) indicates that we have to include the terms that come from the interchanging of the 1 and 2 subindexe
momentum and time variables in the first three terms explicitly written in Eq.~A3!.

The Fourier transformation on time variables of the previously defined time-ordered quadratic response function
written in the following way:

Yq,q1 ,q2

TO ~v,v1 ,v2!5E
2`

1`

dtdt1dt2eivteiv1t1eiv2t2Yq,q1 ,q2

TO ~ t,t1 ,t2!. ~A4!

Step by step, the spectral analysis on the first term of the Fourier transform of Eq.~A3! will be evaluated. To this end, we
will insert an intermediate sum over a complete basis of interacting electronic states:

@Yq,q1 ,q2

TO #1~v,v1 ,v2!5E
2`

1`

dtdt1dt2
eivteiv1t1eiv2t2

2^C0uC0&
Q~ t2t1!Q~ t12t2!

3(
l ,m

^C0unq
I ~ t !uC l&^C l unq1

I ~ t1!uCm&^Cmunq2

I ~ t2!uC0&. ~A5!

If the following representation of the Heaviside function,

Q~ t !5
21

2p i E2`

1`

dv
eivt

v1 ih
, ~A6!

is used in Eq.~A5!, we find
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@Yq,q1 ,q2

TO #1~v,v1 ,v2!52
1

2^C0uC0&
E

2`

1`

dtdt1dt2eivteiv1t1eiv2t2

3E
2`

1`dva

2p

eiva~ t2t1!

va1 ih E
2`

1`dvb

2p

eivb~ t12t2!

vb1 ih (
l ,m

^C0unq
I ~ t !uC l&^C l unq1

I ~ t1!uCm&^Cmunq2

I ~ t2!uC0&.

~A7!

Once the integrations over theva andvb internal variables are done in Eq.~A5!, we obtain

@Yq,q1 ,q2

TO #1~v,v1 ,v2!5(
l ,m

pd~v1v11v2!d3~q1q11q2!nq
0lnq1

lmnq2

m0

~v2El2E01 ih!~v22E02Em2 ih!
, ~A8!

wherenq
lm represents

nq
lm5^C l unquCm&, ~A9!

andEm indicates the energy of the stateuCm&. Both d functions@d(v1v11v2) andd3(q1q11q2)#, which appear in Eq.
~A9!, are a consequence of the time and space invariance of the medium in equilibrium, respectively.

If we perform the same evaluation with each of the terms that appear in Eq.~A3! we reach to the definite spectral analys
of the time-ordered quadratic response function:

Yq,q1 ,q2

TO ~v,v1 ,v2!5pd~v1v11v2!d3~q1q11q2!(
l ,m

H nq
0lnq1

lmnq2

m0

~v2El2E01 ih!~v22E02Em2 ih!

1
nq1

0l nq
lmnq2

m0

~v12El2E01 ih!~v22E02Em2 ih!
1

nq1

0l nq2

lmnq
m0

~v12El2E01 ih!~v2E02Em2 ih!
11⇔2J .

~A10!

Now, we have to do the same with the retarded quadratic response function expanded in the following way:

Yq,q1 ,q2

R ~ t,t1 ,t2!5
1

2
H Q~ t2t1!Q~ t12t2!

^C0unq
I ~ t !nq1

I ~ t1!nq2

I ~ t2!uC0&

^C0uC0&
2Q~ t2t1!Q~ t12t2!

^C0unq1

I ~ t1!nq
I ~ t !nq2

I ~ t2!uC0&

^C0uC0&

2Q~ t2t1!Q~ t12t2!
^C0unq2

I ~ t2!nq
I ~ t !nq1

I ~ t1!uC0&

^C0uC0&
1Q~ t2t1!Q~ t12t2!

^C0unq2

I ~ t2!nq1

I ~ t1!nq
I ~ t !uC0&

^C0uC0&

11⇔2J . ~A11!

The second and seventh terms in Eq.~A11! may be reduced to only one when the following equality between Heavi
functions is used

Q~ t2t1!Q~ t12t2!1Q~ t2t2!Q~ t22t1!5Q~ t2t1!Q~ t2t2!, ~A12!

and we have

@Y2
R1Y7

R#q,q1 ,q2
~ t,t1 ,t2!52

1

2
Q~ t2t1!Q~ t12t2!

^C0unq1

I ~ t1!nq
I ~ t !nq2

I ~ t2!uC0&

^C0uC0&
. ~A13!

The same process can be applied with the third and sixth terms in Eq.~A11!. After this simplification, the retarded
expression contains six terms, the same as the time-ordered one we want to compare with.

We can develop the same procedure as the one followed with the time-ordered response function, in order to o
spectral analysis of the retarded quadratic response function. We find
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Yq,q1 ,q2

R ~v,v1 ,v2!5pd~v1v11v2!d3~q1q11q2!(
l ,m

H nq
0lnq1

lmnq2

m0

~v2El2E01 ih!~v22E02Em2 ih!

1
nq1

0l nq
lmnq2

m0

~v12El2E02 ih!~v22E02Em2 ih!
1

nq1

0l nq2

lmnq
m0

~v12El2E02 ih!~v2E02Em1 ih!
11⇔2J .

~A14!

The only difference between the time-ordered and the retarded quadratic response functions is the sign of the imag
of the frequency. We can deduce from Eq.~A14! that the frequency variables always appear in the retarded function in
following way: v1 ih, v12 ih, andv22 ih. Therefore, it may be considered as an analytical function on these variable
can be directly obtained from a proper expression of the time-ordered response function. Due to the developed prescr
orient our effort to obtain first an approximation for the time-ordered response function, where the reversible quantu
theory may be applied.
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