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Quadratic induced polarization by an external heavy charge in an electron gas
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We have studied the many-body nonlinear interactions between a heavy ion and a solid, modeled by jellium.
Once the retarded prescription for the quadratic response function of the medium is obtained, a derivation of
the second-order nonlinear induced polarization charge, proportiond,}é (Z, being the ion charge and
the potential that it originates are presented. These magnitudes are evaluated numerically using the full
random-phase approximation to describe the shielded interaction. A comparison with the linear contribution
allows us to discuss the validity of the perturbative approf808163-1827)07447-X]

I. INTRODUCTION Zaremba, by introducing a phenomenological friction pa-
rameter, obtained results in the low-velocity regime. Dorado,
A swift charged particle penetrating a solid causes an osC€rawford, and Floré§ have used the hydrodynamical model
cillating distortion in the electronic density of the medium. to perform a perturbative expansion in the electronic density
Pioneering work on dynamic screening was performed byp to the first nonlinear term with respect to the charge of the
Neufeld and Ritchié. They were the first to present the probe in its high-velocity regime. It has been also shbwn
evaluation of the induced potential and the density wake byhat the second-order wake coincides, within a nonlinear
using a local dielectric function as the linear response of theuantum hydrodynamical model, with plasmon-pole-like ap-
medium. Since this work much research has been oriented fgroximations to the corresponding full RPA scheme.
the study of these quantitiés® In the late seventies, Ech- The analytical study of the quadratic response function of
enique, Ritchie, and Brarftistudied the spatial distribution an electron gas has enabled to calculate, within the RPA, the
of the wake within the plasmon-pole approximation to themagnitude of various nonlinear effects such as the first non-
dielectric function. Then, Mazarro, Echenique, and Ritthie linear contribution to the energy loss of a charged
calculated the wake potential and density fluctuations in thearticle}2~® double plasmon excitation probabiliti&sand,
full random-phase approximatid®RPA), also on the basis of in particular, the second-order electronic wake® Analyti-
a linear response of the medium. All these previous studiesal evaluations of the triple vertex fermion loop were done
are based upon a linear response of the target. This happebg Cenni and Saractband Richardson and Ashcréft Ex-
to be a good approximation when the velocity of the projecplicit expressions for the imaginary part of this loop have
tile is much greater than the average velocity of target elecbeen given in Refs. 14 and 15, in terms of a sum of particle
trons(typically v, the Fermi velocity, however, in the case and hole states. Recently, Rommel and Kalfhdmave stud-
of projectiles moving with smaller velocities, nonlinearities ied the conservation sum rules and the frequency moments of
play an important role for metallic densities €2,<6). the quadratic density response function.
There exists a variety of experimental conditions where there In this paper we present a diagrammatic approach to
is a need for a nonlinear theory of the electronic polarizatiorevaluate the second-order induced potential and polarizabil-
and wake potential. Experimental evidence of the importancéy charge distribution when a charged particle penetrates a
of nonlinear effects was first presented by Barkas andiomogeneous electron gas. Our calculations are valid for
co-workers® They measured the different ranges in the stop-nonrelativistic arbitrary velocities, and are performed in the
ping power suffered by positive and negative pions, whichfull RPA. Section Il is devoted to the quantum theory of the
linear theories predicted to be the same. induced potential. In Sec. Il we derive the quadratic induced
The Coulomb explosion of OH ions in carbon foilSalso  potential and we also define the retarded second-order re-
indicates that the linear wake potential is not enough to exsponse function. In Sec. IV numerical results for the spatial
plain the experimental data, higher-order contributions to thelistribution of the quadratic induced polarization charge and
induced potential being important. An approximate theory ofpotential for different velocities and electron densities are
the nonlinear wake was developed by Faibis and co-wofkergpresented; comparison with the linear wake and previous ap-
by using Coulomb scattering, but a nonlinear theory that acproaches is done and the validity of the perturbative treat-
counted for collective phenomena was presented by Egnent is discussed. The most relevant conclusions of this
bensen and Sigmufdn the static electron gas approxima- work are presented in Sec. V. Finally, an Appendix with the
tion. Nonlinear hydrodynamical descriptions of the wakeprescription to pass from the time-ordered to the retarded
potential have been formulated recently. Arnau andquadratic response function is added.
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Il. QUANTUM THEORY OF THE INDUCED POTENTIAL

H =2 w,aray, 2.7
We consider a point chargé;e moving with constant 0 g KK

velocity v through an isotropic homogeneous electron gas . 9
embedded in a uniformly distributed positive background,Wlth w=k%2, and
the so-calledellium model. The electric potential operator,

at pointr, induced by the electron gas, which is disturbed H
due to the interaction with the external charge, and the posi-

tive background is(we use atomic units throughout, i.e,

e?=h=my=1)

_ oot gt
eeT 20 y& oV 9% ey 2.8

gives the electron-electron interactiod; _. represents the
interaction between the heavy ion and the electron gas:

V(r): _2 ;_FVBG (21) Zl 4 —ig-vt T
2 lrerd e Hie=~ g aeve® " adkig- 29
wherer represents the electron position operator, ¥8d,  Our system is irreversible due to the explicit time depen-

the interaction between a test positive unit charge ahd  yence in the interaction with the external charge.
the positive background. In the representation of second Treating the interaction between the ion and the electron

quantization the induced potential reads gas separately from the interactions between the electrons in
the metal, the above picture allows us to rewrite &) in
V(r)=—0-1 Z 'qu—iq-ra;r e @k (2.2) the following way:
K, 0\ ' '

_ (WolUT(t, —)V(r, U (t, — )W)
(WolUT(t,—=)U(t,— )| o)

wherea;“k anda, \ are the creation and annihilation opera- @(r,t)
tors for electrons, respectively, of well-defined momentum (2.10
and spin stata, () is the normalization volume ang, is the '
Fourier transform of the electron-electron bare Coulomb inwhere |¥,) represents the ground state of the interacting
teraction, electron Hamiltonian of Eq.2.6) andU(t4,t,) is the evolu-
tion operator? The | superscript indicates that the operators
A are considered in the Interaction representation where the
vq—?. 23 total electronic Hamiltonian of E(2.6) is included in the
ground state and in the time evolution of the operators, and
The comma on the summation indicates that the term withhe perturbation comes from the interaction with the external
q=0 is not considered, since it is canceled with the contrison. To evaluate the induced potential, the electron-electron
bution from the positive uniform background. In the follow- interaction and the interaction with the external charge can
ing equations the sum over electron spin states will be impe studied separately when this representation is considered.
plicitly considered. In this way, the screening of the induced electronic density
The induced potential, also known as the wake potentialmay be studied up to infinite order in the electron-electron
is found as the mean value of the electric potential of Eginteraction on the basis of quantum field theory in order to
(2.1: get the self-consistency. Finally, by expanding the evolution
y operatorU up to second order in the external chargg)(
S(r )= (Do VI (r,1)| Do) (2.4 the quadratic correction to the wake potential can be ob-
' (Do| Do) ' ' tained, after some rearrangement:

VH(r,t) being the electric potential in the Heisenberg repre- (WolVI(r, )| Wo) (=
sentation, andid,), the Heisenberg ground state of the total ~ #(r,t)= Wy fﬁxdtl@)(t_tl)
interacting system. Lo

We consider that the external charged particle has a mass (‘I’o|[HLe(tl),V'(f,t)]N’o)
much greater than the electronic one, so that recoil effects in X (W[ Vo)
the collisions will be neglected and the incoming ion will be oo

treated as an external source of energy and momentum. w oo
Therefore, the Hamiltonian of this system has a term related —J' J dt;dt;0(t—t1)O(t1—tp)
to the electron gas and a second one that describes the inter- e
action between the ion and the electron gas. In the represen- (Wol[[V'(r,t),H!_ (1) ], H_ (1) ] ¥o)
tation of second quantization this Hamiltonian reads X )
(WolWo)
H=H.+H,_,. (2.5 (2.11

H, represents the interacting electron gas Hamiltonian: ~ Where[a,b]=ab—ba. The first term does not contribute,
since it corresponds to the induced potential without any

He=Ho+He o, (2.9  external perturbation. The second and third terms represent
the linear and quadratic contributions to the induced poten-
whereH, is the free electron gas Hamiltonian, tial, respectively.
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A. The linear induced potential Equation(2.16 exactly coincides with the standard ex-

After the introduction of Eqs(2.2 and (2.9 into Eq.  Pression for the linear induced potential.

(2.11), the induced potential is up to the first order in the ion For high velocities of the ion, the'zero-point mQ“O“ of the
electron gas can be neglected and it can be considered, there-

charge: A ) X UeIS
fore, as if it were at rest. Thus, in this approximation all
momenta of the electrons are set equal to zero andZELj)
Z, (= o R leads to the well-known static electron gas approximation for
Pi(r,t)= Q—zf dtl(% vquq, €9 e Vixg(tty), the dielectric function:
-® A1
(2.12 5
where T , (2.19
T (0tin’=(a3)?
. . <‘1’o|[n;(t),n;(t1)]|‘1’o>
Xq(t,t)=—i0(t—ty) oo wherea;%=g%/2, 7 is an infinitesimal positive quantity and

(2.13 w,= V47N, represents the plasma frequency for the electron
gas.
Finally, the velocity distribution of the electron gas,

which is completely neglected in the static electron gas ap-

n{q(t)=Q‘1g [ai ()] Tay (1), (2.14  proximation, can be accounted for approximately by intro-
ducing the plasmon-pole approximation to the response func-

is the Fourier transform of the number density fluctuationtion, which is the same as E(R.18 but with

operator. The exact linear density response function of the

medium is represented through the above-defined density- agP=\/57q7+ q*4, (2.19

density retarded correlation function. The causality of the

response function is preserved due to the retarded way iyhere

which it is defined. Furthermore, it is interesting to analyze

the relation that exists between the time-ordered response

function, B*==q2 (2.20

10 (ol TIng(Hng(t) ]| ¥ o)
Xq (tty)=—i W[ ¥ ) ., (219 represents the mean-square velocity of the electron gas and

Lo de is the Fermi momentum defined by the equilibrium host

and the retarded one. After making the time Fourier transforelectronic densityr, as (372ng)*. This approximation can

mation on both functions, the Lehmann representatioan  also be obtained from a hydrodynamic model if the von

be used to conclude that the retarded response function mayeiszacker term is included to account for the individual

be obtained from the time-ordered one once all the imaginarg|ectron behavior.

parts of the frequencies are turned to be positive.

The Gell-Mann and Low and Wick theorems may be used
in order to evaluate the linear time-ordered response, and the IIl. THE QUADRATIC INDUCED POTENTIAL
defined prescription allows us to obtain the retarded one ina | the present section we will analyze the term that is

correlation function of Eq(2.19, x4 [hereq represents the expression of the induced potential of Eg.11):
tetramomentumd, w) ], can be represented diagrammatically

by a full two-point vertex or bubble. In the RPA it is ap- o
proximated by summing over the infinite set of diagrams d’z(f,t):—f f dt;dt,0(t—t,)O(t;—t,)
containing a string of empty bubblé$. —0 ) —o0

We already know the prescription to go from the time-

is the retarded density-density correlation function, and

| | |
ordered response function to the retarded one. Thus, after X<W0|[[V (r’t)’Hi*e(tl)]’Hi*e(tZ)]WO)'
extending to the continuum phase space on the momentum (Wo| W)
variable, the result we obtain for the induced potential is 3.1
d®q . - . L
¢1(r't)zzlf 3el<q»r “’t)vq[(fgw) 1-1], In the representation of second quantization,
(2m) ’
(2.1 72 (=
wherew=q-v ande{ represents the retarded dielectric func- Pa(r,t)= @f@dtldtzq qEq Vgq,Vq,
tion of the medium, in the RPA: T

X eldTeldiViigitaViayR = (¢ 4. t.), (3.2
6gzl_vq(Xg)R, (217 g

()(8)R representing the so-called retarded linear density rewhich is written in terms of the retarded quadratic response
sponse function of the noninteracting electron ¥as. function of the medium:
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Y(l?q o (Lt 1) Once we take into account all the previous considerations,
T2 the expression we have for the quadratic response function is
=0(t—1)0(t;—ty)

YR
(Wol[Lng(t).ng, (t2)1.ng (1)1 ¥ o) R
Wol¥o) : =(€q0) e 0) e g 0m0) MM uq 0)®

(3.3 (3.9

(0,—wq1,— 0+ wq)

X

This function contains the product of three electronic den- The expression for the induced potential up to second
sity operators. The quantum field theory for systems in equiorder in the ion charge is
librium cannot be applied in order to evaluate the defined
retarded quadratic response function in a direct way; one
should use, instead, the Keldy&Hormalism, which is ad- do(r,1)=22 f
equate for irreversible processes. However, a method similar
to the one considered in the previous section may be used in
the study of the relationship between the retarded quadratic
response function and the following time-ordered one:

1( ol TIng(t)ng, (t1)ng (t2)]|Wo)

TO _
Yoa,.0,(Lt1t2) = 2 (Wo|Wo) ' Once we have obtained the potential induced by the heavy

(3.9 ion, the evaluation of the quadratic polarization induced
charge is direct, after using the Poisson equation:

3 3
99 oty fﬁ

)3 1 (2m)3
X vqlvq_ql( eg‘iw)*l( egl’wl)fl

X (€q-q,.0-w,) (Mg )S. (3.9

G,@:qy, 01

After using the Lehmann representatitsee the Appen-
dix), defining the frequencies, w;, andw, as the Fourier
transform variables of, t;, andt,, respectively, and per-
forming the integrations over the time variables of E2}2), Sny(rt)= _zif
we find

d3q ei(q.r_wt)f dsql
(2m)* (2m)*

R y—1, R -1
qulvq_ql(eq'w) (equwl)

dg dg; .
¢ (r,t)=22f €4y v vgra YR
2 1 (277)3 (277)3 9¥09;¥q+q; " 9,9,,9+0d, y R 4 MR s 31
(€q-qp.0-0)  (Mguge) > (310
X(w,w1,— 00— wq), (3.5
wherew=q-v and w;=q;-v. As demonstrated in the Ap- The most important nonlinear contribution corresponds to

pendix, when these frequencies are turned iate-i7n, the spatial range close to the ion. Therefore, the derivative of
w1—imn, andw,—i7n in the time-ordered quadratic responsethe potential will change in an important way when it is
function we get the retarded one. A change in ¢ghevave- evaluated at the position of the charged particle. The energy
vector sign makes all the frequency imaginary parts positiveéhat the ion loses when it excites the medium can be evalu-
in the retarded function, resulting, therefore, in the usual reated through the induced electric field= —V ¢, at the po-
tarded prescription. sition of the ion, and one obtains from E¢8.16) and (3.9
Thus, as we did in the evaluation of the linear inducedthe same contributions for the stopping as derived in Refs. 14
potential, we can apply the defined prescription to derive thend 15.
second ordeiYR after the evaluation of the corresponding  For high velocities, one can set &llequal to zero in Eq.
time-ordered response function. In the RPA, the triple verteX3.6) to obtain the static electron gas approximation for
is approximated by three legs with an infinite sum of empty(M('iql)S:
bubbles, already defined in the previous section, and one

: ; 7
fermion empty triple vertex loop* (ng )S= —nof w1 (w— wl)wé— o(w—wy)
&K Xwél—wwlwg,ql-i-(w—wl)wqwa
M =—2if—G°G° GRig. (3.6)

% (2m)4 AT + 0i0g0g-q, T ©%0q 0q-q,~ ©qwe ¥q-q,

Gg being the frge partic_le propagator. X (gt g, + wg_q) H[(0+] 77)2_(‘“39)2]
The three point functionM o, andMg 44 , represented
diagrammatically by empty triangle diagrams with their lines X[(wy+i ﬂ)z—(aaf 7]
running in opposite directions, give the same contribution, o, sq 2111
and we define the symmetrized function: X[(w=w1+in)?=(ag? )1 (3.1
1 with w,=0g?/2. In the plasmon-pole approximatiary? must
s _—Z q
Maa,= 5Maa T Mag ot G0 pe replaced in Eq(3.11) by afP *®
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(a) Ty v
37— 7T FIG. 2. First(dashed lingand secondsolid line) -order induced
r ] density, as derived from the RPA, at the position of an ion of charge
25 F ] unity moving in a medium of ;=2.07, as a function of the velocity
. ] of the ion. First- and second-order scattering theory re¢Rk$. 25
2 - - are represented by dotted and dashed-dotted lines. When the veloc-
o -/ 13 ity of the ion is higher thamw the scattering theory results coincide
s 15 -7 . with the RPA.
w N e 1
1 L / el . - . . . .
VA known fact that at higher densities the kinetic energy of the
0.5 7 ] electron gas increases and the potential energy of the ion
CH ] becomes, therefore, a relatively smaller perturbatfor®
N A R R R This can be seen in Fig(d), where the second-order contri-
0 1 2 3 4 bution gains the linear one at a certagvalue. On the other
(b) Ty hand, nonlinear effects are less important as the ion velocity

increases, so that the quadratic contribution is always lower

FIG. 1. First-(dashed lingand secondfdotted ling order in-  than the linear one fov =2, as shown in Fig. (b). In the
duced density, as derived from the RPA, at the position of the ion Ohigh-velocity limit of the incoming ion ¢>v¢), it corre-
charge unity Z;=1) moving with velocities(@ v=0.5 and(b)  sponds to the highg range in Fig. 1b); the relative induced
v=2, as a function of ;. The total induced density, up to second gensity at the position of the ion is constant with respect to
order in the |on_ charge, is represente_d by a SF)|Id line. Nonllnea{he density of the medium as shown in this figure and will be
effegts are ]ess |mportanF as t.he velocity of the ion and/or the elecéxplained later.
tronic density of the medium increase. In Fig. 2 we present the evaluation of the linear and qua-
dratic induced densities at the position of the charged par-
ticle, as it passes through a medium with a density parameter
equal to that of aluminumr,=2.07, as a function of the

In this section, results for the quadratic induced polarizaVelocity of the ion. It is easy to see that when the velocity of
tion density and potential are presented, as obtained in th¥€ incoming ion is lower than the characteristic velocity of
full RPA. the electrons in the metal, the induced density remains

The first-order induced density at the position of low- @lmost constant. This velocity range corresponds to a highly
velocity ions givessn, >n,, as will be shown. This indicates nonlinear regime, where the quadratic contribution is larger
that the linear theory is not enough to obtain this magnitudethan the linear one. This indicates the breakdown of the per-
On the other hand, the induced electronic density decreasédrbation theory in order to evaluate the induced density at
very fast as the velocity of the ion is increased, where thdhe position of the ion. For velocities higher thap, the
linear approximation becomes valid. The analysis of the nonduadratic induced density decrgases fa;ter than th.e linear one
linear terms has to be made with regard to magnitudes chafnd becomes lower for a certain velocity, recovering, there-
acterizing our interacting systern; the velocity of the in- fore, Fhe apphcablllty of the perturbation theory in the high-
coming charged particle, and4(r=(3/4n,m)Y3), the  Velocity regime. _ . o .
electron density parameter. Also, the perturbation becomes With the assumption of independent, individual, elastic
larger as the ion charge is increased; nevertheless, in tHdectron scattering the induced density at the position of a
following discussion a projectile of unit charge will be con- héavy particle of chargeZ, is given by the following

IV. RESULTS

sidered. expressiort!

In Figs. 1(@) and Xb) first- and second-order contributions
to the induced electron density at the position of the ion are @_ 21 @.1)
presented, as a function of, for projectile velocities of 0.5 ng 1l—e 2™ .

and 2 times the Bohr velocity. It is obvious from these fig-
ures that nonlinear corrections are smaller for higher electrowith =2, /v. For high velocities and small ion charges, we
densities of the mediurdowerr), which is due to the well- can expand this result up to second ordeZinv to obtain
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FIG. 3. Second-order induced density at the position of an ion of
charge unity moving in a medium of=2.07 as a function of the
velocity, obtained from different approximations: RRAll line), r
plasmon-pole(dashed ling and static electron ga&lotted ling. 0.06
The approximating models give correct results for velocities over
2.5.

0.04
R
on  wz, mw?Z? , 0.02 |
I"I_O_T_FW—’_O(Z]'/U) . (42) i
0
It can be proved that the first term coincides with the N SRR SN SN SN B
linear contribution obtained in the high-velocity regithe. -15 -10 -5 0 5
The second term also coincides with the calculated quadratic 2
contribution of Eq.(3.10 when the velocity of the ion is 0.03
high compared withvg, as can be seen in Fig. 2. In the c
high-velocity range there is, therefore, no contribution for 0.025 ¢
this quantity coming from collective excitationglasmons 0.02 F
The induced electronic density is very strong close to the :
position of the ion. Thus, the range of validity of the linear 0.015
perturbation theory decreases when the induced density at on :
the position of the ion is analyzed. For a slow ion, the in- 0.01
duced density at its position will be given by the bound 0.005
staté® that the positive charged ion can have, but this is not :
studied here. We would need to go to infinite ofdén the 0F 1
interaction with the external ion in order to get this result. 0005 bt v v v e v e 1
It is interesting to study the contribution to the induced -8 -4 0 4 8
polarization charge obtained by two different approximations  (¢) z

to the RPA: the plasmon-pole and the static electron gas. In
both cases we are approximating all the excitations of the FIG. 4. First-(dashed lingand secondtdotted ling order in-
system to plasmons with an extended dispersion curve th&ticed density, as derived in the RPA, along the axis of motion for
for large momentum emulates the contribution coming from? Particle of charge unityZ,=1) moving with a velocity (a)
the particle-hole spectrum in the RPA. Therefore, these mogp.~ -2 (0) v=2, and(c) v=4 in a medium of ;=2.07. The total
els are only meaningful at high velocities of the ion, whenmduced dens'ty.’ up to the S.econd Or.d.er n th? lon Chf%rge' IS repre-
plasmon excitation is possible. We have an strong peak ju stenFed by a solid Ilne..At high velocities, oscillations in front and

. - ehind the ion are obvious.
at the plasmon threshold velocity, when the ion has enoug
energy to excite a real plasmon. In Fig. 3 we can analyze the
differences on the magnitudes and positions of the peakie plasmon is well defined is, in the RPA, much shorter than
when the mentioned models are considered. The lowest véa the other models, so that there is not such a peak when a
locity needed to excite a plasmon corresponds to the statiglasmon is excited in this approximation. Nevertheless, these
electron gas approximation and the higher one to the RPAmodels are not good enough in this velocity range, in which
As the momentum phase space where the maximum energarticle-hole excitations should be included in a proper way.
transfer line,w=|g|v, close to the plasmon dispersion curve  Figures 4a), 4(b), and 4c) exhibit the linear and qua-
is longer in the plasmon-pole approximation, due to the lin-dratic induced polarization charge, as derived from the RPA,
ear term included in its dispersion relation, it is reasonable t@long the trajectory of the projectile in a medium with
think that this model will have the most striking antiscreen-r=2.07 and for three velocities of the iom= 0.5, 2, and 4.
ing effect. On the other hand, the momentum range wher&or a velocity lower than Fig. 4@ shows that the main
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0 T Figure 6 exhibits the linear and quadratic induced poten-
IR ] tials at the position of a projectile passing through a medium
of r¢=2.07 as a function of the velocity of the ion. We can
make the same comments as for the induced density in Fig.
2, but it is interesting to remark that perturbation theory is
valid to evaluate the induced potential, since the quadratic
contribution remains much smaller than the linear one over
the whole range of projectile velocities and electron densities
of the medium.
Figures Ta), 7(b), and Tc) show first- and second-order
i 1 contributions to the wake potential for three velocities of the
ol e ] ion, one is lower than the plasmon threshold=0.5) and
0 1 2 3 4 5 the other two are highew(®2 and 4). As observed for the
@) % induced density, the plasmon threshold velocity determines
T T T T T T T T ) the separation between two different regimes. When the en-
ergy of the projectile is just enough to excite a plasmon, a
characteristic oscillation appears trailing the position of the
ion, both in the linear and the quadratic contributions, with
the same wavelengths than for the induced density in Figs.
4(b) and 4c). It is interesting to remark that we can observe
a high maximum peak for the quadratic induced potential
behind the position of the ion in the low velocity range,
which is absent in the linear contribution. On the other hand,
the quadratic contribution has a bow wave preceding the par-
X 1 ticle when its velocity is larger thamg. The origin and the
o Lo oM e ] wavelength of this oscillation are the same as those we found
0 1 2 3 4 5 in the induced density=£27/v), but not so pronounced.
(®) T Although these oscillations are also present in the linear
wake, they have such a small amplitude that they cannot be
FIG. 5. First-(dashed lingand second¢dotted ling order in- observed in the linear case.
duced potent.ial, as derived .from .the RPA.,.at the position of an ion Figure 8a) displays the linear and quadratic wake poten-
of charge unity £;=1) moving with velocitiesa v=0.5 and(b)  ja| syrface as calculated for a projectile moving with veloc-
l());jsr’ iistseﬂij:r?té%g:’fg'g?: total w:dgc;d pottle_ztllgl, U_F;_rtlo seccln_nd ity v=2 in a medium withrs=2.07. Figure &) shows a
I ge, presented by a solidline. 1ne NonlNe&iatail of the quadratic contribution to the wake. It can be
contribution appears to be always lower than the linear one. L . . .
seen that it is only significant on the moving axis of the

induced density is concentrated around the position of th@rojectile, decaying much faster than the linear contribution

ion, which makes nonlinear effects become very importanPUt from this axis.
close to this region. In Figs.(d) and 4c) one sees distinc-
tive oscillations of the induced density in the region behind V. CONCLUSIONS

the particle once the ion has enough energy to excite a plas- First of all, we have developed a many-body theoretical

mon. The wavelength of the oscillation in the linear contri-scheme to derive the retarded quadratic response function of
bution is =2mv/w,.” However, when quadratic contribu-

tions are analyzed the present wavelength is just half of the T T T T T
previous one= mv/w,. Preceding the particle, a bow wave ' )
with smaller amplitude appears, both linear and quadratic
contributions having the same wavelength2/v. This is

the de Broglie wavelength of an electron in the medium
viewed from the rest frame of the ion and after suffering o
from a frontal collision with it.

We will do a similar analysis in order to study the induced
potential. Figures @& and 5b) show the first- and the
second-order contribution to the wake potential for two ve-
locities of the ion,v=0.5 and 2 as a function of the pa- -
rameter of the medium. It is obvious that quadratic terms are B Y RSP S B SR
for these velocities always smaller than the linear ones, 0 1 2 3 4 5
which is not the case for the induced density. The induced v
density is a highly nonlinear magnitude at the position of the  F|G. 6. First-(dashed ling and second¢dotted line order in-
ion, but as the induced potential is an integrated magnitudguced potential, as derived from the RPA, at the position of an ion
of the density over the whole space, it becomes muclf charge unity moving in a medium of=2.07, as a function of
smoother when the wake potential is evaluated at the samie velocity of the ion. Nonlinear effects decrease as the velocity of
position. the ion increases.

-1.5
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03 ¢ FIG. 8. (a) Linear and second-order surface potential in cylin-
0.4 F drical coordinates d,z) with respect to the position of an ion of
charge unity moving witlv =2 in a medium of ;=2.07, as derived
-0.5 E in the RPA.(b) A detailed figure of second-order surface potential.
06 Foveil it / e il It is obvious that the quadratic contribution is significant only on
) 20 -15  -10 5 0 5 10 the moving axis of the projectile.
(© z

FIG. 7. First-(dashed lingand second¢dotted ling order in-
duced potential in the RPA along the axis of motion for a particle of tth iti fthe i fth i
charge unity Z,=1) moving with a velocityy = 0.5 (a), v =2 (b), at the position of the ion, as a consequence of the nonlinear-

andv =4 (c) in a medium ofr;=2.07. The total induced potential, 'ty_ C_)f the response of the medium, which makes the first
up to second order in the ion charge, is represented by a solid lindNiNimum deeper, and, on the other hand, the wavelength for
The nonlinear wake presents the same kind of oscillations as thihe oscillations behind the particle is smaller. At higher ve-
induced density. locities the nonlinearity of the wake is negligible. As for the
potential, the wavelength of the oscillations in the induced

) o ~ electron density is smaller, as a consequence of the nonlin-
a homogeneous electron gas. This function is the main ingresarity of the response.

dient to evaluate, for a wide range of nonrelativistic veloci-
ties of the incoming patrticle, the quadratic contribution to the
induped Qensity and potential in the full random-phase ap- ACKNOWLEDGMENTS
proximation.
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tions to the wake potential exhibit in the region behind thethe Basque Country and the Basque Unibertsitate eta Iker-
particle oscillations with different wavelengthsg2/w, and  keta Saila under Contract Nos. UPV063.310-EA001/95,

mv/wy; nonlinearities being most important along the axisUPV063.310-EA056/96, GV063.310-0017/95 and Iberdrola
of motion. At low velocities the wake potential is diminished SA.
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APPENDIX

In this appendix we will study the analytic relation that exists between the time-ordered quadratic response function:

1 (Wol TEng(t)ng (t1)ng (t2)1| o)

TO _ -
Yq,ql,qz(tltlitZ)_ 2 <\PO|\PO> (Al)
and the retarded one:
. 1 (Wol[[nG(1).ng, (t1)],ng (1) ] Wo)
Yaapa(blit) =5 | O(t-t)O(ti—ty) A

(ol k(1) (t) 1,0k (t)]Wo)
(Wo[Wo) |

+O(t—t)O(t,—ty) (A2)

which appears in the evaluation of the second-order induced potential 64 2g.The diagrammatic method of the quantum
field theory may be considered in order to obtain the time-ordered response function. Then, the relation between both functions
can be applied in order to obtain the retarded response function, in which we are interested.

We can observe that the quadratic response function appearing it8 2pcorresponds to the first term in EGA2).
However, the symmetrized expression with respectqtatg) and @,,t,) will be used, as explicitly indicated in EGA2).
Both set of variables are internal in the integral expression for the induced potential. Therefore, we can make the previous
operation without any change in the final result. The new split function is more symmetric and it is easier to compare with the
symmetrized time-ordered one, which is the main aim of this appendix.

First of all, the Y™ function, which corresponds to the following expanded expression, will be analyzed:

<‘PO|nlq(t)n:ql(tl)n:qz(tZN\P0>

10 _Llene _
Y (t,tlatz)—z O(t—1,)0(t;—ty)

0.9 .0, e
+ @(tl_t)(t_tz)w Ny, (t)Ng(Hng (t2)[Wo)
<\I,O|\IIO>
+ ®(t1—t)(t2—t)<q,0| Ng, (t1)Ng, (t2)Ng(H)[ W) 1ed) -
<\I’O|\PO>

where (1=2) indicates that we have to include the terms that come from the interchanging of the 1 and 2 subindexes in the
momentum and time variables in the first three terms explicitly written in(&8).

The Fourier transformation on time variables of the previously defined time-ordered quadratic response function may be
written in the following way:

Yo .a,(@ @1,02) = f __dtdtdte “lelettiglenlay (O o (6,ty,tp). (A4)

Step by step, the spectral analysis on the first term of the Fourier transform 0ABqwill be evaluated. To this end, we
will insert an intermediate sum over a complete basis of interacting electronic states:

to elotelottigi gt

| dtdtudt— = 0= 1) 0 (L —ty)

[Yg,%l,qz]l(w.wl,wzFJ

X 24 (Wolng(DW)(WiIng ()| ¥ m)(Wng,(12)| o). (AS)

If the following representation of the Heaviside function,

G —_1f+wd e A6
(t)_Z_ﬂ'i —w ww-l—in’ (A6)

is used in Eq(A5), we find
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[YI° o0 w2)=——1 +OCd'[d'( dtye'“telertighoats
2

f+mdwa eiwa(t—tl)f+wdwb eiwb(tl—tz)
X

T ot 2 (YolngOI)(Wilng ()| m) (W nlng,(t2)| o).

—0 2T @atim Jox 2T wptiy

(A7)
Once the integrations over the, and w, internal variables are done in EGA5), we obtain
0 775(w+w1+wz)be(q+q1+q2)n8'nhfn3"2°
[Yaaa 100102 =2 — g g (A8)
wheren," represents
Ng"= (¥ [ng|¥ ), (A9)

andE,, indicates the energy of the stgté,,). Both & functions[ §(w+ w; + w,) and 63(q+q,+q,)], which appear in Eq.
(A9), are a consequence of the time and space invariance of the medium in equilibrium, respectively.

If we perform the same evaluation with each of the terms that appear i(ABwe reach to the definite spectral analysis
of the time-ordered quadratic response function:

nOlnlmnmo
TO _ q°'g7 dy
Yq‘ql,qz(wawlawZ) 775(w+w1+w2)5€(q+%+%)|’2m (w—E|—Eo+i n)(wZ_EO_Em_i 77)
ol ,Im_mo0 ol ,Im_ mo0
+ "aa Ta, + Mg, q +1e2
(01— Ej=Eg+in)(w;—Eg=En—i7n) (01—E—Eo+in)(0—E;—Eyn—in) '
(A10)

Now, we have to do the same with the retarded quadratic response function expanded in the following way:

. 1 (Wolng(t)ng, (t1)ng,(t2)[Wo) (o ng, (t)Nng(HHng,(t2)[Wo)
Yaa,.0,(btt2) = 5] O(t-t)O(t1—tp) Wy O(t—t)O(t;—ty) VoW
(‘I'o|”gz(tz)nh(t)ngl(h)Wo) (Wl ngz(tz)ngl(tl)ng(t)l‘l’o>
_®(t_tl)®(tl_t2) <\I,0|\PO> T ®(t_tl)®(tl_t2) <\P0|‘P0>
+1@2}. (A11)

The second and seventh terms in E&11) may be reduced to only one when the following equality between Heaviside
functions is used

O(t—1t)O(t;— 1) +O(t—1,)O(t,—t) =0 (t—t)O(t—t,), (A12)

and we have

(ol (tni()nk (t)[ Vo)
(W¥o)

1
[Y5+YRlg0,.0,(tt t2) = —5O(t—t) O (t—t5) (A13)

The same process can be applied with the third and sixth terms inA8q). After this simplification, the retarded
expression contains six terms, the same as the time-ordered one we want to compare with.

We can develop the same procedure as the one followed with the time-ordered response function, in order to obtain the
spectral analysis of the retarded quadratic response function. We find
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. ng'nh”l‘ng”f
Yaas 6(@101,02) = 70+ 01+ 02) A+ Ut 0 2 | BT T T ) (s B BT 7)
N ng'ln'qmng“zo . ng'ln'qn;ng‘o 1o
(01— E—Eg—in)(w;—Eg—Ep—in)  (01—E—Eo—in)(0—Eg—Ep+in) '
(A14)

The only difference between the time-ordered and the retarded quadratic response functions is the sign of the imaginary part
of the frequency. We can deduce from E414) that the frequency variables always appear in the retarded function in the
following way: w +i 7, w;—i7, andw,—i 7. Therefore, it may be considered as an analytical function on these variables and
can be directly obtained from a proper expression of the time-ordered response function. Due to the developed prescription, we
orient our effort to obtain first an approximation for the time-ordered response function, where the reversible quantum field
theory may be applied.
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