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Calculation of the elastic neutron scattering form factor by an essentially standard approach has given results
that disagree seriously with experiment on,N&D,. This has motivated us to look for a more fundamental
approach to such a calculatigim Mott insulators. We have begun by considering perturbation approaches in
the context of the three-band Hubbard model of cuprate Qu&hes due to Hybertseat al. This was recently
shown, for a small cluster, to have a straightforward small-bandwidth perturbation expansion of the Heisenberg
exchange parametdrthat isnonconvergentWe study the roles of one-body and two-body transformations on
the basis set of states in converting nonconvergent many-body perturbation expansions into convergent ones.
We choose the one-body transformations guided by the thermal single determinant approxifrabaén, a
variational generalization of the thermal Hartree-Fock approximation. All transformations preserve “localiza-
tion” of copperd orbitals, and thus lead to low-lying states governed by a Heisenberg spin Hamiltonian, in
leading order, provided the perturbation theory is convergent. We find the one-body transformations do make
the perturbation expansion converge, although rather slowly; addition of two-body transformations gives
significant improvement in the convergence rate. The reason for the limitation of the one-body transformation
is given.[S0163-18207)02548-4

[. INTRODUCTION TSDA choice indeed improved, quite dramatically, the con-
vergence rate of perturbation theory for the Heisenberg ex-
The question of how to set up a perturbation theory forchange paramete¥, through fourth order in the H-He over-
Mott insulators like NiO, KNik, Fe,0, was considered in  lap.
1959 by Anderson.The object was to take advantage of the ~ The overlap, or more precisely, the amplitude for cation-
obviously localized property of the magnetic electrons toanion hopping, is small in the highly ionic materials consid-
construct the theory, where the interatomic overlap of localered at the time, e.g., NiO, KNiFso the pt was expected to
ized orbitals is treated as the small parameter. Such a theofpnverge rapidly. For this reason higher order perturbations
leads to low-lying states that are governed by the Heisenbergere not investigatetiHowever, materials that have recently
spin Hamiltonian, in leading order. At the time, it was known become of interest in connection with high-temperature su-
that most of the low-temperature properties of these materiperconductivity, namely the cuprates and the related
als could be understood on the basis of such a Hamiltoniarka:NiO,4, are thought to be much more covalent. Doubts
Anderson, on considering how to determine the localized@bout the validity of perturbation theory in this connection,
orbitals, stated that there exist “exact” localized orbiteds- ~ specifically for the three-band Hubbard model of a GuO
thogonal, and thus called Wannier functignshich will  plane(Fig. 1), have been express&d And, in fact, it has
make the perturbation theory converge well. These orbitalgecently been shown that straightforward perturbation
were required to be nonmagnet&pin-up and down orbitals theory doeshot converge, specifically for the version of the
the samg as is natural, since the magnetic properties were téhree-band model due to Hybertsenhal.® which is rather
be derived from the spin Hamiltonian resulting from the per-realistic for many physical observabi€sand is quite similar
turbation theory(pt). Anderson gave an explicit prescription, to other versions of the three-band motfef:*
namely Wannier functions derived from Hartree-Fock theory ~Clearly then it is of interest to try the TSDA approach to
in which the spins of the magnetic ions were all parallel. It
was noted some time lafethat there was an inconsistency
with this, since Hartree-Fock eigenstates with up and down
spins differ in such a situatiohAn alternative approach was
studied based on the so-called thermal single determinant
approximationTSDA),* a variational generalization of ther-
mal Hartree-Fock theory. Solving this TSDA for nonmag-
netic localized solutions at sufficiently low temperature
amounted to minimizing the mean determinantal energy, av-
eraged over all spin configurations of the magnetic ions, an
approach adopted by Gondaira and Tarabiewas shown
for a small cluster mod&P which we can call H-He-H
(hydrogen-helium-hydrogerand for a one-dimensionélD)
crystal modél (the corresponding H-He chairthat this FIG. 1. CuQ plane.
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find new localized orbitals, and to test the implied new per- H=H;+Hy+Hg, (1a)
turbation expansion for convergence. In fact, the question of

convergence of pt within the three-band model has beeWhere

addressed? and rapid convergence of a new pt was claimed.

But the transformation in these works involved both one- and _ p d+ .p

two-body transformationgFinding new localized orbitals is Hs 82’ i de(%:g (Gig Cig+H.C)

a one-body transformationlt is important to understand
how far one can go with the one-body transformation alone,
because of its relative conceptual simplicity and its historical
interest. This is the purpose of the present paper.

We have been motivated to explore these questions by
difficulties we have run into in connection with calculating HU:UdZ nidTn?pL UpE nﬁn,lerUde nnP, (10
the ground-state spin density in the cuprates and ! ! @in
La,NiO,.*>® The type of perturbation theory discussed gng
above, which in effectseparates the spin and space (or
charge) degrees of freedonmight be the only hope at

+tpp X (Pl +H.c), (1b)
Y

present of making tractabkb initio calculations of this ob- Hi=Kpqg Z cid;c?(r,cf’:,clpg

servable. This is due to the fact that the reduction of the (ihoo’

ordered spin due to zero-point or quantum spin fluctuations

(QSF’s, which is large in these cases, constitutemacro- +Kpp 2 el ell el . (1d)
scopic correlation effectThat is, (i) in principle, it requires (1Moo’

the thermodynamic limit for its very existence, and theﬂreforeciv; creates a hole in a Wannier functian; of type v at site
one needs very large systems to estimate the ¥)8Rd (ii) v v

4 . . . i with spino, n"=>_,n” , n’” =c’’c’ . The orbital at a
the wave function representing such a state requires a linear Lot oo o o Tl .
combination of many Slater determinants. Thus, even wittfoPper site isdy2_y2; at each oxygen site there is ope
the remarkable advances in computational many-body phy&rbital. The parameter values age-3.6, tpg= = 1.3, tp,=
ics (e.g., Refs. 18 and )8the present problem is still beyond —0.65, Ug= 10-% Up=4, Upg=1.2, Kpg=—0.18, Kpp=
the reach of those approaches. Also standard band-theoretic0-04, all in eV:*[Note that for the convenience of having
approaches fail to capture essential phy$tbe local-spin- the d-p hopping parameters all the same, and similarly for
density approximation misses the antiferromagnetism and irthe p-p hopping, as in Eq(1b), one has to set up the under-
sulating property of LgCu0Q,?° and the Hartree-Fock lying Wannier functions in the way that they may change
method(unrestrictegl misses the QS signs under the crystal or cluster symmetry. The signs corre-
Since the work reported here involves calculations onlysponding to orbital phases are chosen as followst,if |2
for a small cluster, the spin density of a crystal cannot beexists at a particular Cu, then at the O’s immediately to its
addressedthe spin density in a finite cluster with an even right and left(along thex axis) the orbitals arg, and — p,,
number of electrons is zero, since the ground state is a siftespectively; similarly, the orbitals at the nearest O’s below
glet). Instead we will be investigating the Heisenberg eX-and above arep, and — Py, respectively. The remaining
change parametef as an indicator of convergence of the phases are determined by having the nearest-neigtimr
perturbation expansions. In Sec. Il we define the Ham"'overlap always negativeWe limit ourselves to the case

tonian to be considered, review effective-Hamiltonian perturyynere the number of holes equals the number of Cu sites
bation theory, and the TSDA. In Sec. Il we describe the; '

X . ; ; dl.e., the Mott insulator limit.
three types of single-particle transformations considered,
which we callsite localization cell localization andno lo-
calization (the names are after the transformed liggndr-
bitals surrounding the magnetic catignand find the best in The form of the perturbation theory used involves an ef-
each case according to the TSDA. Also in this sectibis  fective Hamiltonian. Given
calculated to high order in pt to examine its convergence
properties. In Sec. IV we carry out the particular two-body HY=EV, 2
transformation suggested by the work of Ref. 7, for the spe- . _— -
cial model they considered, as ?Ocheck; we also carry this offten the effective HamiltoniaH ¢ satisfies
for the model of Hybertsert al.~ A summary and discus- _
sion are given in Sec. V. A brief overview of the results Her(E)PW =EPY, (33
obtained can be seen by glancing at Figs. 3, 5, 7, 9, and 1@amely,
which show the nonconvergent series of “straightforward
pt,” and the rather dramatic improvement obtained in each He(E)=P{H+H[Q(E—H)Q] H!P. (3b)
of the four modifications, respectively.

B. Formal perturbation theory

Here, P=1—-Q is a projection operator which projects

Il. THE MODEL, EFFECTIVE-HAMILTONIAN onto a given subspace. The “inverse of the corn&r”

PERTURBATION THEORY, AND TSDA G(E)=[Q(E-H)Q]™* has to be understood as the matrix
with zeroes everywhere except in t@esubspace, where the
matrix is the inverse of th® projection ofE—H. Similarly,

We consider the three-band Hubbard Hamiltonisome- Q=Q™ ! is the matrix with zeroes everywhere except for the
times referred to as the Anderson lattice moded param- Q subspace, where it is the unit matrix. We choose Fhe
etrized by Hybertseet al;%1° subspace as that defined by the ground states of some chosen

A. Model Hamiltonian



15598 YEN-SHENG SU, T. A. KAPLAN, AND S. D. MAHANTI 56
unperturbed HamiltoniarH,, with eigenvalueE,. Then tors of they,’s, are taken to be real in this paperespec-
PHQ=P(Hy+V)Q=PVQ, and Eq.(3a can be rewritten tively, of the one- and two-body terms in the exact Hamil-
as tonianH, thenH, will be

P{V+VG(E)V}P¥ = SEPY, 4

VHVGEV) @ Ha= 2 00,3 0= Vi) ®)
where SE=E—E,. ExpandingG(E) in powers of SE—V, ! "
and substituting the full left-hand side of E@) for SEPY¥  which contains terms linear and quadratic in the number op-

everywhere it appears in the expansion, &).become® eratorsn, corresponding to thes,’s. (The distinction be-
tween this and thermal Hartree-Fock theory is that in the
P{Ho+V+VGV+(VGVGV—VGIVPV) + - 1 PP latter,H , is restricted to be linear in the occupation numbers,

i.e., a one-electron operatpH, turns out to be equal to the
diagonal part ofH with respect to the single-determinantal
states constructed from having the one-particle states
Mm,v, ... occupied in all possible ways. As an example, for
Go=[Q(Ey—H)Q] . the particular mode(1) the determinants with the original
Wannier functions occupied in all possible ways have ener-

Straightforward perturbation theory takes the termsiin 9i€s given by
that involve hoppingt,q andt,,) plus the exchange terms
(Hg) as the perturbatioV (and Ho=H—V). We studied Ho=g>, nP+ HU+Kpdz nd nP + Kpp > nPnf |
this perturbation theorypt) in the case of a crystdinfinite i (iho e 7
CuG, plane, where we obtained the first three terftisird, ©)
fourth, and fifth ordey for the nearest Cu-Cu exchange pa-the values of the occupation numbers being defined by the
rameter in the Heisenberg Hamiltoni#hWe also studied determinant being considered. Furthermore, stationarity of

this pt on the cluster G, using the embedding scheme £ () with respect to they,’s implies*
described in Ref. 10, and showed that the correction3 to

increase in magnitude and oscillate in sign through four-
teenth Orde?. <nV—nM>hVﬂv+; <(nv_n,t/.)n}x>(vv)\,p,}\_vv}\,)\ﬂ):01
(10)

C. TSDA where the brackets:--) mean average over the canonical
To help in choosing transformations that are to define nevensemble withH, as Hamiltonian, i.e., for any operatéy;
pt's (i.e., new choices oV), we will appeal to the TSDA (A) means
(Ref. 4 which, essentially, finds the “best” one-particle
wave functions according to the free-energy variational prin- . tr(e”AMap)
ciple (for the canonical ensemble (A)= tr(e AHa) -

—EPV, (5)

where

(11)

F(p)=tr(pH)+ B~ tr(p In p)=—pB"1In tr exp(— BH). Q pgysical interpretation of Eq(10) is presented in Appen-
6 ix A.
© It should be noted that TSDA allows localized solutions

Herep is any density operator an@™* is Boltzmann's con-  in crystals, or analogously in molecules with high symmetry,
stant times absolute temperature. Writing=Z," exp  in contrast to the thermal HF approximatib# This distinc-
(—BH,) with Z,=tr exp(— BH,), one can considet, as an  tion is important in the Mott insulators we are considering.
approximate Hamiltonian. The TSDA is defined by taking Further, the form of the localized orbitals in TSDA is dic-
H, as a general real function of the number operators fotated by the Hamiltoniaki. As far as we are aware TSDA is
some complete orthonormal set of one-particle wave functhe only variational theory in the literature with this formal
tions ¢, and then varying théunctional formof H, and the  property.
¢,’s to minimizeF. A complete set of eigenstatestdf, can It would be natural to ask here why not simply use the
be chosen as single Slater determinants with all the varioUsSDA as a variational approximation to the Hamiltonidn
subsets of they,’s occupied. It turns odtthat the best func-  of Eq. (1)? The answer is that it is known to give a poor
tion H, for a given set ofy, is simply the determinantal description of the low-energy physics when the hopping is
energy of the exact Hamiltonia# with respect to that set of very small (actually, specifically in the case of the single-
¢, . In other words, ifH is expressed with respect to an band Hubbard modglso that the low-lying energies are ac-
arbitrary complete orthonormal set of one-particle wavecurately given by the Heisenberg model. E.g., it gives a Cu-
functions ¢, as rie law susceptibility rather than the correct Curie-Weiss law

at temperatures above the antiferromagnetic transition tem-

perature, and it gives the latter about an order of magnitude

_ + 1 + At
H= VEM hyuCy Cut 2 V%K VouanCy CuClrs (1) o0 large?® Thus in the present work we an®t considering
TSDA in this way. Rather we are using it as a formal device
where the subscriptg u, . . . each label both the spatial and to help discover a one-body transformation tfapefully)

spin quantum numbers and the quantitieg andv,, , . are  Wwill lead, via a rapidly convergent perturbation theory, to the
matrix elementgwhich, by properly choosing the phase fac- proper effective Hamiltoniarit is the solution of the latter
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FIG. 2. The cluster Ci©;. The symbols at each site serve both
as labels and as orbitals.

that will determine accurately the low-energy physics of the
mode). The early success of this approach discussed in th
Introduction has motivated our present investigation.
Thus in our TSDA considerations here will be consid- order
ered as a parameter whose optimum vaBgenould ideally
give the “fastest” convergence of the perturbation expan- FIG. 3. Thenth approximation taJ vs n according to straight-
sion (5). As is apparent from the above TSDA equations, theforward perturbation theory. The horizontal line shows the exact
solution, i.e., they,’s, will depend ong,. If we take a finite  value ofJ. From Ref. 9.
number of terms in the perturbation expansias one would
do), then the resulting effective Hamiltonian will thus de-  To follow up on the ideathat an appropriate change of
pend ongB,. For thermal properties, e.g8, would then  one-electron basis states, with its consequent change in the
enter the partition functionS, exd —E.(By)/ksT] where partition of H into unperturbed and perturbed pieces, might
E.(B,) are the eigenvalues of the spin Hamiltonian dnig ~ improve the convergence, we consider the unitary linear
the physical temperature. When working within the TSDA totransformation,
find the,’s, we will think of 8~ intuitively as temperature
to help find a “good” TSDA solution, i.e., a solution that o =E A (13
gives rapid convergence of pt; in fact we will tend to con- o4 TEle
sider largeg, since the effective Hamiltonian is designed to
give the low-energy states di. (One could probably not An essential assumption we make about this transformation
explore the whole range ¢ in practice) is that it maintains localization and symmetry of thetates
One should realize that even for the small-basis-set modeind that all states should be nonmagnetic. The reason for this
of the small cluster treated below, the one-body Hilbertis that we want to maintain the property of the straightfor-
space is too large to explore completely. So one ngedse ward pt that the low-lying energies are governed by a
guide. There are alternate approaches to determining locaHeisenberg Hamiltonian with the symmetry of the nuclear
ized orbitals, widely used in quantum chemistry; see Ref. 1tructure A;; is a unitary matrix, which we take as real, since
and references contained therein and Ref. 27. These conceie assume the new Wannier functions are real. The spin
ably could be useful in the magnetism problem consideredndependence of\;; embodies the assumption that the new
here, and should probably be studied in this connection. Wannier functions are nonmagnetibey are each a product
of a spatial orbital times a spin function,or B, the spatial
lIl. ACHIEVEMENT OF CONVERGENCE orbital being the same for either spiThese properties are
VIA ONE-BODY TRANSEORMATIONS assumed of course to hold for the original Wannier func-
tions, i.e., those created by tig, .

As mentioned above, we appligt to the Hamiltonian in
the original Wannier-function representation, i.e., Ef),
where the perturbatioV incorporates all the hopping and
exchange terms anid, the rest. For the crystahn infinite We begin with our first scheme which we call site local-
CuO, plane we obtained the first three contributions to the ization, defined by the requirement that the new Wannier
nearest-neighbor exchange paramététhey occur in third, functions have the same symmetry properties as the original
fourth, and fifth ordex, with no sign of convergencd.We  ones. Referring to Fig. 2, let, and o, be reflections in the
also calculated to very high order for the embedded cluster Vertical and horizontal symmetry axes, respectively. Then
Cu,05, shown in Fig. 2, with two holes. The results of the the d states are taken to satisfy
latter work are given in Fig. 3. Plotted there is

A. Site localization

di=—o,d; (14
m
Jm = 2 J., (12) (a similar relation being assumed, of course, for the original,
n=1 unprimed, orbitals; the sign choice follows the discussion in

Sec. Il A) Similarly, we require
whereJ, is the contribution ta) (the splitting between the ) 4 q

lowest singlet and tripletfrom nth order pt. The nonconver- P / P / r_ /
gence is apparent, the result oscillating with increasing am- P2==0wPs, P3=70wPs, P1=7 0P, €
plitude about the exact valuestraight ling calculated by ) ) ) ) , ,

direct diagonalization. P2=0nPs, Ps=0nP7, P3=0nP3, etc.

tc.,
(15
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Equationg14) and(15), satisfied also by the unprimed Wan-

nier functions, define “site localization.” % ‘;; — jg‘z’ 1[5 _g‘; = _'ég 5]
One can see that these requirements plus orthonormalii — T o0 | ' S0 1 20

are not sufficient to completely determine the transformation dy p

A simple example is the three-site clustgéf—p;—d, or

Cu,0: Then the two symmetry requirements, Efi4) and =3 00 55 03

p;=—o,p;, give [ 57 1-26 [-08 | .03 | 01 ] [.52 1 .06 | 34 |-08 |-04 ]

-.27 -.00 =55 .03
d;=Ny(d;+Ady+Azp,), & 8
d=Ny(Ady+d,+A D) FIG. 4. TSDA orbitals within thesite localizationassumption—
AR NACAN R 2 2M1)»

the numbers indicate the amplitudes of the transformed orbital at

. the original orbitals(The positions of the numbers correspond to
P1=N2[B(d;+dz)+p,]. the CyOy cluster in Fig. 2.

The N; are normalization constants, determined directly inmagnetic solutions such that for every spin-up state there is a
terms of the three coefficientd; , A,, andB. Orthogonality  spjn-down state with the same spatial orbital. In the same
clearly gives two equations, leaving one independent coeffispirit, we consideK 44<B8~1<e, whereKyq is the splitting
cient. For the cluster GO;, it turns out that there are nine of the lowest levels within the single-determinantal energies
independent coefficients. It is useful to see this in detail. W¢it was 0 for the original Hamiltonian, Eq1), but as we will

can write the transformation as see later it has value of about 0.03 eV after the one-body
transformationg Unfortunately, the low temperatures of in-
d;=Nq[d;+Ady+Asp1+Az(Pat pa) +AsPs terest lead to a large disparity in the sizes of different con-
tributions to the thermal averagés,), etc., this causing
+As(Ps+ P7) +AgPel, serious numerical difficulties. An approximation has been
introduced to get rid of the exponential factors in, and thus
P1=N2[B1(d;+d;)+p1+Ba(pat patps+pr) simplify, the TSDA equations. Details of the calculation and
4B N discussion about its validity are given in Appendix B.
3(P3Fpe)l, (16) The results obtained after solving these approximate
, TSDA equations are shown in Fig. 4 which gives an idea of
P2=N3(Cyd;+Codp+ Capy+ pot Cypst Cspst CePs the “shape” of the new orbitals relative to the original ones.

The Hubbard Hamiltoniaril) is then rewritten in terms of
the new orbitals and thus the parameters in the model get
. renormalized. Note that the price to pay for the transforma-
P3=Na[D1d; + Do+ D3py+Da(PatPa)+Ps tion is mainly that the Hamiltonian, which was restricted up
to nearest-neighbor terms in Ed.), now resumes back to a
+ +p,)+ ) :

Ds(Ps+p7) + DePs] general form like Eq(7). We take together all those terms
The first two and the last forms are dictated by the horizontawhich are associated only with number operators as unper-
reflection symmetry; the remaining five primed orbitals areturbed HamiltonianH,, and the rest of the transformed
Obtained from those given here by Operating thl;] and H{_:\mlltonlan as perturbauo%?.The eXChange pal’amet_er Ob'
0. Aside from the N; there are 23 coefficients tained from the new perturbation expansion is seen in Fig. 5

A ,B;,C;,D;. One can see that there are 14 orthogonalit}lo converge(to the exact value The errors in second and
conditions, leaving nine free coefficients. fourth order are 15.4 and 15.7%, respectively.

To determine these coefficients we turn to the TSDA. For
every pair of stateg andv, there is a corresponding TSDA ) .
equation(10) to be satisfied. Since both andv are spin To see if we could do better, we considered another type
independent, the states labelecnd x in the TSDA equa- ©f symmetry assumption, namexll localization with re-
tions (10) must correspond to the same spin, each such state
also corresponding to an atomic site using the site-localize 0.15 :
orbitals defined by Eq16). It is easy to see that if two sites ANEIWAN /\v ~
are equivalent by symmetry, e.g., the two Cu sites or the twi 01 vV
O sites labeleg, and ps, then the corresponding equation
vanishes identically, giving no information. Thus the only

+C7ps+ Cgpy),

B. Cell localization

equationg10) with content are those where the sitesiand n 0-05
p are nonequivalent, e.g., a Cu and an oxygenpgips.
The number of such nonequivalent pairs which are indeper ot

dent can be seen directly to be 9, the number of free vari
ables to be determined, i.e., there is the correct number ¢
equationg10) to determine these unknowns.

Because we are looking for basis functions on which & o 2 4 6 8 10 12 14
perturbation theory will be based with the purpose of deriv- order
ing a spin Hamiltonian that will yield the low-lying energies
and magnetic properties, we look for low-temperature non- FIG. 5. Perturbation result fasite localization

-0.05
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spect to the transformeal orbitals. This was inspired by the

work of Zhang and Ric&® which also played an important 7 Y s 20— |
role in the work of Refs. 7 and 8. Instead of demanding tha — 2 T .00 | 20 |20
each newp orbital is localized at a site, we require each of dy P

them, with the exception of the centrp| to be localized

either within the cell on the leftthe d plus the fourp’s) or 3 o0l 55 03

the one on the right, maintaining a certain symmetry, analo [80 [-36 |11 [ .04 | .0/ ] [52 | .06 | .34 |-081-04 ]
gous to Egs(14) and (15). There is no distinction between 52 r -01 =33 ) 03

site andcell localizationfor the d orbitals, so they obey Eq.

(14):
FIG. 6. TSDA orbitals forcell localization

d)=—o,db. (17)
o ) o ) a crystal where the orbitals may form g band while thed
The distinction betweesite and cell localizationis seen in  grpjtals remain localized. The new orbitals are required to

the following symmetry requirements for tifeell localiza-  gatisfy the following symmetry properties:
tion) p orbitals:

di=-o0,d5, 20
pi=—o.p, pV=owpi” with i=12, ' ° -
which is the same as in the previous two cases, and
l_ _ r I(r) — _ I(r) 18
Ps=70wPs, P3 = 0nPs 18 b t=—ap . p t=owpt with i=1,2,3,

cC_— _ C c_— C‘
P=mouPn PrEonp P T=o,p T, B T=onp T with =12,

The superscripts andr stand for left and right, and for (22)

pentral. Thus, for exan_wple, rathgr thatﬂ_taking QrbiFaI plé pP- =—0o,p T, P =—opp .,

into an orthogonal orbitap, , as in thesite localization it

takesp), into itself. The explicit transformation in this case is p"T=o,p", pTT=—0owp",

d]=Ny[dy+Aydy+ Agps +Az(Pat Pa) +Asps where the first sign in the superscripts denotes the symmetry
undera, , and the second sign, the symmetry undgr The
+As(ps+ p7) +AgPsl, explicit transformations for some of the orbitals are listed

below:

p¢=B;(dy+d,) +Bypy+Bg(pat Pat ps+p7)

d;=N;[d;+Ady+Aps+Az(patpg) +A
+Ba(P3+Pe), 1= Ny[di+Asdo+ APy +As(P2+Pa) +AsPs
| +As(ps+p7) +AgPsl,
P1=C1d1+Cody+ Capy+ Cyh(p2+ps) +Csps

1 "=By(dy+d,)+Byp;+Ba(pat patpst
4+ Co(Ps-+p7)+ CoPe. (19 P1 1(d;+dy) 2P1+Bs(p2t+patps+p7)

+Ba(p3+Pe),
p|2:p|l with C; replaced byD;,
p, "(p; )=p; = with B; replaced byC(D;),

1
I _
p3—5 (P2=Pa). p; " =Ey(d;—d,) +Expy+Es(Pat psa—Ps—pr)
Following a counting similar to that done in ttséte local- +E4(P3—Pe),

ization case, one can show that, for tbell localization the
number of free coefficients after orthonormalization and the
number of independent nontrivial TSDA equations are equal A /A A
as in the previous case. ‘ \/ N

The analogous figures to tisite localizationcase for the 0.1
cell localizationare shown in Figs. 6 and 7. The errors in the
exchange parameter in second and fourth order are 15.4 a
13.6%, respectively. It shows that tleell localizationis a
slightly better choice for the perturbation calculation than the
site localization

n 0.05

-0.05

C. No localization

The third choice of the symmetry of the new orbitals is 0 2 4 6 8 10 12 14
namedno localization The term means releasing any local- order '
ization requirement on the nep orbitals (but still keeping
the newd orbitals localizegl This is analogous to the case in FIG. 7. Perturbation result farell localization
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gies from direct diagonalization of the Hamiltonian matrix,

.24 -.00 .03 .03 . .
(27 o 22 Toor Toor ] (5 Lo {76 Lo T5] —2.7738 and-2.9000 for the triplet and the singlet, respec-
24 -00 03 03 tively.
d o After transformations, all parametels, andv,, . in
the Hamiltonian get renormalized. For example, some new
T, 7] S 35 parameters resulting from the TSDA solutions are
[37 1-35 1 31 [-35 ] .37 ] [ 37 [-02 | 48 |-02 | .37 ]
31 .31 -35 -35 — — — —
ot - tgg=—0.403, Uy=6.910, U;,=0.113, Ky4=—0.029,
(23)
19 -19 43 -43 where the first, third, and fourth ones were absent in the
Leo[-27 10 [.27]-60] L33 [-3 o |3 ]33] original form of the Hamiltonian, Eq(1).
19 -19 43 43
p” oo

IV. FURTHER IMPROVEMENT

FIG. 8. TSDA orbitals fomo localization VIA TWO-BODY TRANSFORMATION

Although the TSDA guided one-body transformations did
ps "=ps* with E; replaced byF;, (22) lead to convergent perturbation expansions as we had hoped,
we were somewhat disappointed about the relatively slow
convergence rate compared to the achievement of Refs. 7

P~ =3 (P2~ PatPs—P2), and 8, in which transformation is not restricted to be one-
body. An interesting question was then asked: What is the
pt =31 (p,—Ps—Ps+p7). main factor that limits the convergence rate of one-body-

transformation-induced pt? The answer is given below and a

The transformed orbitals and the perturbation results for th&inimal two-body transformation is added to improve the
no localizationcase is shown in Figs. 8 and 9. The errors atcOnvergence rate.
second and fourth order in the exchange parandetee 15.5 Our attempt to incorporate both one- and two-body trans-
and 14.8%, respectively, not as good asdb localization ~ formations is inspired by the work of Zhang and Rites
well as Jefferson, Eskes, and Feifi@n the CuQ planes, a
cell is defined as any one copper and its four surrounding
D. Comments on the TSDA solutions oxygens atoms. Turning on the perturbatignd hopping

for the three localization choices will induce hybridization among the copperorbital and the

Because the symmetry requirements in these three choic€Xygenp orbitals. If the perturbation is small, the new orbit-
are different forp orbitals but the same fadl orbitals, and ~als would remain localized within a cell. The coppeior-
since the lowest energy states in which only dherbitals are  bital is expected, by symmetry, tmually hybridize with its
occupied dominate at lof, it turns out that the transformed four surrounding oxygeip orbitals. Let us define the sym-
d orbitals for the three localization choices are the samemetric p orbital of each cell as
After TSDA transformation, the energies of the lowest two
single-determinantal states of the half-filled ;Ou cluster S_l 2
are—2.7718 and- 2.7430(all in eV) for the spins of the two P2 = Pr.
holes, one at each transformddorbital, being parallel and
antiparallel, respectively. This can be compared with the enwhere the summation index indicates thas taken over the
ergies using the original orbitals, 0 for both parallel and an<{four) p sites in celli. It is intuitive to expect that the largest
tiparallel spin configurations, and with the exact eigenenerhybridization will occur between thd; and p;. The sym-
metric p; orbital has its analogue in ouwell localization
choice of the one-body transformation for the,Ow cluster,

0-15 ' A /\ namely,p} andp},, for the left cell and the right cell, respec-
. \//\v tively. Therefore, our following investigation is based on the
0.1 cell localizationchoice.

Because the Hamiltoniafll) conserves the total spif
and its projection on the axis S,, the Hamiltonian matrix
S elements form isolated blocks for different values Sf.
From here to the end of this section we only consider the
or S,=0 case. Through the process of the one-body transforma-
tions, the hybridization between thte and p orbitals have
20.05 actually been taken into account. Because of the expected
large hybridization between the and the symmetrip® or-
0 2 4 6 8 10 2 4 bitals, we are interested in those states which consist of only

order d; (dj) andp} (p}). Among the total 81 states for the half-
filed Cu,O; cluster(i.e., only two holes on jtwith S,=0,

FIG. 9. Perturbation result faro localization this means the states of interest are
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|diTPI11>a |dilp'm), |di,d1)), |p|1¢p|1¢>' (24) . -

and four similar states for the right cell. Hereafter we con- a o
sider only the left cell because the expressions for the righ 01 \/
cell are exactly the same. After the one-body transformation
the Hamiltonian submatrix in the basis $24) is

. 0.05

5483 —1.149 -2.239 -0.148

—1.149 5483 2.239 0.148

~2230 2239 4055 0.984 (25

—0.148 0.148 0.984 11.922 -0.05}
[row and column indices correspond to the states in(Z4). 0 2 4 6 8 10 12 14
in orderl. Two things are worth noting. First, the off- order
diagonal matrix elements are large. This is duelfand p'1
being mainly strong mixtures af; andp$. This hybridiza- FIG. 10. Perturbation result for cell localization

tion leads to large renormalized model parameters for holesne-body-minimal two-body transformation.
transfer terms(betweend; and p}) in the transformed
Hamiltonian, and thus contributes to the off-diagonal matrixone-body+minimal two-body transformation, and demon-
elements. It indicates that these four states are far from thg&rated rapid convergence to second-order pt on a model with
eigenstates and may lead to slow convergence if adopted @srestricted parameter set=3, t pd=—1, thp=—25, Uq
unperturbed states in the perturbation calculation. Seconds «, and all other parameters equal to ze(FEhe Stra|ghtf0r_
the energy of the state of double occupancy ofdhebital,  ward pt for this parameter set is divergent, joBor com-
4.055, the third diagonal element of Bg5), is dramatically  parison, we applied our method to the same parameter set.
reduced from its original value 10.5, also a result of strongThe result showed that the one-body transformation alone
hybridization. Each newd orbital contains part of the origi- fails to lead to a convergent perturbation expansion. This is
nal d orbital and part of the originap orbitals. Therefore not surprising since the renormalization iy, the double-
double occupancy in the new orbital only gains energy occupation energy atl orbitals, caused by the one-body
from a fraction of the largéoriginal) Uy, and that causes the transformation is fatal to the pt in the caseldf=. Nev-
large change of this energy level. Direct diagonalization ofertheless, we achieved precision similar to theirs after we
the Hamiltonian matrix shows that the energy levels associadded the minimal two-body transformation to the pt.
ated with double occupancy at thikorbitals remain high
(~12.7). Thus, in spite of giving good approximate low-
lying energy levels, the one-body transformation also leads
to some high-lying levels that are not at all good approxima- For simplicity, we sought one-body transformations to
tions of corresponding eigenstates, and these high-energnvert the pt from divergent to convergent in the context of
eigenstates do play an important role in the perturbatiotrongly covalent Cu@planes. Taking TSDA as a guide,
theory. In conclusion, it is the strong hybridizatiécova-  several one-body transformations were found, in theGGu
lence effect and the large on-site Coulomb energy (cor-  case, to achieve this goal, but the convergence rate in each
relation effect together that prevents a one-body transformacase was rather slow. Besides those suggested by TSDA, we
tion from generating a good approximation for the wholehave also tried some other one-body transformations, of
energy spectrum. which the best one gives errors of about 13 and 6% at
In order to take care of the above limitation, we diagonal-second- and fourth-order pt, respectively, better than the best
ize the matrix(25) and use the four resulting eigenstattte  TSDA result(cell localization where the errors at second-
two-body transformation comes in hgrelus the four coun-  and fourth-order pt are 15.4 and 13.6%lowever, the con-
terpart states for the right cell and the remaining (48-  vergence is still slow, particularly in higher order where the
changedl states, as the basis set to perform the perturbatioresults oscillate with slowly decreasing amplitude, similarly
calculation. In some sense, by this we allow relaxation in theo TSDA (see Figs. 5, 7, and)9The details of these other
intermediate states of the pt, where one hole hops into thgansformations are omitted here for the above reason and the
neighbor cell that has already been occupied by another holgact that they were obtained in a rathe hocway, not as
We call this scheme theninimal two-bodytransformation  systematically as in TSDA. A striking difference between the
where “minimal” means that, among the variopsorbitals,  bestad hoctrial and thecell localization TSDA is the fol-
only p'1 (p}) are involved in the two-body transformation. lowing. Two of the transformeg orbitals of thead hoctrial
The result is shown in Fig. 10. We have also tried including(the one with errors 13 and 6%vere deliberately guided to
p'2 (p5) in the two-body transformatio[p'3 (p5) are out of be close to the Zhang-Rice-type orbifalwhere a trans-
our consideration because they possess different symmetfgrmed orbital localized in a cell consists of four oxygen
from d; (dj)]. However, it only made a tiny change from orbltals in the cell withequalweighf). On the other hand, the
that of the minimal two-body transformation and so the re-p} andp; in thecell localizationchoice of TSDA are further
sult is omitted here. from the Zhang-Rice-type orbital, which is a result of the
In Ref. 7, Jefferson, Eskes, and Feiner described anothdow symmetry of the CyO, cluster plus the free-energy
transformation scheme that is in spirit, similar to our minimization. This suggests that being closer to the Zhang-

V. SUMMARY AND DISCUSSION
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Rice-type orbital helps the convergence. However, one cauyxymcjc{ckcﬂ and vm,mcjc{c#cx. What is different
see that this issue becomes moot whendél localization  from that of the one-body terms is that this hopping must
TSDA is applied to therystal where the fourfold symmetry occur in the presence of another particle in the orhitalso
at a Cu site holds and therefore thell localizationTSDA  keep in mind that the second term,, , ,C; ¢y C,.C, , intro-
will give the Zhang-Rice-type orbital. duces an extra minus sign in the final state from that of the

After all our considerations of one-body transformations.first term U MAC%:CACM Analogous to the case of the

. . oy . . . ' ) 14 :

we guess that we are close to their limit in connection W'thone-body terms of the Hamiltonian, for an arbitrary single-
improving convergence. If one wants to do better, two- Orgeterminantal stathlF') the expectation value of the operator
more-body transformation is probably necessary. It is thezx(vm,,m—Um,m)nxnﬂ(l—nv) gives the amplitude of the

large covalence and strong correlation in the problem thalt]opping u—v when [W) is operated on by the two-body
limits the effect of one-body transformations: a one-bodyierms of the Hamiltonian,
‘I'>

transformation designed to give some zero-order energy lev-
els accurately will likely spoil other levels, all of which enter
pt in high order. <q;2 (Vo n—Uma)MiN,(1—n,)

We then found that a minimal two-body transformation A Mo MARTEN T
dramatlcal!y |mpr0\/seq the convergence rqte. Only trans- :<\I,,|H'[,wo-bod)J"P>v (A3)
formed d;-like and p;-like orbitals are essential to be taken

into account in extracting the Hamiltonian submatrix to solve ,
for “good” two-particle basis states. In comparison, ourWherthWO-bOdy denotes the two-body terms &f—H, and

cell-localization one-bodyminimal two-body transforma- !\I’P h;s the same meaning als in E41); and cofrresrﬁ)ond—
tion scheme achieves simildhigh) precision by second- 'M9Y: h”(vV.Nﬂ”_UV“‘ﬁ)né‘.?fV( —n,,) accounts for the re-
order pt as obtained in the work of Ref. 7. verse hopping/— . The difference,
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APPENDIX A: A PHYSICAL INTERPRETATION

OF THE TSDA EQUATIONS _ 2}\: (U pn =V )M (M=), (Ad)

In the one-body terms of the Hamiltoniahwcjcu(v

# u) is the so-called hopping term that causes a particle . . i
initially in the one-particle statg to hop to the one-particle 's defined as the net hopping—x due to the two-body

state, provided the one-particle stateis empty initially. terms of the Hamiltonian. Then it is natural that the total net

Therefore, for an arbitrary single-determinantal stdtg the hopping operator is
expectation value of the operatbr,,n,(1—n,) gives the
amplitude of the hopping.— » when|W¥) is operated on by h n4+ _ _
the hopping terms of the Hamiltonian; i.e., M=) ; @ =0 M),

(A5)

(¥lh (1=n )| ¥)=(¥'|H oy ¥), (A1)

ol

o which is just the left-hand side of the TSDA equatidi®)
without the thermal average acting on it. Thus we get another
view of TSDA; namely, the solutions of TSDA give zero

H1-boay=(H —Ha)1-poay= > haBCZCB thermal average of the net hopping operdgmgain, note that
atp here the thermal averages are not with respect to the exact

and|¥') is the single-determinantal state that differs from HamiltonianH but to the approximatiot,).

|W) by replacing, if there is any, the one-particle statén

|\I’> with the one-particle state. For the same reason, the APPENDIX B: SOLVING THE TSDA EQUATIONS

operatorh,,n,(1—n,) (note thath,,=h,, are assumed to

be real herkcorresponds to the reverse hopping: u. The Since the use of the TSDA in the present context is not
difference between these two operators, commonly seen, we present the details to aid in further pur-

suit of the matter. The numerical difficulty mentioned in the
h,.n,(1-n,)—h,n,(1-n,)=h,(n,—n,), (A2) textand its significance are discussed in this section. In the
. . . following, we considersite localizationas an example to
reflects, in some sense, the “net” hopping- ... Therefore, explain the difficulty and show how we circumvent it.

we define it as the net hopping operator due to the one-body 1o Tspa equations arkEq. (10) of the texd
terms of the Hamiltonian. ’

Now, let us turn to the two-body terms of the Hamil-
tonian. The analogous hopping terms which cause a particle ;, _, yq 4+ n.—nymMo —v -0
in the one-particle state to hop to another one-particle state (M=, )hy, 2 (M= )M = Vi)
v while other particles in the system do not move are (B1)

where
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for any pair of orbitals labeled,x. The thermal average (np.g>“=‘0 for all i=1...7 ando=1,]. (B6)
bracket,(:--), is defined as, for any operatéx, '
Because the TSDA equations for the last four pairs of Eq.

o S (N, | AHaAl N, ) (B5) only involve the thermal averagés,, ;) and(n, ,N,),

(A)y= tr(e”PMap) _ s e their numerical values for the left-hand side of EB3) are
tr(e”#Ha) _BH ' very small. This causes difficulty in solving numerically the

2 (N fe e N ) nine simultaneous TSDA equations resulting from EBp)

(B2) since the computer program may only “see” the first five
equations of Eq(B5) and regard the last four as having been
€olved. To circumvent this problem, we keep only the lead-
ing terms in the thermal averages, substitute them into the

SDA equations, and then extract the limiting forms of the
equations in the larg@ regime, as shown below.

The lowest energy group of the half-filled & cluster is

the set of four single determinants,

subscripts in Eq(B1) label both the spatial and spin quan-
tum numbers of the one-particle states. In the Hubbar
model, the one-body and two-body matrix elemehts, and
Uyunk, Preserve spiti.e., h,,=h;,;,, =0 if o#o’; simi-
larly v, \«=Vigjsko1s'=0 if o# 0" ors#s’) and are spin
independent(i.e., hi, ;,=h;;; similarly, vjgjs ks1s=0ij kI)-
So the TSDA equations in this case can be written in the W (dyo,dy0), (B7)

following form:
where o and ¢’ are either] or |. The next three higher-
energy groups are
<nia_nja>hij+2, ((Ni=Nj)Nie ) Wik, jk ™ O Vi k)
ko 1. ¥(d,o,p0'), W(dyo,pio’),

=0 (B3)
2. ¥(dyo,poo’), W(dyo,pso’),
for any pair of spin orbitals);, and ¢;,. In the larges (d20p20") (d20Pacr’) (B8)
regime in which we are interested, the exponential factors in W(dyo,psc’), W(dio,pio’)

the thermal averages of the number operators in (B§)
cause numerical difficulty and need special treatment. p ,
In viewing the diagram of the GO, cluster(Fig. 2), it is 3. W(dao,pge’),  W(d10,peor’).
apparent that all the orbitals can be divided into four groupsfwe do not know the energy order of the three groups in Eq.
o , S . (B8) before we solve the TSDA equatioh§.o circumvent
(d1.d2), (P1), (P2.P4.Ps5.P7), (P3.Ps)- (B4)  the numerical difficulty mentioned above, we make two as-

. . . 71 . . . .
Each orbital is said to be equivalent by symmetry to anys#mpr)]tlons labouﬁ. (I)hﬁ IS suff|c_:|e|ntly_lor\]/v SUCh thatlln
other orbital in the same group. Because no original orbita] '€ thermal average the exponential weight due to a lower-

(unprimed will occur in this discussion, the prime on the energy group numerically _pverwhelms the we_|ght§1qlue to
new orbitals will be suppressed hereafter for brevity. Byothgr_hlgher-_energy groupéi) But at the same timg 1S
symmetry requirements, it is easy to see that(B@) for any sufficiently high such that the parallel-gnﬂparallel spl!ttmgs
pair of orbitals is automatically satisfied if the two orbitals of &€ t0 be neglected and average energesr four possible
this pair are in the same group. These trivial equations givéPin configurationsare to be used in substitution of real
us no information in determining the new orbitals. Further,'mj'v'du""I energies. For e>l<ample, defifi¢d, 0, p,0”) as the
careful counting shows that, among those remaining non€n€rgy of S’tateIf(dla,plo' ) andE(d,p,) as the average of
trivial TSDA equations, there are precisely nine independent(d10,P10") over the four possible spin configurations,
equations; they are the TSDA equations for the pairs

(diT,p1T),  (diT,p2T), (diT,psT),
(diT,psT),  (diT,pel),  (P1T.P2T),

(P1T:p3T),  (P2T,P3T), (P2T.PeT). (B5)

(The corresponding equations for the down-spin pairs are
identical to these.If B! is far below the transfer energy Because there is essentially no energy resolution among the
ep— €4 but much larger than the parallel-antiparallel splitting different spin configurations by our assumption, we are to
of the underlying states, i.eKdd<,3*1<sp—sd, then the replaceE(d,o,p,0’) with E(d;p4) in our calculation. The
states that have one hole in each of the dCorbitals will energies of other states are similarly treated. We will come
dominate the thermal averages and the weights they contripack to our assumption abogtiater. Some thermal averages
ute to the thermal average are essentially equal no matt@f the number operators are listed below as examples:

what their spin configurations are. For the,Owu cluster this
means

E(dipy) =32 E(dyo,ps0”)

1 _
_42 (hd1d1+hplpl+vd1p1,d1p1 500’Ud1p1,p1d1)

’
oo

_ 1
_hd1d1+hplpl+vd1p1’d1p1 2Ud;p;.pydy- (B9)

(ng a>5; (e~ PE(G10.d21) | o= BE(d10.0;1)y
1

1
<nle>: <nd1l>:<ndZT> :<ndzl>E E E2<ndl¢rndz(r’>E %,
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1
<nP10>E o (e~ PE(P1.011) 4 g~ BE(P1odil) 4 o= BE(Pyodal) ((ndﬁ _<nP1T>)hd1P1+ kE (<nlenkU> - <nplTnko>)
e

—BE d ~ ~
+e AEPLY Zl))=4<npland10’>=0’ X(Udlk,plk_ 8Tovd1k,kp1):0

1_ _
(n, >E% (e PE(Paridal) 4 @~ FEM2r ) =2(n ny ) =(3—0)hg p, +((Ng,1Ng,;)—0)
27 207 U0

=0 X (Vayd,.pyd, Vo, dypy) + (N, 1Na,1) —0)

1 X (Vdyd, pyd,) =0
=~ _ (@~ BE(p3o.dal) —BE(p3o,dal)y =~
<np30)_ Z (e 30.027) + @ 30,0y )_2<np30_nd2‘,,) :>hd1pl+(vdld2‘pld2_ %vdldzvdzpl)zo'
=0, (B10)

whereZ denotes the partition function. The TSDA equation 1€ TSDA equations for the second to fifth pairs in E&f)
for the pair @,7,p;1), therefore, reduces approximately to a &€ Similar in form to that ford,1,p,T). Now we examine
simple form in our assumegd regime: the TSDA equation for the sixth paip(T,p.T):

(<np1T>_<np2T>)hplp2+% ((Np1Mke) = (M, 1 ko)) (U k pok ™ O16V pkikp,) = O
= ((Np, 1) = (Np ) Npp, + (N N4, 1) =0) (VU a, pyd, ~Upydy dyp,) T ((Np 1Ny 1) = 0) (U, d, p,d,) + ((Np 1 Nap)
= (Np, N1 ) (Vpdy pody =™ Vpydy.dypy) T ((Np 1Ny ) = (Np,iNa, 1) (V. p,d,) =0
=(2(Np1Nd,0) = Np,1Netyo)) Ny, + (M 1N ) (U ) pydy — 2Upyd, dypy)
+((Np,1Nd o) = (Mp, 1Ny (U d, oy~ 2 Upyd,.dopy) = Os

where in the last expressiod,c can be eitherd,7, d;|, d,T, or d,|. If E(p;d;)<E(p,d,), then <nP1Tnd10>
><np2Tnd20> by the former assumption abogtand the previous equation reduces to

_1 _1 =0-
2hplp2+(vpldl,p2dl vald1'd192)+(vpld2vpzd2 2Upld2,d2p2) 0;

on the other hand, iE(p,d;)>E(p,d,), then(n, Ny ,)<(NpNg,,) and the equation reduces to

_1 —
hP1P2+(vpld2'F’2d2 2Upld2,d2p2) 0.

The limiting forms of the TSDA equations for the seventh to ninth pairs in(Bf) can be obtained in a manner similar to that
for (p17,p-T). All nine equations are summarized below:

(a9 1):Nap,+ (Vasa, g, ~ $0,0,.0,5) =0 for i=1,23,56,
(P11,P21):2hp p,+ (Vp.d; pyd, — 2Vpydy dypy) T (Vpdy.pody— 2Upyd,.dop,) =0 if E(P1di) <E(p2dy),
hp,p,+ (Vp,d,y pd, ™ 2Vpydy dpp,) =0 if E(P1d1)>E(poda),
(P11,Pa1):2hp p.+ (Vp,d, pad, — 2Vpydy dypa) T (Vpdy.pady ™ 2Upyd,.dpy) =0 if E(P1di) <E(psdy),
Np,pat (Vpydy.pady ™ 2Up0,.dp,) =0 if E(P1d1)>E(psdy),
(P21,P31): N0, (Vp,d, pad,— 30 p,d,.dyps) =05
(P21,P61): N0 (Vpd,.pedy— 2Vpydydppg) =0 if E(P2d2) <E(psdy),

hp2p6+(vp2d1,p6dl_%Upzdl,dlpe)zo if E(pody)>E(pszdy). (B1y
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There are 3+6 possible orderings of the energies K(d;d,) K(p.d;) K(p.d,) K(psd,)
E(p,d1),E(p2d;),E(p3d;). For each possible order, we 0.0288 0.7605 0.0097 0.0823
solve Eqs(B11) and then check the consistency of the solu-

tions with their respective presumed energy order. Those that (B13)

are not self-consistent are, of course, dropped. Although th@\lote that the second one is big becauseghandd, are
forms of the Eqs(B11) are pretty simple, the transformed nearest neighbors to each other so that they are from strong
parameters,,, andv,,, in Eq. (B11) are each a polyno-  hypridization of the originap, andd,, and that strong hy-
mial function of the transformation coefficients defined in pidization also leads to big exchange energy between the
Eq. (16) .of order 2 anq 4, respectively. Therefore, .there iN-new p, andd, orbitals) So 3~ must be much larger than
deed exist many solutions. We solved E811) numerically. 76 for the neglect of parallel-antiparallel splittings to be
By varying the starting point and length of searching Stepslegitimate. An inconsistency thus occurs.
we got several solutions of EB11). These solutions were  “\ye have two reasons to believe that this inconsistency
examined by comparing their resulting TSDA free energiegjoes no harm to our work here. First, in addition to what we
and also by cross checking with the solutions obtained in th‘f:')resented so fafwhich we call the average caseve have
cell localizationandno localizationcases to confirm that the  ygne the same calculation on two artificial cases: one is to
real TSDA solution(which means the one which, within the 4oq me the spins of the two particles in the@ucluster can
single-determinantal and the particular Iocalization-choicq)my be parallel and the other, antiparallel. As a matter of
framework, gives the lowest free enefdyas been found and 50t the parallel case is not really artificial because it is
identified. It turns ouE(p,d;) <E(p1di) <E(psdy) forthe  gyxactly the limiting situation wherg*—0. (Note that a
real TSDA solution. _ o state with a pair of spin-parallel particles is always lower in
Now we examine the consistency of the solution with ourgnergy than its antiparallel counterpart by an amount of the
assumption aboys, which was made to simplify the TSDA exchange energl¢ between these two particles. When'*
equations and therefore circqmvent the numerical difficu!ty it sufficiently low, the parallel states will dominate the ther-
Ieads to. Based on the solution, we calculate the_ energies @ha| averagé.At first glance, the inconsistency suggests that
various states. The average energsr four possible spin e shouldn't assumg ™ is sufficiently high and neglect the
configurations of the first four lowest-energy groups, i-e., parajlel-antiparallel splittings. It turns out that the TSDA so-
those of Eqs(B7) and (B8), are lution of the average case is somewhere between the TSDA
solutions of the parallel and antiparallel cases, and, more
importantly, they only slightly differ from each othefhis
E(d1d>) E(pady) E(p2dy) E(psd2)  suggests that the solution we obtained is close to the solution
—2.75742 3.80976 3.40425 4.6475 one might get by solving the exactunsimplified TSDA
equations(for 8~ 1<0.41). Second, the average case itself
can also be viewed as the exact calculation for another arti-
(B12)  figjal case, namely, a system that has no spin degrees of
The smallest energy gap among the above four groups iseedom and has the average energies as the energies of its
between the second and the third ones, which is about 0.4levels. Our purpose is to seek a definite guideline that can
For our assumption to be right, thg 1 must be well below lead us to a good transformation on the basis set such that the
0.41 to make a lower-energy group numerically overwhelmperturbation converges rapidly. So the model that we use to
other higher-energy groups in contributing the weight inderive the transformation may be closely related to the sys-
thermal average. However, the parallel-antiparallel splittingstem of interest, but it does not have to be the same. Also,
which we have neglected in order to replace the energy ofecall that3~! here is rather a parameter than a physical
every state of a group with the average energy of that grougemperature. Therefore, the inconsistency is not really our
for the four groups in Eq(B12) are concern as long as we can obtain a suitable transformation.
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