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Small-bandwidth perturbation theory for highly covalent Mott insulators

Yen-Sheng Su, T. A. Kaplan, and S. D. Mahanti
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University,

East Lansing, Michigan 48824
~Received 13 June 1997!

Calculation of the elastic neutron scattering form factor by an essentially standard approach has given results
that disagree seriously with experiment on La2NiO4. This has motivated us to look for a more fundamental
approach to such a calculation~in Mott insulators!. We have begun by considering perturbation approaches in
the context of the three-band Hubbard model of cuprate CuO2 planes due to Hybertsenet al.This was recently
shown, for a small cluster, to have a straightforward small-bandwidth perturbation expansion of the Heisenberg
exchange parameterJ that isnonconvergent. We study the roles of one-body and two-body transformations on
the basis set of states in converting nonconvergent many-body perturbation expansions into convergent ones.
We choose the one-body transformations guided by the thermal single determinant approximation~TSDA!, a
variational generalization of the thermal Hartree-Fock approximation. All transformations preserve ‘‘localiza-
tion’’ of copper d orbitals, and thus lead to low-lying states governed by a Heisenberg spin Hamiltonian, in
leading order, provided the perturbation theory is convergent. We find the one-body transformations do make
the perturbation expansion converge, although rather slowly; addition of two-body transformations gives
significant improvement in the convergence rate. The reason for the limitation of the one-body transformation
is given.@S0163-1829~97!02548-4#
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I. INTRODUCTION

The question of how to set up a perturbation theory
Mott insulators like NiO, KNiF3, Fe2O3, was considered in
1959 by Anderson.1 The object was to take advantage of t
obviously localized property of the magnetic electrons
construct the theory, where the interatomic overlap of loc
ized orbitals is treated as the small parameter. Such a th
leads to low-lying states that are governed by the Heisenb
spin Hamiltonian, in leading order. At the time, it was know
that most of the low-temperature properties of these ma
als could be understood on the basis of such a Hamilton

Anderson, on considering how to determine the localiz
orbitals, stated that there exist ‘‘exact’’ localized orbitals~or-
thogonal, and thus called Wannier functions!, which will
make the perturbation theory converge well. These orbi
were required to be nonmagnetic~spin-up and down orbitals
the same!, as is natural, since the magnetic properties wer
be derived from the spin Hamiltonian resulting from the p
turbation theory~pt!. Anderson gave an explicit prescriptio
namely Wannier functions derived from Hartree-Fock the
in which the spins of the magnetic ions were all parallel
was noted some time later2 that there was an inconsistenc
with this, since Hartree-Fock eigenstates with up and do
spins differ in such a situation.3 An alternative approach wa
studied2 based on the so-called thermal single determin
approximation~TSDA!,4 a variational generalization of ther
mal Hartree-Fock theory. Solving this TSDA for nonma
netic localized solutions at sufficiently low temperatu
amounted to minimizing the mean determinantal energy,
eraged over all spin configurations of the magnetic ions,
approach adopted by Gondaira and Tanabe.5 It was shown
for a small cluster model2,5 which we can call H-He-H
~hydrogen-helium-hydrogen! and for a one-dimensional~1D!
crystal model2 ~the corresponding H-He chain! that this
560163-1829/97/56~24!/15596~13!/$10.00
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TSDA choice indeed improved, quite dramatically, the co
vergence rate of perturbation theory for the Heisenberg
change parameterJ, through fourth order in the H-He over
lap.

The overlap, or more precisely, the amplitude for catio
anion hopping, is small in the highly ionic materials cons
ered at the time, e.g., NiO, KNiF3, so the pt was expected t
converge rapidly. For this reason higher order perturbati
were not investigated.2 However, materials that have recent
become of interest in connection with high-temperature
perconductivity, namely the cuprates and the rela
La2NiO4, are thought to be much more covalent. Doub
about the validity of perturbation theory in this connectio
specifically for the three-band Hubbard model of a Cu2
plane ~Fig. 1!, have been expressed.6–8 And, in fact, it has
recently been shown9 that straightforward perturbation
theory doesnot converge, specifically for the version of th
three-band model due to Hybertsenet al.,6 which is rather
realistic for many physical observables,10 and is quite similar
to other versions of the three-band model.11–14

Clearly then it is of interest to try the TSDA approach

FIG. 1. CuO2 plane.
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56 15 597SMALL-BANDWIDTH PERTURBATION THEORY FOR . . .
find new localized orbitals, and to test the implied new p
turbation expansion for convergence. In fact, the question
convergence of pt within the three-band model has b
addressed,7,8 and rapid convergence of a new pt was claim
But the transformation in these works involved both one- a
two-body transformations.~Finding new localized orbitals is
a one-body transformation.! It is important to understand
how far one can go with the one-body transformation alo
because of its relative conceptual simplicity and its histori
interest. This is the purpose of the present paper.

We have been motivated to explore these questions
difficulties we have run into in connection with calculatin
the ground-state spin density in the cuprates a
La2NiO4.

15,16 The type of perturbation theory discuss
above, which in effectseparates the spin and space (
charge) degrees of freedom, might be the only hope a
present of making tractableab initio calculations of this ob-
servable. This is due to the fact that the reduction of
ordered spin due to zero-point or quantum spin fluctuati
~QSF’s!, which is large in these cases, constitutes amacro-
scopic correlation effect. That is,~i! in principle, it requires
the thermodynamic limit for its very existence, and therefo
one needs very large systems to estimate the QSF,17 and~ii !
the wave function representing such a state requires a li
combination of many Slater determinants. Thus, even w
the remarkable advances in computational many-body p
ics ~e.g., Refs. 18 and 19!, the present problem is still beyon
the reach of those approaches. Also standard band-theo
approaches fail to capture essential physics@the local-spin-
density approximation misses the antiferromagnetism and
sulating property of La2CuO4,

20 and the Hartree-Fock
method~unrestricted! misses the QSF#.

Since the work reported here involves calculations o
for a small cluster, the spin density of a crystal cannot
addressed~the spin density in a finite cluster with an eve
number of electrons is zero, since the ground state is a
glet!. Instead we will be investigating the Heisenberg e
change parameterJ as an indicator of convergence of th
perturbation expansions. In Sec. II we define the Ham
tonian to be considered, review effective-Hamiltonian pert
bation theory, and the TSDA. In Sec. III we describe t
three types of single-particle transformations consider
which we callsite localization, cell localization, andno lo-
calization ~the names are after the transformed ligandp or-
bitals surrounding the magnetic cations!, and find the best in
each case according to the TSDA. Also in this section,J is
calculated to high order in pt to examine its convergen
properties. In Sec. IV we carry out the particular two-bo
transformation suggested by the work of Ref. 7, for the s
cial model they considered, as a check; we also carry this
for the model of Hybertsenet al.10 A summary and discus
sion are given in Sec. V. A brief overview of the resu
obtained can be seen by glancing at Figs. 3, 5, 7, 9, and
which show the nonconvergent series of ‘‘straightforwa
pt,’’ and the rather dramatic improvement obtained in ea
of the four modifications, respectively.

II. THE MODEL, EFFECTIVE-HAMILTONIAN
PERTURBATION THEORY, AND TSDA

A. Model Hamiltonian

We consider the three-band Hubbard Hamiltonian~some-
times referred to as the Anderson lattice model! as param-
etrized by Hybertsenet al.:6,10
-
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H5H11HU1HK , ~1a!

where

H15«(
i

ni
p1tpd(

^ i l &s
~cis

d1cls
p 1H.c.!

1tpp (
^ l l 8&s

~cls
p1cl 8s

p
1H.c.!, ~1b!

HU5Ud(
i

ni↑
d ni↓

d 1Up(
l

nl↑
p nl↓

p 1Upd(̂
i l &

ni
dnl

p , ~1c!

and

HK5Kpd (
^ i l &ss8

cis
d1cis8

d cls8
p1cls

p

1Kpp (
^ l l 8&ss8

cls
p1cls8

p cl 8s8
p1 cl 8s

p . ~1d!

cis
n1 creates a hole in a Wannier functionwn i of typen at site

i with spin s, ni
n5(snis

n , nis
n 5cis

n1cis
n . The orbital at a

copper site isdx22y2; at each oxygen site there is onep
orbital. The parameter values are«53.6, tpd521.3, tpp5
20.65, Ud510.5, Up54, Upd51.2, Kpd520.18, Kpp5
20.04, all in eV.21 @Note that for the convenience of havin
the d-p hopping parameters all the same, and similarly
the p-p hopping, as in Eq.~1b!, one has to set up the unde
lying Wannier functions in the way that they may chan
signs under the crystal or cluster symmetry. The signs co
sponding to orbital phases are chosen as follows: ifdx22y2

exists at a particular Cu, then at the O’s immediately to
right and left~along thex axis! the orbitals arepx and2px ,
respectively; similarly, the orbitals at the nearest O’s bel
and above arepy and 2py , respectively. The remaining
phases are determined by having the nearest-neighbord-p
overlap always negative.# We limit ourselves to the cas
where the number of holes equals the number of Cu si
i.e., the Mott insulator limit.

B. Formal perturbation theory

The form of the perturbation theory used involves an
fective Hamiltonian. Given

HC5EC, ~2!

then the effective HamiltonianHeff satisfies

Heff~E!PC5EPC, ~3a!

namely,

Heff~E!5P$H1H@Q~E2H !Q#21H%P. ~3b!

Here, P512Q is a projection operator which projectsC
onto a given subspace. The ‘‘inverse of the corner’’22

G(E)[@Q(E2H)Q#21 has to be understood as the matr
with zeroes everywhere except in theQ subspace, where th
matrix is the inverse of theQ projection ofE2H. Similarly,
Q[Q21 is the matrix with zeroes everywhere except for t
Q subspace, where it is the unit matrix. We choose theP
subspace as that defined by the ground states of some ch
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unperturbed HamiltonianH0 , with eigenvalueE0 . Then
PHQ5P(H01V)Q5PVQ, and Eq.~3a! can be rewritten
as

P$V1VG~E!V%PC5dEPC, ~4!

wheredE5E2E0 . ExpandingG(E) in powers ofdE2V,
and substituting the full left-hand side of Eq.~4! for dEPC
everywhere it appears in the expansion, Eq.~4! becomes23

P$H01V1VG0V1~VG0VG0V2VG0
2VPV!1•••%PC

5EPC, ~5!

where

G05@Q~E02H0!Q#21.

Straightforward perturbation theory takes the terms inH
that involve hopping~tpd and tpp! plus the exchange term
(HK) as the perturbationV ~and H05H2V!. We studied9

this perturbation theory~pt! in the case of a crystal~infinite
CuO2 plane!, where we obtained the first three terms~third,
fourth, and fifth order! for the nearest Cu-Cu exchange p
rameter in the Heisenberg Hamiltonian.24 We also studied
this pt on the cluster Cu2O7, using the embedding schem
described in Ref. 10, and showed that the corrections tJ
increase in magnitude and oscillate in sign through fo
teenth order.9

C. TSDA

To help in choosing transformations that are to define n
pt’s ~i.e., new choices ofV!, we will appeal to the TSDA
~Ref. 4! which, essentially, finds the ‘‘best’’ one-particl
wave functions according to the free-energy variational p
ciple ~for the canonical ensemble!,

F~r![tr~rH !1b21 tr~r ln r!>2b21 ln tr exp~2bH !.
~6!

Herer is any density operator andb21 is Boltzmann’s con-
stant times absolute temperature. Writingr5Za

21 exp
(2bHa) with Za5tr exp(2bHa), one can considerHa as an
approximate Hamiltonian. The TSDA is defined by taki
Ha as a general real function of the number operators
some complete orthonormal set of one-particle wave fu
tions cn and then varying thefunctional formof Ha and the
cn’s to minimizeF. A complete set of eigenstates ofHa can
be chosen as single Slater determinants with all the var
subsets of thecn’s occupied. It turns out4 that the best func-
tion Ha for a given set ofcn is simply the determinanta
energy of the exact HamiltonianH with respect to that set o
cn . In other words, ifH is expressed with respect to a
arbitrary complete orthonormal set of one-particle wa
functionscn as

H5(
nm

hnmcn
1cm1 1

2 (
nmlk

vnm,lkcn
1cm

1ckcl , ~7!

where the subscriptsn,m, . . . each label both the spatial an
spin quantum numbers and the quantitieshnm andvnm,lk are
matrix elements~which, by properly choosing the phase fa
-

w

-

r
-

us

e

tors of thecn’s, are taken to be real in this paper!, respec-
tively, of the one- and two-body terms in the exact Ham
tonianH, thenHa will be

Ha5(
n

hnnnn1 1
2 (

nm
~vnm,nm2vnm,mn!nnnm , ~8!

which contains terms linear and quadratic in the number
eratorsnn corresponding to thecn’s. ~The distinction be-
tween this and thermal Hartree-Fock theory is that in
latter,Ha is restricted to be linear in the occupation numbe
i.e., a one-electron operator.! Ha turns out to be equal to the
diagonal part ofH with respect to the single-determinant
states constructed from having the one-particle sta
m,n, . . . occupied in all possible ways. As an example, f
the particular model~1! the determinants with the origina
Wannier functions occupied in all possible ways have en
gies given by

Ha5«(
i

ni
p1HU1Kpd(

^ i l &s
nis

d nls
p 1Kpp (

^ l l 8&s
nls

p nl 8s
p ,

~9!

the values of the occupation numbers being defined by
determinant being considered. Furthermore, stationarity
F(r) with respect to thecn’s implies4

^nn2nm&hnm1(
l

^~nn2nm!nl&~vnl,ml2vnl,lm!50,

~10!

where the bracketŝ•••& mean average over the canonic
ensemble withHa as Hamiltonian, i.e., for any operatorA,
^A& means

^A&[
tr~e2bHaA!

tr~e2bHa!
. ~11!

A physical interpretation of Eq.~10! is presented in Appen
dix A.

It should be noted that TSDA allows localized solutio
in crystals, or analogously in molecules with high symmet
in contrast to the thermal HF approximation.4,25 This distinc-
tion is important in the Mott insulators we are considerin
Further, the form of the localized orbitals in TSDA is dic
tated by the HamiltonianH. As far as we are aware TSDA i
the only variational theory in the literature with this form
property.

It would be natural to ask here why not simply use t
TSDA as a variational approximation to the HamiltonianH
of Eq. ~1!? The answer is that it is known to give a po
description of the low-energy physics when the hopping
very small ~actually, specifically in the case of the singl
band Hubbard model!, so that the low-lying energies are a
curately given by the Heisenberg model. E.g., it gives a C
rie law susceptibility rather than the correct Curie-Weiss l
at temperatures above the antiferromagnetic transition t
perature, and it gives the latter about an order of magnit
too large.26 Thus in the present work we arenot considering
TSDA in this way. Rather we are using it as a formal dev
to help discover a one-body transformation that~hopefully!
will lead, via a rapidly convergent perturbation theory, to t
proper effective Hamiltonian~it is the solution of the latter
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that will determine accurately the low-energy physics of
model!. The early success of this approach discussed in
Introduction has motivated our present investigation.

Thus in our TSDA considerations here,b will be consid-
ered as a parameter whose optimum valueb0 would ideally
give the ‘‘fastest’’ convergence of the perturbation expa
sion ~5!. As is apparent from the above TSDA equations,
solution, i.e., thecn’s, will depend onb0 . If we take a finite
number of terms in the perturbation expansion~as one would
do!, then the resulting effective Hamiltonian will thus d
pend onb0 . For thermal properties, e.g.,b0 would then
enter the partition functionSn exp@2En(b0)/kBT# where
En(b0) are the eigenvalues of the spin Hamiltonian andT is
the physical temperature. When working within the TSDA
find thecn’s, we will think of b21 intuitively as temperature
to help find a ‘‘good’’ TSDA solution, i.e., a solution tha
gives rapid convergence of pt; in fact we will tend to co
sider largeb, since the effective Hamiltonian is designed
give the low-energy states ofH. ~One could probably no
explore the whole range ofb in practice.!

One should realize that even for the small-basis-set mo
of the small cluster treated below, the one-body Hilb
space is too large to explore completely. So one needssome
guide. There are alternate approaches to determining lo
ized orbitals, widely used in quantum chemistry; see Ref.
and references contained therein and Ref. 27. These con
ably could be useful in the magnetism problem conside
here, and should probably be studied in this connection.

III. ACHIEVEMENT OF CONVERGENCE
VIA ONE-BODY TRANSFORMATIONS

As mentioned above, we applied9 pt to the Hamiltonian in
the original Wannier-function representation, i.e., Eq.~1!,
where the perturbationV incorporates all the hopping an
exchange terms andH0 the rest. For the crystal~an infinite
CuO2 plane! we obtained the first three contributions to t
nearest-neighbor exchange parameterJ ~they occur in third,
fourth, and fifth order!, with no sign of convergence.28 We
also calculatedJ to very high order for the embedded clust
Cu2O7, shown in Fig. 2, with two holes. The results of th
latter work are given in Fig. 3. Plotted there is

J~m!5 (
n51

m

Jn , ~12!

whereJn is the contribution toJ ~the splitting between the
lowest singlet and triplet! from nth order pt. The nonconver
gence is apparent, the result oscillating with increasing a
plitude about the exact value~straight line! calculated by
direct diagonalization.

FIG. 2. The cluster Cu2O7. The symbols at each site serve bo
as labels and as orbitals.
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To follow up on the idea1 that an appropriate change o
one-electron basis states, with its consequent change in
partition of H into unperturbed and perturbed pieces, mig
improve the convergence, we consider the unitary lin
transformation,

cis8 5(
j

Ai j cj s . ~13!

An essential assumption we make about this transforma
is that it maintains localization and symmetry of thed states
and that all states should be nonmagnetic. The reason for
is that we want to maintain the property of the straightfo
ward pt that the low-lying energies are governed by
Heisenberg Hamiltonian with the symmetry of the nucle
structure.Ai j is a unitary matrix, which we take as real, sin
we assume the new Wannier functions are real. The s
independence ofAi j embodies the assumption that the ne
Wannier functions are nonmagnetic~they are each a produc
of a spatial orbital times a spin function,a or b, the spatial
orbital being the same for either spin!. These properties are
assumed of course to hold for the original Wannier fun
tions, i.e., those created by thecis

1 .

A. Site localization

We begin with our first scheme which we call site loca
ization, defined by the requirement that the new Wann
functions have the same symmetry properties as the orig
ones. Referring to Fig. 2, letsv andsh be reflections in the
vertical and horizontal symmetry axes, respectively. Th
the d states are taken to satisfy

d1852svd28 ~14!

~a similar relation being assumed, of course, for the origin
unprimed, orbitals; the sign choice follows the discussion
Sec. II A.! Similarly, we require

p2852svp58 , p3852svp68 , p1852svp18 , etc.,
~15!

p285shp48 , p585shp78 , p385shp38 , etc.

FIG. 3. Thenth approximation toJ vs n according to straight-
forward perturbation theory. The horizontal line shows the ex
value ofJ. From Ref. 9.
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Equations~14! and~15!, satisfied also by the unprimed Wan
nier functions, define ‘‘site localization.’’

One can see that these requirements plus orthonorm
are not sufficient to completely determine the transformati
A simple example is the three-site clusterd12p12d2 or
Cu2O: Then the two symmetry requirements, Eq.~14! and
p1852svp18 , give

d185N1~d11A1d21A2p1!,

d285N1~A1d11d21A2p1!,

p185N2@B~d11d2!1p1#.

The Ni are normalization constants, determined directly
terms of the three coefficients,A1 , A2 , andB. Orthogonality
clearly gives two equations, leaving one independent coe
cient. For the cluster Cu2O7, it turns out that there are nin
independent coefficients. It is useful to see this in detail.
can write the transformation as

d185N1@d11A1d21A2p11A3~p21p4!1A4p3

1A5~p51p7!1A6p6#,

p185N2@B1~d11d2!1p11B2~p21p41p51p7!

1B3~p31p6!#,
~16!

p285N3~C1d11C2d21C3p11p21C4p31C5p41C6p5

1C7p61C8p7!,

p385N4@D1d11D2d21D3p11D4~p21p4!1p3

1D5~p51p7!1D6p6#.

The first two and the last forms are dictated by the horizon
reflection symmetry; the remaining five primed orbitals a
obtained from those given here by operating withsv and
sh . Aside from the Ni there are 23 coefficient
Ai ,Bi ,Ci ,Di . One can see that there are 14 orthogona
conditions, leaving nine free coefficients.

To determine these coefficients we turn to the TSDA. F
every pair of statesm andn, there is a corresponding TSDA
equation~10! to be satisfied. Since bothh and v are spin
independent, the states labeledn and m in the TSDA equa-
tions ~10! must correspond to the same spin, each such s
also corresponding to an atomic site using the site-locali
orbitals defined by Eq.~16!. It is easy to see that if two site
are equivalent by symmetry, e.g., the two Cu sites or the
O sites labeledp2 and p5 , then the corresponding equatio
vanishes identically, giving no information. Thus the on
equations~10! with content are those where the sites inn and
m are nonequivalent, e.g., a Cu and an oxygen, orp2-p3 .
The number of such nonequivalent pairs which are indep
dent can be seen directly to be 9, the number of free v
ables to be determined, i.e., there is the correct numbe
equations~10! to determine these unknowns.

Because we are looking for basis functions on which
perturbation theory will be based with the purpose of der
ing a spin Hamiltonian that will yield the low-lying energie
and magnetic properties, we look for low-temperature n
ity
.
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magnetic solutions such that for every spin-up state there i
spin-down state with the same spatial orbital. In the sam
spirit, we considerKdd!b21!«, whereKdd is the splitting
of the lowest levels within the single-determinantal energi
@it was 0 for the original Hamiltonian, Eq.~1!, but as we will
see later it has value of about 0.03 eV after the one-bo
transformations#. Unfortunately, the low temperatures of in
terest lead to a large disparity in the sizes of different co
tributions to the thermal averages^nn&, etc., this causing
serious numerical difficulties. An approximation has bee
introduced to get rid of the exponential factors in, and thu
simplify, the TSDA equations. Details of the calculation an
discussion about its validity are given in Appendix B.

The results obtained after solving these approxima
TSDA equations are shown in Fig. 4 which gives an idea
the ‘‘shape’’ of the new orbitals relative to the original ones
The Hubbard Hamiltonian~1! is then rewritten in terms of
the new orbitals and thus the parameters in the model
renormalized. Note that the price to pay for the transform
tion is mainly that the Hamiltonian, which was restricted u
to nearest-neighbor terms in Eq.~1!, now resumes back to a
general form like Eq.~7!. We take together all those terms
which are associated only with number operators as unp
turbed HamiltonianH0 , and the rest of the transformed
Hamiltonian as perturbation.29 The exchange parameter ob
tained from the new perturbation expansion is seen in Fig
to converge~to the exact value!. The errors in second and
fourth order are 15.4 and 15.7%, respectively.

B. Cell localization

To see if we could do better, we considered another ty
of symmetry assumption, namedcell localization with re-

FIG. 4. TSDA orbitals within thesite localizationassumption—
the numbers indicate the amplitudes of the transformed orbital
the original orbitals.~The positions of the numbers correspond t
the Cu2O7 cluster in Fig. 2.!

FIG. 5. Perturbation result forsite localization.
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spect to the transformedp orbitals. This was inspired by th
work of Zhang and Rice,30 which also played an importan
role in the work of Refs. 7 and 8. Instead of demanding t
each newp orbital is localized at a site, we require each
them, with the exception of the centralp, to be localized
either within the cell on the left~the d plus the fourp’s! or
the one on the right, maintaining a certain symmetry, ana
gous to Eqs.~14! and ~15!. There is no distinction betwee
site andcell localizationfor the d orbitals, so they obey Eq
~14!:

d1852svd28 . ~17!

The distinction betweensite andcell localization is seen in
the following symmetry requirements for the~cell localiza-
tion! p orbitals:

pi
l52svpi

r , pi
l ~r !5shpi

l ~r ! with i 51,2,

p3
l 52svp3

r , p3
l ~r !52shp3

l ~r ! , ~18!

pc52svpc, pc5shpc.

The superscriptsl and r stand for left and right, andc for
central. Thus, for example, rather thansh taking orbitalp28
into an orthogonal orbitalp48 , as in thesite localization, it
takesp1

l into itself. The explicit transformation in this case

d185N1@d11A1d21A2p11A3~p21p4!1A4p3

1A5~p51p7!1A6p6#,

pc5B1~d11d2!1B2p11B3~p21p41p51p7!

1B4~p31p6!,

p1
l 5C1d11C2d21C3p11C4~p21p4!1C5p3

1C6~p51p7!1C7p6 , ~19!

p2
l 5p1

l with Ci replaced byDi ,

p3
l 5

1

&
~p22p4!.

Following a counting similar to that done in thesite local-
ization case, one can show that, for thecell localization, the
number of free coefficients after orthonormalization and
number of independent nontrivial TSDA equations are eq
as in the previous case.

The analogous figures to thesite localizationcase for the
cell localizationare shown in Figs. 6 and 7. The errors in t
exchange parameter in second and fourth order are 15.4
13.6%, respectively. It shows that thecell localization is a
slightly better choice for the perturbation calculation than
site localization.

C. No localization

The third choice of the symmetry of the new orbitals
namedno localization. The term means releasing any loca
ization requirement on the newp orbitals ~but still keeping
the newd orbitals localized!. This is analogous to the case
t
f

-

e
l,

nd

e

a crystal where thep orbitals may form ap band while thed
orbitals remain localized. The new orbitals are required
satisfy the following symmetry properties:

d1852svd28 , ~20!

which is the same as in the previous two cases, and

pi
2152svpi

21 , pi
215shpi

21 with i 51,2,3,

pi
115svpi

11 , pi
115shpi

11 with i 51,2,
~21!

p2252svp22, p2252shp22,

p125svp12, p1252shp12,

where the first sign in the superscripts denotes the symme
undersv , and the second sign, the symmetry undersh . The
explicit transformations for some of the orbitals are liste
below:

d185N1@d11A1d21A2p11A3~p21p4!1A4p3

1A5~p51p7!1A6p6#,

p1
215B1~d11d2!1B2p11B3~p21p41p51p7!

1B4~p31p6!,

p2
21~p3

21!5p1
21 with Bi replaced byCi~Di !,

p1
115E1~d12d2!1E2p11E3~p21p42p52p7!

1E4~p32p6!,

FIG. 6. TSDA orbitals forcell localization.

FIG. 7. Perturbation result forcell localization.
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p2
115p1

11 with Ei replaced byFi , ~22!

p225 1
2 ~p22p41p52p7!,

p125 1
2 ~p22p42p51p7!.

The transformed orbitals and the perturbation results for t
no localizationcase is shown in Figs. 8 and 9. The errors
second and fourth order in the exchange parameterJ are 15.5
and 14.8%, respectively, not as good as thecell localization.

D. Comments on the TSDA solutions
for the three localization choices

Because the symmetry requirements in these three cho
are different forp orbitals but the same ford orbitals, and
since the lowest energy states in which only thed orbitals are
occupied dominate at lowT, it turns out that the transformed
d orbitals for the three localization choices are the sam
After TSDA transformation, the energies of the lowest tw
single-determinantal states of the half-filled Cu2O7 cluster
are22.7718 and22.7430~all in eV! for the spins of the two
holes, one at each transformedd orbital, being parallel and
antiparallel, respectively. This can be compared with the e
ergies using the original orbitals, 0 for both parallel and a
tiparallel spin configurations, and with the exact eigenene

FIG. 8. TSDA orbitals forno localization.

FIG. 9. Perturbation result forno localization.
e
t

es

e.

-
-
r-

gies from direct diagonalization of the Hamiltonian matri
22.7738 and22.9000 for the triplet and the singlet, respe
tively.

After transformations, all parametershnm and vnm,lk in
the Hamiltonian get renormalized. For example, some n
parameters resulting from the TSDA solutions are

tdd8 520.403, Ud856.910, Udd8 50.113, Kdd8 520.029,
~23!

where the first, third, and fourth ones were absent in
original form of the Hamiltonian, Eq.~1!.

IV. FURTHER IMPROVEMENT
VIA TWO-BODY TRANSFORMATION

Although the TSDA guided one-body transformations d
lead to convergent perturbation expansions as we had ho
we were somewhat disappointed about the relatively s
convergence rate compared to the achievement of Ref
and 8, in which transformation is not restricted to be on
body. An interesting question was then asked: What is
main factor that limits the convergence rate of one-bo
transformation-induced pt? The answer is given below an
minimal two-body transformation is added to improve t
convergence rate.

Our attempt to incorporate both one- and two-body tra
formations is inspired by the work of Zhang and Rice,30 as
well as Jefferson, Eskes, and Feiner.7 On the CuO2 planes, a
cell is defined as any one copper and its four surround
oxygens atoms. Turning on the perturbation~p-d hopping!
will induce hybridization among the copperd orbital and the
oxygenp orbitals. If the perturbation is small, the new orb
als would remain localized within a cell. The copperd or-
bital is expected, by symmetry, toequallyhybridize with its
four surrounding oxygenp orbitals. Let us define the sym
metric p orbital of each cell as

pi
s5

1

2 (
l P$ i %

pl ,

where the summation index indicates thatl is taken over the
~four! p sites in celli . It is intuitive to expect that the larges
hybridization will occur between thedi and pi

s . The sym-
metric pi

s orbital has its analogue in ourcell localization
choice of the one-body transformation for the Cu2O7 cluster,
namely,p1

l andp1
r , for the left cell and the right cell, respec

tively. Therefore, our following investigation is based on t
cell localizationchoice.

Because the Hamiltonian~1! conserves the total spinS
and its projection on thez axis Sz , the Hamiltonian matrix
elements form isolated blocks for different values ofSz .
From here to the end of this section we only consider
Sz50 case. Through the process of the one-body transfor
tions, the hybridization between thed and p orbitals have
actually been taken into account. Because of the expe
large hybridization between thed and the symmetricps or-
bitals, we are interested in those states which consist of o
d18 (d28) andp1

l (p1
r ). Among the total 81 states for the hal

filled Cu2O7 cluster ~i.e., only two holes on it! with Sz50,
this means the states of interest are
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ud1↑8 p1↓
l &, ud1↓8 p1↑

l &, ud1↑8 d1↓8 &, up1↑
l p1↓

l &, ~24!

and four similar states for the right cell. Hereafter we co
sider only the left cell because the expressions for the r
cell are exactly the same. After the one-body transformat
the Hamiltonian submatrix in the basis set~24! is

F 5.483
21.149
22.239
20.148

21.149
5.483
2.239
0.148

22.239
2.239
4.055
0.984

20.148
0.148
0.984
11.922

G ~25!

@row and column indices correspond to the states in Eq.~24!
in order#. Two things are worth noting. First, the off
diagonal matrix elements are large. This is due tod18 andp1

l

being mainly strong mixtures ofd1 andp1
s . This hybridiza-

tion leads to large renormalized model parameters for h
transfer terms~between d18 and p1

l ! in the transformed
Hamiltonian, and thus contributes to the off-diagonal mat
elements. It indicates that these four states are far from
eigenstates and may lead to slow convergence if adopte
unperturbed states in the perturbation calculation. Sec
the energy of the state of double occupancy of thed orbital,
4.055, the third diagonal element of Eq.~25!, is dramatically
reduced from its original value 10.5, also a result of stro
hybridization. Each newd orbital contains part of the origi
nal d orbital and part of the originalp orbitals. Therefore
double occupancy in the newd orbital only gains energy
from a fraction of the large~original! Ud , and that causes th
large change of this energy level. Direct diagonalization
the Hamiltonian matrix shows that the energy levels ass
ated with double occupancy at thed orbitals remain high
(;12.7). Thus, in spite of giving good approximate low
lying energy levels, the one-body transformation also le
to some high-lying levels that are not at all good approxim
tions of corresponding eigenstates, and these high-en
eigenstates do play an important role in the perturba
theory. In conclusion, it is the strong hybridization~cova-
lence effect! and the large on-site Coulomb energyUd ~cor-
relation effect! together that prevents a one-body transform
tion from generating a good approximation for the who
energy spectrum.

In order to take care of the above limitation, we diagon
ize the matrix~25! and use the four resulting eigenstates~the
two-body transformation comes in here!, plus the four coun-
terpart states for the right cell and the remaining 73~un-
changed! states, as the basis set to perform the perturba
calculation. In some sense, by this we allow relaxation in
intermediate states of the pt, where one hole hops into
neighbor cell that has already been occupied by another h
We call this scheme theminimal two-bodytransformation
where ‘‘minimal’’ means that, among the variousp orbitals,
only p1

l (p1
r ) are involved in the two-body transformation

The result is shown in Fig. 10. We have also tried includ
p2

l (p2
r ) in the two-body transformation@p3

l (p3
r ) are out of

our consideration because they possess different symm
from d18 (d28)#. However, it only made a tiny change from
that of the minimal two-body transformation and so the
sult is omitted here.

In Ref. 7, Jefferson, Eskes, and Feiner described ano
transformation scheme that is in spirit, similar to o
-
ht
n,

e-

x
he
as
d,

g

f
i-

s
-
gy
n

-

-

n
e
e

le.

try

-

er

one-body1minimal two-body transformation, and demon
strated rapid convergence to second-order pt on a model w
a restricted parameter set:«53, tpd521, tpp52.5, Ud
5`, and all other parameters equal to zero.~The straightfor-
ward pt for this parameter set is divergent, too.! For com-
parison, we applied our method to the same parameter
The result showed that the one-body transformation alo
fails to lead to a convergent perturbation expansion. This
not surprising since the renormalization inUd , the double-
occupation energy atd orbitals, caused by the one-body
transformation is fatal to the pt in the case ofUd5`. Nev-
ertheless, we achieved precision similar to theirs after w
added the minimal two-body transformation to the pt.

V. SUMMARY AND DISCUSSION

For simplicity, we sought one-body transformations t
convert the pt from divergent to convergent in the context
strongly covalent CuO2 planes. Taking TSDA as a guide,
several one-body transformations were found, in the Cu2O7
case, to achieve this goal, but the convergence rate in e
case was rather slow. Besides those suggested by TSDA,
have also tried some other one-body transformations,
which the best one gives errors of about 13 and 6%
second- and fourth-order pt, respectively, better than the b
TSDA result ~cell localization, where the errors at second
and fourth-order pt are 15.4 and 13.6%!. However, the con-
vergence is still slow, particularly in higher order where th
results oscillate with slowly decreasing amplitude, similar
to TSDA ~see Figs. 5, 7, and 9!. The details of these other
transformations are omitted here for the above reason and
fact that they were obtained in a ratherad hocway, not as
systematically as in TSDA. A striking difference between th
bestad hoc trial and thecell localizationTSDA is the fol-
lowing. Two of the transformedp orbitals of thead hoctrial
~the one with errors 13 and 6%! were deliberately guided to
be close to the Zhang-Rice-type orbital30 ~where a trans-
formed orbital localized in a cell consists of four oxygenp
orbitals in the cell withequalweight!. On the other hand, the
p1

l andp1
r in thecell localizationchoice of TSDA are further

from the Zhang-Rice-type orbital, which is a result of th
low symmetry of the Cu2O7 cluster plus the free-energy
minimization. This suggests that being closer to the Zhan

FIG. 10. Perturbation result for cell localization
one-body1minimal two-body transformation.
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Rice-type orbital helps the convergence. However, one
see that this issue becomes moot when thecell localization
TSDA is applied to thecrystal, where the fourfold symmetry
at a Cu site holds and therefore thecell localizationTSDA
will give the Zhang-Rice-type orbital.

After all our considerations of one-body transformation
we guess that we are close to their limit in connection w
improving convergence. If one wants to do better, two-
more-body transformation is probably necessary. It is
large covalence and strong correlation in the problem
limits the effect of one-body transformations: a one-bo
transformation designed to give some zero-order energy
els accurately will likely spoil other levels, all of which ente
pt in high order.

We then found that a minimal two-body transformati
dramatically improved the convergence rate. Only tra
formed di-like and pi

s-like orbitals are essential to be take
into account in extracting the Hamiltonian submatrix to so
for ‘‘good’’ two-particle basis states. In comparison, o
cell-localization one-body1minimal two-body transforma-
tion scheme achieves similar~high! precision by second
order pt as obtained in the work of Ref. 7.
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APPENDIX A: A PHYSICAL INTERPRETATION
OF THE TSDA EQUATIONS

In the one-body terms of the Hamiltonian,hnmcn
1cm(n

Þm) is the so-called hopping term that causes a part
initially in the one-particle statem to hop to the one-particle
staten, provided the one-particle staten is empty initially.
Therefore, for an arbitrary single-determinantal stateuC&, the
expectation value of the operatorhnmnm(12nn) gives the
amplitude of the hoppingm→n whenuC& is operated on by
the hopping terms of the Hamiltonian; i.e.,

^Cuhnmnm~12nn!uC&5^C8uH1-body8 uC&, ~A1!

where

H1-body8 [~H2Ha!1-body5 (
aÞb

habCa
1Cb

and uC8& is the single-determinantal state that differs fro
uC& by replacing, if there is any, the one-particle statem in
uC& with the one-particle staten. For the same reason, th
operatorhnmnn(12nm) ~note thathmn5hnm are assumed to
be real here! corresponds to the reverse hoppingn→m. The
difference between these two operators,

hnmnn~12nm!2hnmnm~12nn!5hnm~nn2nm!, ~A2!

reflects, in some sense, the ‘‘net’’ hoppingn→m. Therefore,
we define it as the net hopping operator due to the one-b
terms of the Hamiltonian.

Now, let us turn to the two-body terms of the Ham
tonian. The analogous hopping terms which cause a par
in the one-particle statem to hop to another one-particle sta
n while other particles in the system do not move a
n

,

r
e
at
y
v-

-

le

dy

le

vnl,mlcn
1cl

1clcm and vnl,lmcn
1cl

1cmcl . What is different
from that of the one-body terms is that this hopping m
occur in the presence of another particle in the orbitall. Also
keep in mind that the second term,vnl,lmcn

1cl
1cmcl , intro-

duces an extra minus sign in the final state from that of
first term, vnl,mlcn

1cl
1clcm . Analogous to the case of th

one-body terms of the Hamiltonian, for an arbitrary sing
determinantal stateuC& the expectation value of the operat
(l(vnl,ml2vnl,lm)nlnm(12nn) gives the amplitude of the
hopping m→n when uC& is operated on by the two-bod
terms of the Hamiltonian,

K CU(
l

~vnl,ml2vnl,lm!nlnm~12nn!UCL
5^C8uH two-body8 uC&, ~A3!

whereH two-body8 denotes the two-body terms ofH2Ha and
uC8& has the same meaning as in Eq.~A1!; and correspond-
ingly, (l(vnl,ml2vnl,lm)nlnn(12nm) accounts for the re-
verse hoppingn→m. The difference,

(
l

~vnl,ml2vnl,lm!nlnn~12nm!

2(
l

~vnl,ml2vnl,lm!nlnm~12nn!

5(
l

~vnl,ml2vnl,lm!nl~nn2nm!, ~A4!

is defined as the net hoppingn→m due to the two-body
terms of the Hamiltonian. Then it is natural that the total n
hopping operator is

hnm~nn2nm!1(
l

~vnl,ml2vnl,lm!nl~nn2nm!,

~A5!

which is just the left-hand side of the TSDA equation~10!
without the thermal average acting on it. Thus we get anot
view of TSDA; namely, the solutions of TSDA give zer
thermal average of the net hopping operator~again, note that
here the thermal averages are not with respect to the e
HamiltonianH but to the approximationHa!.

APPENDIX B: SOLVING THE TSDA EQUATIONS

Since the use of the TSDA in the present context is
commonly seen, we present the details to aid in further p
suit of the matter. The numerical difficulty mentioned in th
text and its significance are discussed in this section. In
following, we considersite localizationas an example to
explain the difficulty and show how we circumvent it.

The TSDA equations are@Eq. ~10! of the text#

^nn2nm&hnm1(
l

^~nn2nm!nl&~vnl,ml2vnl,lm!50

~B1!
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for any pair of orbitals labeledn,m. The thermal average
bracket,^•••&, is defined as, for any operatorA,

^A&[
tr~e2bHaA!

tr~e2bHa!
5

( ^•••,Nn,•••ue2bHaAu•••,Nn ,•••&

( ^•••,Nn ,•••ue2bHau•••,Nn ,•••&

,

~B2!

where the summation is over all possible occupations.
subscripts in Eq.~B1! label both the spatial and spin qua
tum numbers of the one-particle states. In the Hubb
model, the one-body and two-body matrix elements,hnm and
vnm,lk , preserve spin~i.e., hnm[his, j s850 if sÞs8; simi-
larly vnm,lk[v is js,ks8 ls850 if sÞs8 or sÞs8! and are spin
independent~i.e., his, j s[hi j ; similarly, v is js,ks ls[v i j ,kl!.
So the TSDA equations in this case can be written in
following form:

^nis2nj s&hi j 1 (
k,s8

^~nis2nj s!nks8&~v ik, jk2dss8v ik,k j!

50 ~B3!

for any pair of spin orbitalsc is and c j s . In the largeb
regime in which we are interested, the exponential factor
the thermal averages of the number operators in Eq.~B3!
cause numerical difficulty and need special treatment.

In viewing the diagram of the Cu2O7 cluster~Fig. 2!, it is
apparent that all the orbitals can be divided into four grou

~d18 ,d28!, ~p18!, ~p28 ,p48 ,p58 ,p78!, ~p38 ,p68!. ~B4!

Each orbital is said to be equivalent by symmetry to a
other orbital in the same group. Because no original orb
~unprimed! will occur in this discussion, the prime on th
new orbitals will be suppressed hereafter for brevity.
symmetry requirements, it is easy to see that Eq.~B3! for any
pair of orbitals is automatically satisfied if the two orbitals
this pair are in the same group. These trivial equations g
us no information in determining the new orbitals. Furth
careful counting shows that, among those remaining n
trivial TSDA equations, there are precisely nine independ
equations; they are the TSDA equations for the pairs

~d1↑,p1↑ !, ~d1↑,p2↑ !, ~d1↑,p3↑ !,

~d1↑,p5↑ !, ~d1↑,p6↑ !, ~p1↑,p2↑ !,

~p1↑,p3↑ !, ~p2↑,p3↑ !, ~p2↑,p6↑ !. ~B5!

~The corresponding equations for the down-spin pairs
identical to these.! If b21 is far below the transfer energ
«p2«d but much larger than the parallel-antiparallel splitti
of the underlying states, i.e.,Kdd!b21!«p2«d , then the
states that have one hole in each of the Cud orbitals will
dominate the thermal averages and the weights they con
ute to the thermal average are essentially equal no m
what their spin configurations are. For the Cu2O7 cluster this
means

^nd1↑&5^nd1↓&5^nd2↑&5^nd2↓&>
1

2

e

d

e

in

:

y
l

e
,
n-
nt

re

ib-
ter

^npis
&>0 for all i 51 . . . 7 and s5↑,↓. ~B6!

Because the TSDA equations for the last four pairs of E
~B5! only involve the thermal averages^npis

& and^npis
nn&,

their numerical values for the left-hand side of Eq.~B3! are
very small. This causes difficulty in solving numerically th
nine simultaneous TSDA equations resulting from Eq.~B5!
since the computer program may only ‘‘see’’ the first fiv
equations of Eq.~B5! and regard the last four as having be
solved. To circumvent this problem, we keep only the lea
ing terms in the thermal averages, substitute them into
TSDA equations, and then extract the limiting forms of t
equations in the largeb regime, as shown below.

The lowest energy group of the half-filled Cu2O7 cluster is
the set of four single determinants,

C~d1s,d2s8!, ~B7!

where s and s8 are either↑ or ↓. The next three higher-
energy groups are

1. C~d1s,p1s8!, C~d2s,p1s8!,

2. C~d2s,p2s8!, C~d2s,p4s8!,
~B8!

C~d1s,p5s8!, C~d1s,p7s8!,

3. C~d2s,p3s8!, C~d1s,p6s8!.

@We do not know the energy order of the three groups in
~B8! before we solve the TSDA equations.# To circumvent
the numerical difficulty mentioned above, we make two a
sumptions aboutb: ~i! b21 is sufficiently low such that in
the thermal average the exponential weight due to a low
energy group numerically overwhelms the weights due
other higher-energy groups.~ii ! But at the same timeb21 is
sufficiently high such that the parallel-antiparallel splittin
are to be neglected and average energies~over four possible
spin configurations! are to be used in substitution of re
individual energies. For example, defineE(d1s,p1s8) as the
energy of stateC(d1s,p1s8) andE(d1p1) as the average o
E(d1s,p1s8) over the four possible spin configurations,

E~d1p1!5 1
4 (

ss8
E~d1s,p1s8!

5 1
4 (

ss8
~hd1d1

1hp1p1
1vd1p1 ,d1p1

2dss8vd1p1 ,p1d1
!

5hd1d1
1hp1p1

1vd1p1 ,d1p1
2 1

2 vd1p1 ,p1d1
. ~B9!

Because there is essentially no energy resolution among
different spin configurations by our assumption, we are
replaceE(d1s,p1s8) with E(d1p1) in our calculation. The
energies of other states are similarly treated. We will co
back to our assumption aboutb later. Some thermal average
of the number operators are listed below as examples:

^nd1s&>
1

Z
~e2bE~d1s,d2↑ !1e2bE~d1s,d2↓ !!

>2^nd1snd2s8&> 1
2 ,



on
a
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^np1s&>
1

Z
~e2bE~p1s,d1↑ !1e2bE~p1s,d1↓ !1e2bE~p1s,d2↑ !

1e2bE~p1s,d2↓ !!>4^np1snd1s8&>0,

^np2s&>
1

Z
~e2bE~p2s,d2↑ !1e2bE~p2s,d2↓ !!>2^np2snd2s8&

>0,

^np3s&>
1

Z
~e2bE~p3s,d2↑ !1e2bE~p3s,d2↓ !!>2^np3snd2s8&

>0, ~B10!

whereZ denotes the partition function. The TSDA equati
for the pair (d1↑,p1↑), therefore, reduces approximately to
simple form in our assumedb regime:
~^nd1↑&2^np1↑&!hd1p1
1(

k,s
~^nd1↑nks&2^np1↑nks&!

3~vd1k,p1k2d↑svd1k,kp1
!50

⇒~ 1
2 20!hd1p1

1~^nd1↑nd2↑&20!

3~vd1d2 ,p1d2
2vd1d2 ,d2p1

!1~^nd1↑nd2↓&20!

3~vd1d2 ,p1d2
!50

⇒hd1p1
1~vd1d2 ,p1d2

2 1
2 vd1d2 ,d2p1

!50.

The TSDA equations for the second to fifth pairs in Eq.~B5!
are similar in form to that for (d1↑,p1↑). Now we examine
the TSDA equation for the sixth pair (p1↑,p2↑):
at
~^np1↑&2^np2↑&!hp1p2
1(

k,s
~^np1↑nks&2^np2↑nks&!~vp1k,p2k2d↑svp1k,kp2

!50

⇒~^np1↑&2^np2↑&!hp1p2
1~^np1↑nd1↑&20!~vp1d1 ,p2d1

2vp1d1 ,d1p2
!1~^np1↑nd1↓&20!~vp1d1 ,p2d1

!1~^np1↑nd2↑&

2^np2↑nd2↑&!~vp1d2 ,p2d2
2vp1d2 ,d2p2

!1~^np1↑nd2↓&2^np2↑nd2↓&!~vp1d2 ,p2d2
!50

⇒~2^np1↑ndis
&2^np2↑nd2s&!hp1p2

1^np1↑ndis
&~vp1d1 ,p2d1

2 1
2 vp1d1 ,d1p2

!

1~^np1↑ndis
&2^np2↑nd2s&!~vp1d2 ,p2d2

2 1
2 vp1d2 ,d2p2

!50,

where in the last expressiondis can be eitherd1↑ , d1↓ , d2↑ , or d2↓ . If E(p1d1),E(p2d2), then ^np1↑nd1s&
@^np2↑nd2s& by the former assumption aboutb and the previous equation reduces to

2hp1p2
1~vp1d1 ,p2d1

2 1
2 vp1d1 ,d1p2

!1~vp1d2 ,p2d2
2 1

2 vp1d2 ,d2p2
!50;

on the other hand, ifE(p1d1).E(p2d2), then^np1↑nd1s&!^np2↑nd2s& and the equation reduces to

hp1p2
1~vp1d2 ,p2d2

2 1
2 vp1d2 ,d2p2

!50.

The limiting forms of the TSDA equations for the seventh to ninth pairs in Eq.~B5! can be obtained in a manner similar to th
for (p1↑,p2↑). All nine equations are summarized below:

~d1↑,pi↑ !:hd1p1
1~vd1d2 ,pid2

2 1
2 vd1d2 ,d2pi

!50 for i 51,2,3,5,6,

~p1↑,p2↑ !:2hp1p2
1~vp1d1 ,p2d1

2 1
2 vp1d1 ,d1p2

!1~vp1d2 ,p2d2
2 1

2 vp1d2 ,d2p2
!50 if E~p1d1!,E~p2d2!,

hp1p2
1~vp1d2 ,p2d2

2 1
2 vp1d2 ,d2p2

!50 if E~p1d1!.E~p2d2!,

~p1↑,p3↑ !:2hp1p3
1~vp1d1 ,p3d1

2 1
2 vp1d1 ,d1p3

!1~vp1d2 ,p3d2
2 1

2 vp1d2 ,d2p3
!50 if E~p1d1!,E~p3d2!,

hp1p3
1~vp1d2 ,p3d2

2 1
2 vp1d2 ,d2p3

!50 if E~p1d1!.E~p3d2!,

~p2↑,p3↑ !:hp2p3
1~vp2d2 ,p3d2

2 1
2 vp2d2 ,d2p3

!50,

~p2↑,p6↑ !:hp2p6
1~vp2d2 ,p6d2

2 1
2 vp2d2 ,d2p6

!50 if E~p2d2!,E~p3d2!,

hp2p6
1~vp2d1 ,p6d1

2 1
2 vp2d1 ,d1p6

!50 if E~p2d2!.E~p3d2!. ~B11!
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There are 3!56 possible orderings of the energie
E(p1d1),E(p2d2),E(p3d2). For each possible order, w
solve Eqs.~B11! and then check the consistency of the so
tions with their respective presumed energy order. Those
are not self-consistent are, of course, dropped. Although
forms of the Eqs.~B11! are pretty simple, the transforme
parametershnm andvnm,lk in Eq. ~B11! are each a polyno
mial function of the transformation coefficients defined
Eq. ~16! of order 2 and 4, respectively. Therefore, there
deed exist many solutions. We solved Eq.~B11! numerically.
By varying the starting point and length of searching ste
we got several solutions of Eq.~B11!. These solutions were
examined by comparing their resulting TSDA free energ
and also by cross checking with the solutions obtained in
cell localizationandno localizationcases to confirm that th
real TSDA solution~which means the one which, within th
single-determinantal and the particular localization-cho
framework, gives the lowest free energy! has been found and
identified. It turns outE(p2d2),E(p1d1),E(p3d2) for the
real TSDA solution.

Now we examine the consistency of the solution with o
assumption aboutb, which was made to simplify the TSDA
equations and therefore circumvent the numerical difficult
leads to. Based on the solution, we calculate the energie
various states. The average energies~over four possible spin
configurations! of the first four lowest-energy groups, i.e
those of Eqs.~B7! and ~B8!, are

E(d1d2) E(p1d1) E(p2d2) E(p3d2)
22.75742 3.80976 3.40425 4.6475

~B12!

The smallest energy gap among the above four group
between the second and the third ones, which is about 0
For our assumption to be right, theb21 must be well below
0.41 to make a lower-energy group numerically overwhe
other higher-energy groups in contributing the weight
thermal average. However, the parallel-antiparallel splittin
which we have neglected in order to replace the energy
every state of a group with the average energy of that gro
for the four groups in Eq.~B12! are
ri-
AI

e

-
at
e

-

s,

s
e

e

r

it
of

is
1.

s,
of
p,

K(d1d2) K(p1d1) K(p2d2) K(p3d2)
0.0288 0.7605 0.0097 0.0823

~B13!

~Note that the second one is big because thep1 and d1 are
nearest neighbors to each other so that they are from st
hybridization of the originalp1 andd1 , and that strong hy-
bridization also leads to big exchange energy between
new p1 andd1 orbitals.! So b21 must be much larger than
0.76 for the neglect of parallel-antiparallel splittings to
legitimate. An inconsistency thus occurs.

We have two reasons to believe that this inconsiste
does no harm to our work here. First, in addition to what
presented so far~which we call the average case!, we have
done the same calculation on two artificial cases: one is
assume the spins of the two particles in the Cu2O7 cluster can
only be parallel and the other, antiparallel. As a matter
fact, the parallel case is not really artificial because it
exactly the limiting situation whenb21→0. ~Note that a
state with a pair of spin-parallel particles is always lower
energy than its antiparallel counterpart by an amount of
exchange energyK between these two particles. Whenb21

is sufficiently low, the parallel states will dominate the the
mal average.! At first glance, the inconsistency suggests th
we shouldn’t assumeb21 is sufficiently high and neglect the
parallel-antiparallel splittings. It turns out that the TSDA s
lution of the average case is somewhere between the TS
solutions of the parallel and antiparallel cases, and, m
importantly, they only slightly differ from each other. This
suggests that the solution we obtained is close to the solu
one might get by solving the exact~unsimplified! TSDA
equations~for b21!0.41!. Second, the average case its
can also be viewed as the exact calculation for another
ficial case, namely, a system that has no spin degree
freedom and has the average energies as the energies
levels. Our purpose is to seek a definite guideline that
lead us to a good transformation on the basis set such tha
perturbation converges rapidly. So the model that we us
derive the transformation may be closely related to the s
tem of interest, but it does not have to be the same. A
recall thatb21 here is rather a parameter than a physi
temperature. Therefore, the inconsistency is not really
concern as long as we can obtain a suitable transformat
s.
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