
PHYSICAL REVIEW B 1 JULY 1997-IVOLUME 56, NUMBER 1
Specific-heat amplitude ratio near a Lifshitz point
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The specific-heat amplitude ratioA1 /A2 ~SHAR! in the neighborhood of anm-type Lifshitz point has been
calculated in the Gaussian approximation. The crossover behavior of the SHAR between the Lifshitz behavior
and the usual isotropic critical behavior is considered. This crossover turns out to depend on the temperature as
well as the anisotropy of the dispersion. Renormalization-group calculations in one-loop order of the SHAR
generalize the result for the usual isotropic critical point.@S0163-1829~97!04125-8#
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I. INTRODUCTION

In the vicinity of a critical point, the amplitudes of th
power laws characterizing divergent quantities, like susc
tibility and specific heat, are nonuniversal. However, fro
the two-scale factor hypothesis,1 it follows that certain com-
binations of these amplitudes are universal, i.e., they dep
only on the quantities characterizing the universality clas
which the critical point belongs. One important example
the amplitude ratio of the divergence of the specific h
above and below the critical point~SHAR!. Its asymptotic
value has been calculated for different universality class
Here we consider the SHAR for a Lifshitz point.2 The Lif-
shitz point critical behavior constitutes a universality cla
on its own and one expects the SHAR to be different from
value at the usual critical point. The renormalization-gro
theory calculates these asymptotic values.

In the region further away from the critical point, on
expects that, although fluctuations are present, their ef
may be approximated by taking them into account only
quadratic order, neglecting the fourth-order interaction of
fluctuations. This is the region of application of the so-cal
Gaussian model.3 One may also calculate the SHAR with
this region and compare with experiments. This has b
done for superconductors4 and suggested for magnet
systems.5 Since the amplitude ratios within this region a
further away from the critical point, one does not expe
them to be universal, but they may depend on the nonuni
sal parameters of the Gaussian model.4 In this paper we con-
sider the SHAR in the Gaussian region near a Lifshitz po
and the crossover of SHAR to its value at the usual isotro
critical point. A new feature comes into play since the div
gence of the specific heat in the Gaussian region of a Lifs
point (aLG5 @41m/22d]/2) is different from the corre-
sponding divergence for the usual critical poi
(a IG5@42d#/2). Therefore the SHAR becomes temperatu
dependent in the crossover region.

The crossover between the Lifshitz behavior and the us
isotropic critical behavior in the nonordered phase has b
studied in~Ref. 6! and the crossover function of the speci
heat was calculated in one-loop order. The results of th
calculations above the phase-transition line might be hel
560163-1829/97/56~1!/154~7!/$10.00
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for the understanding of the experimental results in syste
whose phase diagram show a Lifshitz point.7 Examples stud-
ied extensively are, e.g., ferroelectrics8 or the magnetic sys-
tem as MnP.9 For this magnet the SHAR has been measu
and a valueA1 /A250.65 has been found.10 This amplitude
ratio is considered theoretically for a Lifshitz point. With th
help of the renormalization-group theory11 and by using
field-theoretical methods,12 we calculate the asymptoti
value of SHAR in one-loop order. As we shall see, beca
of mathematical difficulties, the analytic results do not
beyond one-loop order. This limits our prediction of th
SHAR.

The paper is arranged as follows: In Sec. II we introdu
the theoretical model for calculating SHAR at the Lifshi
point using the Gaussian model. A comparison between p
Lifshitz point and the pure Gaussian isotropic point is ma
In Sec. III, the crossover, within the Gaussian model betw
the Lifshitz and isotropic points, will be introduced and di
cussed. Section IV will be devoted to a review of generaliz
renormalization-group procedure and the calculation of
SHAR, which is followed by a discussion of the experime
tal result of Ref. 10 in the light of our results in Sec. IV
Some important formulas will be given in the appendix
which follow our discussion. Through our paper, we will u
the subscripts1 and 2 for the values above and below
Tc , respectively.

II. GAUSSIAN MODEL AT THE LIFSHITZ POINT

A. Above Tc

In the following we will briefly recapitulate the calcula
tion of the specific heat within the Gaussian approximat
for the Lifshitz point. Let us consider the partition functio

Z5E
w
e2H[w] , ~1!

where the Landau-Ginzburg-Wilson~LGW! free-energy
functional, describing the critical behavior of a system th
exhibits anm-fold Lifshitz point, can be approximated by
154 © 1997 The American Physical Society
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56 155SPECIFIC-HEAT AMPLITUDE RATIO NEAR A . . .
H@w#5
1

2Ek~r1p21q4!w~k!w~2k!. ~2!

Herew(k) represents the order parameter, e.g., magne
tion, polarization, etc. Thed-dimensional wave vectork is
decomposed intoq andp components of dimensionsm and
(d2m), respectively. In Eq.~2! we used the notation
*k5*@dd2mpdmq/(2p)d#, and r5(T2Tc)/Tc as the re-
duced temperature.

The specific heat is computed according to the definit

C52T
]2F

]T2
, ~3!

whereF is the free energy per unit volume and is related
Z by the relationF52(1/V)lnZ. Calculating the functiona
integral we obtain

C15E dd2mpdmq

~2p!d
1

~r1p21q4!2
5I 2~r ,g50,h51!.

~4!

See Appendix A for detailed definitions of the integralI 2 .
After performing the integration in Eq.~4! and only keeping
the most singular part, the specific heat reads

C15
1

8
Kd2m,mGSm4 DGS ẽ

2
D r2 ẽ /25A1r

2 ẽ /2, ~5!

where ẽ 541m/22d and the specific heat exponentaLG is
equal to ẽ /2

B. Below Tc

Below Tc one has to observe the finite value of the ord
parameter. In order to get a finite partition function and
phase with broken symmetry one has to go one step fur
in the expansion and take into account the fourth-order te
Expanding the fluctuation around the order parameter
means of

w~k!5^w&k501w~k!, ~6!

one also obtains a quadratick-independent contribution from
the fourth-order term, which leads to a factor of 2 in front
the r term. In the present case, the GaussianH reads

H@w#5
1

2Ek~2ur u1p21q4!w~k!w~2k!, ~7!

and one immediately calculates the most singular part of
specific heat as

C25
1

8
Kd2m,mGSm4 DGS ẽ

2
D 22ur u2 ẽ /25A2ur u2 ẽ /2. ~8!

The factor 22 comes from the shift ofur u to 2ur u at T,Tc
and the application of Eq.~3!

It is straightforward to generalize our procedure forn
components of the order parameter. If one takes into acc
that, belowTc , the leading singular contribution comes fro
the parallel fluctuations of the order parameter only, then
will introduce a factor ofn into the ratio, i.e.,
a-

n

r
a
er
.
y

f

e

nt

is

C1

C2
5
A1

A2
5

n

2d/22m/4 . ~9!

This may be compared with the ratio of the purely isotrop
Gaussian point~formally m50)

A1

A2
5

n

2d/2
. ~10!

Note that this value of the ratio was found from the singu
part of the specific heat which goes liker2e/2, where
e542d and the specific-heat exponenta IG is equal toe/2.

III. CROSSOVER WITHIN GAUSSIAN MODEL

In this case the Landau-Ginzburg-Wilson~LGW! free-
energy functional is written as

H@w#5
1

2Ek~r1p21gq21hq4!w~k!w~2k!, ~11!

with the same definitions as in Eq.~2!, but with g andh as
parameters of the dispersion.H contains now the limits of a
pure Lifshitz behavior (g50) and a pure isotropic behavio
(h50, the finite value ofg may be scaled away by choosin
a proper scale of the wave vector componentsq). We have to
keep in mind what we mentioned earlier, that belowTc the
parameterr has to be replaced by 2ur u. The specific heat
aboveTc reads

C15E dd2mpdmq

~2p!d
1

~r1p21gq21hq4!2
5I 2~r ,g,h!.

~12!

The I 2 integral is related to the hypergeometric functio
2F1(22d1m/2,3/22d/2;3/22d/21m/2;Q) with

Q~r !5
g̃22Ar
g̃12Ar

and can be calculated in a closed form.13 Its analytic proper-
ties will be explained in more detail in Appendix A.

The amplitude ratio becomes~we generalize to an
n-component order parameter!

A1

A2
5

n

22
I 2~r ,g,h!

I 2~2ur u,g,h!
. ~13!

In Appendix A we calculate the limiting values of this ex
pression. The limit of pure Lifshitz behavior is obtained f
g50. On the other hand, in the limith→0 or r→0 at finite
g, we recover Eq.~10!. For general dimensions ofd, the
ratio remains dependent on all the parameters. Note how
that the limiting values do not depend on the values ofh or
g. The independence property is to be expected in
asymptotic region, but we are in the Gaussian region wh
the amplitudes may be~and in our case are! nonuniversal.

Let us now discuss the physical case ofd53. Then
SHAR simplifies considerably because of the prope
2F1(211m/2,0;m/2;Q)51, and we have
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A1

A2
5

n

2A2
S x12A2

x12 Dm/2. ~14!

We introduced the ‘‘scaling variable’’x5g/Ahr. Figure 1
shows our calculation result of the SHAR as a function
x for m51, 2, and 3. One can see the pronounced effec
small values ofx on the shape of the SHAR. Atx50, all the
curves start at the Lifshitz point value ~e.g.,
A1 /A250.420 form51). With increasingx, the SHAR
tends to decrease to the usual isotropic point va
(A1 /A250.354).

One may ask if this simple form extrapolates to oth
dimensions too, so we are proposing an empirical form
for generald, x, andm, which covers both limits and is
exact atd53,

A1

A2
5

1

2d/2S x12A2
x12 Dm/2. ~15!

The formula has been checked for different values ofd, x,
andm. A maximal error of 4%, compared with the exa
formula Eqs.~13! and ~A7!, was found.

IV. ASYMPTOTICS AT THE LIFSHITZ POINT

ApproachingTc the Gaussian model breaks down and
fourth-order term of the fluctuations have to be taken i
account. Thus the LGW free-energy functional reads

H@w#5
1

2Ek~r 01p21h0q
4!w~k!w~2k!

1
u0
4!Ek1Ek2Ek3Ek4w~k1!w~k2!w~k3!w~k4!dF( ki G .

~16!

The coefficients in the LGW functional are unrenormaliz
ones~as before in the Gaussian model!, marked by the sub-

FIG. 1. The specific heat amplitude ratio in the Gaussian mo

as a function ofx5 g̃ /Ar , for different values ofm. x50 and
x→` correspond to the Lifshitz point value and the usual isotro
critical point, respectively.
f
of

e

r
la

e
o

script zero. The renormalization proceeds along the sa
lines as in Ref. 14. In particular we have, after introduci
the momentum scalem,

r 05Zw
21Zrr , u05meZw

22ZuuKd2m,m
21 ,

h05m22Zw
21Zhh,wo5Zw

1/2w ~17!

In one-loop orderZw5Zh51, and the perturbational expan
sion parameter, for example,Zu andZr , is performed in the
effective interactionũ5 1

4G(m/4)uh
2m/4 ~see below!. Explic-

itly,

Zr511
1

2

ũ

ẽ
, Zu511

3

2

ũ

ẽ
.

Within the renormalization-group theory the specific he
C1 aboveTc is given by the cummulant12 and calculated
from the vertex functionG (0,2) by

C15 K 12w2
1

2
w2L 52G1

~0,2! . ~18!

and belowTc by
15

C2~r ,u,m!52G2
~0,2!1

~G2
~1,1!!2

G2
~0,2! . ~19!

In order to obtain C6 quantities using the field-
renormalization-group procedure, we have to calculate
renormalized vertex functionG6

(0,2) , by solving the
renormalization-group equations~RGE’s! in the form:

Fm ]

]m
1bu~V!

]

]u
1z r~V!H 21r

]

]r J
1@22zw1zh~V!#h

]

]hGG6
~0,2!~r ,V,m!5m2eB~V,m!. ~20!

In Eq. ~20!, we have definedz i(V)5m(]/]m)lnZi
21u0 ,

i5w, r , h, andbu5m(]/]m)uu0. V[(h,u), the symbolu0
indicates that all derivatives are to be taken at fixed b
parameterr 0 , h0 , andu0. The inhomogeneity of Eq.~20!,
which is related to the additive renormalization of the sp
cific heat, has the form

B~V,m!52meZr
2m

d

dm
Zr

22@Zr
2GB

~0,2!~k50!#sing. ~21!

Using the method of characteristics,16 the general solution of
Eq. ~20! reads6

l,

c
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G6
~0,2!~r ,V,m!5~m l !2ee2*1

l
~dr/r!zr ~r!

3H 2F6S r ~ l !m2l 2
, u~ l !, h~ l ! D

1E
1

l dr

r
B~r!e*1

l
~dr8/r8![2zr ~r8!2e] J , ~22!

wherel is an arbitrary flow parameter to be chosen suitab
il-
ng

c

i-

b

s

,

andF6 is the dimensionless vertex function. The functio
r ( l ), u( l ), andh( l ) fulfill the equations

l
dr~ l !

dl
5z r r ~ l !, l

du~ l !

dl
5bu , l

dh~ l !

dl
5~22zw1zh!h.

~23!

Here we are going to adopt the scaling procedure of
previous work14 which leads us to a scaling solution of th
RGE’s in the form
G6
~0,2!~r ,h,u,m!5~m l !2 ẽh2 ~m/4!e*1

l
~dr/r!$2zr ~r!2m/4[zw~r!2zh~r!] % H 2F̃6S r ~ l !m2l 2

, ũ~ l ! D
1E

1

l dr

r
B̃~ ũ !e*1

l
~dr8/r8!$2zr ~r!2m/4[zw~r!2zh~r!]2 ẽ % J , ~24!
e
is

se

to

f

ian
int
ag-
ere
te
m-
er-
the
om
with the flow equations

l
d ũ~ l !

dl
5h2m/4bu2

m

4
ũ~22zw1zh!5b ũ .

Due to the behavior of the Lifshitz point, the susceptib
ity is characterized by two correlation lengths divergi
differently17 and this leads to two differentn exponents,n'

and n i , perpendicular and parallel to them-dimensionalq
direction.

Usually one choosesr ( l )/ l 251. This choice leads to the
connection between the temperaturesr65 uT62Tcu/Tc and
the flow parameterl5 l (r6) via the solution of the flow
equation forr (1)5r6 . So, at the fixed point, the specifi
heat is given by

C6~r * ,u* !; l
6

2a~22zr* !HF61
B*

a~22z r* !J , ~25!

where

a5
ẽ 22z r*1 m/4 ~zw*2zh* !

22z r*
.

By taking the relations l1;r
1

1/(22zr* ) and

l2;(22r
2
)1/(22zr* ) into account, and defining the ampl

tude ratioA6 through the relation

C65A6ur u2a, r→60, ~26!

then the amplitude ratio is@n'5(22z r* )
21# calculated as

A1

A2
52

a B̃* n'1aF̃1*

B̃* n'1aF̃2*
. ~27!

This generalizes the expression for the SHAR derived
Dohm18 for the usual isotropic system.

For the Lifshitz point, the scaling functionsF̃6 and B̃
have to be calculated by the perturbation theory forn51. In
one-loop order one recovers the same results as for the u
y

ual

isotropic w4 model, the only difference being that th
effective fourth-order interaction appears. In particular it
found ~see Appendix B! that B̃*5(1/2)Kd2m,m , F̃1*

52(1/4)Kd2m,m and F̃2* 5(3/ũ*21)Kd2m,m . The expo-

nents in one loop order areaL5 ẽ /6 andn'51/2(11 ẽ /6)
and the fixed-point valueũ*5(2/3)ẽ . Thus we end up with
the result

A1

A2
5
2aL

4
. ~28!

Let us compare this with the SHAR for an isotropic ca
(d542e) andn51, which is known as18

A1

A2
5
2a I

4
~11e!. ~29!

The e term results from a two-loop calculation. In order
get this correction of ordere, the value in Eq.~29! of a I
(5e/6229e2/324) andu* has to be known to the order o
e2. In the case of the Lifshitz point,aL and ũ* are only
known to the order ofẽ .

V. DISCUSSION

Our calculations of the crossover behavior in the Gauss
approximation are valid on approaching the Lifshitz po
from the side of the transition curve between the param
netic and ferromagnetic phase. This is just the region wh
the experiments of Ref. 10 in MnP were performed. No
that in comparing with the experiment our theoretical te
perature field has to be identfied with the magnetic field p
pendicular to the easy axis and the specific heat with
corresponding magnetic susceptibility. One expects, fr
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measurements at different temperaturesT.TL and the mag-
netic fieldH approaching the critical valueHc on the para-
ferro line, to observe a crossover between Ising behavior
Lifshitz behavior. This has been found in the experime
~see Fig. 5 in Ref. 10!. Qualitatively it corresponds to th
crossover function displayed in Fig. 1 valid in the Gauss
region.

Regarding the absolute values of the SHAR, we have
lected them in Table I ford53, andm5n51. All values are
obtained so far for the usual isotropic critical point as well
for the Lifshitz point. In one-loop order the only differenc
to the isotropic case comes from the different specific-h
exponentsa. This leads to an increase of the SHAR b
roughly 7%~second row of Table I!. A much larger increase
of 20% can be seen in the Gaussian region~first row of Table
I!. In the isotropic case, the next order ine doubles the
SHAR compared to the lowest order. We expect a sim
effect for the Lifshitz point. Taking the hyperscaling law an
experimental values for the exponentsn i andn' , a value of
aL50.49 ~compared to values ofa I'0.1) was estimated.10

This would give a value of the SHAR without theẽ correc-
tion of 0.35. Near the Lifshitz point, in fact differen
specific-heat exponents were measured, above and be
and this was attributed to the closeness of the first-or
phase transition between the ferromagnetic and fan ph
Several other problems arise in extracting the SHAR, e
that one has to subtract the background values of the spe
heat in order to get the singular part. Nevertheless, so far
experimental result for the SHAR seem to be in agreem
with the theoretical estimates made from our results. Fur
investigations both on the experimental side as well as on
theoretical side, seems to be necessary, although a two-
calculation is expected to be outside the analytical possi
ties.
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APPENDIX A: LIFSHITZ INTEGRAL

Our main interest in this appendix is the calculation of t
integral I 2(r ), which we used to calculate the specific he
and SHAR, and study its behavior at different limits. T
Lifshitz integral can be expressed in the form

TABLE I. Specific-heat amplitude ratio ford53, and
m5n51. The value of the corresponding exponenta is given in
the bracket, the values for the isotropic case are taken from~Ref.
19!.

Isotropic Lifshitz

Gaussian 0.35~0.500! 0.42 ~0.750!
One-loop 0.28~0.167! 0.30 ~0.25!
Two-loop 0.53~0.077!
Field theory 0.541
Experiment 0.63–0.48 0.65~Ref. 10!.
nd
s

n

l-

s

at

r

w,
er
se.
.,
ific
he
nt
er
he
op
i-

-
z

t

I S~r !5~2p!2dE dd2mpE dmqGS~r !, S51,2,

~A1!

where GS is the Gaussian propagator and equal
(r1p21gq21hq4)2S, with I 2(r )52]I 1(r )/]r . Other ar-
guments, such asg andh, have been suppressed for simpli
ity.

Using standard techniques6,13 for the evaluation of the in-
tegral I 1(r ) one has

I 1~r !5Dt1~r !t2~r !, ~A2!

where

t1~r !5@ g̃12Ar #22a, t2~r !52F1~2a,2a2c11;c;Q!,

Q~r !5
g̃22Ar
g̃12Ar

, ~A3!

D524a22h2m/4Kd2m,mG(b)B(m/2,2a), a5b2m/4,
c5b11/2, g̃5g/Ah, b512(d2m)/2, and Kd2m,m
5G(12b)Sd2mSm , with Sd5@2d21pd/2G(d/2)#21 is the
standard geometrical factor of the integration. The functio
G, B, and 2F1 are the Euler’s gamma, normal beta, a
hypergeometric functions,20 respectively. Differentiating Eq
~A2! we get

I 2~r !52D$t1~r !t28~r !1t18~r !t2~r !%, ~A4!

with

t18~r !5
]t1~r !

]r
52

2a

Ar
@ g̃12Ar #22a21, ~A5!

t28~r !5
]t2~r !

]r
5
2a~2a2c11!

c

3 2F1@2a11,2a2c12;c11;Q~r !#Q8~r !,

~A6!

and

Q8~r !5
]Q~r !

]r
5

22 g̃

~ g̃12Ar !2
.

Finally, the exact form of the integral’s ratio reads

I 2~r !

I 2~2r !
5

t1~r !t28~r !1t18~r !t2~r !

t1~2r !t28~2r !1t18~2r !t2~2r !
. ~A7!

In the following, Eq. ~A7! will be used to deduce the
exact limiting cases

~i! d53.
For this case Eq.~A7! simplifies considerably, since th

second argument of2F1 will be equal to zero. Consequentl
t2(r )5t2(2r )51, and t28(r )5t28(2r )50. Then Eq. ~A7!
gives
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I 2~r !

I 2~2r !
5

t18~r !

t18~2r !
5

~12m/2!

Ar
@ g̃12Ar #2m/2

~12m/2!

A2r
@ g̃12A2r #2m/2

5A2S g̃12A2r
g̃12Ar D m/2 ~A8!

5A2S x12A2
x12 Dm/2, ~A9!

wherex5 g̃ /Ar has been introduced.
~ii ! g50.
In this caseQ8 and t28(r )50, hence from Eqs.~A7! and

~A5! one can find

I 2~r !

I 2~2r !
5

t18~r !

t18~2r !
5A2S g̃12A2r

g̃12Ar D 32d1m/2

5A2S x12A2
x12 D 32d1m/2

. ~A10!

Equation~A10! covers the pure Lifshitz case whenx→0, see
Eq. ~8!.

~iii ! r50.
This case is problematic and should be handled with c

The main question here is how to extract ther dependent of
the I 2 integral asr→0. The answer is the following: becaus
of the special form of the second argument of the hyperg
metric function in Eq.~A3!, it can be replaced by the equiva
lent form @see Ref. 20, Eq.~15.3.19!#

I 1~r !5D~2 g̃ !22a
2F1S a,a1

1

2
;c;12

4r

g̃2
D . ~A11!

Differentiating Eq.~A11! gives

I 2~r !5
2a~2a11!

g̃2c
D~2 g̃ !22a

32F1S a11,a1
3

2
;c11;12

4r

g̃2
D ,

and using the standard formula20

2F1~n,b;d;12t !5td2n2b
2F1~d2n,d2b;d;12t !

in our case, whered2n2b5c22a23/25221d/2, one
obtains

I 2~r !

I 2~2r !
5

~4r / g̃2!221d/2

~8r / g̃2!221d/2

3
2F1~c2a,c2a21/2;c11;124r / g̃2!

2F1~c2a,c2a21/2;c11;128r / g̃2!

5
1

2221d/2 . ~A12!
e.

o-

Equation~A12! covers the pure isotropic case wheng.0,
see Eq.~9!. By similar arguments, the limith→0 can be
treated and the result for the isotropic case is recovered

APPENDIX B: RENORMALIZATION GROUP
CALCULATIONS

In this appendix, we will use thee-expansion method to
formulate our integrals and calculate their related functi
In the limit of g→0, Eq. ~A2! gives

I
1
~r ,h!5

1

8
Kd2m,mGSm4 DGS ẽ

2
21D h2m/4r 12 ẽ /2. ~B1!

To extract the pole fromG function in the above equation
we can use the relation20

GS ẽ

2
21D 5

G~ ẽ /211!

ẽ /2~ ẽ /221!
'2

2

ẽ
,

then

I
1
~r ,h!52

1

4
Kd2m,mGSm4 Dh2m/4

1

ẽ
r 12 ẽ /2. ~B2!

Also,

I 2~r ,h!52
]I 1~r ,h!

]r

5
1

4
Kd2m,mGSm4 Dh2m/4

~12 ẽ /2!

ẽ
r2 ẽ /2. ~B3!

To calculate the specific heat we have to calculate the re

malized vertex functionĜ6
(0,2) .

For T.Tc

Ĝ1
~0,2!5Zr

2GB1
~0,2!2@Zr

2GB
~0,2!#sing

5Zr
2F2

1

2
I
2
~r o ,ho!G2@Zr

2GB
~0,2!#sing, ~B4!

where the integralI 2(r ,h) is defined in Eq.~B3!, then

Ĝ1
~0,2!52

1

2 ẽ
Kd2m,mF12

ẽ

2
2

ẽ

2
lnS r

m2D1O~ ẽ 2!G
1

1

2 ẽ
Kd2m,m . ~B5!

Using the conditionr /m251 we have

F̃152Ĝ1
~0,2!52

1

4
Kd2m,m . ~B6!
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For T,Tc

Ĝ2
~0,2!5Zr

2GB2
~0,2!2@Zr

2GB1
~0,2!#sing

5Zr
2F 3uo 12I

2
~22r o!G2@Zr

2GB1
~0,2!#sing, ~B7!

and using Eq.~19! we finally get

F̃25Kd2m,mS 11
ũ

ẽ
D H 3

ũ
2

9

2 ẽ
1
2

ẽ

212 lnS 2
2r

m2D1
ẽ

2
lnS 2

2r

m2D J 2
1

2 ẽ
Kd2m,m

5F 3
ũ

21GKd2m,m , ~B8!

where the condition2 2r /m251 has been used. The inho
mogeneity follows from Eq.~21! and the last part of Eq.
~B5!,

B̃5
1

2
Kd2m,m .
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