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Specific-heat amplitude ratio near a Lifshitz point
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The specific-heat amplitude ratfo, /A_ (SHAR) in the neighborhood of am-type Lifshitz point has been
calculated in the Gaussian approximation. The crossover behavior of the SHAR between the Lifshitz behavior
and the usual isotropic critical behavior is considered. This crossover turns out to depend on the temperature as
well as the anisotropy of the dispersion. Renormalization-group calculations in one-loop order of the SHAR
generalize the result for the usual isotropic critical pdi§0163-182807)04125-9

[. INTRODUCTION for the understanding of the experimental results in systems
whose phase diagram show a Lifshitz pdifixamples stud-

In the vicinity of a critical point, the amplitudes of the ied extensively are, e.g., ferroelectfias the magnetic sys-
power laws characterizing divergent quantities, like susceptem as MnP.For this magnet the SHAR has been measured
tibility and specific heat, are nonuniversal. However, fromand a valueA, /A_=0.65 has been found.This amplitude
the two-scale factor hypotheégt follows that certain com- ratio is considered theoretica"y for a Lifshitz pOint. With the
binations of these amplitudes are universal, i.e., they deperf?lp of the renormalization-group thedtyand by using
only on the quantities characterizing the universality class téield-theoretical methodS, we calculate the asymptotic
which the critical point belongs. One important example isvalue of SHAR in one-loop order. As we shall see, because
the amplitude ratio of the divergence of the specific heaff mathematical difficulties, the analytic results do not go
above and below the critical poifSHAR). Its asymptotic beyond one-loop order. This limits our prediction of the
value has been calculated for different universality classesSHAR.

Here we consider the SHAR for a Lifshitz poﬁ’]ﬂ_’he Lif- The paper is arranged as follows: In Sec. Il we introduce
shitz point critical behavior constitutes a universality classthe theoretical model for calculating SHAR at the Lifshitz
on its own and one expects the SHAR to be different from itsP0int using the Gaussian model. A comparison between pure

value at the usual critical point. The renormalization-grouplifshitz point and the pure Gaussian isotropic point is made.
theory calculates these asymptotic values. In Sec. Ill, the crossover, within the Gaussian model between

In the region further away from the critical point, one the Lifshitz and iSOtrOpiC pOintS, will be introduced and dis-

expects that, a|th0ugh fluctuations are present, their effeé.tUSSEd. Section IV will be devoted to a review of genera”ZEd
may be approximated by taking them into account only inrfenormalization-group procedure and the calculation of the
quadratic order, neglecting the fourth-order interaction of theSHAR, which is followed by a discussion of the experimen-
fluctuations. This is the region of application of the so-calledtal result of Ref. 10 in the light of our results in Sec. IV.
Gaussian model.One may also calculate the SHAR within Some important formulas will be given in the appendixes
this region and compare with experiments. This has beelhich follow our discussion. Through our paper, we will use
done for superconductdrsand suggested for magnetic the subscripts+ and — for the values above and below
systems. Since the amplitude ratios within this region are Tc, respectively.

further away from the critical point, one does not expect

them to be universal, but they may depend on the nonuniver-

sal parameters of the Gaussian mdtlel.this paper we con- ll. GAUSSIAN MODEL AT THE LIFSHITZ POINT

sider the SHAR in the Gaussian region near a Lifshitz point A. Above T,

and the crossover of SHAR to its value at the usual isotropic . . . .
critical point. A new feature comes into play since the diver- !N the following we will briefly recapitulate the calcula-

gence of the specific heat in the Gaussian region of a Lifshit%Ion r?f tthe ﬁ'pecifi.c heLat within th% Gaﬁssian le}ppr?ximgtion
point (a = [4+m/2—d]/2) is different from the corre- or the Lifshitz point. Let us consider the partition function

sponding divergence for the usual critical point

(ajg=[4—d]/2). Therefore the SHAR becomes temperature

dependent in the crossover region. Z=f e Hlel, 1)
The crossover between the Lifshitz behavior and the usual ¢

isotropic critical behavior in the nonordered phase has been

studied in(Ref. 6 and the crossover function of the specific where the Landau-Ginzburg-WilsoliLGW) free-energy

heat was calculated in one-loop order. The results of theskinctional, describing the critical behavior of a system that

calculations above the phase-transition line might be helpfuéxhibits anm-fold Lifshitz point, can be approximated by
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1 . C. A, n
H[‘P]—Efk(r“‘p +09%) (k) e(—k). i) C T A "o (9)

Here ¢(k) represents the order parameter, e.g., magnetizaFhis may be compared with the ratio of the purely isotropic
tion, polarization, etc. Thel-dimensional wave vectdk is  Gaussian pointformally m=0)
decomposed intg andp components of dimensioma and
(d—m), respectively. In Eq.(2) we used the notations A, n
[e=J[d% MpdMg/(27)¢], and r=(T—T.)/T. as the re- N (10)
duced temperature. N

The specific heat is computed according to the definitionNote that this value of the ratio was found from the singular

part of the specific heat which goes like ¥?, where

2
o —T(?—FZ &) e=4—d and the specific-heat exponemfs is equal toe/2.
aTs’
whereF is the free energy per unit volume and is related to IIl. CROSSOVER WITHIN GAUSSIAN MODEL
Z by the relationF = — (1/N)InZ. Calculating the functional In this case the Landau-Ginzburg-Wils¢hGW) free-

integral we obtain energy functional is written as

C —fdd_mpqu ! = —0h=1 1
T Tt rpregn? 2ne=on=l). H[qo]=Efk(r+p2+gq2+hq4)so(k)so(—k), (12)

4
See Appendix A for detailed definitions of the integral  with the same definitions as in E(), but withg andh as
After performing the integration in Eq4) and only keeping  parameters of the dispersior. contains now the limits of a
the most singular part, the specific heat reads pure Lifshitz behavior §=0) and a pure isotropic behavior
(h=0, the finite value ofy may be scaled away by choosing
a proper scale of the wave vector componeptsNe have to
keep in mind what we mentioned earlier, that beldwthe
- -~ _ parameter has to be replaced by|d. The specific heat
where e=4+m/2—d and the specific heat exponestg is aboveT, reads

equal toe/2

1 m € —e2 €2
Ci=gKa-mml'| 7|T| 5 |r =A™ ()

|2(I’,g,h).
(12

c _fdd‘”‘pqu 1 _
B. Below T, ) T emT (r+pi+gqi+rhgh?

Below T one has to observe the finite value of the order

parameter. In order to get a finite partition function and arhe |, integral is related to the hypergeometric function
phase with broken symmetry one has to go one step further . o mo ) :

! : : >F1(2—d+m/2,3/2—d/2;3/2— d/2+m/2;Q) with

in the expansion and take into account the fourth-order term-

Expanding the fluctuation around the order parameter by -
means of Q(r):g—Z\/F
g+24r

e(k)=(¢)x=0t @(k), (6)
one also obtains a quadrakendependent contribution from e_md can be Calcu_lated_ in a closed f_oﬁﬂts analy'_uc proper-
ties will be explained in more detail in Appendix A.

the fourth-order term, which leads to a factor of 2 in front of ) . )
) The amplitude ratio become¢$we generalize to an
ther term. In the present case, the Gaussthneads
n-component order parameter

1
H[<P]=Efk(2|r|+p2+q4)¢(k)¢(—k), @) A, n lyr,g.h)

A 22 1,(2|r],g,h)" (13

and one immediately calculates the most singular part of the _ o _
specific heat as In Appendix A we calculate the limiting values of this ex-

pression. The limit of pure Lifshitz behavior is obtained for
1 m c ~ ~ g=0. On the other hand, in the limit—0 orr—0 at finite
C—:ng—m,mF(Z)F 5) 22r|~2=A_|r|" <2 (8 g, we recover Eq(10). For general dimensions a, the
ratio remains dependent on all the parameters. Note however
The factor Z comes from the shift ofr| to 2|r| at T<T, that the limiting values do not depend on the value$ air
and the application of Eq23) g. The independence property is to be expected in the
It is straightforward to generalize our procedure for asymptotic region, but we are in the Gaussian region where
components of the order parameter. If one takes into accouthe amplitudes may b&nd in our case ayeonuniversal.
that, belowT ., the leading singular contribution comes from  Let us now discuss the physical case @#3. Then
the parallel fluctuations of the order parameter only, then thiSHAR simplifies considerably because of the property
will introduce a factor ofn into the ratio, i.e., SF1(—=1+m/2,0m/2;Q)=1, and we have
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script zero. The renormalization proceeds along the same

0.60
' ' ' ' lines as in Ref. 14. In particular we have, after introducing
g the momentum scalg,
055 |- _
ol — :=; _ [0=2,'Z1, Up=pZ,*ZuKs s
A+/A_ X ..... m=3
oas |\ ] ho=pn"2Z, Zph,0o=Z;% (17
o In one-loop ordeZ ,=Z,=1, and the perturbational expan-
40 . : .
sion parameter, for examplg, andZ, , is performed in the
effective interactioni= iI'(m/4)uh~™* (see below Explic-
035 itly,
X
1u 3u
FIG. 1. The specific heat amplitude ratio in the Gaussian model, Zi=1+5 < Zy=1+5 o
as a function ofx=g/+r, for different values ofm. x=0 and
x— oo correspond to the Lifshitz point value and the usual isotropic
critical point, respectively. Within the renormalization-group theory the specific heat
C. aboveT, is given by the cummulatt and calculated
A, n [x+2y2|™ from the vertex functiod (%2 by
A_ 22\ x+2 (14
(L1 N o
We introduced the “scaling variableX=g/+hr. Figure 1 Ci=lze 507 ) =107 (18)
shows our calculation result of the SHAR as a function of
x for m=1, 2, and 3. One can see the pronounced effect o 15
small values ok on the shape of the SHAR. At=0, all the gnd belowT by
curves start at the Lifshitz point value(e.g.,
A, /A_=0.420 form=1). With increasingx, the SHAR (22
tends to decrease to the usual isotropic point value C_(r,up)=-T02+ 02 - (19

(AL /A_=0.354). -
One may ask if this simple form extrapolates to other
dimensions too, so we are proposing an empirical formula |n order to obtain C. quantities using the field-
for generald, x, and m, which covers both limits and is renormalization-group procedure, we have to calculate the
exact atd=3, renormalized vertex functionl“(io'z), by solving the
renormalization-group equatiotRGE’s) in the form:
X+ 2\/5

X+2

A 1 m/2
+

N (15

2+ i
Tor

J J
—+B,(Q)—+.(Q)
The formula has been checked for different values ok, Mﬁﬂ Aul au &l

and m. A maximal error of 4%, compared with the exact
formula Eqgs.(13) and (A7), was found.

d
+[2—zwzh(m]h%ﬁ?@(r,n,m=ws<9,m. (20
IV. ASYMPTOTICS AT THE LIFSHITZ POINT

ApproachingT, the Gaussian model breaks down and the . : _ -1
fourth-order term of the fluctuations have to be taken into. In Eq. (20), we have defined;(Q)=p(/0p)Inz, lo,

) . i=¢, r, h, andB,=u(d/du)uly. Q=(h,u), the symbol|,
account. Thus the LGW free-energy functional reads indicates that all derivatives are to be taken at fixed bare

1 parameter,, hy, andug. The inhomogeneity of Eq20),
Hlp]= _f (ro+p2+heg®) (k) e(—K) which is related to the additive renormalization of the spe-
2 )k cific heat, has the form

Uog
+ mfklszfk3fk4¢(kl)¢(k2)¢(k3)¢(k4)5[2 kl}

(16)

d __
B(Q,u)= —MEZEM@zr A2 2 (k=0)]gng. (2D)

The coefficients in the LGW functional are unrenormalizedUsing the method of characteristitsthe general solution of
ones(as before in the Gaussian modeharked by the sub- Eq. (20) read$§
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andF. is the dimensionless vertex function. The functions

02 — (1)~ a2l i(dplp)E(p)
T2A(r,Q,u)=(ul)~ e/l r(l), u(l), andh(l) fulfill the equations

r() dr(l du(l dh(l
_F1<M2|2, U(l): h(l)) |%:§rr(|)' | d(l ):,Bu, |%:(2_§¢+§h)h-
L dp | (23
+ L FB(P)efl(dp fpoNzG )= ] (22) Here we are going to adopt the scaling procedure of our

previous work* which leads us to a scaling solution of the
wherel is an arbitrary flow parameter to be chosen suitably RGE’s in the form

- | ~ () ~
F(f‘z)(r,h,u,//,)=(ﬂl)_5h_ (M/4) o 1(dplp){24r(p) = MVA[L o (p) — Ln(p)]} | — Ft(%ru(l))

ldp o -
" f 1 7"5( 0 e/ 100" 1" (2L (p) ~MALL o ()~ ()] — <} ] , (24)

with the flow equations isotropic ¢* model, the only difference being that the

effective fourth-order interaction appears. In particular it is

found (see Appendix B that B*=(1/2)Kq mm, F*

=—(U4)Ky_mm and F* =(3/u* —1)K4_mm. The expo-
Due to the behavior of the Lifshitz point, the susceptibil- N€Nts in one loop order are, = €/6 andv, =1/2(1+ €/6)

ity is characterized by two correlation lengths divergingand the fixed-point value™ = (2/3)e. Thus we end up with

differently” and this leads to two different exponentsy,  the result
and v, perpendicular and parallel to the-dimensionalq

du(l)

m—
_th—Mmdp " _ — n~
l dl =h IBU 4U(2 g(p_l—gh) IBU'

direction.
Usually one chooses(1)/1?=1. This choice leads to the A, 2% 28)
connection between the temperatures= |T. —T/|/T. and A 4

the flow parametet=I(r.) via the solution of the flow
equation forr(1)=r. . So, at the fixed point, the specific
heat is given by Let us compare this with the SHAR for an isotropic case
- (d=4—-¢€) andn=1, which is known a¥
C.(r*,u* ~|:a(2_§r)[F++—}, 25
(U~ o @
where Ay _201| 1+ 29
a4 (1te. (29
-2+ A -4
a= .
22— The e term results from a two-loop calculation. In order to
) _ Y2 %) get this correction of ordeg, the value in Eq(29) of «,
By taking the relations |, ~r "% and (= ¢6—29¢4324) andu* has to be known to the order of

|_~(—2r )Y &) into account, and defining the ampli- €2. In the case of the Lifshitz poiniy, and U* are only

tude ratioA .. through the relation known to the order of.
C.=A.|r|7% r—=0, (26)
then the amplitude ratio iv, =(2— ¢*) ] calculated as V. DISCUSSION
= ~ Our calculations of the crossover behavior in the Gaussian
A_+: BTy +aFl 27) approximation are valid on approaching the Lifshitz point
A_ B*v, +aF* ' from the side of the transition curve between the paramag-

netic and ferromagnetic phase. This is just the region where

This generalizes the expression for the SHAR derived byhe experiments of Ref. 10 in MnP were performed. Note
Dohm'® for the usual isotropic system. N __that in comparing with the experiment our theoretical tem-
For the Lifshitz point, the scaling functions. and B perature field has to be identfied with the magnetic field per-
have to be calculated by the perturbation theoryrferl. In  pendicular to the easy axis and the specific heat with the
one-loop order one recovers the same results as for the usuadrresponding magnetic susceptibility. One expects, from
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TABLE |I. Specific-heat amplitude ratio ford=3, and
m=n=1. The value of the corresponding exponents given in Is(r)=(27r)_dJ dd_mpJ d"qGS(r), S=1,2,
the bracket, the values for the isotropic case are taken fief. (A1)
19).
- — where GS is the Gaussian propagator and equal to

Isotropic Lifshitz (r+p?+g2+hg*) S, with 1,(r)=—al,(r)/ar. Other ar-
Gaussian 0.39.500 0.42(0.750 _g:uments, such ag andh, have been suppressed for simplic-
One-loop 0.280.167 0.30(0.29 y. . . .
Two-loop 0.530.077 Usllng standaLd techniqus for the evaluation of the in-
Field theory 0.541 tegrally(r) one has
Experiment 0.63-0.48 0.6Mef. 10.

11(r)=Dty(r)tx(r), (A2)

measurements at different temperatufesT, and the mag- where

netic fieldH approaching the critical valud. on the para- - Con
ferro line, to observe a crossover between Ising behavior andti(f)=[G+2\r]7%,  ty(r)=,F1(2a,2a~c+1;c;Q),
Lifshitz behavior. This has been found in the experiments

(see Fig. 5 in Ref. 10 Qualitatively it corresponds to the ’é_z\ﬁ
crossover function displayed in Fig. 1 valid in the Gaussian Qr)==———=, (A3)
region. g+2r

Regarding the absolute values of the SHAR, we have col=, _ 4a-2, —m/ o
lected them in Table | fod=3, andm=n=1. All values are D=2"""h"""Kg_mnl (B)B(m2,2), a=p-mi,
obtained so far for the usual isotropic critical point as well asc=8+1/2, g=g/ \/ﬁ’_ B=1- ((?__1 ”?/22 and 1K_d—m,m
for the Lifshitz point. In one-loop order the only difference =1 (1=8)Su-mSm, with Sy=[2"""7"T(d/2)]" " is the
to the isotropic case comes from the different specific-hea%ta”dard geometrical factor of the integration. The functions
exponentsa. This leads to an increase of the SHAR by I+ B, and ;F; are the Euler's gamma, normal beta, and
roughly 7%(second row of Table)l A much larger increase hypergeometric functiort®, respectively. Differentiating Eq.
of 20% can be seen in the Gaussian regfost row of Table ~ (A2) we get
). In the isotropic case, the next order éndoubles the
SHAR compared to the lowest order. We expect a similar [o(r)=—=D{ts(r)ty(r) +ty(rta(r)}, (A4)
effect for the Lifshitz point. Taking the hyperscaling law and .
experimental values for the exponemsandv, , a value of with
a =0.49 (compared to values af,~0.1) was estimatetf.

This would give a value of the SHAR without the correc- ti(r)= _ _["g'+2\/F]—2a—1 (A5)
tion of 0.35. Near the Lifshitz point, in fact different ! ar Jr ’
specific-heat exponents were measured, above and below,

and this was attributed to the closeness _of the first-order gto(r) 2a(2a—c+1)
phase transition between the ferromagnetic and fan phase. t;(r)= =

atl(r)_ 2a

Several other problems arise in extracting the SHAR, e.g., or ¢
that one has to subtract the background values of the specific X ,F[2a+1,2a—c+2;c+1;Q(r)]Q’(r),
heat in order to get the singular part. Nevertheless, so far, the
experimental result for the SHAR seem to be in agreement (A6)
with the theoretical estimates made from our results. Furthe,
investigations both on the experimental side as well as on the
theoretical side, seems to be necessary, although a two-loop -
calculation is expected to be outside the analytical possibili- Q,(r):aQ(r): —29
ties. ar (§+2\/F)2'
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In the following, Eq. (A7) will be used to deduce the

exact limiting cases

(i) d=3.

Our main interest in this appendix is the calculation of the  For this case Eq(A7) simplifies considerably, since the
integral 1 ,(r), which we used to calculate the specific heatsecond argument ofF, will be equal to zero. Consequently
and SHAR, and study its behavior at different limits. Thet,(r)=t,(2r)=1, and t;(r)=t3(2r)=0. Then Eq. (A7)
Lifshitz integral can be expressed in the form gives

APPENDIX A: LIFSHITZ INTEGRAL
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(1-m/2)
t(r) Jr
t(2r)  (1-m/2) 5

\E

g+2\/— m/2
T2t

x+2\/§

X+2

+2 m/2
" ———T[g+2r]"

2

2\/—] m/2

.

(A8)

m/2
: (A9)

-2

wherex=g/+\r has been introduced.

(i) g=0.

In this caseQ’ andty(r)=0, hence from EqsiA7) and
(A5) one can find

159

Equation(A12) covers the pure isotropic case whgir0,
see EQ.(9). By similar arguments, the limih—0 can be
treated and the result for the isotropic case is recovered.

APPENDIX B: RENORMALIZATION GROUP
CALCULATIONS

In this appendix, we will use the-expansion method to
formulate our integrals and calculate their related function.
In the limit of g— 0, Eq.(A2) gives

1 m\ (€ -
I, (r.h)=gKa- mmF(4)F(§—l)hm’4rlf’2. (B1)

To extract the pole fronf” function in the above equation,
we can use the relatiéh

(1) _ G0 _ Sg+2yar) T F(E_l)_w 2
I(2r)  tj(2r) 9+24r 2 el2(el2—1) €'
X+2\/§ 3—-d+m/2 then
=2 X+2 (A10)
Equation(A10) covers the pure Lifshitz case wher-0, see 1 m\ ol
Eq. (8). I (r h)= Kd mml 7 h ,e_r . (B2)
(i) r=0
This case is problematic and should be handled with carey|sp,
The main question here is how to extract thdependent of
thel, integral ag — 0. The answer is the following: because al4(r.h)
of the special form of the second argument of the hypergeo- I5(r,h)=— v
metric function in Eq(A3), it can be replaced by the equiva- or
lent form[see Ref. 20, Eq(15.3.19] 1 m (1-7Z12)
:—KdmmF(— h™™4———r~ <2 (B3
4 : 4 €

(Al11)

- 1
l1(r)= D(Zg)zazFl( a,a+ E;C;l_ =
g To calculate the specific heat we have to calculate the renor-

Differentiating Eq.(A11) gives malized vertex functiorf(i()'z).

ForT>T,
2a(2a+1) ~ _2a
lo(r)=—=,—"D(29) .
FO2= 22002 [27T02],
3' . ar 2 1 21(0,2
e atlatgierlilm =), =zr[—§|2<ro,ho> —[Z20%)gng. (B
and using the standard forméfa where the integral,(r,h) is defined in Eq(B3), then
SF1(v,0;8,1—1)=t" " P,F (6—v,6—b;81-1) o
in our case, where—v—b=c—2a—3/2=-2+d/2, one re2- —éKdmm[l— £ Em(—rz +0(€?)
obtains 2€ ' 2 2 \p
lo(r) _ (4r/g?) 292 + Ky mm- (B5)
I,(2r) (8”"9‘2)—2+d/2 €
2F1(C a,c—a—1/2;c+1:1—-4r/g?) Using the conditiomr/u?=1 we have
2F1(c a,c—a—1/2;c+1;1-8r/g? 1
1 E+:_I‘(+O'2):_2dem,m- (B6)

= 5=2Fan- (A12)
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ForT<T,

(0,2 _ -271(0,2 271(0,2
F(— )_eré—)_[zrrg+)]sing

=72

3
u_+2|2(_2r0)}_[Zrzrgof)]singy (B7)
o

and using Eq(19) we finally get

u\|3 9 2
l+=|{i=——=+=
€e/lu 2€¢ €

F_= Kdfm,m

L |( 2r)+'2|( Zr) 1K
—1-In| —— |+ 5In| ——| | ——=K4-
MZ 2 /-LZ 2%z d—m,m

3
=—1
u

Kd—m,mv (BS)

where the condition- 2r/u?=1 has been used. The inho-
mogeneity follows from Eq(21) and the last part of Eq.
(BY),

B= Ka-mm-

N| =
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