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The mechanical behavior of thin films subjected to laser irradiation is described by a dynamical model that
is based on coupled evolution equations for the deformation and vacancy density fields. Lattice vacancies are
generated in a thin layer as a result of shallow absorption of electromagnetic laser radiation. The strain field
associated with lattice dilatation due to vacancies is shown to couple with bending and stretching mechanical
deformation fields. The dynamical model developed here is an extension of the work of Emel’'yanov in two
respects(l) the coupling between the diffusion and mechanical deformation fields is rigorously developed
with additional cross-field contribution&2) new equations for reduced dynamics are derived from this model,
and are used to analyze the physical conditions for the onset of a deformational instability. For a given
material, the threshold for this instability is correlated mainly with laser power. We also show that, although
the instability threshold and critical wavelengths are given by the linear part of the dynamics, the selection and
type of deformation patterns induced by this instability require a nonlinear formulation. Both numerical and
analytical analysis are performed here. According to the relative importance of nonlinearities arising from the
defect or from the bending dynamics, square or hexagonal planforms are shown to be selected. Furthermore, it
appears that one-dimensional gratings are always unstable in isotropic systems. The results for square patterns
are consistent with experimental observations, while those for hexagonal and one-dimensional gratings show
the importance of anisotropies on their final select{®0163-18207)03847-3

[. INTRODUCTION netic laser radiation with thin films leads to very strong ab-
sorption of photon energy in a shallow layer that is a few
Laser-induced instabilities are becoming particularly im-wavelengths deep from the surface. As a result, substantial
portant in several aspects of surface modification technolononequilibrium concentrations of lattice defects are gener-
gies. On the one hand, laser-surface interaction may contrelted. The type of lattice defects depends on the photon en-
the structure and properties of thin films, coatings, and semiergy, wavelength of laser irradiation, and material. Examples
conductor surfaces. Strong laser radiation induces structurgk such defects are electron-hole pairs in strongly absorbing
and morphologiqal changes in_matter vv_hich are reSp'OHSib|§emiconductors, interstitials and vacancies in thin films, and
for the degradation of light-emitting devices, cumulative la-\4igs and dislocation loops in prolonged irradiation. It is the
ser damage of optical components, and nonuniform melting,, »jing between defect generation, diffusion, and the defor-
of semlg?nductor surfaces, o cite only a few of theseq i field that leads to pattern forming instabilities. As a
aspects Furthermore, laser annealing and fast recrystalh—result the description of such phenomena should be based on
zation may lead to special types of structures including mol- ’

ten and crystalline phases, and laser-assisted thin-film dep(t)he dynamics of the defect fieNy in the thin film and the

sition processes, which should also be in the mainstream (%Iastlc continuum of the host material described by the dis-

this activity> Many of these phenomena proceed through th lacement vec.tprU(-r,t) = (U, Uy ZUZ) With appropriate
formation of regular structures on the surface of the materiai?oundary conditions; both dynamics being coupled through

and laser-surface interaction is evidently a field where patth® defect-strain interaction. Various types of defect struc-
terning phenomena are overwhelming. Hence, the method&es may be induced in such dynamical systems. For ex-
of nonlinear dynamics will hopefully lead to a better under-ample, in the case of thin films under laser irradiation, regu-
standing of the mechanisms of pattern formation, selectionlar deformation patterns may appear on the film surface
and stability in films and coatings under laser irradiation. when the laser intensity exceeds some threshold. In spatially
The main instability mechanism in laser-irradiated mate-extended irradiation zones, one- and two-dimensional grat-
rials is due to the coupling between defect dynamics and things have been widely observéfIn particular, when irra-
deformation of the surfaceThe interaction of electromag- diation proceeds with focused beams, such as in laser-
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irradiation increase. On the other hand, a deformation bump in the film
locally decreases the defect density. It furthermore increases
y the defect formation energy and induces an outgoing defect
flux. In this case, a deformation bump will increase while the
defect density will decrease. There is thus a feedback loop
b2 between local deformation and defect density variations,
et which provides a destabilizing mechanism for uniform defor-
0 film T mations. However, vacancy diffusion tends to wash out non-
2 R uniformities in the system and provides a stabilizing mecha-
nism for uniform defect densities. Instability occurs when the
feedback loop effects dominate over diffusion, and this in-
stability is of the generation-diffusion-deformation-
instability type®
FIG. 1. Geometrical setup of a thin film under laser irradiation. ~Two nonlinear mechanisms saturate the growth of this
instability. The first one comes from finite deformation elas-

induced film depositichor in etching experimentsroselike  ticity, which limits the growth of the deformation. The sec-
deformation patterns are observed, where a finite number &nd one results from vacancy dynamics, where the extra de-
petals develop around a central uniform spot. One strikindect flux induced by surface deformation is proportional to
experimental observation is that the number of petals inthe vacancy density. Consequently, defect fluxes from re-
creases with the intensity of the laser beam. gions of decreasing defect density decrease accordingly in a
Our aim in this paper is to perform a dynamical ana|ysisfeedback process, Which thus limits defect Iocalization.
of the formation, selection, and stability of two-dimensional Hence, the dynamical model that can describe the evolu-
deformation patterns in thin films under uniform laser irra-tion of such a system should be based(dra nonuniform
diation. We first develop a dynamical model which leads tolaser-induced temperature field across the filir);the evo-
deformational instabilities in such systems. This model is adution of vacancy density in strained crystals, including gen-
extension of a model first introduced by Emel'yarfowe  eration and transportjii ) t_he deformation of a thin film in
also discuss the conditions for instability, while pattern for-the presence of a nonuniform vacancy density. These three
mation beyond the instability threshold is performed through@SPects are presented next, and are finally assembled in a full
nonlinear analytical and numerical analyses. In Sec. I, wélynamical model.
discuss the geometry of the system, and in Sec. lll we
present a method for calculating temperature distributions in
the film. The dynamics of vacancy density evolution are then
derived in Sec. IV. On the basis of the first law of thermo-
dynamics, the equation governing the deformation field are QOnce laser light is absorbed in the thin film, local heating
given in Sec. V. The stability of undeformed states in weaklywil| result in generation and diffusion of lattice defects. We
adherent films under uniform irradiation is discussed in Secwjll only consider vacancies as the most likely defects to be
VI, while Sec. VIl is devoted to weakly nonlinear analysis, generated in metallic films. The concentration of vacancies is
amplitude equations, and pattern selection. Finally, numeriheavily dependent on temperature. One thus needs to know
cal results are analyzed in Sec. VIII and conclusions arg,ow the laser irradiation affects the local temperature of the
presented in Sec. IX. crystal. We will consider here situations where the laser only
heats the material, and that equilibrium between laser radia-
tion and the temperature field is reached on time scales much
shorter than the characterisitc time scale of vacancy density
evolution. Typically, the time scale for equilibration between
The system we consider here represents a thin film on photon absorption and vacancy generation is on the order of
substrate, and is modeled by a thin horizontal crystallingpicoseconds, while that for vacancy diffusion is of the order
layer submitted to a transverse laser beam. The film is a®f milliseconds.
sumed to have a thicknebsand its dimensions in theand The local temperaturd,=T(x,y,z,t)=T(r,z,t), is deter-
y directions are assumed to be much larger thaiihe ge-  mined through the heat conduction equation
ometry of the corresponding model is represented in Fig. 1.
Due to thermal heating induced by laser irradiation, an 0
increased vacancy density is created in the subsurface layer . K .
The corresponding transverse vacancy density profile results W(m—: dir(MaT+Q, 3.
in a force on the film that may induce bending deformation.
Even under uniform irradiation, this system may become un- . - .
stable versus nonuniform deformatigns or vaZancy densitw.her? 'f(T) is the thermal conductivityD(T) is the.heat
variations. Physically, a local increase in the vacancy densit iffusivity («=pC,D wherep stands for mass density and
generates a lattice contraction in the film. This contractiorCp for the specific heat at constant presguendQ is the
has two effects: it locally reduces the defect formation envolumetric laser heating rate. In this case, the source term
ergy, and, furthermore, induces a converging defect flux. AgQ) is calculated assuming that the light energy absorbed by
a result, both film contraction and local defect density will the medium is transformed into heat. In the absence of phase
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II. LASER IRRADIATION AND THIN-FILM
DEFORMATION



56 DEFORMATION PATTERNS IN THIN FILMS UNDER ... 15 363

changes and chemical reactions, and assuming that the laser , [nm 2 .
light propagates in the-z-direction, it may be written as K Tgn()=—|q°+| 5| |DTgn(t)+Qqgn(t), (3.7
h
> Ce e where
Q(r,z,t):EV(ExHFk,VI, (3.2
. - - (rt)f
wherel is the time average of the Poynting vector dnds Qq ()= f dzf dF coa™z 7TZ ~iq- rm (3.9
a unit vector in the direction of the light propagation. If one pCp

assumes that the laser beam propagates in-théirection,

the Beer-Lambert law yields and| depends on the type of irradiatignniform, pulsed,

focused, etg. For f(z) =« exga(z—Nh2)], we have
di(2)
dz

wherea=4mk,/\ is the linear absorption coefficienk( is
the absorption index andl the wavelength of the light in  Wwith
vacuum, which defines the absorption lendth= o~ *

The source term may then be written as
Q(r,zt)=1(r,t)f(z) wherel depends on the geometry of fn= ,
the laser beam an€l(z) describes the absorption of light as+
along the—z direction. We will consider constant and uni-

form absorption, and thul(z) = a exf a(z—h/2)]. In a few cases of experimental interest, analytical solu-
For the sake of simplicity, we will also consider systemstions may be obtained for the temperature field. One of these

and temperature ranges wheteandD are temperature in- consists in irradiation with a Gaussi@W laser beam of

dependent, and, in this case, E8.1) becomes intensityI(F,t)=|oex;{—r2/r§], wherel is the maximum

: beam intensity and, is the beam radius. Performing the
0tT=D(A+a§Z)T+i (3.4  integral in Eq.(3.9 and solving Eq.(3.7), we obtain the
pCp temperature distribution in Eq3.6). In this case, the equi-

(if « is temperature dependent, this dependence may gibrium surface temperature distribution becomes, in the high

eliminated by using the Kirchoff transformatits absorption limit @h>1),
Of course, this equation has to be supplemented by appro-

=al(2), (3.3 I(r t) -

e iar (3.9

Qq a(t)= f dr

2[1-(—)"e™*"]. (3.10

h

. i . . _ R R P(1-R r2
priate bou.ndla}ry conditions. In the foIIpwmg, we will con T (N =T(F,h20)=To+ ( )e*<f2’f§>|0 .,
sider two limiting cases. The first case is for systems with no 2\mkrg 2rg
heat losses at the top and bottom boundaries, i.e., where (3.1

n+n2=0 or yh/k<1, which is a good approximation for o N

typical metalllc films in air wherep=10"* W/cm? K,  Where Io(z)=Jo(iz) is the zeroth order modified Bessel
k=10"1 W/cm K. This case corresponds to focused lasefunction. P is the laser powerR=r2l,) andR is the re-
irradiation, where heat loss is established on the boundaridtctivity coefficient of the film. This result is in agreement
of the horizontalx-y plane. The second limiting case is for With the Green's-function techniquésee Bauerl€). The
systems where substrate cooling is stréegy., by water or temperature increase at the center of the spot is'thus
other fluidg. This case applies to uniform irradiation, where

steady-state temperature profiles can be established by bal- - P(1-R)

ancing the absorbed laser power with the cooling rate. T(r)=To= 2\/;”0 312
A. Focused laser irradiation while the transverse temperature profile at the center of the
i _ -1
Heat dissipation in focused laser heating takes place oﬁpOt is, for|2z—h|<2a"%,
the far in-plane zones of the film, with little cooling through
the substrate. Under these conditions, we have T(02,%) =T+ P(1- R)[erfo( 2z h)euzz—h)/erJZ
N 2\/;Kro\_ 2r0
aZT(r!ZIt)|Z:ih/2:0 (35)
and the temperature of the film far from the central zone — 22 ea[z—<h/2>]l (3.13
[T(,0;t)] will be taken as the room temperatufg. Taking aro\/;
explicitly into account the boundary conditions, the tempera-
ture field may be written as and for|2z—h|>2a"*
P(1-R) 2z—h 2
= ig-r T(0,z,0)=To+ erfc( )e[(ZZh)/Zro] ,
T(r,z,t)=To+ 2 f dq cos—e Ton(t) ot S xta TS
(3.6) (3.19

andTg n(t) is solution of the equation where erfc is the complementary error function.
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B. Uniform laser irradiation

Here, in-plane irradiation is spatially uniform and cooling
is provided through the substrate. The in-plane symmetry of
uniform irradiation implies that the heat flux vector is only
along thez axis, and the problem is simplified as follows.
The surface conductance is zero at the upper surface of the
film, but is different from zero at the bottom because of
substrate cooling. The corresponding boundary conditions
are

3,T(1Z,0)] 1= 4+ 12=0,

> 7 > FIG. 2. Definition of the geometrical parameters associated with
A, T(r,z,t)| ;= —pp=——[T(r,z,t) = Tol|,= —h2- . :
21 Me=—trz K[ ( )= Tollz-—n2 vacancy transport in strained crystals.
(3.15

With these boundary conditions, the temperature field

| a( 1—e ah
may be written as

T =Tyt — +f(1—e-“h)), (3.29)
K 7

and we may write

+ o0
> n
Tr2D=Th=Tot 2 75 Ta(t)coknz, h .
al z— = | +1—ex# N2
(3.16 2
, , . , T(2)=T,.+(T,—-T_) —
where A,=«k>+7? and k, is defined by the relation ah—1+e™ ¢

(3.22

For strong surface absorptiom®$ 1), the temperature pro-

tan(k,h) = 5/ kk, . T,(t) is the solution of the equation

2 .
oTn(t)=—kiDTn(D)+Qn(1), (3.17 file is linear and may be written as
where . . T,-T_ h .
. t_lafn_ la a? . e @=Tit =273/ 3.23
QuV= 15 = ¢ il L~ codkae™ "],
(3.18 IV. VACANCY DYNAMICS IN A STRAINED CRYSTAL

where | ,=15(1—R) is the laser-light intensity that is not
reflected by the surface. In the high absorption linait)
>1, the temperature profile is then

a+°0 a? Ay

TEO=Tot ~ "2 225 k2) A, + 27

X [1—exp( —k2Dt)]cok,z

T+|a§ © k2Dt
T e L
X cOKpZ. (3.19

Since the spectrum d¢k,| has a finite lower bound, which is
given by tankgh) = 5/ kkg with 0<kgh< /2, the tempera-
ture profile(3.19 tends to a steady state, given by

—ah

lo/h
T(Z):To+—a 74+ (1—e(zth/2)
Kk\2 16

K
+—(1—e“h)). (3.20
n
The top and bottom surface temperaturs,and T_, are
given by

—ah

la
T+=To+ h+

K

(1—eM+ = (1—e"a)|,
7

Let us analyze first vacancy dynamics in a strained crystal
with a nonuniform temperature field. This dynamics is based
on vacancy transport, generation, and annihilation.

A. Vacancy transport in a strained crystal

Vacancy transport is evaluated by considering the change
in the vacancy concentratid®(r,t) in a strained crystal with
distributed linear absorption sinkée. voids, dislocations,
grain boundaries, efc.In the volume elemend®r, and
within the time intervaldt, the change in the vacancy popu-
lation is

AC(r,t)dqr. 4.0

We define the following quantitie$1) A(r|R) is the va-
cancy jump probability from locatiom to a new location
R+r (cf. Fig. 2 per unit time.(2) A, (r) is the probability
that a vacancy is absorbed at a homogenized microstructural
sink per unit time per sink3) CS(F) is the concentration of
homogenized sinks4) g exp{—[E((r)/kT]} is the local rate
of vacancy generation in the strained crysté].Ef(F) is the
local vacancy formation energy6) g is the entropy of va-
cancy generationg=1.

Balancing gains and losses in a volume elendnt di-

viding this relation byAtd®r, and taking the limit foAt—0,
one has
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aC ED] e 1f R © e
—_— — - J— attice
gt 9 &X KT Ay (1) Cs(r)C(r) v
E,
X{Cr—ROA(T—RIR-C(rOACIR}, 42 Lol NN E]
whereV is the total volume of surrounding neighbors. B\ AT \_ unstrained
Furthermore, we define the local vacancy mean lifetime & T tattice
as E
g E;
- > N =3
7(r)=21/\,(r)Cq(r). 4.3 &
If both C(r,t) and A(r |R) change slowly, which is justified " :
away from sharp boundaries, one can expand the product To 0 distance
C(r—R)-A(r—RJR) in a Taylor series. At the lowest sig-  FIG. 3. Schematic spatial variation of the interatomic potential
nificant order, one obtains energy of a vacancy in an unstrained and in a strained lattice.
JC(r 1) E«(r)| C(r,t) N
-9 EXF{— KT | ) Fizﬁgl A(r| T (@ (4.9
vy d3R(A<F|FE>x<)>C(F,t>, 1y
V ax; f ' Dij:mz INGIEDIIISS (4.9
a=1
1 & - R
+= d3RArRX-X-)Cr,t.
V 9x;dx; f (A(FIRXiX)) | C(r.) The jump probability will, in a strained latticeor gener-

ally with effects of electric fields or other force fie)dde-
pend on the jump direction:
Tensor notation and summation over repeated indices are

4.9

understood throughout the present development. . Em(F, (@)
We further define A1) = voexpg = —=—|, (4.10
F={Fl= lf dBPRA(FIR)X,) 4.5  WhereEy(r,I) is the migration energy of the vacancy,
v which is dependent on the interatomic potential é} {n

direction!(®, and v, is the atomic vibrational frequency.
Consider now the variation in the interatomic potential
_ 1 R energy of a vacancy in a nonstrained and in a strained lattice,
D={Djj}= 5y d*RA(TIR)X;X;), (4.6)  as shown in Fig. 3.

Figure 3 illustrates the variation in vacancy energy in the
unstraineddenoted by superscript) @nd the strained crys-
tal. E; is formation energyE; is the saddle-point energy,
andE,, is the migration energy, i.e.,

and

whereF is the first moment of the jump probability function,
or the drift vector for vacancy transport, abBdis the second
moment of the jump probability function, or the diffusion
tensor for vacancy transport.

L . . . A T
Substituting Egs(4.5 and(4.6) into (4.4), we obtain E(F.D)=Ey(F)—E( 7+ 5. 4.19)
ac(r,t) E«r)| C(rit) &2 .
ot 98H T g | 0 + %9, Dij(rC(r.t) Therefore, in a strained lattice, the jump probability takes
the form
d N -
— o Fi(nC(r.1). (4.7 E(FT
IX; A(r] r)ZVOGXI{— m|£'|', )} (4.12
Equation(4.7) is now the governing equation for vacancy
transport in the thin film. The specific forms E#(F), D_(F), R o0
andF(r) in a strained crystal remain to be determined. o Es(N)—E|r+5
In a crystal, the jump vectoR takes on discrete values A(r[l)=voexp — KT - (413

(@), wherea is an index for neighboring positiorise., in
specific(111), (110), etc. directions The integrals irD(r) We expand the saddle-point energy to first ordet,iand

andF(r) become sums over neighboring positions, of num-neglect the difference in the vector length in the de-
berN: formed and undeformed states.
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(r) 1 JOE (r) where ¢;; is the first strain invariantg;; is the first stress
Fi=voex E I(“)[ S=l{— invariant, andK is the bulk modulus. Hence, the interaction
Na=1 TaAT IXi energy isE;=0.20K¢;; .
(4.14 Assume that the displacement field is represented by the
and vectorlj=(U1,U2,U3), then
EC)| 1 U, dU, Uz . .
iD= voexr{ EEI_)}— Eiiza_)(l+a_)(2+&_)(szv'u- (4.22

;) Let 6,=—0.20K=—0.2b°K (b is the Burger's vector
]Ii(a)lj(a), (415 ThUS,

. . E=-6,V-U. (4.23
where Em(r) E (r) E? (r) is the migration energy in an ) )
unstralned lattice. Notlng that in a FCC crystal=12, Equation(4.23 shows that for a negative volume change

1|(a)|(a)_N| 5 andEZ‘: |(a)|(a)|(a) 0, we have (vatiancy, theﬂ ipteraction . engrgy is positive; §ince
ES(r)=E3j—6,V-U , its gradient isVES(r)=—6,V(V - U).
1 R aES(F) Rearranging Eq(4.18, we obtain
Fi==Dij(r) ——, (4.19
kT an N 0 5 > N
aC(r,t) Ei—6,V-U| C(r,1)
where the local diffusion coefficient is defined as =g exg— =
ot kT T(r)
12 _Eq(D) . .8, . .
D.,(r)— vo(r)ex T |8i=D(0é;. (417 +ViVi(Dy;C(1r, 1) + 15 Vi(D;; C(r ) Vi(V-U)).
Equation(4.7) for vacancy transport finally takes the form (4.24
-~ - Since the change in the formation energy of a vacancy is
oc(r.b) +V.J(N=g ex;{— Ei(r) C(r b (4.19 small compared to the unstrained value, |&°(T)
t KT (1) =g exd —EY/KT], and write the generation term as

wherelJ is the transport flux vector, given by

Co(T)exd 6,V-U/kT]=C%T)| 1 +k—TV U
J(ry=—|VD(NC(r.t)~ D(r)C(r t)VEs(r)} If one, furthermore, uses the standard notations
(4.19 p
The formation and saddle-point energies that appear in these S0 5aT P V=10+1,0,,
equations depend on the strain, as we will discuss in the next
section.
A=d5+a5, (4.29
B. Strain field effects on vacancy formation and considers a diffusion tensor wheg,=D,, =D, (the
and saddle point energies in-plane diffusion coefficient D,,=D, (the transverse dif-

fusion coefficieny, the other components being zero, one can

For a center of dilatation, the interaction energy in an o write Eq.(4.24) in the form

isotropic elastic medium is given by

Ei=—vow, 420  sc=c° 1+:'_;v*.0
whereuv is the relaxation volume of the defect, ang is the
hydrostatic component of the stress field.

The relaxation volume of the vacancy is taken as a frac-
tion of the atomic volumey = —0.2) for a vacancy{) be-
ing the atomic volume. The interaction ener@y is the
source of the spatial variation in bo} andEg, and causes

the shift in the interatomic potential. Thus the changes in V- DEFORMATION EQUATIONS FOR THIN FILMS

2 C
+D,9;,C+ DHAC— p

+ Z(C&Z(V U))+ V (CV(V-U))

(4.26

energy from unstrained to strained crystal &%= Eg+E; In this section, we develop the governing equations for
andE'=E{+E;. We will also assume tha3 andE} are  the mechanical deformation of thin films in sufficient detail
independent of position in the unperturbed crystal. to allow an exposition of the importance of underlying as-
The hydrostatic stress is given by sumptions. The basic theme in this section is to obtain equa-
tions for the relative balance of energy exchanges in the film
1 during its dynamical deformation. We therefore start from a
on=30i=Kei, (4.21

brief description of deformation kinematics, followed by de-
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evaluated in the Lagrangian frame. Henczgag) is the first
Piola tensor, which is nonsymmetric, and is related to the
Cauchy stress tensov(;) as

o=F loF (5.3

or

O'aﬁzxa’iO'in'B’j . (54)

(3) Under large deformation, the cross section of the film is
assumed to remain planar, thus satisfying the Love-
Kirchhoff assumption, and shear stresses are therefore disre-
garded.

For finite elastic deformation, it can be readily shown that

FIG. 4. Definition of geometrical variables in a deformed thin the Lagrangian strain tensor Componeq;sare given by
film.

€j=3(U;j+Uj i+ U Uy ) (5.5
velopment of equations for the kinetic and strain energy ] ]
components per unit surface area of the film. We consider |f we now introduce Eq(5.2) into Eq.(5.9), we note that
three distinct components of the elastic strain energy: théhe three-term product ;U ; is insignificant for strain
energy stored in bending deformation, the energy stored igomponents associated with the bending displaceménts
stretching deformation, and the energy stored in lattice dila@nd Uy . For the stretching strains, however, the three-term

tation (or contraction as a result of defecf<:*? product has only one significant tertd, ,U 5, as a result
of large transverse displacements.

A. Deformation kinematics )
) ) ) _ B. Strain tensor components
Figure 4 shows the geometry and kinematic variables of a

L. - o . First, let us determine the strain components associated
deformed thin film. Here, we us¢, dX as the vector and its P

increment, which describes a line element at péinn the \gith bendi.ng (fﬁ)- The bending deformation is gharacterized
) ) N - y the existence of a neutral surfapeharacterized by the
Lagrangianmateria) frame. The elemerd X deforms todx  gyperscript0)], which in our case is the midplane of the thin
atx in the deformedEulerian frame. The transverse trans- fiim. The displacement vector for midplane points is given
lation of P to P’ is &*. The displacement vector IS. We by
further decomposbj into a transverse componegit and an

(0) —1(0) = (0)—
in-plane component ,, i.e., Uim=Uy7 =0, Uzm=80xy). 69

p ’
Since the film is thin, and only small adhesion forces exist
U=U,+ & e;=x—X. (5.1)  on the bottom surface, then all transverse stress tensor com-
ponents are nearly zefplane stress conditionsTherefore,
Since the thin film is under simultaneous bending andt can be showt? that the nonzero components of the strain

stretching deformation, we can also write the displacemerf€nsor are
vector as B

_ B _ _
€xx Ux,x__zf,xw e_yy_uy,y__zf,yya

U=Ug+Ug=€;(U,+U,)+ex(Uy+Up) +es(é+dé). ,
(5'2) EEy: Ux,y: - Zf,xw esz:EZ( f,xx+ g,yy)- (57)

Hence, the transverse displacemeng’is=£+d¢, where Now we turn our attention to the strain components asso-

¢ is the transverse displacement of a corresponding point OB ated with stretching the filmeﬁﬁ). For pure stretching, the

the midplane. We také* =¢. ; L
. f Ed5.
Uy and U, are the displacement vector components as és,tram tensor is given from E45.5) as

relsullt of pure bendin.g, whiIQa andU are those associated 62,3: %(Ua,,g+ Up.at %f,af,ﬁ), (5.9

with in-plane stretching by in-plane forcésr stresses ).

Before we proceed to evaluate the strain components whictWhere the indicesr and 8 go overx andy, and summation
follow from the way we prescribed the displacement vectorover repeated indices is understood. The in-plane stretching
in Eq. (5.2), we state the following underlying assumptions: strain tensor expressed taiﬁ will be associated with an

(1) Since the reference plane is the mid-plane of an isotropicut-of-plane Poisson strain.

linearly elastic film, there will be no coupling between bend-  Therefore, the in-plane Cauchy stress tensor components,
ing and stretching strain energy componeki#.Strain ten-  which are associated with stretching, are

sor components are all computed in the Lagrangian reference

frame. The elastic strain energy is independent of the frame, E

E
) —— =——(€4at =—— (et
but the in-plane stress tensor componentsy) must also be Taa=T= 2 €aat Vepp)s  Tpp=T2(€ppT VEaa),
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_ E T_ Eh3 2 2
S 69 Pl | [ (a7 +20-0(Ey £t ylds

5.1

The strain energy stored in stretching the film can be com- ) o ‘ (519
puted from the strain and stress tensor components deveronsider now the total variation @i as composed of two
oped earlier. In principle, the deformation gradient tensoiarts. It can be shown that
should contain contributions from thermal expansion, lattice
dilatation due to vacan_cies, and com_JpIed bending straing. Un— 5%] dS(Ag)sz dSSEA2E— % dlégﬁ
der membrane stretching assumptions, however, the film is 2 r an
reduced to a small volume near the midplane, where bending
and defect strains are nearly zero. It will also be shown that n 3€ d|A§a—5§, (5.16
the contribution of thermal strains is negligible compared to r an

lattice dilatation by defects. ) L
y whered/ dn denotes differentiation along the outward normal

to the contour bounding the thin film, whekerepresents the
contour describing the edge of the film.

Considering the total volume of the thin film, we can  We will further assume here that clamped conditions exist
write the general form of the first law of thermodynamics ason the contoud”, thus

C. Variational principle for the free energy

E=66=—=0 (5.17

AU AE(+AER=Q+W, (5.10 Y-
on

whereAU' is the total elastic strain energy and

AU'=FL+FL+Fp, 517 ©onl. N .
B'S (.19 This condition also allows one to write

whereFy} is the elastic energy stored in film bendirfg; is

the elastic energy stored in film stretchirfg, is the elastic J j {(52 )= £ o EldS

energy stored in elastic dilatation by defect@canciek Xyl SXXEYY

AEg is the kinetic energy change of the film, equal to

Jv3pU U, dV; AE, is the potential energy changequal :J f [(9,0y)%— 02q2] &€ adazo, (5.18

to O for the present cageQ is the heat added to the film Y yIasA

(equal to O for steady-state temperature profilasd W is

the work done by external forces, equal fadSH¢)dé

(whereP is the adhesive force per unit surface area of the

film and dSis the surface element ajea Eh3
Because the film will undergo large deformation in the 5FE=WJ' f A2¢déds.

transverse direction, a simple argument shows that the work

done by adhesive forces can be neglected compared to the |y girain energy of stretchinghe stretching elastic en-

total elastic energy stored in straining the film. The equiIib—ergy per unit volume is

rium equation describing deformation of the thin film is ob-

tained by considering the total variation in the relevent en- _1.S

ergy tern%s of the firs% law. Thus, Fs=2€apTap- (5.29

whereé; is the Fourier transform of(F).
The total variation in bending energy is finally given by

(5.19

. . ¢ The in-plane strain componen&ﬁﬁ are assumed to be uni-
oFg+ 6F g+ oFp+ 6E¢=0. (5.12  form within the thickness of the film. Thus the total strain

. . . . energy in stretching the film is
We will now consider the total variation in each term oy 9

separately, and then assemble the terms for the equation of h _
transverse equilibrium. ngzf J’dSGQﬁUaﬁ (5.2
a. Strain energy of bendinghe elastic energy per unit
volume is given by? and the total variation is given b/
SR S (5.13 SFI=—h| | dous 50Ut (Tupt o) d
B 2(1+V) €ik 1_21/6” . ' s S{O-aﬁ,,B Ua+(a-aﬁ§,a) g}
(5.22

Substituing the six strain components given by the Eqgs. i i ) L )
(5.7) into Eq. (5.13 above, we get The first term in the integral is identically zero as a result of

in-plane equilibrium in the Lagrangian frame, thus
E

_2
Fe=2" 5174

1 2 5
E(éxﬁ Eyy) T (&5~ §,xx§,yy)) :
(5.19

Denotingé .+ £ ,=A&, and integrating over the volume of ~ c. Strain energy stored in lattice dilatatioThe energy
the film, we get stored in lattice dilatation per unit volume is given by

5Fg=—hf de(a_aﬁgva)ﬁg. (5.23
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=C-(E3+EB+ED), (5.24 ) Eh? ,, 1 —

ﬁtg_l— 12p(1_V )A g__(o-aﬁg,a),ﬁ
whereEY is the self-energy per defect, afif andE® are p
the components of interaction energy due to bending and

. : o . 6

stretching, respectivelfep =6, . For bending only, one as- ———[C,—C_+mAI(C)]. (5.31)
sumes that 9,U,=d,é=0, and V-U=-mzA¢&, with h
m=1-2v/1—v. Ignoring the contribution of the stretching

energy in doing work on the strain field of defects, we get, The velocity of dilatational acoustic waves is given by

for the total bending energy stored in lattice dilatation in the
thin film, c= \ /—2—E : (5.32
i p(1-v)
Fp= 9vJ J j_h/2[1+mﬂ§]CdzdS (5.29 Since the film is thin, the in-plane first Piola stress tensor
variation will be ignored. This will allow us to rewrite the
and, sinceSC/ 5¢é=dC/ ¢, its variation is third term in Eq.(5.3) as

—+zmACz

h/2
5Ft~0J’jJ
h/2

=9Uff[c+—c,+mm(0)]5gds, (5.26

1 1
sédzdS (gt ) p= 0 ap ap- (5.33

The in-plane stress tenser is given by

. - — E
where C,.=C(r,h/2t), C_=C(r,—h/2t), and I(C) axx=2(1—_vr)[§,2x+ v+ (1+v) AT +2Nyy],
=frl’ﬁ,22C(F,z,t)dz, and up to contour integrals which van-
ish in clamped conditions, as shown earlier.

For an exponential axial distribution of vacancy concen- o'yy [g?y+ v§2x+(1+ v)aAT+zN, ],
tration, we get 2(1-v%)
h/2 N E
=0 f f [(c+ C_ HmAJ O'Xyle[f'vay-F(l-f— v)aAT+zN, ], (5.39
h/2 v
h and
XC,z ex;{y z—— H&gds
Naﬁ:(l_v)g,aﬁ+1j5aﬁ§,aa' (535)
:9UJ J[¢+ myA]C, S&dS, (5.2 In these relationships, the stretching, thermal and bending
strains are included. The thermal expansion coefficient is
where ¢=1—exp(—yh) and ¢=(h/2y)[1+exp(—yh)] 2andAT is the averagéacross the thicknessemperature rise
—(A/y?)[1—exp(—yh)]. in the film. _ o
d. Variation in kinetic energyThe change in the kinetic ~ !f we now define a normalized in-plane stress tensor as
energy per unit volume is given by 1-,2
—2
- - orp=———0, 5.3
po L dU dU 528 £E T (539
=3P 37 3. .
“ 20 dt dt we finally obtain
Since the major component of the displacement velotas 212 2

2 . ) . c‘h c 0,
along thez direction, the velocity vector will be approxi- §?¢+ ———A2¢— —0* & 5= — —[C,—C_+mAI(C)]
. . o7 1 2 "eBSeB T ph
mated by the time rate of change of the transverse displace- 53
ment&. Thus, per unit area of the film, we have (5.37)

AEEz%phfz. (5.29 VI. LINEAR STABILITY OF UNDEFORMED STATES

o o o UNDER UNIFORM IRRADIATION
The total variation of the kinetic energy of the thin film is

given by A. The dynamical model
Combining the results of the preceding sections, the dy-
t 2 o namics of the system may thus be supposed to be governed
ok thf f 5¢%dS= phf f dt? dedS. (530 by the coupled evolution of the vacancy density and the film
bending. Neglecting the defect-bending interaction energy
e. Equation of motionFrom Eq.(5.12 above, and Egs. (x<1) and the stress tensor temperature dependence, since
(5.19, (5.23, (5.27) and(5.30, and since the displacement «T is of the order of 102 in usual experimental conditions,
and surface element anddS are independent, we get one obtains the model introduced by Emel'yafiov:
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6,D|C. . The stability of the undeformed reference state versus
i v (VU spatial perturbations in the horizontal plane is now per-
formed, in order to determine the conditions for deformation
patterning instability. Such perturbations are defined as
n(F,z,t)=C(F,z,t)—C°(z), or, in particular, n+(F,t)
6.1) =C,—CY% andn_(r,t)=C_—C%exp—h.
The dynamical model may thus be rewritten as

C .
#C=D,d;,C+DAC— —+V

UDL

6,D,C_ . E, N
+VZ?VZ(VU)+Q ex —ﬁ(1+0UVU)

(in usual experimental conditiond);7=10"> cm? and
|6,|=10"1%erg). n. hme,D

gn,=DjAn, ——+ V(Cl+n,)VAE
V.U=—zmA¢, (6.2) T 2Ty
0
hmé
c?h? c? 0 +— 1+ ”Ag) (6.12
2 2 2 v _ '
Tt gy A% 5 oydfet H(C.—C)=0, T\ 2kTy
. —pjan.~ " MMPIG o g
whereC..=C(f,=h/2t) and dN-=DjAn_— - = g V(C-+n)VAL
~[(0&)%+ v(3,€)?], 6.4 C’  hme,
Txx=[(9x§) =+ v( yf) ] (6.4 +_( - e Af), 6.13
O'yy:[(ayg)z""y(&xg)z] (6.9 -
=~ 2(1= )(3,8)(3y£) (6.6) 2ee O 0 Oy O
Xy X ys/: ) ﬁtf——? &+ ?Uij&ijg—ﬁ(rhr—n,)
B. Instability of undeformed states 6,C°
. . . - (1—e ). (6.19
In this paper, we will analyze the problem of thin films ph

irradiated over large area lgw or pulsed lasers, while fo- o )
cused laser beam irradiation is discussed elsewfidret us  Note that the transverse variation in the uniform defect den-

then consider the ideal situation of horizontally uniform ir- Sity, giving rise to the last term of the right-hand side of Eq.
radiation of the film surface. We will, furthermore, assume(6.14 is so small that the overall bending it induces is neg-
that the temperature profile has reached its equilibrium valudigable and will not be considered in the following.

Its evolution is sufficiently slow compared to vacancy gen- On performing the following scalings,

eration, and can be to considered as quasistationary. In the

absence of deformation, the equilibrium vacancy density B A= DA _ 6m&Dy7
profile C°(2) is then the solution of the steady or quasisteady IT="Tdy, I LR pc?h?k '
state equation
CO=D, 20—~ CO+ ! 6 B= o L & N=p(n.+n_)
aC-= Laz ; g ex F(Z): ( 7) \/1—2DH, 2kDHT ’ AT =)
with the boundary conditions
B _ [Cs+  Co
3,C°% = 2= 3,C° 1= ~n2=0. 6.9 N=pne=n-), e=plg-+3-|
Hence, the transverse variation of the defect density follows
the temperature variation across the film. As discussed in (G Co 6.1
Sec. Ill, this profile is linear in the limit of strong absorbing KONt S (6.19
layers, and we may writkcf. Eq. (3.23)]:
the dynamical model becomes
ToT. 4, N 6.9
T h % 2) 6.9 dtN=AN—N—7A(A+1){—V(xn+SN)VA(,
T, and T_ are the temperatures of the upper and lower 6.19
surfaces, respectively, and may be calculated with the - -
method described in Sec. IIC°(z) behaves thus as dn=An—n—eA(A+1){=V(xN+n) VAL, 617
0 0 h
C®(z)=C" expy 2—5 , (6.10 1, ) )
?&ng—A {=n+uoi({)d;¢, (6.18
where C%=gr exd —(E{/kT,)], when y\D, 7<1, with
y=E;AT/kT2h . This gives where u=6(2kTD;7/|6,|h?v)?, and where x=T,

0 0 0 0 —h_ 0 +T_/2T, T_andé=T,—-T_/2T T_.
C'(h/2)=C%, C°(—h/2)=Cie "=C_. (6.1) The linear part of this dynamics is thus
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N=AN—N—-GSA(A+1)¢, (6.19 Sivashinsky dynamic¥ patterns are usually transients and
develop before the system reaches its final state. In the
dtnh=An—n—eA(A+1)¢, (6.20 present case, the film is irradiated by cw lasers or laser

pulses. The duration of the pulses limits the evolution of the
2, ) deformation patterns that should thus result from the growth
Eaﬁ_ —A%—n. (6.2 of the most unstable spatial modes. It is interesting to note
that Eq.(6.28 provides a simple physical interpretation of
The linear evolution matrix of the coupled deformation- the selected pattern wavelength. The main dependence is on
defect system is then, in Fourier transform, the vacancy mean-free path, with weak contributions from
the critical bifurcation parameter. Thus, the wavelengilis

1, — of the order of 10 times the vacancy mean-free path in most
—wt(q 1 0 Lo .

B° systems. In a well-annealed thin film,y,=10 xm, with

— 7 — , (6.22 |=1 um, consistent with experimental observatidfis.
€0%(q°-1) w+ltq 0 However, if other experimental conditions correspond to a
59%(q%-1) 0 w+1+q? thin film that contains a high density of initial defects, the

_ vacancy mean-free path would be short, and the correspond-
where q is the dimensionless wave number, and the correing pattern wavelength small. This finding can be readily
sponding characteristic equation is written tested in appropriate experimental settings.

In isotropic systems, there is an orientational degeneracy

(w+1+?)_€?(?_ 1)|=0. in the problem, since the instability threshold and the linear

growth rate of the unstable modes only dependgénNot

(6.23  only all the modes of the unstable band grow, but also un-

stable modes with any orientation may equally grow. The
survivors, and of course the final selected patterns, are deter-

mined by their nonlinear interactions. Thus, the nonlinear

saturation terms of the dynamics will determine which struc-
1 L ture should be selected and what its stability domain should

w1=e<1—=2)—(1+ q?). (6.24  be.

q This study evidently requires a nonlinear analysis beyond

Hence,e plays the role of a bifurcation parameter, and, sincdhe instability threshold, which will be presented in subse-

instability occurs forw,=0, the marginal stability curve is 9uént sections. The nonlinear stability we present will be
based on the derivation of amplitude equations for patterns

—[{1 _
(w+1+ qz)[ ?wz—i‘ q’

Since, in realistic experimental conditions=10° cm s
~!, h=10"? cm, andD|=10"> cm® s~ 1), one thus has
B>1, and the relevant root for instability is

given by ; - ; ;
close to the instability, and numerical analysis of the model
9%(a2+1 in other regimes.
_ % (6.25
q-—1
and the instability threshold is given by VII. WEAKLY NONLINEAR ANALYSIS
AND PATTERN SELECTION
— 2 4_
€= (1+ ‘/E) =58, Oc=e, (6.26 In the weakly nonlinear regime beyond a pattern forming
whereq is the scaled wave number. instability, the dynamics may be reduced to the evolution of
Above the instability threshold, there is a band of unstablean order parameterlike variable that corresponds to the un-
wave numbers, going from tqy, to q,,, where stable moded® We perform this reduction here, in the
framework of the adiabatic elimination of the stable motfes.
qﬁ,,(m)= He—1+(B—1)%2—4¢] (6.277  One is the total mean defect densily, which is the eigen-

mode corresponding to the eigenvalwé4)=—(1+q?) of
The modes with maximum growth rate correspond to di-the linear evolutiom matrix. The second one is the transverse
mensionless wave numbep= €' or to unscaled wave- displacement of the midplané, that may also be adiabati-
length cally eliminated since the characterisitc time scale of its evo-
B C1a i lution, B, is negligibly small. These two variables may thus
No=2m\7Dje"""=2mle (6.28  pe expressed, in Fourier transform, as a series expansion in
owers ofn. This expansion, deduced from the dynamical
ystem(6.16)—(6.18), gives, up to the first relevant contribu-
tions,

Hence, it may be expected that spatial modulations o
wave numbelg equal to or close tgg will grow first, lead-
ing to the formation of a deformation pattern with a wave-
length that is typically of the order of 1@m. It is perhaps
interesting to recall that, in other pattern-forming systems,
the wavelength of the final selected patterns may be differeng; . 1
from gy, according to nonlinear effects or experimental ° 1+9°
setups=>~17 Furthermore, in systems where the band of un- -
stable wave vectors extends tdifl infinitely extended sys-
temsg, such as in spinodal decomposition or in Kuramoto-

PP i
X 77q2(1+q2)

nﬁf dk

; (7.9

77(1——2

q-
XFI’]&_QI’]Q*‘ cee
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1 . . u - on\ - .
{g=— 7 ”&_“J ko dK'Z jEijng— k- NN + - - } g= agzi,jEij({lq})+ ToX(X+ s (1q-1i)
(7.2
% ((Ig-10-Te) !
Using these expressions in the evolution equatiomfpr q— 1k Lkr) 2047 7
one finally gets 1+29p(1=(1q-10)
Hence,ng plays the role of an order-parameter-like vari-
q*—1 q-K able. Since we consider the weakly nonlinear regime in the
dtng=w(Q)NG+| 6+ nx =" k-2~ Ng=kNk vicinity of the instability, we may limit the expansion to its
9°(1+099)/ Jc k

cubic term, which is the first relevant contribution for the
N saturation of the instability. Note that the resulting dynamics
- f dkf dk'G(q,k,K" )ng_g-gngngi + - - -, present a quadratic contribution, which usually induces sub-
¢ ¢ critical hexagonal patterns, and cubic contributions which,
(7.3 due to their dependence on the gradients of the order-
) 5 parameter-like variable, should favor bimodal patterns. We
wherew(q) = e(1-1/9%)—(1+9°), and may thus expect that pattern selection and stability will result
in a competition between these two types of planfotfris.
the case of small gradients in temperature and defect density
profiles around the midplane of the lay&e., = 6=0) the
X or(qP— 1)) | G- RG=K)-K) g)u(gg(r:zt;\gg.term vanishes, and no hexagonal pattern should be
X Q1+ o?) k%k'2(1+(q—k)?) " Let us now discuss more precisely pattern selection and
stability through analysis of the corresponding amplitude
(7.4 equations. which may be easily obtained from equaffod).
The simplest pattern one may think of corresponds to stripes,
which are defined, in real space, by Ae'9%*+ Ae~ 190X (the
choice of the wave-vector orientation is arbitrary, as a result
of the isotropy of the model, and the following results do not

G(q.k,K")=uZ; jEjj(q.k,K")

+x

Eij(q,k,k’) are deduced from the nonlinear terms of Eg.
(6.18 and write

- (q—k—k")2(kek,+ vkyky) depend on jt The asymptotic evolution of their amplitudes
B0,k k') = (q—k—k")*k*k'* ' is then given, at the lower order ia, by
(A= k—k")Z(kyk + vk, k) TodTA= eA+ [GIA—gAIA[%, (7.6

(q_k_k/)4k4kr4

where3=4q2A, andg=ue./q5+ (2/1+4q3).
L This equation admits the following family of steady-state
Exy(a,k,K") solutions:

(A—K—K ) q—K—K")y(Kyk) +kyKS) Po= e = ieilocr®), 7.7
(q_k_kr)4k4kl4 .

=(1-v)
® being an arbitrary phase variable. These solutions are

These integrals are performed on the cylindrical shell of unstable versus long-wave-length perturbations in the range,
stable wave vector¥. By performing an expansion around 0<k< v/ e/3§§ (zig-zag and Eckhaus stability limi§. Fur-
the maximum growth rate wave vectors, we finally obtain, upthermore, the stripes with maximum growth rate are the criti-
to corrections of the order ofe=(e—e./e;) and cal ones k=0).
(g®—q3/qg), which are negligible in the vicinity of the in-  Due to the structure of the evolution equatiGh5), one
stability, has to test the stability of the critical stripe solutiof?s7)
versus modulations with wave vectors making an arbitrary
angle¢ with its own wave-vector directio(say, e.g9.x), and
of amplitudeA . For ¢+ 27/3, there is no contribution in
their dynamics that comes from the quadratric term of Eq.
(7.5, and their linear growth rate, in the presence of the
stripes(7.7), is then

TodTNg= [e—A(g%— a2)2Ing+v Ld k( iq- Ik)nd,gng

—LdlzfcdR’g({iq})na_ﬁ_wnmm~--,
(7.5 TodtAs= € (1= Y(P)DA,+(5(14-V)?A,, (1.9

wherero=2+ 2, A=14/95, v=1o(6+ x7/€c), and where
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400%0) s a1 ) eod(4)]
14 —v)|CO
(1+2q5)*~4dscod(4) a5
()= 5 u (7.9
L
1+4q5 a5
|
The first part of this term dominates when the nonlineari- . v
ties arising from the bending equation are negligible versus TodTAL= s+4—2(q2V)2 A,— §A1A3
the nonlinearities of the defect dynamigkis corresponds to o
u<1 or film thicknessh=5 um in typical experimental 2
conditions, while the second part, which is of the Proctor- —gAz( |A,|2+y ?)(|A1|2+|A3|2)>,
Sivashinsky type of couplinyf;'® dominates when nonlin-
earities of defect dynamics become negligable, which is the
case for thinner films, such that<1 (or h<5 umin typi- _ gg .. v
cal experimental conditionsThe maximum growth rate for TodTA3=| €+ 4—2(Q3V)2 Az—5A1A;
these modulations corresponds to the minimum-y¢t), Yo
and, for Poisson ratios in the physically acceptable range ) 21 ) )
(0<v=<1/2), y(¢) is minimum for ¢= /2, where it is al- —9Ag| |Ag“+ ¥ 3 (A" +]A2*) |
ways less than one. The result of this analysis is that stripes
are always unstable, in isotropic systems, versus rectangular (7.12
bimodal patterns.
The amplitude equations of such patterns, defined as yniform solutions of amplitude
n=A expgyX+B expqggy+c.c. are
™ Aq1l= A=A = !
7007A= €A+ 292A—gA| |A|I2+ y —)|B|2), |Ad]=|Agl=[As]= P
2 49| 1+2y 3
Tho 242 2 ™ 2 2 27
70d7B= €B+ {50;B—gB| |B|*+ ¥ 7 |A|%], X|v+\/vé+16ge| 1+2y 3 (7.13

(7.10

_ _ exist for these equations and are stabléfor
and the uniform steady-state solution corresponds to

€ 208+ ecu(1+4q?)
9 298+ eu(1+2v)(1+4q3)”

|A|>=|B|*= (7.10

Hence supercritical square structures should be expecte
in this case, although subcritical hexagonal patterns could, it [#
principle, also develop in the system. Effectively, when
#0, the structure that is expected to develop subcritically in
the dynamicg7.5) corresponds to hexagonal planforms built
on modulations with wave vectors makingr8 angles be-
tween them. In this case the order-parameter-like variable
may be written as

n=A,e'9"+ A,e'92" + Ajed3" + ¢c.c.

with g;+0,+95=0, |gi| =qo, and the corresponding ampli-
tude equations até

— G .. v—
6‘*'4_(]3((311V)2 A— §A2A3_QA1 |A]?

T0(9TA1=

FIG. 5. Squarelike patterns obtained in the numerical analysis of
the dynamical mode(2.1)—(2.3) for thin-film behavior of the irra-

+ 7
Y diated layer §—x, €=6.5, or e=0.1).

2
%) (|Ag2+ |A3|2)),
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FIG. 6. Bifurcation diagram for uniform solutions of the order-
parameter-like dynamics for the “thin film” behavior of the irradi-
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ated layer §—); plain and dotted lines correspond to stable and 140 10
unstable states, respectively. - 9
8
100 7
v? — 3v? 8
<e< 5 A 80 A
> 160l 1 2 c T 5
v — —_— v 60 v
169| 1+27y —) ol 1-7 3 4
3 40 3
2
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if y(27/3)>1. If y(2#/3)<1, mey are stable in all the
range—v?/16g(1+2y(2m/3))<e.

Pi

angle

2Pi

0 10 20 30 40 50 60

wave number

Hence, in general, the selected patterns correspond to su
percritical squaressee Fig. 3 or subcritical hexagonal plan- FIG. 7. Supercritical hexagonal patterns obtained in the numeri-

forms. Since usual linear stability analysis shows that., analysis of the dynamical modé.))—(2.3) for plate behavior
squares are unstable versus hexagons for of the irradiated layery—0, e=6, or e=0.03).

Oses< =€, (7.15 as suggested in Ref. 21, and do not require particular com-
Zg( y(z_w +y K binations of external forcings as in other systef’s
3 6 An important consequence of this analysis is that, in the

L absence of anisotropy, one-dimensional gratings are always
they may be simultaneously stable fer> €, and the corre- unstable in this dynamics. In systems where the interaction
sponding bifurcation diagram is displayed in Fig. 6. Patterndetween the laser field and the film surface depends on the
with slightly noncritical wave-vectors may also be stablecrystal symmetries, such gratings could appear, triggered by
provided they satisfy phase stability requireméfts. anisotropic couplings.

When temperature and defect densities are nearly uniform It is somewhat surprising to note that instability does not
across the film thickness, instability may still occur, but, in depend on the exact shape of vacancy or temperature profiles
this case, there is no quadratic contribution to the nonlineaacross the film. Weakly adherent thin films appear to be un-
dynamics of the order-parameter-like variable. Square planstable for any heating mechanism that generates sufficient
forms should thus be observed. However, when the film izoncentration of vacancies. Nevertheless, the geometry of
thick, y(¢)=(2 cog¢/1+a sirfg), with a=(4qé/1+4q§) the selected patterns depends on such profiles. Furthermore,
(a=2.3 ate=¢.), according to Eq(6.26, and square plan- in transversally uniform systems, nonlinearities are stabiliz-
forms are unstable versus modulations with an angle in th#hg while transverse nonuniformities generate destabilizing
range defined by 06$=(1+a)/(2+a). As a result, square nonlinearities that accelerate pattern formation, and can over-
planforms are unstable versus modulations wiik- /4, ~ come even strong substrate adhesion forces.
leading to multimodal patterns with wave vectors separated
by angles ofr/4, 7/2 and 3m/4. The growth rate of these
patterns[ 1—(1/1+a)] is, however, much smaller than the
growth rate of hexagonal patterfs— (1/2+ 3a) ], which are The modek6.16, 6.17, 6.18has been studied numerically
thus expected to be selected in these conditises Fig. 7. for the case whem= 6=0, which rules out subcritical bi-

For increasinge, the range of unstable angles becomesdfurcations, and thus mimics the behavior of uniform systems
wider, and supercritical hexagonal planforms may in turnwith negligible transverse temperature gradients. We used an
become unstable versus patterns built @r3 pairs of explicit Euler method in Fourier space, with an iterative
modes, and that are of the quasicrystalline tygee Figs. 8 resolution of the nonlinear deformation equation for the
and 9. Note that these quasiperiodic patterns appear here dending coordinate. The system corresponds to<IZ8 or
a natural consequence of the form of the nonlinear coupling856X 256 grids with periodic boundary conditions. The ini-

VIII. NUMERICAL ANALYSIS
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FIG. 8. Patterns with fivefold symmetry obtained in the numeri- FIG. 9. Patterns with eightfold symmetry obtained in the nu-
cal analysis of the dynamical model f¢2.1)—(2.3 for (u<1, merical analysis of the dynamical mod&.1)—(2.3) for (u<1,

€=34, or e=4.7). €=38, or e=5.4).

tial values of the variables were fixed Mt=n=¢=0 with  ber of new features, as outlined below.

1% noise on then variable. In the thin film regimeu>1),

square patterns were found, in agreement with analytical re- (1) The field equations for the temperature, defect density
sults (see Fig. 2 In the “thick” regime (u<1), we found and deformation fields are derived in sufficient detail, and in
the foreseen hexagonal and quasiperiodic patterns. By ima self-consistent manner. This allows for an examination of
creasing the bifurcation parameter, we effectively obtainedhe basic assumptions behind the approximations used to de-
stable patterns with=3, 4, 5, 6, and 8 pairs of wave vec- velop these governing equations, as well as the range of ap-
tors. There is thus a basic agreement between the results plicability of the present stability analysis.

the amplitude equation description and the numerical analy- (2) The conditions for the necessity of coupling terms
sis of the complete dynamical system, although quasiperibetween the three components of strain endigy, associ-
odic patterns were obtained for relatively high values of theated with defects, bending, and stretchiage clarified.
bifurcation parameter. Examples of such patterns are pre- (3) In this new formulation, the dynamical evolution of
sented in Figs. 7-9. In all these figures, the upper left figurehe transverse displacement of the film’'s midplane is explic-
represents the spatial pattern in real space, while the uppéty coupled with perturbations in the vacancy concentration
right figure corresponds to the same pattern in Fourier spacat the top and bottom surfaces of the film.

The lower left and lower right figures, respectively, show the (4) Linear stability analysis of the developed model indi-
intensity of the Fourier spectrum of the pattern versus waveates that the threshold for the mechanical instability of laser
vector orientation and length. The Fourier spectrum is comirradiated thin films is controled by the bifurcation parameter
puted from the numerical solutions of the dynamical model.e, which can be written as

Besides the good definition of pattern symmetry, one should

note the sharp wave-number selection. €=€; € €3, (9.1)
IX. DISCUSSION AND CONCLUSIONS where
In the first part of this paper, we present a dynamical Co
model for the evolution of perturbations in the vacancy de- €1=—> 9.2
fect density and the associated deformation field in thin films pC

subjected to intense laser irradiation. The present work ex-
tends an earlier model by Emel'yanov, and includes a numandC is a suitable mean vacancy concentration,



15376 D. WALGRAEF, N. M. GHONIEM, AND J. LAUZERAL 56

6, tic part and in the diffusion field of vacancies, or by taking
=, 9.3 into account the possibility of temperature-induced stresses.
kT In pulsed laser irradiation, pattern formation may also de-
andT is a suitable mean temperature, pend on the relative importance of the pulse duration and of

the growth rate of the unstable modes. Furthermore, since

Dyr (I other types of patterns have been observed under irradiation
:_2_(H , (9.4  with focused laser beanis, it would also be interesting to
h follow the transition between small finite-sfz&3(e.g., star-

wherel is the mean-free path of a vacancy in the thin film. like or roselike patterjsand extended patterngbands,

The physical meaning of the components of the bifurca:Squares, hexagons, or quasiperiodio either increasing the
tion parameter are as follows, is a measure of the ratio of laser irradiation intensity or on decreasing the film thickness.
the energy stored in the lattice defects to the kinetic energ{f course these results require further verification with ex-
associated with sound propagation in the film. The parametdi€rimental observations, and systematically designed experi-
€, is a measure of the energy decrease of an atom nearrgental_ programs are de.swable to this purpose. The nonlinear
vacancy to its thermal energy, arg is a measure of the analysis initiated here is expected to stimulate further re-
ratio of the vacancy mean-free path to the film thickness. S€&rch work leading to a better understanding of the forma-

(5) It is now clear that thin film instability is triggered 10N of deformation patterns on films and surfaces under laser

earlier if €;, €,, Or €5 are increased. This can be achievediradiation. _ o
experimentally by increasing the laser powhich controls In closing, we list here a number of significant conclu-

C in €,), or by reducing the concentration of vacancy sinks sions from the present work.
S )y I€ 9 y ' (1) The selected wavelength of laser-induced patterns is
thus increasing in e.

The linear stability analysis derived from the presentprimarily controlled by the vacancy mean-free path, and is in

. X 0gPeneraI agreement with experimental observations.

model is only adequate for studies related to the onset (2) The wavelength can be decreased by starting with a
thin-film instability. However, the nature of selected patternsdefected film of smaller thickness
and their dependen_ce on materi_al a_nd irra(_jiation conditions (3) One-dimensional gratings ére unstable in a isotropic
can only be dgtermlned by considering thg mf!uence of non'system. Consistency with experimental observations require
linear effects in the model, as presented in this paper. anisotropies in the diffusion and elastic fields

Horizontally uniform vacancy distributions and film de- (4) On increasing the bifurcation parametér square pat-
formations are easily shown to become unstable above &rns and hexagonal ones are simultaneously étable
threshold value of a bifurcation parameter that combines de- (5) Quasiperiodic patterns are definitively observed {0 oc-
fect density and temperature, or laser irradiation intensityCur in a regime which corresponds to a “thick” film, with
The linear analysis determines a preferred wavelength for thg '

deformation patterns that are expected to form bevond th mall transverse temperature gradients. Since this has not yet
instability P P y Been experimentally observed, it would be extremely inter-

However, the study of their symmetries, selection, an sting to produce such “quasicrystalline” structures by test-

. : . . . Ing this regime.

stability properties require a nonlinear analysis, as performe
in Sec. VII, where it appears clearly that pattern selection
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