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Calculations of the electron-energy-loss spectra of silicon nanostructures and porous silicon
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The electronic excitations in quantum-size silicon molecules, wires, or spheres are investigated by the
evaluation of the full frequency-dependent dielectric matrix of the system. The calculation is based on a
tight-binding framework in the random-phase approximation. The energy-loss spectra derived for fast electrons
interacting with the nanostructures are dominated by collective excitations corresponding to bulk and surface
modes even for nanostructures containing a small number of atoms. In contrast to the static screening, the
dynamical properties are not strongly affected by the quantum confinement and are well described by the
classical theories. We show that these collective modes are only slightly sensitive to surface defects and that
low-energy excitations below 8 eV are only observable for one-dimensional silicon molecules, e.g., for
polysilanes. These results are used to discuss the recent experimental observations made on fresh and oxidized
porous silicon.@S0163-1829~97!03247-5#
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The optical properties of semiconductor nanostructu
are interesting both for fundamental physics and for appl
tions. For example, the discovery of the visible light em
sion of porous silicon1 has stimulated many studies in th
field of artificial silicon nanostructures.2 In spite of these
efforts, there is not yet a consensus on the exact mechan
of luminescence, in particular for small silicon and II-V
systems. The controversies come, in particular, from a l
of correlation between microscopic information such as
local crystallinity or the surface morphology and the optic
properties. Therefore the atomic scale characterization
the structure and chemistry are of particular interest. For
ample, the results obtained in the low-loss region~0–25 eV!
by electron-energy-loss spectroscopy~EELS! using a scan-
ning transmission electron microscope3 ~STEM! can relate
spectroscopic information to structural ones. However th
analysis is not direct and therefore requires detailed calc
tions of the EELS spectra to which one could compare. S
eral calculations of the EELS spectra of electrons moving
a definite trajectory past or through particles with vario
shapes have been published in the literature~see, for ex-
ample, Refs. 4–6!. The most sophisticated ones include
the multipole excitations but they are all based on the c
sical theory, describing the materials by their bulk local
electric functions~these will be referred in the following a
classical calculations!. This is reasonable for large structur
but it obviously fails to describe the systems in t
molecular—or atomic—limit where the notion of collectiv
excitations looses any value. In addition, the quantum c
finement effects on the electronic structure which are
included in the classical theory may lead to drastic mod
cations of the screening properties as demonstrated rec
in the static limit7–9 where the average static dielectric co
stant of a semiconductor nanocrystal can be divided b
factor 2 compared to the bulk material. Finally, one must a
that the classical calculations do not consider the influenc
the surface or defect states which might be of growing
portance for small particles.
560163-1829/97/56~23!/15306~8!/$10.00
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Therefore our aim in this paper is to present a quant
calculation of the dynamic screening in silicon nanostru
tures. The dielectric matrix will be analyzed through t
computation of the EELS spectra of electrons moving o
definite trajectory past or through silicon spheres, wires,
molecules, but of course the results are of more genera
terest since they can be applied to other dynamical prope
of semiconductor nanostructures. For example, plasmons
quencies are of fundamental importance in the calculation
the quasiparticle spectra in theGW formalism.10 It is also of
fundamental interest to see for very confined systems h
the plasmons frequencies decrease to lower energies s
basic principles show that plasmons frequencies should
towards the interband transitions for one and tw
dimensional systems in contrast to three-dimensional o
~see Ref. 11 for example!. The paper is divided as follows
The calculation technique is described in the first paragr
as well as the macroscopic dielectric constant of bulk silic
The calculated EELS spectra are presented in the second
for nanostructures perfectly passivated or with surface
fects and for linear molecules. The last paragraph is devo
to the comparison with recent experiments made on por
silicon.

I. BASIC THEORY

Unless otherwise stated, we consider throughout the pa
silicon nanostructures passivated by hydrogen atoms lik
Ref. 12. The calculation is divided into three distinct par
First, the electronic structure of the nanostructure is co
puted to get the one-electron wave functionsuk(x) of corre-
sponding eigenvalue«k @x5(r ,j) wherer is the position of
the electron andj is the spin variable#. For this we use a
semiempirical tight-binding technique where the parame
of the Hamiltonian are adjusted to fit to the bulk silicon ba
structure and are transferred to the problem under consi
ation. This procedure is justified because the Hamilton
inside the nanostructure is not expected to differ greatly fr
15 306 © 1997 The American Physical Society
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56 15 307CALCULATIONS OF THE ELECTRON-ENERGY-LOSS . . .
the bulk silicon one. The silicon atoms are described by
s and threep orbitals and the hydrogen atoms by ones
orbital. We have chosen the Hamiltonian parameters of R
13 because, when compared to other parametrizations,
give a good compromise between a reasonable bulk sil
band structure and a reasonable behavior of the bulk sil
dielectric function as discussed below. We have previou
shown14 that this parametrization13 leads to an underestima
tion of the band-gap energy with the confinement which
due to a poor description of the conduction band in tig
binding. However, this is not essential here since our st
concerns spectra on a large energy range~0–25 eV! and that
collective excitations do not depend too much on the det
of the electronic structure. The interactions between silic
and hydrogen orbitals are taken from Harrison’s rules.15 The
tight-binding technique is particularly suited to our proble
because its computational simplicity allows studies fro
molecules to quite large systems~here typically 200 atoms!.
It is also a natural starting point to calculate the dielec
properties of a material.16

The second step of the calculation is the evaluation of
dielectric function of the system«(r ,r 8,v) for the response
of the system to an external potentialVext(r ,v) of frequency
v,10 which is done using the linearized time-dependent H
tree approximation often referred to as the random-ph
approximation.17,18,10Then the dielectric function is relate
to the polarization functionP(r ,r 8,v):

«~r ,r 8,v!5d~r ,r 8!2E n~r ,r 9!P~r 9,r 8,v!dr 9, ~1!

wheren(r ,r 8)5e2/ur2r 8u andP(r ,r 8,v) is given by

P~r ,r 8,v!5(
kk8

nk2nk8
«k2«k82v2 id

f kk8~r ! f kk8
* ~r 8!, ~2!

with nk is the occupancy of the statek and

f kk8~r !5E uk~x!uk8
* ~x!dj. ~3!

The full evaluation of« andP, for example, using the local
density approximation wave functions in a plane-wave ba
is very demanding and even with the best computers i
generally restricted to systems with a small number
atoms.19 As we use a description in an atomic localized ba
and as the external potentials investigated here are slo
varying on the atomic scale, we dramatically simplify t
equations by considering the functions as matrices in disc
values ofr corresponding to the atomic positionsRi . For
example, the Eq.~1! transforms into a matrix equation:

«5I 2VP ~4!

if, considering the atomic volumesV i andV j located atRi
and Rj , we define the elements of the matrices as~the de-
pendence on the frequency being implicit!:

Pi j 5E
rPQi

P~r ,r 8,v!drdr 8, ~5!

« i j 5E
r8PQj

r8PV j
«~Ri ,r 8,v!dr 8, ~6!
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Vi j 5n~Ri ,Rj !. ~7!

This formulation is a usual one in tight binding20 and its
main simplification is the neglect of the intra-atomic pola
izations which is more justified for a covalent material lik
silicon.20 However we have already shown9 that it predicts a
decrease of the static dielectric constant with size for sm
semiconductor systems in good agreement with ot
calculations.7,8 It also gives a correct description of th
screening at semiconductor interfaces.21 The one-electron
wave functionsuk(x) are defined in the atomic basis$wa j%
where j denotes the atomic site atRj and a
P$s,px ,py ,pz%:

uk~x!5(
j ,a

ck jawa j~x!. ~8!

Then, neglecting the overlaps between atomic wave fu
tions, we rewrite the polarization:

Pi j 52 (
kPVB

k8PCB

H(
a

ck8 j ack ja* J H(
a

ck8 ia
* ckiaJ

3H 1

«k2«k82v2 id
2

1

«k82«k2v2 idJ , ~9!

where VB~CB! means the valence~conduction! band~with-
out spin!. The matrix of the Coulomb potentialV is defined
as in our previous works:9,22

Vi j 5e2/uRj2Ri u if iÞ j ,

Vii 5U ~10!

whereU is the intra-atomic Coulomb energy equal to 10
eV.9,22 For systems having a translational periodicity like t
bulk material or wires, the evaluation of Eq.~9! can be fur-
ther simplified by using Fourier series~Appendix A!. Then
the matrices depend on a wave vectorq but their size is
given by the number of atoms in the unit cell.

To calculate the energy loss for fast electrons, we foll
closely the procedure given by Ritchie,23 valid for fast
electrons.10 Neglecting the electrodynamic retardation e
fects, the potentialVext(r ,t) created by the electron along th
axis x with speedn is obtained from the Poisson equation

DVext~r ,t !54ped~x2nt !, ~11!

which can be solved by Fourier transform:23

Vext~k,v!52
8p2e

k2 d~kxn1v!. ~12!

Coming back to the real space, we get

Vext~r ,v!522
e

n
expS 2 i

v

n
xDK0S v

n
Ay21z2D , ~13!

where K0 is the modified Bessel function of order 0. Fo
high-energy electrons~typically 200 keV!, Vext is slowly
variable on the length scale of the interatomic distance si
v/n!1 a.u. and it can be represented by a column matrix
the discretized space@Vext,i5Vext(Ri ,v)#. The expression
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15 308 56C. DELERUE, M. LANNOO, AND G. ALLAN
of the energy lossL(v) at a frequencyv is detailed in Ap-
pendix B and is given in the matrix formulation by

L~v!52
v

p
Im$Vext

† ~2v!P~v!«21~v!Vext~v!%, ~14!

where † defines the transposed matrix. Before discussing
results for the nanostructures, we need to look at the pre
tions of the model for the macroscopic dielectric const
«(v) of the bulk silicon for comparison. As usual and
defined in Appendix A,«(v) is given by the matrix element
of the inverse dielectric matrix for a vanishing small wa
vectorq. In Fig. 1 are plotted the real and imaginary parts
«(v), as well as Im„1/«(v)…. Compared to experiments,24

several points are satisfactory: the static dielectric constan
9.8 ~instead of 11.1!, the presence of the main absorptio
band in the 3–6 eV range and the plasmon peak at;18.2 eV
~instead of 16.9 eV!. There are also some discrepancies. T
optical spectrum Im„«(v)… around 4 eV is underestimated b
about a factor 2 which is probably due to the neglect of
intra-atomic terms in the polarization but also to well-know
problems inherent to the random-phase approximation16 ~ex-
citonic effects could remove some of the disagreemen25!.
There are also some spurious peaks in Im„«(v)… between 8
and 12 eV which are a consequence of the too flat cond
tion bands obtained in tight binding which gives mark
peaks in the density of states~similar effects are obtained fo
diamond in Ref. 16!. For a similar reason, the width of th
plasmon peak in Im„1/«(v)… is too small because Im„«(v)…
exactly vanishes above 16.3 eV, value which correspond
the total width of the tight-binding band structure.13 In prin-
ciple, there should be electronic transitions from the vale
band to the high-energy free-electron-like states which ob
ously are not included in a tight-binding treatment and wh
would give the correct behavior of Im„«(v)… at high
energy.26 Thus the width of the plasmon peak in Fig. 1
only fixed by the arbitrary broadeningd in the polarization,
Eq. ~9! ~d50.2 eV throughout the paper!.

All these problems are the price to pay to get a sim
formulation able to treat complex systems like nanocryst
However, even if we do not expect fully detailed agreem
with experiments, we believe that the trends in the phys

FIG. 1. Real~dashed line! and imaginary~dotted line! parts of
the calculated macroscopic dielectric constant«(v) of bulk silicon.
The full line corresponds to Im„1/«(v)….
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effects induced by the confinement are correctly given a
the case for static properties.9 For example, to emphasiz
these trends and for the sake of consistency, our results
be compared when possible to the best class
calculations,4 where silicon will be described locally by th
calculated dielectric function plotted in Fig. 1.

II. ENERGY LOSSES IN SILICON NANOSTRUCTURES

We first concentrate on silicon spheres with their surfa
completely passivated by hydrogen atoms. Figure 2 rep
sents calculated loss spectra for a zero impact parameterb (b
is the distance between the electron trajectory and the sp
center!. The most interesting point is that even for very sm
nanocrystals, containing, for example, 17 silicon atoms,
spectrum is dominated by high-energy plasmon peaks ab
;11 eV and that the losses between 4 and 10 eV are q
low. This is particularly true for the larger systems conta
ing 87 and 159 atoms~the differences between the two spe
tra come from different ponderations between the differ
plasmon modes4!. This means that the damping via on
electron transitions does not appear even for very sm
structures simply because the collective excitations alre
occur at much higher energies than one-electron transiti
Figure 3 shows the loss spectra for the same spheres as
2 but for an impact parameterb of 25 Å. The main difference
with Fig. 2 is that the peak at higher energy disappears—
least for the biggest crystallites—which allows us to ident
it as the ‘‘bulk’’ mode since we know it is not excited for a
electron trajectory outside the sphere.4,27 Thus the plasmon
peaks obtained in Fig. 3 are surface modes.27 In Fig. 3, we
also plot the loss spectra calculated with the available c
sical theory4 where, as explained in the previous section,

FIG. 2. Energy-loss spectra calculated for an electron pr
~200 keV! passing through silicon spheres passivated by hydro
(b50). The crystallites presented here are Si5H12 ~diameter d
50.57 nm!, Si17H36 (d50.86 nm), Si29H36 (d51.03 nm), Si47H60

(d51.21 nm), Si87H76 (d51.49 nm), and Si159H124 (d
51.82 nm).
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56 15 309CALCULATIONS OF THE ELECTRON-ENERGY-LOSS . . .
local dielectric function of silicon is the calculated one plo
ted on Fig. 1. Comparing with the full calculation, we co
clude that the classical theory is quite valid even for ve
small spherical nanostructures, e.g., containing 87 silicon
oms. A marked difference is obtained between the two c
culations only for systems with less than;50 atoms. We
conclude that the confinement has a small influence on
lective excitations of nanocrystallites while it has a drama
one on the static dielectric constant. This is due to the
that the static dielectric constant is quite sensitive to the n
band-edge transitions—and thus to the band gap—while
plasmon frequencies which are at much higher energy t
one-electron transitions are not very sensitive to details in
electronic structure~in first approximation, they are well de
fined by the average bonding-antibonding gap, see Appe
A!.

Figure 4 shows the calculated loss spectra for cylindr
wires passivated by hydrogen. The situation considered
corresponds to a trajectory of the electrons orthogonal to
axis of the wire and passing through the center (b50). As
for the spheres~Fig. 2!, the spectra are characterized by hig
energy plasmon peaks corresponding to surface and
modes. The one-dimensional character of the system ha
a dramatic effect on the plasmons because we know from
previous discussion that even for very small systems
modes are already characteristic of a three-dimensional
tem. Note that, to our knowledge, there is no classical a
lytical formulation of the losses for wires in the literature
which we could compare.

It is quite interesting to see how sensitive the plasm
peaks are to the presence of defects. In our particular cas
silicon nanostructures, the stability of the Si-H bonds un
focused irradiation by high-energy electrons can be qu
tioned since the temperature of desorption of hydrogen
low (;250 °C). In addition, the presence of dangling bon
is known to influence the luminescence properties of por
silicon.12 Here we consider the extreme case where all

FIG. 3. Same as Fig. 2 but for an electron probe passing out
the spheres (b52.5 nm) ~straight line: full tight-binding calcula-
tion, dashed line: classical calculation!.
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hydrogen atoms are removed and where the surface is
reconstructed. This leads us to a situation with the maxim
number of dangling bonds giving a half-filled ‘‘metallic’
band at the surface. By comparison with the fullerenes ch
acterized by a half-filledp band, we could expect some pla
mon peaks at low energy (;6 eV) induced by the presenc
of the band.28 Figure 5 shows the loss spectrum for a sph
of ;1.5 nm with 87 silicon atoms and 76 dangling bonds
the surface (b50) and for the passivated sphere for com
parison. We see that the presence of the dangling-bond
fects does not influence the spectrum too much in partic
low-energy plasmons are not visible. The changes at h
energy~14–19 eV! are partially due to electron transition
within Si-H states occurring in this range of energy. To u
derstand the behavior at low energy, we have plotted on
same figure the loss spectrum calculated with the sums in
polarizationP @Eq. ~9!# restricted to the dangling-bond state
~filled for k and empty fork8!. Then we see the expecte
behavior with a low-energy plasmon peak at;3 eV. How-
ever, the amplitude of this peak is very small compared
the others and the full spectrum is indeed dominated by
other high-energy modes of the sphere. Compared to the
of fullerenes, the essential difference is that the silicon cl
ters are filled by atoms and therefore three-dimensional c
acters are dominant.

One of the main conclusions of our work is that the c
lective excitations of the silicon nanostructures can be r
sonably deduced from the dynamic screening properties
bulk silicon, with plasmons at quite high energy. Therefo
different properties can only be expected for molecules. H
we present results for linear molecules~polysilanes!
H3Si-~SiH2!n-SiH3 which can be seen as the extreme limit
thin wires ~their electronic properties are discussed in R

de

FIG. 4. Energy-loss spectra calculated for an electron pr
~200 keV! passing through silicon wires (b50) passivated by hy-
drogen for different diameters with a trajectory orthogonal to
axis of the wires.
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15 310 56C. DELERUE, M. LANNOO, AND G. ALLAN
29!. The results of Fig. 6 correspond to an electron traject
passing at one edge of the molecules and with an angle
tween the trajectory and the axis of the molecule of 45°.
contrast to previous results, and in particular to thicker wi
~Fig. 4!, the spectra are characterized by low-energy pe
for example, between 6 and 8 eV lying in the region
one-electron transitions. However for such molecular s

FIG. 5. Energy-loss spectra calculated for an electron pr
~200 keV! passing through a silicon sphere containing 87 silic
atoms (b50). The straight line corresponds to the passiva
sphere Si87H76 (d51.49 nm), the dashed line to the sphere with
dangling bonds at the surface. The dotted line is the spectrum
culated with the summations in the polarization restricted to
dangling-bond states@Eq. ~9!#.

FIG. 6. Energy-loss spectra calculated for an electron pr
~200 keV! passing at the edge of polysilanes H3Si-~SiH2!n-SiH3.
y
e-

n
s
s,
f
-

tems, we expect that the large excitonic effects strongly
fluence the spectra,29 for example, by shifting some peaks t
lower energy@the exciton binding energy can be of the ord
of ;1 eV ~Ref. 29!#. A more detailed analysis of these sy
tems with a more complex theory including excitonic effec
is planned.

III. COMPARISON WITH EELS ON POROUS SILICON

Porous silicon is an easy way to produce silic
nanostructures.1 EELS studies on some porousn-type silicon
samples3 have clearly identified quantum-sized Si wires. T
presence of oxygen was excluded which rules out the ef
of some oxide layer on the results.3 For a;5-nm wire, the
loss spectrum is dominated by a;17.3-eV plasmon peak
very close to the one of bulk silicon. As shown previous
this is quite expected since, already for much smaller na
structures than those investigated experimentally, the
spectra are dominated by ‘‘bulk’’ modes. A weak edge
10.5 eV is also observed which can be interpreted by surf
plasmons as demonstrated by our results or by the clas
theory.5 More surprisingly, a peak is obtained near;4.5 eV
with an intensity of magnitude similar to the other peak
This was naturally interpreted3 by the interband transitions
which occur at the same energies.12 This low-energy peak
has been recently confirmed by another group30 on hydroge-
nated porousn-type silicon where it has been proposed th
the reduction of the static dielectric constant due to
confinement7–9 could shift some plasmon peaks downwar
to the observed value. Clearly both interpretations are
supported by our calculations which include the interba
transitions and the effects of the confinement such as
reduction of the static dielectric constant. Even if the silic
structures observed experimentally are larger than the ca
lated ones, it is hard to imagine the appearance of a l
energy peak which would not exist for the smaller sizes c
culated here or the larger ones where the classical the
becomes exact.

We have thus to examine other explanations for
;4.5-eV peak. We have first studied the effect of the en
ronment around the nanostructures by considering an ‘‘ef
tive medium’’ with some dielectric constant typical of po
rous silicon or by considering a three-dimensional perio
array of crystallites simulating the porous medium: the
sults are quite close to those discussed above, without l
energy peaks. Second, we cannot completely exclude
effects going beyond the random-phase approximation m
lead to an enhancement of the one-electron transitions: m
sophisticated calculations, including in particular exchan
and correlation effects in the response function, are ne
sary to conclude. Third, the low-energy peak may be due
some contaminants present in porous silicon. However
seems that these contaminants are not dete
experimentally.3,30 Fourth, the peak could be due to the pre
ence of silicon molecules in the pores like the polysilan
studied here since this is the only case for which we h
obtained low-energy peaks. However, our calculated spe
~Fig. 6! show multiple peaks which are not visibl
experimentally3,30 but, as discussed above, the excitonic
fects may alter considerably the spectra. In addition,
presence of silicon molecules in the pores could explain
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strange behavior of the;4.5-eV peak whose intensity doe
not decrease when moving the probe from the Si fibers
the vacuum.3,31 However, one would still have to explai
why on porousp-type silicon studied by STEM~Ref. 32! no
peak is observed in the low-loss region while surface p
mons are clearly obtained in agreement with the theory.

IV. CONCLUSION

We have shown that the energy-loss spectra of sili
nanostructures can be well represented by the clas
theory, even for systems with a small number of atoms. T
spectra are characterized by bulk and surface-plasmon m
with high energy. Theory at least within the random-pha
approximation cannot explain the;4.5-eV peak observed
on porousn-type silicon, except possibly by the presence
silicon molecules in the pores which is the only case wh
low-energy excitations with substantial losses are predic
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APPENDIX A

For systems with translational symmetry, the atoms
located at the sitesRj j 0

, wherej 0 is the index of the atom in

the cell andj is the index of the cell (Rj ). Then we can
simplify the calculations by using Fourier series. For e
ample,

« i 0 , j 0
~q!5(

j
eiq•~Rj 2Ri !« i 0i , j 0 j , ~A1!

which, by symmetry, does not depend oni . Then Eq.~4!
transforms into

«~q!5I 2V~q!P~q!, ~A2!

where all terms are matrices with size equal to the numbe
atoms in the unit cell. The one-electron wave functio
ul ,k(x) of energy« l(k) belonging to bandl are built from
tight-binding Bloch sums:

ul ,k~x!5
1

AN
(

j
eik•Rj (

j 0 ,a
cj 0a~ l ,k!wa j 0 j~x!, ~A3!

where N is the number of atoms in the crystal. Then t
polarization@Eq. ~9!# is given by
t-binding
tem is
s
real
Pi 0 , j 0
~q!5

2

N (
k

(
l PVB
mPCB

H S(a ci 0a* ~m,k!ci 0a~ l ,k1q! D S(a cj 0a~m,k!cj 0a* ~ l ,k1q! D
« l~k1q!2«m~k!2v2 id

2
S(a ci 0a~m,k!ci 0a* ~ l ,k2q! D S(a cj 0a* ~m,k!cj 0a~ l ,k2q! D

«m~k!2« l~k2q!2v2 id
J , ~A4!

where the overlap terms have been neglected in the two-particle matrix elements consistently with the extreme tigh
limit used here. To illustrate the problem, we can apply the formalism to bulk silicon in the molecular model. The sys
roughly described by a set ofsp3 hybrid orbitals where only the resonance integralsb between nearest-neighbor hybrid
pointing towards each other are considered20 (b,0). Then the matrix elements of the polarization are simply given in the
space by20

Pi 0i ,i 0i52/beff ,

Pi 0i , j 0 j521/~2beff! if i 0i first neighbor of j 0 j , ~A5!

where 1/beff5@1/(2b1v)#1@1/(2b2v)# if d→0. With two silicon atoms in the unit cell at~0,0,0! and (a/4,a/4,a/4) where
a is the lattice parameter, the polarization matrix is transformed in Fourier space into a 232 matrix @given here forq
5q(1,0,0)#:

P~q!5F 2/beff 2~11e2 iqa/2!/beff

2~11eiqa/2!/beff 2/beff
G . ~A6!
ich
ble
e

by
The determination of the elements of the matrixV(q) in-
volves summations of the type

J5(
j

eiq•Rj

uRj2uu
, ~A7!

which are evaluated numerically using the Ewald-Fuc
method33,34 throughout the paper. In our particular case,
s
e

expressions inV(q) can be approximated20 and the full di-
electric matrix is then derived from Eq.~A2!. A quantity of
practical interest is the macroscopic dielectric constant wh
describes the macroscopic response to a slowly varia
perturbation.35 Considering an external density of charg
rext(r )5eiq•r/V over the crystal volumeV, we can calculate
the G50 component of the total charge as given



ar
n-
e

tio
re

e

th

te
th

e-

ia-

is

the
in
m.

lu-

15 312 56C. DELERUE, M. LANNOO, AND G. ALLAN
*e2 iq•rr tot(r )dV. Using the Eqs.~5!–~7!, we get the inverse
of the macroscopic dielectric constant:

ē~v!215 lim
q→0

1

2 (
i 0 , j 0

eiq•~Ri 0
2Rj 0

!« j 0 ,i 0
21 ~q!, ~A8!

which is given by the ratio of theG50 component of the
total charge to the same component of the external ch
~51 here!. The fully calculated macroscopic dielectric co
stant is plotted in Fig. 1. In the case of the molecular mod
the limit in Eq. ~A8! can be obtained analytically:

«~v!512
2p

abeff
~A9!

Thus the static dielectric constant isē(0)5122p/ab,
which is equal to 5.16 withb'24 eV.13 It is much smaller
than the experimental value due to the crude approxima
of the polarization in the molecular model. The plasmon f
quencyvpl is given byē(vpl)50:

vpl5A8pb

a
14ba2. ~A10!

We calculatevpl518.18 eV which is very close to the valu
obtained by the full calculation~Fig. 1! showing that the
plasmon frequency is much less sensitive to the details of
electronic structure than the static dielectric constant.

APPENDIX B

We calculate here the energy loss of a fast electron in
acting with some dielectric medium. The presence of
electron polarizes the medium. The variation of energydS
of the medium during an infinitesimal time incrementdt can
be written

dS5Vext
† ~ t !dr ind , ~B1!

whereVext is the column matrix~Vext
† a line matrix! of the

potential created by the electron@given by the Eq.~13!# and
d

s.
ge

l,

n
-

e

r-
e

r ind is the column matrix of the induced charge in the m
dium. Transforming into frequency space, we have

Vext~ t !5
1

2p E
2`

`

eivt2autuVext~v!dv,

~B2!

r ind~ t !5
1

2p E
2`

`

eivtr ind~v!dv,

wherea→01 was added for convenience. The total var
tion of energy is given by*2`

` dS which after integration on
the timet—giving a d function—becomes

i

2p E
2`

`

Vext~2v!r ind~v!vdv. ~B3!

Then, for finite systems like the spheres, the coefficientsck ja
are real, we haveP(2v)5P* (v), «(2v)5«* (v) @Eq.
~9!#, andVext(2v)5Vext* (v) @Eq. ~13!#. Then the lossL(v)
at a frequencyv is given by

L~v!52
v

p
Im$Vext

† ~2v!r ind~v!%

52
v

p
Im$Vext

† ~2v!P~v!«21~v!Vext~v!%.

~B4!

For systems with translational symmetry, the extension
straightforward:

L~v!52
v

Np
Im (

q
$Vext

† ~2v,2q!P~v,q!

3«21~v,q!Vext~v,q!%. ~B5!

The main advantage of the above formulation is that
evaluation of the dielectric matrix has only to be done with
the volume of the dielectric material, and not in the vacuu
This is of practical interest in tight binding since the eva
ation of the expressions~B4! or ~B5! is a simple multiplica-
tion of finite matrices.
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