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Calculations of the electron-energy-loss spectra of silicon nanostructures and porous silicon
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The electronic excitations in quantum-size silicon molecules, wires, or spheres are investigated by the
evaluation of the full frequency-dependent dielectric matrix of the system. The calculation is based on a
tight-binding framework in the random-phase approximation. The energy-loss spectra derived for fast electrons
interacting with the nanostructures are dominated by collective excitations corresponding to bulk and surface
modes even for nanostructures containing a small number of atoms. In contrast to the static screening, the
dynamical properties are not strongly affected by the quantum confinement and are well described by the
classical theories. We show that these collective modes are only slightly sensitive to surface defects and that
low-energy excitations below 8 eV are only observable for one-dimensional silicon molecules, e.g., for
polysilanes. These results are used to discuss the recent experimental observations made on fresh and oxidized
porous silicon[S0163-1827)03247-5

The optical properties of semiconductor nanostructures Therefore our aim in this paper is to present a quantum
are interesting both for fundamental physics and for applicaealculation of the dynamic screening in silicon nanostruc-
tions. For example, the discovery of the visible light emis-tures. The dielectric matrix will be analyzed through the
sion of porous silicohhas stimulated many studies in the computation of the EELS spectra of electrons moving on a
field of artificial silicon nanostructurésin spite of these definite trajectory past or through silicon spheres, wires, or
efforts, there is not yet a consensus on the exact mechanisfi¥olecules, but of course the results are of more general in-
of luminescence, in particular for small silicon and II-vI terestsince they can be applied to other dynamical properties
systems. The controversies come, in particular, from a lac®f Sémiconductor nanostructures. For example, plasmons fre-
of correlation between microscopic information such as théluéncies are of fundamental importance in the calculation of
local crystallinity or the surface morphology and the opticaltN® quasiparticle spectra in t@Ww formalism.™ It is also of

properties. Therefore the atomic scale characterizations J ndamental interest to see for very confined systems h.OW
the plasmons frequencies decrease to lower energies since

the structure and chemistry are of particular interest. For ex; "= .
e structure and che IStry are of particliar ierest. o exbasm principles show that plasmons frequencies should tend
ample, the results obtained in the low-loss region25 e\ towards the interband transitions for one and two-

by elttectron-gnt_argy-llos? spect_rosccﬁaﬁEéi)E:/lsmg a s?atn- dimensional systems in contrast to three-dimensional ones
ning transmission electron microscopt ) can relate (see Ref. 11 for exampleThe paper is divided as follows.

spectroscopic information to structural ones. However theifpa caicylation technique is described in the first paragraph
analysis is not direct and therefore requires detailed calculasg \yel| as the macroscopic dielectric constant of bulk silicon.
tions of the EELS spectra to which one could compare. Sevhe calculated EELS spectra are presented in the second part
eral calculations of the EELS spectra of electrons moving oflor nanostructures perfectly passivated or with surface de-
a definite trajectory past or through particles with variousfects and for linear molecules. The last paragraph is devoted
shapes have been published in the literatieee, for ex- to the comparison with recent experiments made on porous
ample, Refs. 46 The most sophisticated ones include all silicon.

the multipole excitations but they are all based on the clas-

sical theory, describing the materials by their bulk local di-

electric functiongthese will be referred in the following as I. BASIC THEORY

classical calculationsThis is reasonable for large structures

but it obviously fails to describe the systems in the Unless otherwise stated, we consider throughout the paper
molecular—or atomic—limit where the notion of collective silicon nanostructures passivated by hydrogen atoms like in
excitations looses any value. In addition, the quantum conRef. 12. The calculation is divided into three distinct parts.
finement effects on the electronic structure which are nofirst, the electronic structure of the nanostructure is com-
included in the classical theory may lead to drastic modifi-puted to get the one-electron wave functianéx) of corre-
cations of the screening properties as demonstrated recentiponding eigenvalue, [x=(r,£) wherer is the position of

in the static limif~°® where the average static dielectric con-the electron and is the spin variable For this we use a
stant of a semiconductor nanocrystal can be divided by aemiempirical tight-binding technique where the parameters
factor 2 compared to the bulk material. Finally, one must addf the Hamiltonian are adjusted to fit to the bulk silicon band
that the classical calculations do not consider the influence ddtructure and are transferred to the problem under consider-
the surface or defect states which might be of growing im-ation. This procedure is justified because the Hamiltonian
portance for small particles. inside the nanostructure is not expected to differ greatly from
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the bulk silicon one. The silicon atoms are described by one Vij=v(R;,R)). (7

s and threep orbitals and the hydrogen atoms by ose . o o o )
orbital. We have chosen the Hamiltonian parameters of Refl NiS formulation is a usual one in tight blndﬁﬁ]gand its

13 because, when compared to other parametrizations, théyin simplification is the neglect of the intra-atomic polar-
give a good compromise between a reasonable bulk S“icoﬁ_z_itlongowmch is more justified for a covalen_t mate_rlal like
band structure and a reasonable behavior of the bulk silicofilicon”” However we have already shohat it predicts a
dielectric function as discussed below. We have previousl;ﬂecr?ase of the static d|eI(_actr|c constant with size .for small
showrt* that this parametrizatidfileads to an underestima- Semiconductor systems in good agreement with —other
tion of the band-gap energy with the confinement which iscalculations'® It also gives a correct description of the
due to a poor description of the conduction band in tightScreening at semiconductor interfaésThe one-electron
binding. However, this is not essential here since our studyvave functionsu(x) are defined in the atomic basig .}
concerns spectra on a large energy raf@ze25 e\j and that Where j denotes the atomic site aR; and «
collective excitations do not depend too much on the detailss {S:Px:Py . P2}

of the electronic structure. The interactions between silicon

a_md hydr(_)gen orbit_als are take_n from ngrison’s rdfsghe U(X) = E Chja®aj(X). (8)
tight-binding technique is particularly suited to our problem JLa

because its computational simplicity allows studies from_l_hen neglecting the overlaps between atomic wave func
molecul ite lar r ically 2 e ; A )
olecules to quite large systertizere typically 200 atoms tions, we rewrite the polarization:

It is also a natural starting point to calculate the dielectric
properties of a materidf

The second step of the calculation is the evaluation of the Pij=2 >, [E ck,jacﬁja] | > c’k‘,iackia]
dielectric function of the system(r,r’,w) for the response k"f\éBB @ @

of the system to an external potentigl,(r,w) of frequency
w,2% which is done using the linearized time-dependent Har-
tree approximation often referred to as the random-phase
approximationt.”*819Then the dielectric function is related
to the polarization functio®(r,r’,w): where VB (CB) means the valendgonduction band(with-
out spin. The matrix of the Coulomb potenti# is defined
as in our previous work%%?

1 1

X - -
ey e —w—10 gu—eg—w—I1d

J, 9

s(r,r’,w)zé(r,r’)—fv(r,r”)P(r”,r’,w)dr”, (1)
. . Vij=82/|Rj_Ri| if |7EJ,
wherev(r,r')=e?/|r—r’'| andP(r,r’,w) is given by

Vii:U (10)

, _ nk_ nkr * ,
P(r.r "")_% E— & —w—10 Froe (DT (), () whereU is the intra-atomic Coulomb energy equal to 10.6

eV 2?2 For systems having a translational periodicity like the

with ny is the occupancy of the stakeand bulk material or wires, the evaluation of E@) can be fur-
ther simplified by using Fourier seriédppendix A). Then
fkk’(r)ZJ U, () dé. (3)  the matrices depend on a wave vectpbut their size is
given by the number of atoms in the unit cell.
The full evaluation of: andP, for example, using the local- ~ To calculate the energy loss for fast electrons, we follow

density approximation wave functions in a plane-wave basi§losely the procedure given by RitcHié,valid for fast

is very demanding and even with the best computers it i€lectrons?’ Neglecting the electrodynamic retardation ef-
generally restricted to systems with a small number off€cts, the potentiaV,(r,t) created by the electron along the
atoms® As we use a description in an atomic localized basis2Xis X with speedv is obtained from the Poisson equation:
and as the external potentials investigated here are slowly

varying on the atomic scale, we dramatically simplify the AVeu(r,t) =4mes(x—t), 1D
equations by considering the functions as matrices in discretgnich can be solved by Fourier transfoffh:

values ofr corresponding to the atomic positioRs. For

example, the Eq(l) transforms into a matrix equation: 8me

Vext(k,w)=——kr S(kyv+ w). (12
e=1—VP (4)

if, considering the atomic volume®; and(); located atR; Coming back to the real space, we get
andR;, we define the elements of the matrices(te de-

pendence on the frequency being implicit Vo1, 0)= 58 ex% el x) Ko(f W 2|, (13
14 14 14
P”:f P(r,r',w)drdr’, (5  whereK, is the modified Bessel function of order 0. For
reQ;

high-energy electrongtypically 200 keV}, Vg is slowly
, variable on the length scale of the interatomic distance since
£ij= fr EQJS(Ri 1 w)dr’, (6) w/v<lau. anditcan be represented by a column matrix on
r'eq; the discretized spackVeyi=Vex(Ri,®w)]. The expression
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FIG. 1. Real(dashed lingand imaginary(dotted ling parts of
the calculated macroscopic dielectric constafw) of bulk silicon.
The full line corresponds to Ifd/s(w)).

0 4 8 12 16 20

of the energy los& (w) at a frequencyw is detailed in Ap- Energy (V)

pendix B and is given in the matrix formulation by

© FIG. 2. Energy-loss spectra calculated for an electron probe
L(w)=—— Im{let(—w)P(w)s_l(w)Vext(w)}, (14) (200 keV) passing through silicon spheres passn\_/ate_d by hydrogen
T (b=0). The crystallites presented here argH3} (diameterd

. . . . =0.57 nm), Sij;H36 (d=0.86 Nnm), SjgH3s (d=1.03 nm), Sj;H
where T defines the transposed matrix. Before discussing OU(d:1_21n2]m) Y ?gngm (d=1.)498319r]1§’6 ( and %9&1245‘{7 (i;)

results for the nanostructures, we need to look at the predic= 1 g5 ).
tions of the model for the macroscopic dielectric constant

e(w) of the bulk silicon for comparison. As usual and aseffects induced by the confinement are correctly given as is
defined in Appendix Ag() is given by the matrix elements the case for static propertiésFor example, to emphasize
of the inverse dielectric matrix for a vanishing small wavethese trends and for the sake of consistency, our results will
vectorg. In Fig. 1 are plotted the real and imaginary parts ofpe compared when possible to the best classical
e(w), as well as Infl/s(w)). Compared to experiment$,  cajculations’ where silicon will be described locally by the
several points are satisfactory: the static dielectric constant Qfaiculated dielectric function plotted in Fig. 1.
9.8 (instead of 11.], the presence of the main absorption
band in the 3-6 eV range and the plasmon peakB.2 eV |, \ERGY LOSSES IN SILICON NANOSTRUCTURES
(instead of 16.9 e}/ There are also some discrepancies. The
optical spectrum It (w)) around 4 eV is underestimated by ~ We first concentrate on silicon spheres with their surface
about a factor 2 which is probably due to the neglect of thecompletely passivated by hydrogen atoms. Figure 2 repre-
intra-atomic terms in the polarization but also to well-known sents calculated loss spectra for a zero impact paraméter
problems inherent to the random-phase approxim#fti@x- s the distance between the electron trajectory and the sphere
citonic effects could remove some of the disagreeRient centey. The most interesting point is that even for very small
There are also some spurious peaks irfelfm)) between 8 nanocrystals, containing, for example, 17 silicon atoms, the
and 12 eV which are a consequence of the too flat conducspectrum is dominated by high-energy plasmon peaks above
tion bands obtained in tight binding which gives marked~11 eV and that the losses between 4 and 10 eV are quite
peaks in the density of statésmilar effects are obtained for low. This is particularly true for the larger systems contain-
diamond in Ref. 15 For a similar reason, the width of the ing 87 and 159 atom@he differences between the two spec-
plasmon peak in Iifl/e (w)) is too small because Ifa(w))  tra come from different ponderations between the different
exactly vanishes above 16.3 eV, value which corresponds tplasmon modé$. This means that the damping via one-
the total width of the tight-binding band structdrfeln prin-  electron transitions does not appear even for very small
ciple, there should be electronic transitions from the valencetructures simply because the collective excitations already
band to the high-energy free-electron-like states which obvieccur at much higher energies than one-electron transitions.
ously are not included in a tight-binding treatment and whichFigure 3 shows the loss spectra for the same spheres as Fig.
would give the correct behavior of I@(w)) at high 2 butfor an impact parametbrof 25 A. The main difference
energy?® Thus the width of the plasmon peak in Fig. 1 is with Fig. 2 is that the peak at higher energy disappears—at
only fixed by the arbitrary broadeningjin the polarization, least for the biggest crystallites—which allows us to identify
Eq. (9) (6=0.2 eV throughout the paper it as the “bulk” mode since we know it is not excited for an
All these problems are the price to pay to get a simpleelectron trajectory outside the sphér€.Thus the plasmon
formulation able to treat complex systems like nanocrystalspeaks obtained in Fig. 3 are surface motlel Fig. 3, we
However, even if we do not expect fully detailed agreemenglso plot the loss spectra calculated with the available clas-
with experiments, we believe that the trends in the physicasical theor§ where, as explained in the previous section, the
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FIG. 3. Same as Fig. 2 but for an electron probe passing outside
the spheresk(=2.5 nm) (straight line: full tight-binding calcula- FIG. 4. Energy-loss spectra calculated for an electron probe
tion, dashed line: classical calculatjon (200 keV) passing through silicon wiresdE 0) passivated by hy-

drogen for different diameters with a trajectory orthogonal to the

local dielectric function of silicon is the calculated one plot- _ ° .
axis of the wires.

ted on Fig. 1. Comparing with the full calculation, we con-
clude that the classical theory is quite valid even for very
small spherical nanostructures, e.g., containing 87 silicon atlydrogen atoms are removed and where the surface is not
oms. A marked difference is obtained between the two calreconstructed. This leads us to a situation with the maximum
culations only for systems with less than50 atoms. We number of dangling bonds giving a half-filled “metallic”
conclude that the confinement has a small influence on coband at the surface. By comparison with the fullerenes char-
lective excitations of nanocrystallites while it has a dramaticacterized by a half-filledr band, we could expect some plas-
one on the static dielectric constant. This is due to the facinon peaks at low energy~(6 eV) induced by the presence
that the static dielectric constant is quite sensitive to the neasf the band?® Figure 5 shows the loss spectrum for a sphere
band-edge transitions—and thus to the band gap—while thgf — 1.5 nm with 87 silicon atoms and 76 dangling bonds at
plasmon frequencies which are at much higher energy thaghe syrface =0) and for the passivated sphere for com-
one-electron transitions are not very sensitive to details in thSarison. We see that the presence of the dangling-bond de-
electronic structurein first approximation, they are well de- ots does not influence the spectrum too much in particular
gr;ed by the average bonding-antibonding gap, see Appendiy,\, energy plasmons are not visible. The changes at high
- .. _energy(14-19 eV are partially due to electron transitions
Figure 4 shows the calculated loss spectra for cyllndrlca\flevithin Si-H states occurring in this range of energy. To un-

wires passivated by hydrogen. The situation considered her rstand the behavior at low enerav. we have plotted on the
corresponds to a trajectory of the electrons orthogonal to th ! 9y Ve p .
same figure the loss spectrum calculated with the sums in the

axis of the wire and passing through the center(Q). As 2 : .
for the sphere&Fig. 2), the spectra are characterized by high_polanzatlonP [Eqg.(9)] restricted to the dangling-bond states

energy plasmon peaks corresponding to surface and buffiled for k and empty fork’). Then we see the expected
modes. The one-dimensional character of the system has ngghavior with a low-energy plasmon peak-a8 eV. How-

a dramatic effect on the plasmons because we know from th@ver, the amplitude of this peak is very small compared to
previous discussion that even for very small systems théhe others and the full spectrum is indeed dominated by the
modes are already characteristic of a three-dimensional sy§ther high-energy modes of the sphere. Compared to the case
tem. Note that, to our knowledge, there is no classical anaef fullerenes, the essential difference is that the silicon clus-
lytical formulation of the losses for wires in the literature to ters are filled by atoms and therefore three-dimensional char-
which we could compare. acters are dominant.

It is quite interesting to see how sensitive the plasmon One of the main conclusions of our work is that the col-
peaks are to the presence of defects. In our particular case I&fctive excitations of the silicon nanostructures can be rea-
silicon nanostructures, the stability of the Si-H bonds undesonably deduced from the dynamic screening properties of
focused irradiation by high-energy electrons can be queshbulk silicon, with plasmons at quite high energy. Therefore
tioned since the temperature of desorption of hydrogen islifferent properties can only be expected for molecules. Here
low (~250 °C). In addition, the presence of dangling bondswe present results for linear moleculegolysilane$
is known to influence the luminescence properties of porou#l;Si-(SiH,),- SiHz which can be seen as the extreme limit of
silicon? Here we consider the extreme case where all thehin wires (their electronic properties are discussed in Ref.
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tems, we expect that the large excitonic effects strongly in-
fluence the spectrd,for example, by shifting some peaks to
lower energyfthe exciton binding energy can be of the order
of ~1 eV (Ref. 29]. A more detailed analysis of these sys-

! tems with a more complex theory including excitonic effects
} is planned.

[ll. COMPARISON WITH EELS ON POROUS SILICON

Porous silicon is an easy way to produce silicon
nanostructureS EELS studies on some poronstype silicon
sampled have clearly identified quantum-sized Si wires. The
presence of oxygen was excluded which rules out the effect
of some oxide layer on the resufté:or a~5-nm wire, the
loss spectrum is dominated by-al7.3-eV plasmon peak
very close to the one of bulk silicon. As shown previously,
this is quite expected since, already for much smaller nano-
P ! structures than those investigated experimentally, the loss

o] — spectra are dominated by “bulk” modes. A weak edge at
0 4 8 12 16 20 ; ) .
Energy (eV) 10.5 eV is also observed which can be interpreted by surface
plasmons as demonstrated by our results or by the classical

FIG. 5. Energy-loss spectra calculated for an electron probetheory' More surprisingly, a peak is obtained nea.5 eV

(200 keV) passing through a silicon sphere containing 87 siliconW't.h an intensity Of. magnitude S'm""?“ to the other _peaks.
atoms p=0). The straight line corresponds to the passivatedTh'_s was naturally mterpretécby.the mterband transitions
sphere SiH;s (d=1.49 nm), the dashed line to the sphere with 76Wh'Ch occur at the same energi‘ésThls low-energy peak
dangling bonds at the surface. The dotted line is the spectrum ca1@S been recently confirmed by another grBgm hydroge-
culated with the summations in the polarization restricted to the'ated porousi-type silicon where it has been proposed that
dangling-bond stateEq. (9)]. the reduction of the static dielectric constant due to the

confinemerft® could shift some plasmon peaks downwards
29). The results of Fig. 6 correspond to an electron trajectory© the observed value. Clearly both interpretations are not
passing at one edge of the molecules and with an angle b&upported by our calculations which include the interband
tween the trajectory and the axis of the molecule of 45°. Infransitions and the effects of the confinement such as the
contrast to previous results, and in particular to thicker wiregeduction of the static dielectric constant. Even if the silicon
(Fig. 4), the spectra are characterized by low-energy peaks$tructures observed experimentally are larger than the calcu-
for example, between 6 and 8 eV lying in the region oflated ones, it is hard to imagine the appearance of a low-
one-electron transitions. However for such molecular sys€nergy peak which would not exist for the smaller sizes cal-
culated here or the larger ones where the classical theory
becomes exact.

We have thus to examine other explanations for the
~4.5-eV peak. We have first studied the effect of the envi-
100 Si ronment around the nanostructures by considering an “effec-
tive medium” with some dielectric constant typical of po-
rous silicon or by considering a three-dimensional periodic
array of crystallites simulating the porous medium: the re-
sults are quite close to those discussed above, without low-
energy peaks. Second, we cannot completely exclude that
effects going beyond the random-phase approximation may
10si lead to an enhancement of the one-electron transitions: more
sophisticated calculations, including in particular exchange
and correlation effects in the response function, are neces-
sary to conclude. Third, the low-energy peak may be due to
some contaminants present in porous silicon. However, it
seems that these contaminants are not detected
experimentally>*° Fourth, the peak could be due to the pres-

Loss (arb. units)

20 8i

i

Loss (arb. units)

4 Si

2si ence of silicon molecules in the pores like the polysilanes

| studied here since this is the only case for which we have

0 4 3 12 16 20 obtained low-energy peaks. However, our calculated spectra
Energy (eV) (Fig. 6 show multiple peaks which are not visible

experimentally*° but, as discussed above, the excitonic ef-
FIG. 6. Energy-loss spectra calculated for an electron probdects may alter considerably the spectra. In addition, the
(200 keV) passing at the edge of polysilanesIH(SiH,),- SiHs. presence of silicon molecules in the pores could explain the
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strange behavior of the-4.5-eV peak whose intensity does APPENDIX A

nhot decreans?%l/vnen moving the prolze fr.ﬁ”;] the Si f|ber|s nto pop systems with translational symmetry, the atoms are

the vacuum: OwWever, one wou still have to explain |,c4teq at the siteR;; , wherej is the index of the atom in

why on porousp-type silicon studied by STEMRef. 32 no h I andi is th 0 q f th I Th

peak is observed in the low-loss region while surface plast.e cell andj 1S the Index o t € ce Ri.)' en we can

mons are clearly obtained in agreement with the theory. simplify the calculations by using Fourier series. For ex-
ample,

IV. CONCLUSION

. e j(@)=2 edRi~Rg . (A1)
We have shown that the energy-loss spectra of silicon 070 i oo

nanostructures can be well represented by the classical, . .
theory, even for systems with a small number of atoms. Th%’VhICh’ by symmetry, does not depend anThen Eq.(4)
. ransforms into

spectra are characterized by bulk and surface-plasmon modes
with high energy. Theory at least within the random-phase e(q)=1-V(q)P(q), (A2)
approximation cannot explain the 4.5-eV peak observed _ o

on porousn-type silicon, except possibly by the presence ofWhere all terms are matrices with size equal to the number of
silicon molecules in the pores which is the only case wheréoms in the unit cell. The one-electron wave functions
low-energy excitations with substantial losses are predictedt.k(X) of energye,(k) belonging to band are built from

tight-binding Bloch sums:
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|
(%cfomk)cioa(l,k+q>)(§cjoa(m,k>c;a<l,k+q>)
g(k+q)—en(K)—w—i6

2
Pio,jO(Q)zﬁzk: I;\;B {
meCB

(gcioamk)cr;a(l,k—q>)(§croa(m,k>c,-oa<l,k—q>)
em(K)—g(k—qQ)—w—id '

where the overlap terms have been neglected in the two-particle matrix elements consistently with the extreme tight-binding
limit used here. To illustrate the problem, we can apply the formalism to bulk silicon in the molecular model. The system is
roughly described by a set @&fp® hybrid orbitals where only the resonance integrélbetween nearest-neighbor hybrids
pointingé;)owards each other are considéfé@<0). Then the matrix elements of the polarization are simply given in the real
space b

(A4)

Pigiigi = 2/Bet
Pigiigi= ~1(2Ber) if igi first neighbor of joj, (A5)

where 1B.4=[1/(28+ w)]+[1/(28— w)] if —0. With two silicon atoms in the unit cell #0,0,0 and @/4,a/4,a/4) where
a is the lattice parameter, the polarization matrix is transformed in Fourier space into2an2atrix [given here forq
=0q(1,0,0)]: ,

2/Bef'f _(1+e_lqa/2)/ﬁeff

PAOZ| _ (1460928, 2/Bes

(A6)

The determination of the elements of the matdq) in-  expressions in/(q) can be approximatédand the full di-

volves summations of the type electric matrix is then derived from E¢A2). A quantity of
QidR; practical interest is the macroscopic dielectric constant which
J= 2 ﬁ (A7) describes the macroscopic response to a slowly variable
i—u
i

i perturbatior?> Considering an external density of charge

which are evaluated numerically using the Ewald-Fuchg?ex(r)=¢€'""/V over the crystal volum¥, we can calculate
method®3* throughout the paper. In our particular case, thethe G=0 component of the total charge as given by
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fe 9 7p (r)dV. Using the Eqs(5)—(7), we get the inverse pj.q is the column matrix of the induced charge in the me-

of the macroscopic dielectric constant: dium. Transforming into frequency space, we have
(o)1= i 1 S @it (Ri, R g1 A8 \Y; t(t)zifm eoteltly_ (w)dw
e(w) ~=1Iim 2, € o o SioviO(Q)’ ( ) ex 27 ) _o & ,
q—0 = To-lo (B2)
which is given by the ratio of th&=0 component of the ()= 1 (= g9 (w)d
total charge to the same component of the external charge Pind =20 |5 Pind @HE

(=1 herg. The fully calculated macroscopic dielectric con-
stant is plotted in Fig. 1. In the case of the molecular model
the limit in Eq. (A8) can be obtained analytically:

where «— 0" was added for convenience. The total varia-
tion of energy is given by~ .dX which after integration on
the timet—giving a & function—becomes

2 . .
B "9 5= | Ved = 0)pmd@)0do. (83)

Thus the static dielectric constant ig0)=1—2w/ag, - . -
which is equal to 5.16 wittB~ —4 eV.23 It is much smaller ;Peer:é;cl)r w;tehzz/i‘t)e(rfswl)llfgle(:j?hir(e_s,wt)hz SS?SI)CIFS(?

than the experimental value due to the crude approximatio IR
of the polarization in the molecular model. The plasmon fre-g?)l{ 223:{;’;1‘((:};;)5 g?\/lgéﬂg)y[EOI- (13)]. Then the losd. («)
quencywy, is given bye(w,)=0:

e(w)=1—

w
87B 5 Lw)=—-— Im{vgxt(_w)pind(w)}
wp= T+4ﬁa (A10) m
w
We calculatew,=18.18 eV which is very close to the value === Im{VJerxt( —w)P(w)e N @)Vl w)}.
obtained by the full calculatioriFig. 1) showing that the
plasmon frequency is much less sensitive to the details of the (B4)
electronic structure than the static dielectric constant. For systems with translational symmetry, the extension is
straightforward:
APPENDIX B
w
We calculate here the energy loss of a fast electron inter- Llw)=-g- Im 2 Vi —®,~q)P(w,q)
acting with some dielectric medium. The presence of the a
electron polarizes the medium. The variation of eneigy Xe Hw,q)Vex(®,9)}. (B5)
of the medium during an infinitesimal time incremetitcan

The main advantage of the above formulation is that the
evaluation of the dielectric matrix has only to be done within
ds =v! {()dping (B1) the volume of the dielectric material, and not in the vacuum.
X nd- This is of practical interest in tight binding since the evalu-
whereV,, is the column matrixV.,, a line matriy of the  ation of the expression@®4) or (B5) is a simple multiplica-
potential created by the electrpgiven by the Eq(13)] and tion of finite matrices.
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