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Acoustoconductance in a nonuniform quantum channel
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We consider the influence of a surface acoustic wave on the conductance through a ballistic quantum
channel with an adiabatic geometry produced by split gates in a two-dimensional electron gas. The surface
acoustic wave leads to a contribution to the conductance of the quantum channel. This contribution, called the
acoustoconductance, is shown to oscillate as a function of the Fermi level, which is controlled by the gate
voltage.@S0163-1829~97!01348-9#
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I. INTRODUCTION

A quantum point contact~QPC!, or quantum channel, is
narrow constriction that separates two regions of large c
ductivity. It can be produced in a two-dimensional electr
gas~2DEG! by means of a split gate at negative voltage.
such a configuration, the geometrical parameters of the c
nel can be tuned by the gate voltage. Under proper co
tions ~see, e.g., Ref. 1 and references therein!, the electron
motion in the transverse direction is quantized, and e
electron state is characterized by three quantum number
energyE, a mode numbern describing transverse motion
and the direction of propagation (6).

The conductanceG0 of a ballistic QPC is known to be a
steplike function of the gate voltage.1–3 This is described by
the Landauer formula,4 which relates the conductance to th
number of occupied modes, each mode contributing a qu
tum 2e2/h of conductance multiplied by a transmissio
probability ~typically close to either 0 or 1!.

The interaction of electrons in a QPC with external field
as well as with dynamical degrees of freedom of the s
rounding, is the focus of interest of many research groups
this connection, several sources of influence on the Q
conductance have been studied. In particular, the non-Oh
behavior of the conductance due to interaction with equi
rium phonons has been extensively studied, starting fr
Refs. 5 and 6.

Another source of influence that leads to transitions
tween different modes and thus affects the Ohmic cond
tance is that of a high-frequency transverse electric field
Ref. 7, the microwave-induced contribution, called the ph
toconductanceGph, was calculated for an adiabatical
smooth QPC and a small bias voltage. As a function of
gate voltage,Gph shows steplike oscillations.

Much attention has been attracted by the various effe
that can result from the interaction between a 2DEG a
nonequilibrium acoustical phonons, both incoherent8–14 and
coherent.15–28 In the latter case, which is relevant to th
paper, a surface acoustic wave~SAW! is induced in a piezo-
electric substrate, on top of which the low-dimensional str
560163-1829/97/56~23!/15299~7!/$10.00
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ture is mounted. While propagating, the SAW generate
traveling electric field wave that acts upon the electro
That results, in particular, in the attenuation and change
velocity of the wave, the effects beinglinear in the wave’s
amplitude at small amplitudes.15–21 In mesoscopic systems
however, the detection and measurement of such effects
difficult because of the small sizes of mesoscopic device

Better suited for detection are the influences of the SA
on dc electric propertiesof a QPC. These are theacousto-
electric effect22–28 and theacoustoconductance. The first ef-
fect means the drag of 2D electrons by a SAW, creating a
acoustoelectric current~or, in an open circuit, an acousto
electric voltage!. The second one is the variation of the d
conductance of the QPC due to the SAW. Both effects
nonlinear in the amplitude—at low intensities, they are pr
portional to theintensityof the wave.

Recently, the acoustoelectric current through a unifo
quantum channel has been studied, both experimenta27

and theoretically.27,29 Contrary to the steplike behavior tha
might have been expected, the current showed giant osc
tions ~cf. with Ref. 30! as a function of the gate voltage, th
minima coinciding with the conductance plateaus. This
cillatory behavior has been explained by the interaction
tween the SAW and the electrons inside the quantum ch
nel. The maxima correspond to Fermi level positions wh
the upper mode Fermi velocity is close to the wave veloc
s, thus resulting in a strong interaction. The acoustoelec
effect in a long, uniform channel was also theoretically co
sidered in Ref. 31; effects on the acoustoelectric current
to the edges of a nonuniform QPC were studied theoretic
in Ref. 32.

At sufficiently high SAW intensities,28 an acoustoelectric
current has been found to be present even in a region of
voltages below the pinch-off value. In this region, the cu
rent, starting from zero, makes~a few! steps of height
DI 5e f with increasing gate voltage,f 5v/2p being the fre-
quency of the wave. Within each plateau region, this cor
sponds to a picture in which each minimum of the traveli
wave potential carries the same~integer! number of elec-
15 299 © 1997 The American Physical Society
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15 300 56H. TOTLAND, O” . L. BO” , AND Y. M. GALPERIN
trons. Furthermore, as the SAW intensity is varied within
certain range, the height of each plateau remains the s
only its position along the gate voltage axis is shifted. Suc
universal behavior needs more theoretical effort to be un
stood.

Exposing a QPC to the influence of both a low-intens
SAW and a small bias voltageV will lead to a dc current
I 5I ac1GV, whereI ac is the acoustoelectric current atV50,
and G is the ~Ohmic! conductance in the presence of t
SAW. Both of these quantities depend on the Fermi lev
and, consequently, on the gate voltage.G is the sum of the
zero field conductanceG0 discussed above and a correcti
term Gac, called the acoustoconductance. To lowest ord
Gac should be proportional to the SAW intensity~while con-
stant inV).

The aim of this paper is to study theoretically the aco
toconductance in a long enough, adiabatic~i.e., with a
smoothly varying width! quantum point contact formed in
2DEG by a split gate. ‘‘Long enough’’ means that the cha
nel’s length l is much greater than the SAW waveleng
2p/q. To our knowledge, no measurements of the acou
conductance in such a situation have been made so far.

In contrast to the present paper, the main subject of R
29 and 32 is the SAW-induced contribution to the elect
current. In Ref. 29, a uniform channel is considered. Ref
ence 32 deals with a nonuniform channel, presenting a qu
tative description of the edge effects as well as numer
calculations. Similar edge effects are at play in the situat
considered here. Below we obtain a semiquantitative form
for the acoustoconductance.

The paper is organized as follows. In Sec. II, the appro
mations relevant to the present problem, namely, the a
batic and the stationary phase approximations, are bri
discussed. These are then employed in Sec. III to find
dependence of the acoustoconductance on the Fermi en
In the last section, the resulting formula is discussed
plotted for a specific channel geometry and given para
eters.

II. FORMULATION OF THE PROBLEM

In the adiabatic approximation~cf., for example, Ref. 33!,
the electron wave function for a propagating state can
written as

un,p&5xn,x~y!A upu
up~x!uL

expS i

\E
x

p~x8! dx8D .

In this expression, the transverse wave functionsxn as well
as the corresponding eigenvaluesEn are assumed to var
slowly with the longitudinal coordinatex. The longitudinal
momentum is defined asp(x)56A2m@E2En(x)#,
E.max$En(x)%, while upu denotesup(6`)u[A2mE, m be-
ing the effective mass. The normalization lengthL is large
compared to the channel’s length and will not appear in
final formulas. The above assumption means that for e
mode, one is effectively dealing with the one-dimensio
motion of electrons in a smooth potentialEn(x), which is
determined by thex-dependent confinement in they direc-
tion provided by the split gate. For a reflecting sta
E,max$En(x)%, the wave function is given by
e,
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un,p&5xn,x~y!A 2upu
up~x!uL

sinS 1

\Ext

x

p~x8! dx8D ,

xt being the classical turning point. In this case one has
discriminate between the states on the left-hand side~lhs!
and on the rhs of the channel.

We consider the case of a SAW propagating in the lon
tudinal direction. The induced electric field will propaga
and be polarized in thex direction ~see Ref. 34 for more
details!. Thus one can allow for the influence of the SAW b
calculating the SAW-induced scattering due to perturbat
through a potentialV(x,y,t)5V0(x,y)cos(qx2vt). The en-
velope functionV0(x,y) is determined by the screening o
the piezoelectric field by the electrons inside the leads
the channel. The screening in the 2D leads is very str
because of the high conductance of the 2DEG. Howeve
the channel is narrow enough in comparison with the eff
tive Bohr radiuse\2/me2, then the screening inside th
channel is weak and the effective potentialV0 is of the order
of the unscreened one~cf. with Ref. 35!. As a result, in a
narrow channel and at

ql@1, ~1!

where l is the effective length of the channel, one can co
sider the functionV0(x,y) as a smooth functionV0(x) inside
the channel and rapidly decreasing outside. Conseque
there are no acoustically induced intermode transitions,
we can thus treat each mode separately with a perturb
field V0(x)cos(qx2vt).

Another simplification which arises from the inequali
~1! is that one can employ thestationary phase approxima
tion to estimate the corresponding transition probability.
this approximation, a typical transition amplitude

^n,p2uVun,p1&5E
2`

`

dx A~x!eiw~x! ~2!

is approximated by expanding its integrand’s phase

w~x!56qx1\21Ex

@p1~x8!2p2~x8!# dx8

around a stationary pointx* defined by the equation
dw/dx50,36,37

w~x!5w~x* !1 1
2 w9~x* !~x2x* !2. ~3!

If w has no stationary points, one assumes a rapidly osci
ing phase everywhere, whence the total contribution to
transition amplitude almost cancels. In this picture, the tr
sitions are localized to pointsx* wherew8(x* )50, and one
can substituteA(x) in the integrand byA(x* ). In our case,
the change in energy1\v due to absorption of the~SAW!
phonon is accompanied by a momentum transfer1\q, i.e.,
at the point of stationary phase one arrives at thelocal con-
servation condition,
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A2m@E1\v2En~x* !#56A2m@E2En~x* !#1\q.

The above approach was effectively employed in Ref. 7
analyze the photoconductance. However, the photocon
tance case differs from the present situation in two aspe
First, there is no momentum transfer to the electrons from
oscillating transverse electric field (q'0). Consequently, in
a symmetric QPC, the net current is still zero atV50. @In the
stationary phase approximation, the momentump(x* ) is
conserved at a transition.# Secondly, they polarization of the
field causes intermode transitions. This leads to a mechan
of indirect forward and backscattering, the transitions tak
place between the propagating states of mode numbern and
the nonpropagating states with a different mode numberm.
WhenVÞ0, these processes have a net effect on the curr
that is, the conductance acquires a correction termGph,
called the photoconductance.

III. CALCULATION OF THE ACOUSTOCONDUCTANCE

To find a formula for the acoustoconductance, we start
noticing that, in the stationary phase approximation, there
only two possible kinds of SAW-induced~intramode! transi-
tions that change the net current:~i! transitions between re

FIG. 1. SAW-induced transition between a reflecting and
propagating state.
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flecting statesua
‚

& on the lhs and right-moving, propagatin
statesub→& ~cf. Fig. 1!, and ~ii ! transitions between left-
moving, propagating statesua←& and right-moving, propa-
gating statesub→& ~cf. Fig. 2!. Here the energy and momen
tum differences between the statesb anda are\v and\q,
respectively.

The current through the QPC can be expressed in term
the corresponding transition ratesw(b,a) ~determined by
the Fermi golden rule for the transitiona→b) and the oc-
cupation numbersf a(b) . For a small bias voltageV, the
Fermi function is

f a5 f a
0 S m6

eV

2 D5 f a
06

eV

2

] f a
0

]m
, ~4!

with f a
05@e(Ea2m)/kBT11#21. In Eq. ~4!, the1 sign is taken

for electrons originating on the lhs of the QPC (a
‚

and
a→), the2 sign for those originating on the rhs (a←). The
total SAW-induced current, i.e., the total current minus t
zero-field Ohmic partG0V, is ~including spin! given by the
expression

a

FIG. 2. SAW-induced transition between two oppositely d
rected propagating states.
s of the
I tot
ac[I ac1GacV52e(

ab
@w~b→ ,a

‚
!1w~b→ ,a←!2w~b

‚

,a→!2w~b← ,a→!# f a ~5!

5
pe

\ (
ab

$@ z^b→uV0~x! eiqxua
‚

& z21 z^b→uV0~x! eiqxua←& z2#d~Eb2Ea2\v!2@ z^b
‚

uV0~x! e2 iqxua→& z2

1 z^b←uV0~x! e2 iqxua→& z2#d~Ea2Eb2\v!% f a . ~6!

~The arrows express the conditions of, respectively, propagation in the indicated direction, and reflection on the lh
channel.! HereI ac is called theacoustoelectriccurrent, which is just the drag current at zero bias voltage. Equation~5! can be
derived similarly to the expression for the photoconductivity.7 By inserting Eq.~4! into Eq.~6!, the acoustoconductanceGac is
found to be

Gac5
pe2

2\ (
ab

] f a
0

]m
$@ z^b→uV0~x! eiqxua

‚
& z22 z^b→uV0~x! eiqxua←& z2#d~Eb2Ea2\v!1@2 z^a→uV0~x! eiqxub

‚
& z2

2 z^a→uV0~x! eiqxub←& z2#d~Ea2Eb2\v!%. ~7!
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The signs in front of the four terms in the sum in Eq.~7! can
be explained as follows. Suppose a small bias voltageV is
applied. Then the~quasi! Fermi level goes up on the lhs o
the channel and down on the rhs. Consequently, new s
a

‚

get occupied on the lhs, which means that more tra
tions of the kinda

‚

→b→ become possible@Fig. 3~a!#. The
result is anincreasedparticle current, and, consequently,
positive contribution to the conductance described by
first term. At the same time, the number of occupied sta
a← on the rhs becomes smaller, and thus, as expressed i
second term in Eq.~7!, the particle currentdecreases@Fig.
3~b!#. Similarly, transitionsto statesa→ just above the origi-
nal Fermi level are no longer possible, because the incre
Fermi level on the lhs means that these states are alr
occupied@Fig. 3~c!#. Thus there will befewer transitions of
the kindb

‚/←→a→ , corresponding to the last two terms
Inserting the normalized wave functions, one can expr

the first transition amplitude as

^b→uV0~x!eiqxua
‚

&56dnm

Aupapbu

A2 iL
E dx V0~x!eiw~x!

Aupa~x!pb~x!u
,

keeping only one part of the integral.37 In the stationary
phase approximation, the integral is replaced by

V0~x* !S 2p

upa~x* !pb~x* !w9~x* !u
D 1/2

3ei $w~x* !1~p/4!sgn[w9~x* !] %.

The momentapa(x* ) andpb(x* ) at the transition point are
fixed by the conditions

pb~x* !2

2m
5

pa~x* !2

2m
6\v, pb~x* !5pa~x* !6\q.

The upper sign is taken here and in the case of the sec
transition in Eq. ~7!, the lower sign elsewhere. We g
pa(x* )5p7 , pb(x* )5p6 , where

p6[mw6\q/2, ~8!

FIG. 3. As the bias voltageV is turned on, the increased loca
Fermi levelm15m1eV/2 on the lhs of the QPC allows for add
tional processes of the kind shown in~a!, but fewer ones of the kind
~c!, while the decreased local Fermi levelm25m2eV/2 on the rhs
suppresses the kind of process shown in~b!. As a result, there are
one positive and three negative terms in the formula for the ac
toconductance.
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while w5v/q is the sound velocity. If, as in the case of
parabolic or square confining potential, the transverse ene
has the formEn(x)5an /@d(x)#2, d(x) being the thickness
of the channel, then we have

w9~x* !5
pa8 ~x* !2pb8 ~x* !

\
5

2mqEn~x* !

p1 p2

d8~x* !

d~x* !
.

The transition probability is thus proportional to

z^b→uV0~x!eiqxua
‚

& z25dnm

pV0
2~x* !AEaEb

qL2En~x* !

d~x* !

ud8~x* !u
.

For the second term in Eq.~7!, z^b→uV0(x) eiqxua←& z2,
there will be no stationary pointx* unlesspa(x* )[p2 is
negative. Consequently, this term gives a nonzero contr
tion only if \q.2mw ~cf. Ref. 31!. However, if this condi-
tion is satisfied by the wave parametersv andq, then, as has
been pointed out in Ref. 32, there will actually betwo tran-
sition points. This results in the interference of the reflec
waves, and the transition amplitude is a sum of the contri
tions from a ‘‘left’’ transition atxL* 52ux* u and a ‘‘right’’
transition atxR* 51ux* u ~cf. Fig. 2!. These two terms are
calculated as the transition amplitude above; however,
factorA2i in the denominator disappears, which is due to
difference in normalization between propagating and refle
ing states. As the QPC is assumed to be symmetric, the f
tionsp, d, En , andV0 are symmetric inx, while d8, and thus
w9, are antisymmetric; the phasew itself is antisymmetric
about„0,w(0)…. As a result, the transition probability is pro
portional to the one above for a single transition point, b
with an additional, oscillating factor

2uei $w~xL* !1~p/4!sgn[w9~xL* !] %1ei $w~xR* !1~p/4!sgn[w9~xR* !] %u2

54~11sin@w~ ux* u!2w~2ux* u!# !. ~9!

The last two terms in Eq.~7! are treated the same way.
The integration~2! connected with a transitiona←→b→

can be given a simple visualization. Figure 4 shows a ske
in the ~bicentennial38! complex plane of the curve

g~ t !5A~x* !E
2`

t

eiw~x!dxP C

for a phasew having the form shown in the inset.@As dis-
cussed above, the~symmetric! functionA(x) in the integrand
of Eq. ~2! is replaced by its value at a transition pointxL* or
xR* .# The starting pointg(2`) lies at 0, while, in the sta-
tionary phase approximation, the end poi
g(`)5^b→uVua←&. That is, the transition probability is
given as the square distance between the end points o
curve @to the degree thatg(t) converges ast→6`#. Obvi-
ously, the three strongly oscillating regions of the curve c
respond to the regions of a rapidly varying phasew(x); at a
given pointg(t), the inclination arg@g8(t)# of the curve is
given by the phasew(t) ~plus the constant angle
arg@A(x* )#). The contribution from each of the two trans

s-



a

le
-

ra

to

io

es

of

the
of

ed.
,
are

se-
r-
an-

ur.
uc-
uld

nt
us-

e

k
y

-
-

t 3

roxi-

56 15 303ACOUSTOCONDUCTANCE IN A NONUNIFORM QUANTUM . . .
tion points xL,R* corresponds, roughly, to the double spir
centered atzL,R5g(xL,R* ), respectively. It is the transition
probability’s crucial dependence on the ang
u[@w(xR* )2w(xL* )#mod2p that leads to the sinusoidal fac
tor ~9!. For a transitiona

‚

→b→ there is only one double
spiral, and, consequently, no such sinusoidal factor.

In Eq. ~7! we change the sum over states to an integ
over energies, (ab→*dEadEb g(Ea) g(Eb), where
g(E)5LAm/hA2E is the density of states~for a specified
direction of propagation or side of reflection. The acous
conductance is then, finally, given by

Gac~m!5
e2

p\

pm

16\2q
(

n
E

0

`

dE FT~E2m!$ln~E! tn
1~E!

1ln~E2\v! tn
2~E2\v!%, ~10!

where

FT~E2m![2] f 0~E!/]E

5~1/4kBT!cosh22@~E2m!/2kBT#, ~11!

tn
6~E![u~E2E2!@6u~E1\v2En

max!u~En
max2E!

24fn~E!u~E2En
max!u~En

max1E22E!u~2p2!#,

~12!

fn~E![11sin@wn~E!#,

wn~E![
2

\E0

ux* u
dx@\q2up~x;E!u2up~x;E1\v!u#,

ln~E![
V0

2~x* !

E2E2

d~x* !

ud8~x* !u
, ~13!

E2[p2
2 /2m[(mw2\q/2)2/2m, En

max[En(0) is the maxi-
mum of thenth mode transverse energy, and the transit
point x* 5x* (n,E) is given by En(x* )5E2E2 . In this
expression forGac, theu functions involvingE2 express the
condition of the existence of a transition pointx* , the con-

FIG. 4. Graph in the complex plane of the curv
g(t)5A(x* )*2`

t eiw(x)dx, where w(x) is the function shown in
the inset, andA(x* )51 for simplicity. The oscillations are wea
around the pointszL,R5g(xL,R* ), corresponding to the stationar
points xL,R* of w. The transition amplitude ^b→uVua←&
5g~`!@ 2g~2`!# depends strongly on the angleu[@w~xR* )
2w(xL* )]mod2p.
l

l

-

n

stant factoru(2p2) tells whether backscattering process
are possible at all with the given wave parametersv andq,
while the otheru functions correspond to the conditions
propagation and reflection.

IV. DISCUSSION

Below we use some model parameters to illustrate
implications of Eq.~10!. Figure 5 shows the dependence
the acoustoconductanceGac on the Fermi energym for an
exponential channel widthd(x)5d exp(x2/2l 2) and a para-
bolic confining potential leading to the Gaussianx depen-
dence of the transverse energies,

En~x!5~2n11!E0
maxexp~2x2/ l 2!, E0

max[\2/2md2.

The dimensions of the contact (l andd) are chosen such
that the use of the stationary phase approximation is justifi
Although the corresponding physical situation is realizable39

ballistic contacts that are normally used in experiments
smaller. Furthermore, the channel’s widthd exceeds the ef-
fective Bohr radius~cf. the discussion in Sec. II!. This means
that the envelope functionV0(x) will in fact depend ony as
well, due to strong screening inside the channel. Con
quently, the oscillation pattern in Fig. 5 will actually be ove
lapped by contributions corresponding to nondiagonal tr
sitions. However, in realistic situations~with narrow
channels!, those nondiagonal contributions do not occ
Therefore, the oscillatory behavior of the acoustocond
tance, which is demonstrated by our model formula, sho
remain qualitatively right also in those situations.

With zero temperature~as in Fig. 5!, the energiesE in the
above equations may be replaced by the Fermi energym. As
the gate voltage is varied, the various energy-dependeu
functions begin or cease to give contributions to the aco

FIG. 5. Employing Eq.~10! for the case of an exponential chan
nel geometryd(x)5d exp(x2/2l 2) and a parabolic confining poten
tial, the acoustoconductanceGac is plotted @in units of (2e2/h)
3(V0 /E0

max)2, E0
max5\2/2md2 being the maximum of the zeroth

mode transverse energy# as a function of the Fermi energym ~in
units of E0

max). The figure shows the oscillations around the firs
transverse energy maximaEn

max (n50,1,2). The sinelike curves
have been cut at Fermi energies where the stationary phase app
mation becomes unreasonable@i.e., we have required
uA2w-(x* )/3w9(x* )3/2u<0.2, cf. Ref. 36#. The parameters are
T50, m50.067me , q51.03105 cm21, v52.031010 s21,
w5v/q51.93105 cm/s, l 55.0 mm, d50.13 mm; this gives
\v51.5E2'0.4E0

max. For simplicity, the envelope function
V0(x) is assumed to be constant for the values ofx* involved in the
computation.
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15 304 56H. TOTLAND, O” . L. BO” , AND Y. M. GALPERIN
toconductanceGac. As a result,Gac is nonzero only in re-
gions where the Fermi energy is close to one of the tra
verse energy maximaEn

max, that is, near gate voltages whe
the conductance makes a step.

In our approximation, there are two different kinds
‘‘oscillations’’ in these regions. The first one involves a
abrupt change ofGac, which is due to the onset or offset o
one or severalu functions. If we were dealing with wave
parametersv and q for which p2.0, then these steplike
oscillations would be the only ones present. More spec
cally, for each transverse energy maximumEn

max, the acous-
toconductance would be positive and slowly varying in t
region En

max2\v,m,En
max, then negative and slowly vary

ing in the following regionEn
max,m,En

max1\v.
However, with the parameters used for Fig. 5,p2 is nega-

tive, i.e., \q.2mw. This means that backscattering pr
cesses are possible. Since there are two different trans
points in these processes, the result is interference betw
the two reflected waves. Accordingly, there are addition
smooth oscillations ofGac that clearly appear sinelike@cf. the
function fn appearing in Eq.~12!#.
,
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To see which terms in the formula for the acoustocond
tance contribute to the oscillations in the various Fermi le
regions, consider as an example the oscillations near the
roth mode energy maximum~i.e., wherem/E0

max is close to
1). At first, in the regionE0

max2\v'0.6E0
max,m,E0

max, the
acoustoconductance is positive. This is just where the
term in Eq.~7! gives a~positive! contribution toGac. Above
E0

max, there are only negative terms. In the regi
E0

max,m,E2'1.3E0
max, both the second and third terms a

nonzero, the former diverging asm approachesE2 . Only
the third one is nonzero betweenE2 and
E0

max1\v'1.4E0
max. Finally, the fourth term is nonzero in

the region E0
max1\v,m,E0

max1\v1E2'1.7E0
max, also

eventually diverging. The second and fourth terms are
ones corresponding to interference and thus causing the
like oscillations.
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