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Acoustoconductance in a nonuniform quantum channel
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We consider the influence of a surface acoustic wave on the conductance through a ballistic quantum
channel with an adiabatic geometry produced by split gates in a two-dimensional electron gas. The surface
acoustic wave leads to a contribution to the conductance of the quantum channel. This contribution, called the
acoustoconductance, is shown to oscillate as a function of the Fermi level, which is controlled by the gate
voltage.[S0163-18207)01348-9

[. INTRODUCTION ture is mounted. While propagating, the SAW generates a
traveling electric field wave that acts upon the electrons.
A quantum point contadQPQO, or quantum channel, is a That results, in particular, in the attenuation and change of
narrow constriction that separates two regions of large convelocity of the wave, the effects beinigear in the wave’s
ductivity. It can be produced in a two-dimensional electronamplitude at small amplitudé&-2* In mesoscopic systems,
gas(2DEG) by means of a split gate at negative voltage. Inhowever, the detection and measurement of such effects are
such a configuration, the geometrical parameters of the chagfficult because of the small sizes of mesoscopic devices.
nel can be tuned by the gate voltage. Under proper condi- Better suited for detection are the influences of the SAW
tions (see, e.g., Ref. 1 and references thereiine electron 4, 4c electric propertiesof a QPC. These are thecousto-
motion in the transverse direction is quantized, and eacRsctric effecd?-28and theacoustoconductancdhe first ef-
electron state is characterized by .th'ree quantum numpers: iféct means the drag of 2D electrons by a SAW, creating a dc
energyE, a m_ode numben d_escnbmg transverse motion, .4 stoelectric currer(or, in an open circuit, an acousto-
and the direction of propagationt(. electric voltage The second one is the variation of the dc

O . . .
The condu.ctance ofa ba”'s“c_gp‘? IS known'to be a conductance of the QPC due to the SAW. Both effects are
steplike function of the gate voltage® This is described by . . ) . .
nonlinearin the amplitude—at low intensities, they are pro-

the Landauer formul&which relates the conductance to the tional to thentensitvof th
number of occupied modes, each mode contributing a quarP—Or lonal 1o thentensityol the wave. .
Recently, the acoustoelectric current through a uniform

tum 2e?/h of conductance multiplied by a transmission : X
probability (typically close to either 0 or)l quantum channel has been studied, both experimefitally

The interaction of electrons in a QPC with external fields,2nd theoreticall"*® Contrary to the steplike behavior that
as well as with dynamical degrees of freedom of the Surmght havg been expected, the current showed giant oscilla-
rounding, is the focus of interest of many research groups. 1§0ons (cf. with Ref. 30 as a function of the gate voltage, the
this connection, several sources of influence on the QP@inima coinciding with the conductance plateaus. This os-
conductance have been studied. In particular, the non-Ohmgllatory behavior has been explained by the interaction be-
behavior of the conductance due to interaction with equilibtween the SAW and the electrons inside the quantum chan-
rium phonons has been extensively studied, starting fronmel. The maxima correspond to Fermi level positions where
Refs. 5 and 6. the upper mode Fermi velocity is close to the wave velocity,

Another source of influence that leads to transitions bes, thus resulting in a strong interaction. The acoustoelectric
tween different modes and thus affects the Ohmic conduceffect in a long, uniform channel was also theoretically con-
tance is that of a high-frequency transverse electric field. Irsidered in Ref. 31; effects on the acoustoelectric current due
Ref. 7, the microwave-induced contribution, called the pho+to the edges of a nonuniform QPC were studied theoretically
toconductanceGP", was calculated for an adiabatically in Ref. 32.
smooth QPC and a small bias voltage. As a function of the At sufficiently high SAW intensitie4® an acoustoelectric
gate voltageGP" shows steplike oscillations. current has been found to be present even in a region of gate

Much attention has been attracted by the various effectgoltages below the pinch-off value. In this region, the cur-
that can result from the interaction between a 2DEG andent, starting from zero, make@ few) steps of height
nonequilibrium acoustical phonons, both incohétefftand Al =ef with increasing gate voltagé= w/27 being the fre-
coherent® 28 In the latter case, which is relevant to this quency of the wave. Within each plateau region, this corre-
paper, a surface acoustic wal@®@AW) is induced in a piezo- sponds to a picture in which each minimum of the traveling
electric substrate, on top of which the low-dimensional strucwave potential carries the santmtege) number of elec-
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trons. Furthermore, as the SAW intensity is varied within a Ip|
certain range, the height of each plateau remains the same, |n,p)=Xn,x(y) TP
only its position along the gate voltage axis is shifted. Such a P
universal behavior needs more theoretical effort to be under-
stood. X; being the classical turning point. In this case one has to
Exposing a QPC to the influence of both a low-intensitydiscriminate between the states on the left-hand glid®

SAW and a small bias voltage will lead to a dc current —and on the rhs of the channel. o .

| =12°+ GV, wherel s the acoustoelectric current¥ét=0, We consider the case of a SAW propagating in the longi-
and G is the (Ohmig conductance in the presence of the tudinal direction. The induced electric field will propagate
SAW. Both of these quantities depend on the Fermi leveland be polarized in tha direction (see Ref. 34 for more
and, Consequenﬂy’ on the gate Vo|ta®is the sum of the detalls. Thus one can allow for the influence of the SAW by
zero field conductanc&® discussed above and a correction Calculating the SAW-induced scattering due to perturbation
term G, called the acoustoconductance. To lowest ordersthrough a potential/(x,y,t) =Vo(x,y)cos@x—wt). The en-

G2 should be proportional to the SAW intensityhile con-  Velope functionVy(x,y) is determined by the screening of
stant inV). the piezoelectric field by the electrons inside the leads and

The aim of this paper is to study theoretically the acousih€ channel. The screening in the 2D leads is very strong
toconductance in a long enough, adiabatie., with a because of the high conductance of the 2DEG. However, if
smoothly varying width quantum point contact formed in a the channel is narrow enough in comparison Wlt.h t.he effec-
2DEG by a split gate. “Long enough” means that the chan-tive Bohlr radius e ?/mé?, then the screening inside the
nel’s |ength| is much greater than the SAW Wave'ength channel is weak and the eff-eCUVe pOtenV@HS of the Or:der
27/q. To our knowledge, no measurements of the acousto®f the unscreened onef. with Ref. 33. As a result, in a
conductance in such a situation have been made so far. harrow channel and at

In contrast to the present paper, the main subject of Refs.

29 and 32 is the SAW-induced contribution to the electric ql>1, (1)

current In Ref. 29, a uniform channel is considered. Refer-
ence 32 deals with a nonuniform channel, presenting a qualj
tative description of the edge effects as well as numeric

1 (x
sin| — x") dx' ],
(3 [[pox ox |

wherel is the effective length of the channel, one can con-

for the acoust_ocondugtance. .we can thus treat each mode separately with a perturbing
The paper is organized as follows. In Sec. Il, the approXiq V(%) CoSGx—wt)

mations relevant to the present problem, namely, the adia- Another simplification which arises from the inequality

batic and the stationary phase approximations, are bneflgl) is that one can employ thetationary phase approxima-

gIescgﬁggg;:eTgﬁﬁea;gotl?;gcir:g&?{aegc;noiet%'elIllgfm?rg]ér on to estimate the corresponding transition probability. In
P Is approximation, a typical transition amplitude

In the last section, the resulting formula is discussed an
plotted for a specific channel geometry and given param-

t . o )
elers (n,p|V|n,p) = f dx A(x)el#0 @

II. FORMULATION OF THE PROBLEM

In the adiabatic approximatiofef., for example, Ref. 33 's approximated by expanding its integrand’s phase

the electron wave function for a propagating state can be

written as 4 , , ,
e00= 2+ | Toa(x') = pax')] dx

[ lpl p(i J x )
n,p)= exp — x") dx’|.
)= xn(Y) Ip(x)|L "\ % P(x") around a stationary poink* defined by the equation
de/dx=0 %%

In this expression, the transverse wave functigpsas well

as the corresponding eigenvaluEs are assumed to vary

slowly with the longitudinal coordinat&. The longitudinal P(X)=@(X*)+3¢"(X*)(x—Xx*)2, 3
momentum is defined asp(x)=*x+2mE-E,(X)],

E>maxE,(X)}, while |p| denotegp(+=)|=+2mE, m be- If ¢ has no stationary points, one assumes a rapidly oscillat-
ing the effective mass. The normalization lengths large  ing phase everywhere, whence the total contribution to the
compared to the channel’s length and will not appear in théransition amplitude almost cancels. In this picture, the tran-
final formulas. The above assumption means that for eachkitions are localized to points* where¢’(x*)=0, and one
mode, one is effectively dealing with the one-dimensionalcan substitutéd(x) in the integrand byA(x*). In our case,
motion of electrons in a smooth potenti&),(x), which is  the change in energy #w due to absorption of thE€SAW)
determined by thex-dependent confinement in thedirec-  phonon is accompanied by a momentum transférn, i.e.,

tion provided by the split gate. For a reflecting state,at the point of stationary phase one arrives atlttoal con-
E<maxE,(x)}, the wave function is given by servation condition,
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FIG. 1. SAW-induced transition between a reflecting and a
propagating state.
FIG. 2. SAW-induced transition between two oppositely di-
VM E+fw—E (x*)]=+ V2mE—E,(x*)]+%q. rected propagating states.
. . flecting state$a_.) on the lhs and right-moving, propagating
The above approach was effectively employed in Ref. 7 t%tatesl[g) (cf. Fig. 1), and (ii) transitions between left-

analyze the photoconductance. However, the photocondu%oving propagating statds. ) and right-moving, propa-
tance case differs from the present situation in two aspect ating s,tate$,8 ) (cf. Fig. 2).T-|ere the energy and, momen-
First, there is no momentum transfer to the electrons from aRm differenceg between the stafesnd « aref o andfiq
oscillating Fransverse electric fielaiﬁzol). Consequently, in respectively. '

a sy_mmetnc QPC, the net_ curr_ent is still zera/at 0. [I*n the The current through the QPC can be expressed in terms of
stationary phase approximation, the mom?”t'?(“‘ ) IS ihe corresponding transition rateg 8,«) (determined by
conserved at a transitignSecondly, they polarization of the the Fermi golden rule for the transitian— 38) and the oc-
field causes intermode transitions. This leads to ameChaniSthation numberg . For a small bias voltag®, the

of indirect forward and backscattering, the transitions takinq:ermi function is a() '
place between the propagating states of mode numizerd

the nonpropagating states with a different mode nunmber

WhenV =0, these processes have a net effect on the current; 0 eV
that is, the conductance acquires a correction t&M, fa="fa '“i7
called the photoconductance.

_f0+ev(9fg ”
- a—?my ( )

with f0=[e(Fa~#/keT+ 1771 |n Eq.(4), the + sign is taken
for electrons originating on the lhs of the QPG.( and

To find a formula for the acoustoconductance, we start byr_,), the — sign for those originating on the rh&/( ). The
noticing that, in the stationary phase approximation, there artal SAW-induced current, i.e., the total current minus the
only two possible kinds of SAW-induceihtramode transi-  zero-field Ohmic parG°V, is (including spin given by the
tions that change the net currefiff transitions between re- expression

Ill. CALCULATION OF THE ACOUSTOCONDUCTANCE

| &= a0t Gao\/=2e23 (W(B_ ,a_)+W(B_ ,a_)—W(B_,a_)—W(B_,a_)]f, (5)

e . . .
=%EB {IKB-IVo(x) €™a_)P+[B-|Vo(x) €™ a_)10(Es—E,—hw) = [KB_|Vo(x) e '¥|a )
+[(B_|Vo(x) e”'¥a_)18(E,~Eg—tfw)}f,. (6)

(The arrows express the conditions of, respectively, propagation in the indicated direction, and reflection on the Ihs of the
channell Herel#*¢is called theacoustoelectricurrent, which is just the drag current at zero bias voltage. Equéiioran be

derived similarly to the expression for the photoconductiViBy inserting Eq.(4) into Eq.(6), the acoustoconductanG®is

found to be

2

of° _ _ _
Ga°=%§ m{[KﬁﬁIVo(X) &P a_)P—KB_IVo(x) €Pa_)P]18(Es—Es—fiw)+[—[(a_|Vo(x) € B )P

—[a|Vo(x) @B )F18(E,—Ep—fiw)}. (7)
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while w=w/q is the sound velocity. If, as in the case of a
parabolic or square confining potential, the transverse energy
has the formE,(x) = a,/[d(x)]?, d(x) being the thickness

of the channel, then we have

1) PEOC)TPEXT) 2MAE(X) &' (x*)
¢ h P+ P-  d(x*) '

The transition probability is thus proportional to

TVE(X*)NELEp d(x*)

() (b) ©

FIG. 3. As the bias voltag¥ is turned on, the increased local |<,8_,|Vo(x)eiqx|ag>|2: Snm

Fermi levelu . = u+eV/2 on the Ihs of the QPC allows for addi- qL?En(x*)  |d'(x*)]
tional processes of the kind shown(a), but fewer ones of the kind ) ax )
(c), while the decreased local Fermi leyel = x—eV/2 on the rhs For the second term in Edq7), [(B_|Vo(x) €¥|a_)|,

suppresses the kind of process showribin As a result, there are there will be no stationary point* unlessp,(x*)=p_ is
one positive and three negative terms in the formula for the acougiegative. Consequently, this term gives a nonzero contribu-
toconductance. tion only if Ag>2mw (cf. Ref. 31). However, if this condi-
tion is satisfied by the wave parametessandq, then, as has
The signs in front of the four terms in the sum in E@). can  been pointed out in Ref. 32, there will actually tveo tran-
be explained as follows. Suppose a small bias voltdge  sition points. This results in the interference of the reflected
applied. Then théguas) Fermi level goes up on the Ihs of waves, and the transition amplitude is a sum of the contribu-
the channel and down on the rhs. Consequently, new staté®ns from a “left” transition atx] = —|x*| and a “right”
a_. get occupied on the lhs, which means that more transitransition atxg=+|x*| (cf. Fig. 2. These two terms are
tions of the kinda._.— B_, become possiblgFig. 3@)]. The  calculated as the transition amplitude above; however, the
result is anincreasedparticle current, and, consequently, a factor \/2i in the denominator disappears, which is due to the
positive contribution to the conductance described by thejifference in normalization between propagating and reflect-
first term. At the same time, the number of occupied stateghg states. As the QPC is assumed to be symmetric, the func-
a_ on the rhs becomes smaller, and thus, as expressed in thensp, d, E,,, andV, are symmetric i, whiled’, and thus
second term in Eq(7), the particle currentlecreasegFig. ¢’ are antisymmetric; the phase itself is antisymmetric
3(b)]. Similarly, transitiondo statesz_, just above the origi- - about(0,¢(0)). As a result, the transition probability is pro-
nal Fermi level are no longer possible, because the increasgfbrtional to the one above for a single transition point, but
Fermi level on the lhs means that these states are alreagyith an additional, oscillating factor
occupied[Fig. 3(c)]. Thus there will befewertransitions of
the kindB8_,_—a_,, corresponding to the last two terms.
Inserting the normalized wave functions, one can expres
the first transition amplitude as

s 2|eitetd)+(msanie” (I} 4 gi{exg) +(mi4)sonle” (xR)]} |2

Dopal (- dx Vo(x)e ¥ =4(1+sine([x* )= e(=[x*)]). 9
(B_|Vo(x)€¥|a_)y==*m \/—a. £ \/07, The last two terms in Eq(7) are treated the same way.
2iL |pa(x)pﬁ(x)| The integration2) connected with a transitioa._ — £_,

keeping only one part of the integrdl.In the stationary Can be given a simple visualization. Figure 4 shows a sketch

2 12 o [ gieto
Vot ( ™ ) Y1) =A(X )f_ e¢Mdxe C
[Pa(X*)Pa(X*) " (x*)|

for a phasep having the form shown in the insdtAs dis-
cussed above, theymmetrig function A(x) in the integrand
of Eq. (2) is replaced by its value at a transition pokit or
Xg .] The starting pointy(—) lies at 0, while, in the sta-
tionary phase  approximation, the end point
Pa(X*)?  pa(x*)? y(©)=(B_|V|a._). That is, the transition probability is
= Tho, Pa(X*)=pu(X*)*hQ. given as the square distance between the end points of the
curve[to the degree thap(t) converges as— +«]. Obvi-
The upper sign is taken here and in the case of the secorfisly, the three strongly oscillating regions of the curve cor-
transition in Eq.(7), the lower sign elsewhere. We get respond to the regions of a rapidly varying phaga); at a
P (X*)=p=, pB(X*)=I0¢, where given point y(t), the inclination arfyy’(t)] of the curve is
given by the phaseg(t) (plus the constant angle
p-=mw=*%q/2, (8) ard A(x*)]). The contribution from each of the two transi-

x gl @0 ) +(mlsgnle” ()]}

The momenta,(x*) andpg(x*) at the transition point are
fixed by the conditions

2m 2m
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FIG. 5. Employing Eq(10) for the case of an exponential chan-
nel geometnyd(x) =d exp?2l2) and a parabolic confining poten-
tial, the acoustoconductand®® is plotted [in units of (2e?/h)
X (Vo /lEF™)Y?, Eg¥*=h%2md? being the maximum of the zeroth
mode transverse energgs a function of the Fermi energy (in
units of EJ'™). The figure shows the oscillations around the first 3
transverse energy maximg]'®* (n=0,1,2). The sinelike curves
have been cut at Fermi energies where the stationary phase approxi-
mation becomes unreasonablg¢i.e., we have required
tion pointsx{ ; corresponds, roughly, to the double spiral I\V2¢"(x*)/3¢"(x*)33<0.2, cf. Ref. 36. The parameters are
centered atz) r=y(X{ g), respectively. It is the transition T=0, m=0.067m,, q=1.0x1°Fcm !, w=2.0x100s?
probability’s  crucial dependence on the anglew=w/q=1.9x10® cm/s, |=5.0 um, d=0.13 um; this gives
0=[ o(Xk) — ¢(X{") Jmod2m that leads to the sinusoidal fac- iw=1.5E_~0.4Eg®. For simplicity, the envelope function

FIG. 4. Graph in the complex plane of the curve
y()=AX*)[" e *Mdx, where ¢(x) is the function shown in
the inset, andA(x*)=1 for simplicity. The oscillations are weak
around the pointsz g=y(x{ ), corresponding to the stationary
points x{r of ¢. The transiton amplitude (B |V|a.)
=y) —p(—»)] depends strongly on the anglé=[¢(x%)

— (X} )]mod27.

tor (9). For a transitiona._— B_, there is only one double
spiral, and, consequently, no such sinusoidal factor.

Vy(x) is assumed to be constant for the valueg®fnvolved in the
computation.

In Eq. (7) we change the sum over states to an integral

over energies, > ,,— [dE,dEz 9(E,) 9(Eg), where
g(E)=Lm/h\2E is the density of statefor a specified

stant factord(—p_) tells whether backscattering processes
are possible at all with the given wave parameterandq,

direction of propagation or side of reflection. The acoustoWhile the otherd functions correspond to the conditions of

conductance is then, finally, given by

2

)= 5 1arias |, OF FrE-mA(E) 75 (E)
+A(E—to) 7, (E-fio)}, (10)
where
Fr(E—u)=—af%E)/JE
=(1/4kgT)cosh [ (E— u)/2kgT], (11)

7 (E)=60(E—E_)[ * 6(E+hw—E™) g(EM™-E)
—4¢,(E) 0(E—EN™) 0(E™+E_—E)6(—p-)],

12
Go(E) =1 sirl ¢, (E)],
_2 (i | |
en(®)= | axtha- b B) - [pOGE+ o]l
VZ * *
gy Vi) doc) ”

E=E_jd" (x|’
E_=p?/2m=(mw-%q/2)?/2m, ET*<E(0) is the maxi-

propagation and reflection.

IV. DISCUSSION

Below we use some model parameters to illustrate the
implications of Eq.(10). Figure 5 shows the dependence of
the acoustoconductan€g® on the Fermi energy: for an
exponential channel widtd(x)=d exp(%212) and a para-
bolic confining potential leading to the Gaussiardepen-
dence of the transverse energies,

E.(X)=(2n+1)Ef®exp —x?/1%), Ef¥=h2/2md?.

The dimensions of the contadt &ndd) are chosen such
that the use of the stationary phase approximation is justified.
Although the corresponding physical situation is realizaBle,
ballistic contacts that are normally used in experiments are
smaller. Furthermore, the channel's widthexceeds the ef-
fective Bohr radiugcf. the discussion in Sec.)lIThis means
that the envelope functioxy(x) will in fact depend ory as
well, due to strong screening inside the channel. Conse-
quently, the oscillation pattern in Fig. 5 will actually be over-
lapped by contributions corresponding to nondiagonal tran-
sitions. However, in realistic situationgwith narrow
channelg those nondiagonal contributions do not occur.
Therefore, the oscillatory behavior of the acoustoconduc-
tance, which is demonstrated by our model formula, should
remain qualitatively right also in those situations.

mum of thenth mode transverse energy, and the transition With zero temperaturéas in Fig. 5, the energie& in the

point x* =x*(n,E) is given by E,(x*)=E—E_. In this
expression foG2 the @ functions involvingE_ express the
condition of the existence of a transition pokit, the con-

above equations may be replaced by the Fermi engrgys
the gate voltage is varied, the various energy-dependent
functions begin or cease to give contributions to the acous-
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toconductances®. As a result,G* is nonzero only in re- To see which terms in the formula for the acoustoconduc-
gions where the Fermi energy is close to one of the transtance contribute to the oscillations in the various Fermi level

verse energy maximg™, that is, near gate voltages where "€9ions, consider as an example the oscillations near the ze-
the conductance makes a step. roth mode energy maximurti.e., whereu/Eg® is close to

In our approximation, there are two different kinds of 1)- At first, in the regiorEg™—%w~0.6 Ef*<u<EG™, the
“oscillations” in these regions. The first one involves an @coustoconductance is positive. This is just where the first
abrupt change 062 which is due to the onset or offset of tenqux in Eq.(7) gives a(positive gontrlbutlon toG?©, Above.
one or severab functions. If we were dealing with wave Eo’ . there are rg;lly negative terms. In the region
parametersy and g for which p_>0, then these steplike Eo <w#<E-=1.3E;™, both the second and third terms are
oscillations would be the only ones present. More specifi’onzero, the former diverging as approaches_ . Only
cally, for each transverse energy maxim&h®, the acous- thﬂ‘?ax third one ~ 1S nonzero betweenE_  and
toconductance would be positive and slowly varying in theEo +ﬁ“_’”1-4r5cx> - Finally, nfgxe fourth term is nonzero in
region EM*~w<u<E™, then negative and slowly vary- the region Eg™+ho<u<By™+hwt+E ~1.7E;™, also
ing in the following regionEM< u<EM®+ . eventually diverging. The second and fourth terms are the

However, with the parameters used for Figp5, is nega- ones corresponding to interference and thus causing the sine-

tive, i.e., Aq>2mw. This means that backscattering pro- like oscillations.
cesses are possible. Since there are two different transition

points in these processes, the result is interference between

the two reflected waves. Accordingly, there are additional, We are grateful to V. L. Gurevich for discussions. Two of
smooth oscillations 0o&?“that clearly appear sinelikef. the  the authorgH.T. and OL.B.) are grateful to the Norwegian
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