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Theory of potential modulation in lateral surface superlattices. 1l. Piezoelectric effect
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We have calculated the piezoelectric coupling between a two-dimensional electron gas and the stress field
due to a lateral surface superlattice, a periodic striped gate. Stress is assumed to arise from differential
contraction between the metal gate and semiconductor. The piezoelectric potential is several times larger than
the deformation potential and generally gives the dominant coupling. It depends on the orientation of the
device and vanishes on(&00) surface if the current flows parallel to a crystallographic axis. Most devices,
however, are fabricated parallel {011 cleavage planes in which case the piezoelectric potential is at a
maximum. There are several sources of screening, including the partly occupied donors in a typical
GaAs-AlGa, _,As heterostructure. We also consider different elastic models for the gate. The best agreement
with experiment is obtained if the force is distributed over the interface between the gate and semiconductor,
rather than being concentrated at its ed@&9163-18207)03440-]

[. INTRODUCTION screening were taken into account, including a parasitic layer
of electrons around the donors in the experimental structure.
The high mobility of electrons in a two-dimensional elec-  Strain also couples to electrons through the piezoelectric
tron gas(2DEG) in a heterostructure has made it the foun-€ffect in 1l1-V semiconductors. This interaction depends on
dation for a huge range of experiments which the mean orientation unlike the deformation potential. Most samples
free path or wavelength of the electrons is comparable witire grown on(100 surfaces and we assumed in paper | that
the size of a device. Often the electrons are guided by metdll® current flowed along thg010] direction. There is no
gates on the surface, and it is assumed that the electrons figzoelectric interaction in this case. Practical devices, how-
influenced only by the electrostatic field from the bias on€Ver, are usually oriented parallel to tHe11 cleavage
these gates. This hypothesis can be tested by experimerRi@nes, and current flows along@L1) direction. This maxi-
that measure the potential in the 2DEG, and commensurabiZ€s the piezoelectric cquplmg and the potentials ca!culated
ity oscillations in a magnetic fiefd* provide a convenient N paper | are therefore incomplete for most experiments.
tool. These detect the periodic potential under a lateral surl NiS paper corrects that omission by including the piezoelec-
face superlattice, a device with a sequence of equally-spacdfC interaction. We shall also improve other aspects of the
parallel metal gates perpendicular to the flow of current bePhysical model, particularly with respect to the boundary
tween source and drain. The potential can be deduced fromcepndl_tlons applied to the electrostatic and elastic fields. Thus
straightforward analysis of the magnetoresist&h€e. our aims are as follows.

An experiment that used a lateral surface superlattice on(1) To calculate the piezoelectric potential as a function of

a particularly shallow 2DEG showed a periodic potential  grientation and compare its magnitude with that from the
even when the gates were grounded. There was also a strong geformation potential.

second harmonic. In a previous pa_Bewhich we shall refer 5y 1 clarify the boundary conditions for the electrostatic
to as paper |, we considered possible sources c_)f this modu- problem, particularly the role of surfaces and doped re-
lation. We were unable to reproduce the harmonic content of gions

the measured potential assuming a bu'lt'.m voltage on th?:%) To consider different elastic models for the gate.
gates. Instead we proposed that differential contraction be-
tween the gate and semiconductor led to strain which caused
the observed modulation of the 2DEG. It is now recognized It has been realized for some time that stress is induced
that strain plays a role in many experiments where electroniduring the manufacture of field-effect transist@eET's). In
transport is sensitive to weak potentials. a landmark paper, Asbeait al° showed that the resulting
We assumed in paper | that strain coupled to the 2DEGiezoelectric potential had a measurable effect on the thresh-
through the deformation potential. This gave good qualita-old voltage of FET’s. A signature of the piezoelectric effect
tive agreement with experiment and explained the strongs its dependence on arientation, with opposite signs for cur-
second harmonic observed. However, the magnitude was taent along[011] and[011]. We shall extend their results to a
small by nearly an order of magnitude when all sources obuperlattice and calculate in more detail the potential seen by
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wafer and the orientation of the device. We chobslirected
down into the substrate andalong the direction of current,
with the origin in the center of a gate. The current anakis
make an angled with the [010] direction. There is transla-
tional invariance along, parallel to the width of the gates of
the superlattice.

The figure also shows the geometry of the superlattice, for
which we shall use parameters to match the dévitedied
in paper I. The layers comprised a GaAs substrate, two 10
nm thick AlAs barriers separated by 2 nm of,8la _,As

donors (with possible
parasitic channel of

electrons) 5-doped with Si to 4 10** m 2, and a 5.4 nm GaAs cap
. . . layer. The 2DEG was confined at an interface 28 nm deep.
FIG. 1. Construction and orientation of the lateral surface SUPelTha extent of the wave function normal to this interface was

2DEG

lattice used in the experiment. The donors lie in a plahelow the
surface. The 2DEG lies a further distansebelow the donors
(which includes an allowance for the thickness of the 2DEle

about 7—-8 nm, which is much smaller than the period of the
superlattice. We shall therefore treat it simply by adding its
lengths of the gates and gaps ame @&d 2 with the origin in the th'CkﬁeiS to the depth of thef 2DEC€' TEUS the donors are at a
center of a gate. The crystal axik00) is an upward normal to the depthc~17 nm, separated from the the 2DEG by a spacer

surface, opposite ta which points down into the substrate. The S~18 nm, which gives an overall depth=c+s~35nm.
current flows along which makes an anglé with [010]. The gates were deposited as 15 nm Ti followed by 15 nm

Au, giving a thicknessh=30nm. Their length was

the electrons. Piezoelectric effects have also been seen ##=130 nm and the gaps weré&2 140 nm, with the origin
resonant-tunneling devicéswhere the peak in(V) could N the center of a gate. The presence of t.h_e donors will be
be moved in opposite directions by the application of stresdmportant when we impose boundary conditions on the elec-
along[011] or [011]. trostatic problem arising from the piezoelectric charge den-
There are several important differences between th&ity. A complication of this particular device is that it

modulations induced by the piezoelectric effect and the deshowed a low density of mobile electrons around the donors
formation potential. even at low temperatutébecause of the AlAs barriers.

(1) The piezoelectric effect depends on orientation but the
defo_rmat_ion potential do_es not, within the isotropic ap- Il. ELASTIC PROBLEM
proximation for the elastic constants.
(2) The piezoelectric effect is several times larger for The first task is to calculate the elastic field generated by
samples in the usual orientation. the gate. We proposed in paper | that stress arose from dif-
(3) They are affected by screening in different ways. In par-ferential contraction between each gate on the surface and
ticular, the piezoelectric charge exterdiseperthan the  the underlying semiconductor. A patterned, strained layer on
2DEG where it is less affected by screening due to surthe surface could be treated in the same way. The elastic
face states or electrons around the donors. problem_is to calculate the stress that this causes thro_ughout
(4) The shape of the piezoelectric potential changes dramatF—he semiconductor. An accurate treatment would require nu-

cally with the ratio of the period of the superlattice to the merical splutlon of the elastic equations but, for t.he. results to
be meaningful, would also need a good description of the

2;’\3: of the 2DEG; the deformation potential is less Sen?nte.rface betwegn _the gate _and sc_amiconductor. Little infor-
' mation about this interface is available. Rather than take a

We shall first review the calculation of the elastic field, usingnumerical approach, we shall study some simple models ana-
three models of the gate. These differ in the distribution oflytically. These are chosen to encompass the likely range of
force over the interface between the gate and semiconduct®€ehavior in real devices.
and apply to gates of different thickness. Next we calculate Several simplifications were made in paper | to render the
the potential due to the piezoelectric interaction. This in-problem practicable. First, the differences in elastic constants
cludes the effect of orientation and screening by regions obetween GaAs and AlAs were ignored and we treated the
the structure which are often considered inert, such as th@aterial as isotropic. The problem becomes much more com-
surface and doped layer. Finally, we compare our resultplicated if we relax these simplifications and we shall there-
with experiments on lateral surface superlattices. We aréore retain them. Second, we assumed that the gate was very
now able to explain the observed magnit(idéthe periodic ~ “wide” along y. Displacement along will then be confined
potential. The harmonic content is also in agreement; it reto the extremities of the gate and we can assume that most of
flects the elastic behavior of the gate, but is also sensitive tthe system is in a plane state of strain in #ie plane. It is
the precise dimensions of the structure. A recentimplicit that the gate covers too small an area to induce mac-
experiment® has verified the piezoelectric origin of the po- roscopic bending of the sample. Theig,= e, =¢,,=0 and
tential through its dependence on orientation. the shear stresses,, andoy, also vanish, butr,,# 0. Stan-

We made an unfortunate choice of axes in paper | whictdard elastic theofy then shows that the stress in our two-
we have changed to avoid confusion here, where a precisgimensional problem can be deduced from a biharmonic
description of the orientation is essential. Figure 1 shows théiry stress functiony. The components in thez plane are
crystallographic axes for the conventional setting ¢f.@0 given by
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Py X Px The resulting distortion along is transmitted identically to
Txx= 5720 Oxa™ = ooy Oz 52 (2.)  the semiconductor, assuming perfect bonding, so

g4(X,2=0)=£%29x). This relation, together with Eq&2.2)

Settinge,,=0 and eliminatingsy, from the usual relation and(2.3), gives

between normal stress and strain giveSe,,(X,2) 1- 2 1—,2 «
=(1—v?) oy (X,2) — v(1+ v)o,4x,z) and similarly fore,,, ———0(X,2=0)+ h—g"’“e J oy(X',z=0)dx’
whereE andv are Young’s modulus and Poisson’s ratio for E Egate Jo
the semiconductor.
=(1+vgad @gad T. 2.4

The gate is likewise in a plane state of strain and we also
take it to be thin,h<a. It is then reasonable to assume This is the compatibility relation for the stresses under the
further that the stress and strain are independentlofough  gate. In our problenag, AT should be replaced by the dif-
the thickness of the gate. In particular, ag-;‘te:o on the ferential contraction of the gate with respect to the semicon-
exposed top surface, this is taken to hold throughout the gateuctor, about—0.001. Equation(2.4) is effectively an inte-
The normal stress and strain alongthe length of the gate, gral equation for the potentiakh and can be solved
are then related bEgatégite(XF(l— ,,éat ) Uggte(x)_ numerically. Alternatively, a semi-infinite gate with a single

edge can be treated with the Wiener-Hopf technique. We
. . shall instead consider some simple limits of this equation.
A. Compatibility between gate and semiconductor

We must now set up equations relating the elastic fields in 1. Thick gate—"rigid” model
the gate and the surface of the semiconductor in the plane The second term on the left-hand side of Ef4) can be

z=0. The general equation relating stress to applied force igeglected ith>a. This leads to a uniform lateral strai,
F=—div o with a body forceF per unit volume. This be- 4 stressr)?x=sSXE/(1— 1) on the surface under the gate,

2. G et (1 syt T. TS i aimost i ovius
: uhward uni : ! result from thermal expansion of the gate imposing itself on

gous top= —div P and o=P-n for the electrostatic polar- . i .
ization field) On the exposed surface of the semiconductorthe semiconductor underneath; the factor ofr-(dad ap

N T pears because the gate is clamped algngVe used this
betwegea?ethe gates this gives,= fTZZ__O' We have assumed model in paper | and shall call it a “rigid” gate. It provides
that o, =0 because the gate is thin angzzo therefore .a consistent solution of the compatibility relati¢®.4), but
holds over the V\.’hOIe surface of the_ semiconductor. The big,e congitionh>a describes a thick gate rather than a thin
harmonic potentialy can then be written ag=z¢, where . o< \ve have assumed.

V2¢4=0. This is equivalent to an electrostatic problem and

we shall make frequent use of the analogy. 2. Thin gate—"“elastic” model
The remaining stress?2®in the gate exerts a force per

unit areaP,(x) on the semiconductor underneath. We have Itl IS tt(irr]np]t(!ngi Itn the OptF;]OSIIteft“r:ﬂlt gf a.\dthlnfgaﬂefgl:ht.o
assumed the stress to be constant through the thicknets neglect the first term on the left-hand side of E24). This

the gate, so its body force integratesRg(x) = hdo%3'9dx; C%gaetf_p onds to a uniform stress in the gate of

the sign accounts for this being a force exerted by the gate o . — Egatea?’a‘eAT/(l._ Vgatd - IN turn th|_s exerts a force
the semiconductor. This in turn generates a shear stress the underlying semiconductor which is concentrated at
the semiconductor whose value at the surface i he ends of the gate:
0y (X,2z=0)=—Py(X); there is a minus sign because our o (X,2=0)=—P,(x)=—F 8(x—a)— 8(x+a)].
z-axis points into the semiconductor. Thus the stresses in the ~ ** X * (2.5
gate and semiconductor are related by ] )

The force per unit length at each end is

gate
XX

dx

2.2 Fg: B ho-g;(gate: hEgaetgaed T , 2.6

0y A(X,2=0)=—P,(X)=—h
1_Vgate

. . . , ) which is proportional to the thickness of the gate. This ap-
Our picture is that the stress arises from differential ther-, prop g P

) - roach was taken by Asbeek al,'° drawing on earlier work
mal contraction. For definiteness, suppose that the Wh0|gf Kirkby et al’® and Blech and Meieralf. The physical

system is initially undistorted and stress free at some conx;

. cture is that the thin gate is prevented from expanding by
stant temperature throughout. Now raise the temperature Iﬂe semiconductor underneath, and instead develops a uni-
the gate alone throughT. The effect of this can be incor-

ted info the elast fions for the &htey changi form compressive stress;, 3. We shall therefore call this
porated Into Ihe efastic equa |ongsateor gge By changing an “elastic” gate. The stress acts back on the semiconductor
the normal stresses so thaty, — oy +agadEgad T/

2" : and leads to displacements which must be small if the ap-
(1-2vgad and similarly fory andz, where age is the  yroximation is to be consistent. Unfortunately, the solution
gate's coefficient of linear expansion. The stress and straif the elastic equations shows that the displacement diverges
alongx within the gate then obey logarithmically at the edges of the gate. The solution is there-
fore inapplicable to these regions, but we appeal to St. Ve-
Egate 52 1X) = (1= 15a1d 092 TX) + (14 vgard Egaredtgared T- nant's principlé’ and use it where the distance from the
2.3 edges of the gates is large compared with
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3. Linear force model array of gates was obtained by conformal transformation in

The force between gate and semiconductor diverges at tHeAPer |- PuZ=m{/(a+b) andA=ma/(a+Db) for brevity.
edges of the gate in both models discussed above. The fordd1en
under an elastic gate is concentrated ini®fanction, which

0 1
is obviously unrealistic and could be spread over a length of o I at bl_ C0S; Z
roughly the thickness of the gat&The force exerted by the Wrigal )=~ —— | 2~ 2 arcco cos3A| (219

rigid gate is less singular but diverges as an inverse square
root. A model where the force remains finite would be at- The solution of Poisson’s equation for the piezoelectric
tractive. The force is an odd function of position under thecharge is simplified if we exploit the periodic nature of the
gate, soP,(x)x=x is an obvious choice, corresponding to a superlattice and use a Fourier series. This also facilitates
parabolic profile foro23'{x). This model does not eliminate comparison with experiment, which gives only the squared
all the undesirable features: the stepoify(x,z=0) at each modulus of the Fourier coefficients. The harmonic function
edge of the gate generates a logarithmic divergence i@ can be expanded as

ow(X,2=0), and there is a band near the outside of each

gate wherer,,(X,z=0) changes sign, entering compression -
rather than extension. However, this model may provide a ¢(x,z)=n§0 ¢n COIQnX)EXP(—Qn2), (21D
useful check on any extreme behavior introduced by the rigid
or elastic gates. where the wave vectorg,= wn/(a+b). It is easier to start
from the derivative for the rigid gate,
B. Elastic potentials 0 .
i ; ; dWrigid Oxx sinz Z
The next step is to calculate the elastic potential needed to =—1|1- . (212
describe each of the above types of gate. It is convenient to d¢ 2 [ \sir? 3 Z—sirf 3 A

choose ¢ as the imaginary part of a complex potential
w=¢+i¢, which is a function of the complex coordinate
{=x+iz. The stresses on the surface of the semiconduct
(other terms appear whea 0) are given by

Expansion of the trigonometric functions as complex expo-
d?entials gives

eZ-1

J1-2€'% cosA+e??

dWigid _ ff_gx
ap  9E d¢ 2
O'XX(X,Z—O)—ZE—Zg,

. (213

We recognize the square root as the generating function for
Legendre polynomials. Using this expansion, integrating to

0 (X,2=0)= — P, (X)=— —. 2.7) return tow, and taking the imaginary part finally leads to

IxX coefficients
It is also useful to note that ﬁgid_agx a+b P,(cosA)—P,_;(cosA) (2.14
n —_ .
o H(,2=0) g 200 z=0) 2. n
Tx (X)) =~ o Ux(xz=0)= E + for n>0. We also findg§@"=¢2,[ (a+b)/#]In cosA from

(2.9 the asymptotic expansion @fgiq({)-

The compatibility relatior{2.4) can be written in terms of the 2. Elastic gate

potentials orz=0 as The only shear stress on the surface of the semiconductor

is at the edges of the gates in this model, and(Eq) shows
B(X,2=0)=(1+ vgad A gu T. that ¢ is therefO(e a piecewise constant function. Equation
(2.5 is satisfied if

2(1-12) 9¢ 1= vy
E X hEgae

(2.9

: : : : —F2 under the gates,
The Kramers-Kronig relations allow this to be written as an Delasid X,z=0) = X g 2.15

integral equation fokp or &. 0 elsewhere.

We shall now find¢ for the three models of the gates. In
all cases there is no shear stress on the surface between
gates. Equatio2.7) shows thaip must be constant in these
regions and it is convenient to set it to zero.

Euperposition is simple with this model because the potential
§ eSpecified all over the surface, and it can readily be gener-
alized. This is equivalent to an electrostatic problem where
the potential is a square wave on the boundary. It can be
extended for alz by standard method$to give

1. Rigid gate
In this model there is a constant lateral stre§§ under FS sin3(Z—A)
the gate, givingi¢p/dz= 3 o2, . In the electrostatic analogy Welastic= — 7~ in sink(Z+A) (2.19

for ¢ this corresponds to a constant charge density under
each gate with zero potential between them. This is a wellA single gate can be treated by setting-. The Fourier
known mixed boundary value problem whose solution for anexpansion is simple,
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pr o= — (2F] sinnA)inm (217 o] @rigidgate _— |
for n>0, with $S&= — aFY(a+b). e )<\
3. Sine force model 0 \
Complete solution of the model with a linear force gradi- 01k |
ent described in Sec. Il A 3 proves troublesome for a peri- ' . \
odic gate. We shall instead use a slightly different “sine (b) elastic gate \
gate” model in which the profile of the force follows part of R A
a sine curve rather than a straight line. It has a complex g S S
potential ~ 0
S A ]
sin3 (Z—A) @ e ™
Wsind £)=C| A sinZ+(cosA—cosZ)In ————|, 0.1} / \ 1
sins (Z+A) L : 3
(2.18 0.1 | (¢ sine gia_‘te iy |
whereC is a constant to be determined. The force exerted by o 4 ) AN ]
the gateP,(x)=[72C/(a+b)]sinmx/(a+b)]. This returns 0 £ -
to a linear profile as in Sec. Il A 3 whem<b and the gates s AN £ i
are nearly isolated, but gives a sine wave for a continuous 0.1 b 0, (%,2=0) \\__,,/' i
gate. Expansion of the complex potential as in Sec. [I B 1, or —— P®=-0,(:=0),
direct integration, shows that the Fourier coefficients are 135 0 (o) 135
X (nm
ﬁi“ez — E sin(n—1)A — sin(n+ 1A . (219 FIG. 2. Stresses according to tk@ rigid, (b) elastic, and(c)
n n-1 n+1 sine models of the gate. Thick line: for@®,(x) = — o, ,(X,z=0)

exerted by the gate on the semiconductor; this reduce#-to
functions for the elastic gate. Broken line: lateral stteggx,z=0)
in semiconductor at surface. Thin line: lateral stre@3{(x) in gate.

The limit should be taken forn=1 and ¢3"™
=—C(sinA—A cosA).

This model is only a rough solution to the compatibility
relation (2.9), which leaves ambiguity in the choice of the ) ) o .
prefactorC. One method would be to minimize the total @ Square-root divergence in the rigid moda), but the sine
elastic energy. We have taken the simpler route of integratdate gives a well-behaved functida half-cycle of a sine

ing both sides of Eq(2.9) across the gate and choosiégo ~ Wave, as the name impliesn (c). Differential contraction
satisfy this averaged relation, which gives puts the semiconductor into compression under the middle of

each gate, and,(x,z=0) is constan{dashed lingas ex-

ng 2(1-v3)sinA  (1— Véate)(sm A—A cosA)] ! pected under the rigid gate. The semiconductor is in lateral

=— + ‘ extension between the gates and the stress changes sign at
P E(a+b) EgadA ~C! . .

(2.20 the edges of a rigid or elastic gate. For a sine gate, however,

_ o _ oy (X,z=0) changes sign underneath the gate so there are

This has the satisfying feature th@t<h for a thin gate and  strips under the outside of each gate where the semiconduc-

saturates for a thick gate, but it must be remembered that thigr is in extension rather than compression. The stress

model does not provide a consistent solution to the compaly939x) within the gate(thin line) is constant for the elastic

ibility relation (2.9) in either limit. gate but drops to zero at the edges in the other models.
The Fourier expansions @b also show different charac-
C. Comparison of different models teristics. These can be deduced from the figure, remembering

_ _ gat . . .
Figure 2 shows the stress on the surface and gate accortfat #(x,2=0)=hoS(x) (thin curve. The experiment is

ing to the three elastic models for the gate. Assuming that!0Se to the limit of equal gates and gaps where/2. The

differential contraction between Ti and GaAs was respon€Ven coefficients vanish in this limit for the elastic gate, and
sible for the strain, we estimated in paper | that the surface dfiS should be reflected in the potential and magnetoresis-
the semiconductor was in compressionsdf= —0.001 un- tance. There is no such cancellation for the rigid gate where

der a rigid gate. This figure may be subject to large errors aggdcieffici%nts relmain 'nclmzero. ?Itr]rohughd(ébso ?fnq the
the precise conditions of deposition are uncertain. We us8 egendre polynomials vanish. The odd coefficients ex-

parameters for GaA&ef. 20 throughout the semiconductor ceptn=1 vanish for the sine gate. Thus the commensurabil-
of E=90 GPa andv=031 with E%=100GPa and Y oscillations should be able to distinguish between these

V93t~ 0 30 for the gate. In general, the stress has a Olifferenqifferent models for the elastic behavior. This completes our

magnitude in the three models because of their different deS-OIUTIon of the elastic problem.

pendence on the thickness of the gate; in this example, how-
ever, they are very similar. _ Ill. PIEZOELECTRIC POTENTIAL
The force P,(x) between the gate and semiconductor
(thick line) has contrasting behavior in the three models. We shall now use the stress to calculate the density of
There is ad function at each edge of the elastic gétgand  polarization charge from the piezoelectric effect, and inte-
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grate Poisson’s equation with this charge density to find thDEG below, a process that must become very slow at low
resulting potential energy in the 2DEG. Most of this istemperature. Then it may be more accurate to treat the
straightforward apart from the boundary conditions on thecharge in the surface states as frozen because it does not

electrostatic potential. have time to adjust during an experiment. The surface now
behaves as a simple dielectric boundary.
A. Piezoelectric charge density We have assumed that the strain arises from differential

. . . contraction between the gate and semiconductor, and there-

The piezoelectric polarization anq stress are related byore develops gradually as the sample is cooled. Moreover,
Pi=dijco. Most elements of the piezoelectric tensbfk 1 ,ch of the contraction occurs at higher temperatures where
vanish in GaAs because of itSeh s_ymmetry?l The excep-  the surface states are active. We therefore take the surface to
tions, in crystallographic axes, havg =123 and permuta- pe pinned in the calculation of the static piezoelectric poten-
tions, all of which take the same valgeal,,. Two rotations tial, and treat it as an equipotential at zero.
must be made to bring the tensor into oz axes. First is a A conventional modulation-doped sample has a layer of
rotation of 8 about[lOO] which accounts for the direction in donors between the surface and 2DEG. This can be ignored
which current flows, taken as Second, we must rotate by if all donors are ionized, but silicon in 453 _,As does not
aboutx because ouz-axis points downwards into the semi- pehave in such a simple way. Only about half the donors are
conductor. We then find that ionized in a typical sample, the remainder being neutralized
as DX centers’? The occupation of these donors is frozen
below Te~150 K, but they act to screen the electrostatic
potential above this temperature. The donors therefore act
like another equipotential layer at= c if most of the piezo-
3 . electric charge density is developed abdye. We suspect
P2= 72 duloyy= 00)sin 20. @D that this is often the case in structures used for physics ex-
We can replacer,,= v(o4+ 0, in a plane state of strain. periments but probably not for practical transistors, which
The polarization field® can be replaced by a volume charge usually have a recessed gate to eliminate parasitic electrons

PX: _dl4O-XZ Sin 20,

Py=dy404, COS 2,

densityp= —div P, which becomes around the donors. There may, however, be a slow relaxation
of the piezoelectric potential if the donors or surface states
L ) A0y, Joyy Ao ;5 have not come into equilibrium before an experiment is
p(X,2)= 5 dq, Sin 26| 2 I +(1-v) 7 Yoz I started.

(3.2 The shallows-doped layer used in the experiment studied
S ) in paper | was unusual because it had AlAs barriers, and the
The contribution fromP has vanished to leave a character- yonors were surrounded by a parasitic channel of electrons
istic dependence on sirg2We can remove@o,,/Jdx by us-  \hich remained free even at low temperattitén this case

ing the condition divo=0 for mechanical equilibrium. it is certainly appropriate to treat the donors as an equipoten-
Charges also appear at surfaces and interfaces. These kg pane.

(just) smaller for our example and will be discussed in Sec.

1l D. . .
. . C. Potential the 2DEG
Next, we express the stress in terms of the harmonic func- otential energy In the
tion ¢. The result is We can now integrate Poisson’s equat®fyy= — p/ ee,

to find the piezoelectric potential, with the charge density
p(X,2)= 2 dy4sin 20[(5—2v) "+ 3z¢"] (3.3 given by Eq.(3.4). We shall assume that the donors act as a
zero equipotential, giving the boundary condition
o Y(z=c)=0; settingc=0 returns the equipotential to the
=1dy,sin20> q2h[(5—2v)—30nz] surface of the semiconductor if this is not the case. Again we
n=1 expand the potential as a Fourier serieg¢(x,z)=
X cog G, X) eXH — G,2), (3.4) Znn(2)cos@x), and find
where primes indicate derivatives with respecttdhe next _ dyysin26
step is to integrate Poisson’s equation with this charge den- ¥n(2)= Bee, an(z—C)[7—4v—23qs(z+C)] ¢y
sity, but we must first review the boundary conditions.
Xexp(—Qn2). (3.5

B. Boundary conditions for electrostatics The bare potential energy for electrons in the 2DEG is given

We expect the potential to vanish far from the gate, ay —ey(z=d), which is then screened by the 2DEG. The
z—o, and this provides one boundary condition for Pois-nearby equipotential plane provided by the don@ns sur-
son’s equation. A second is provided by the surface of théace makes screening less effective at long wavelengths than
semiconductor and two simplified models were discussed ifr an isolated 2DEG?® This is taken into account by the
paper 1. Itis genera”y assumed that a h|gh density of Surfacg]Odiﬁed Thomas-Fermi dielectric function introduced in pa-
states pins the Fermi level at an almost constant energy deer |,
the surface of GaAs at room temperature, and the surface
therefore acts as an equipotential. Pinning requires equilib-

2
rium to be maintained between the surface states and the ETF(q’p):lJrﬁ[l_qu_zq P 3.6
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FIG. 3. Potential energy in the 2DEG under a lateral surfacgh® 2DEG. Screening by electrons around the donors is neglected,
superlattice, whose gates are shown as gray rectarigldeduced ~ Other parameters are as in Fig. 3, and successive curves are offset
from experimen(Ref. 7) the phases of the Fourier components arePy 1 meV.
unknown. Curvesh)—(e) show calculations of the potential induced
by strain, assuming a rigid gate giving compressionhf= —0.001  tric constants. This may be important because the 2DEG is
on the surface of the semiconductor. Note the different scales. trapped at an interface, and the charge here would be par-

ticularly effective.

In our case the equipotential plane is at a distgmeal —c. The differences in elastic, dielectric, and piezoelectric
The Fourier coefficients of the potential energy induced inconstants between GaAs and AlARef. 20 are roughly 2%,
the 2DEG become 20%, and 40%, so the discontinuity in the piezoelectric con-
stant is most significant. We estimate that this gives rise to
edysin29 gy(d—c) about 4x 10" m~2 electrons at the interface with the 2DEG
Un= "™ [7—4v in the fundamental wavevector. This is about 1% of the den-

Beeg  err(gy,d—c) . i . . -
sity of the 2DEG so the induced potential energy is a similar
—3dn(d+c)]d, exp(—qnd). (3.7 fraction of the Fermi energy or about 0.1 meV. This is
. i . . ) smaller than the potential from the space charge but only by
This is our final expression for the Fourier expansion of the, factor of 3 or so. We shall not consider it further in this
piezoelectric potential energy. Set0 if the donors do not  haner and we shall also neglect the discontinuity in the elas-
act as an eqmpotenﬂa_l. tic and dielectric constants whose effects will be smaller.
An important point is that charge both above and below|yterface charges are more significant in other heterostruc-

the 2DEG contributes to the potential. Screening from elecy, o5 where the properties of the materials are more distinct.
trons around the donors therefore has less effect than it does

on the deformation potential or an electrostatic potential
from the gate. The numerical results make this clear. IV. RESULTS

The results of our calculations of the potential energy
in the 2DEG under a lateral surface superlattice are plotted
The calculation above has only included the volumein Figs. 3—6, and the first three harmonics are summarized
charge density. Discontinuities in the polarization also genin Table I. Again we used parameters to match the dévice
erate a charge densityP-n at surfaces and interfaces. We studied in paper I, and most of the calculations are for a
find that these are smaller in the structure that we have useipid gate withe$,=—0.001 underneath. The plane of do-
as an example, but this may not always be the case. nors with a parasitic channel of electrons in this device
Our assumption of a pinned surface means that we cais treated as an equipotential. Current flowed alon@ZX1)
neglect any charge density here. Effectively we assume thatirection so we se#=45°, which maximizes the piezoelec-
the surface states absorb the piezoelectric charge without sitfic potential. We use parameters for GafRef. 20 of
nificant change of the Fermi level. €=13.2, d;4,=—2.69x10 2CNl, and E=-82eV
Charge may build up at interfaces within the heterostructhroughout. A small inaccuracy arises because most of the
ture due to differences in the elastic, piezoelectric, or dielecmaterial between the 2DEG and the surface is usually

D. Charge density at interfaces
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firmed by the plot of Fourier coefficienfEq. (3.7)] as a
function of depth in Fig. 5. A small change in the ratio of
depth to period clearly has a substantial influence on the
piezoelectric potential. The periodic modulation is maxi-
mized at a depth of about 10 nm which is unfortunately too
shallow to be practicable. The change in sign follows imme-
diately from Eq.(3.7) and the critical depth depends mainly

- —— on the period of the gates. In principle a device could be
05 L ‘ , made with no first harmonic in the piezoelectric potential.
o 20 40 60 80 100 In contrast, the bare deformation potential is proportional

d (nm) to the dilation. This is a harmonic functibhso each Fourier

. . . . __component decays exponentially as exp(d). Thus the
FIG. 5. First three harmonics of the screened piezoelectric PO -4ive amplitudes of the harmonics changes but their signs
tential as a function of the depth of the 2DEG. Screening by elec- . .

: do not. Screening has only a small effect on this.
trons around the donors is neglected and other parameters are as in
Fig. 3. The broken line marks the depth of the 2DEG used in the

plots for Fig. 3. B. Different elastic models

Figure 6 shows the deformation and piezoelectric poten-
Al,Ga,_,As (or AlAs in the experiment studied hereThe tials for the elastic, rigid, and sine models of the gate,
piezoelectric charge also extends below the 2DEG, howevescreened by the 2DEG alone. Figure 2 showed that the stress
which reduces the error. was of similar magnitude in all three models and this is
reflected in the electronic potentials. In contrast, the har-
monic content of the potentials is sharply different, con-
firmed by Table I. This follows from the nature of the Fou-

The deformation and piezoelectric potentials calculatedier series for the elastic functiof (Sec. Il B), as the device
for this device are compared in Fig. 3. The piezoelectriGs close to the limita=b. The curves for the elastic gate
potential is about four times stronger than the deformatiortherefore show a symmetry between the gates and gaps, giv-
potential, and has a higher harmonic content, when onlyng a small second harmonic and a large third one. Both the
screening by the 2DEG is included. Further screening due tfgid and sine gates show a stronger second harmonic but the
electrons around the donors reduces the deformation potefnird harmonic is different; it is much weaker for the sine
tial by a factor of about 4. The piezoelectric potential isgate but almost as strong as the second harmonic for the rigid
reduced to about 40% of its previous value and its harmonicgate.
are further emphasized.
Figure 4 shows the screened piezoelectric potential as a

function of the depth of the 2DEG, other parameters remain-
ing unchanged. Screening due to electrons around the donors Figure 3a shows the potential deduced from
is omitted for clarity. The potential decays with increasingexperiment. The significant features are its magnitude, the
depth, as expected, but there is also a striking change igtrong second harmonic, and absence of a third harmonic
harmonic content. The fundamental component passedithin experimental resolution. It is compared with calcula-
through zero and changes sign around 80 nm. This is cortions using a rigid gate.

Qualitatively, the closest match to experiment is offered

A. Deformation and piezoelectric potentials

C. Comparison with experiment

Potential energy in 2DEG (meV)

0.4

02k

0.0

-0.2

-1.0 -

() Deformation potential

 — rigin ——- elastic

(b) Piezoelectric potential

¥ s

135 270
x (nm)

540

by the deformation potential screened by the 2DEG alone
[Fig. 3(b)]. This has the observed strong second harmonic
but the third harmonic is noticeable too. Its magnitude is too
small by a factor of two but our estimate of the strain may
well contain such an error. The main problem is that this
result takes no account of the mobile electrons around the
donors revealed by other experimehtsThe inclusion of
these reduces the potential to that in Fi¢c)3vhich is too
small by nearly an order of magnitude.

In contrast, the piezoelectric potential has about the right
magnitude, even when screening by electrons around the do-
nors is includedFig. 3(e)]. Unfortunately the harmonic con-
tent agrees much less well, with an excessively strong third
harmonic. However, Figs. 4 and 5 show that the strength of
the harmonics is a rapidly varying function of the dimensions
of the device. A small error resulting from, say, lack of ad-
hesion of the edge of the gates, would have a large effect on
the harmonic content. Indeed a reductioraiimproves the

FIG. 6. Comparison of screened deformation and piezoelectri@greement with experiment.
potentials under rigid, elastic, and sine gates. Screening by electrons These calculations, like those in paper I, employed a rigid
around the donors is neglected and other parameters are as in Fig.cgate. The elastic gate might seem more appropriate as the
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TABLE I. The first three harmonics of the potential in the 2DEG observed in experiRait 7) and
calculated from strain using different models. Under “Screening,” “2DEG” means that the potential is
screened by the 2DEG alone, while “parasitic” includes additional screening by electrons around the donors.

U1 U2 U3

Gate Coupling Screening (meV) (meV) (meV)

experiment *0.5 +0.3 <0.1
rigid deformation bare 1.9 0.49 —0.16
rigid deformation 2DEG 0.24 0.10 —0.04
rigid deformation parasitic 0.064 0.028 —0.013
rigid piezoelectric bare 6.9 0.47 0.28
rigid piezoelectric 2DEG 0.87 0.091 0.072
rigid piezoelectric parasitic 0.36 -0.10 0.13
elastic deformation bare 2.0 0.10 —0.38
elastic deformation 2DEG 0.25 0.02 —0.10
elastic deformation parasitic 0.055 0.005 —0.028
elastic piezoelectric bare 7.1 0.10 0.66
elastic piezoelectric 2DEG 0.90 0.02 0.17
elastic piezoelectric parasitic 0.38 —0.02 0.30
sine deformation bare 13 0.53 0.020
sine deformation 2DEG 0.16 0.10 0.005
sine deformation parasitic 0.037 0.026 0.002
sine piezoelectric bare 4.8 0.51 —0.035
sine piezoelectric 2DEG 0.60 0.10 —0.009
sine piezoelectric parasitic 0.25 —0.10 —0.016

thickness of the gates, 30 nm, is much smaller than theiseen in a recent experiméhtvhich confirms the piezoelec-
length of 130 nm. However, Fig. 6 and Table | show that thetric effect as the dominant source of the periodic potential
harmonics predicted from this model agree much less welinder an unbiased lateral surface superlattice. This experi-
with experiment. ment used a gate bias to cancel the built-in potential and
The best agreement is obtained with the sine gate. It hadetect its sign. Unfortunately we predict the opposite sign.
large first and second harmonics but a very small third harWe do not at present understand this. If the discrepancy can-
monic, and its magnitude is about right. This success isiot be traced to an error in our calculation or the experiment,
slightly surprising, given that it is a very rough solution to or an ambiguity in the definition of the orientation or piezo-
the elastic equations. We suspect that the reason lies in theectric constant, we must conclude that the GaAs is in ten-
way in which the force between the gate and semiconductosion rather than compression under each gate. This would
is distributed near the edges of the gate. The elastic modeinply an origin other than thermal expansion. An indepen-
which might have been expected to be most appropriate, hatent experiment to measure the stress under a metal gate, or
the force concentrated into&function at each end. In prac- to apply a better defined stress, would be welcome.
tice it is more realistic to spread the force over a width simi-
lar to the thickness. Furthermore, it is often difficult to obtain
good adhesion of the edges of a gate, and it is likely that
relaxation (perhaps even debondingccurs to spread this Our calculations show that the piezoelectric effect pro-
force over a wider area. This may explain why the rigid andvides the dominant interaction between strain under a lateral
sine gates work better. An even more extreme model wouldurface superlattice and the electrons in a 2DEG for devices
be a purely cohesive interface with (x)osignx. It might  in the conventional orientation on GaAs. The magnitude is in
be difficult to treat relaxation even with numerical modeling, good agreement with experimehiAlthough the harmonic
and the success of the sine model shows that the effects mapntent is predicted less well, the model used for the elastic
be large. behavior of the gate has a large effect. The harmonics are
We conclude that the piezoelectric effect is the morealso sensitive to small errors in the input parameters. Direct
likely explanation of the observations, but that it is difficult confirmation comes from the dependence on orientdfion.
to resolve the source of the periodic potential from its func-Screening by electrons around the donors has less of an ef-
tional form alone. An obvious distinction between the defor-fect than it does on the deformation potential, because much
mation and piezoelectric potentials is their dependence oof the piezoelectric charge is deeper than the 2DEG.
orientation. The deformation potential does not depend,on We have considered elastic and rigid approximations for
within the validity of the isotropic approximation for the the behavior of the gate with an intermediate “sine” model.
elastic fields. The piezoelectric potential, in contrast, variedA thin gate should be nearer the elastic limit but we find that
as sin @ and changes sign between the two common directhe results are closer to experiment using a sine gate, with a
tions of current]011] and[011]. This dependence has been roughly linear shear profile underneath. A rigid gate lies in

V. CONCLUSIONS
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between. We speculate that the predictions using the sine Our work carries two main implications for experiments.
gate are successful because of relaxation, or perhaps lack Bfmodulation of the potential under a gaterist required,
adhesion, at the edges of the gates. the device should be aligned parallel to a crystallographic
An improved theory of strain would probably have to axis. The deformation potential remains, as does any built-in
abandon the isotropic approximation for the elastic problemyojtage, but this orientation eliminates the largest effect.
which is not particularly accurate for the 1lI-V semiconduc-  \where the aim is to influence the electrons as strongly as
tors. The isotropy ratid=(C11—C15)/2C44=0.55 for GaAs  possible, the potential can be enhanced by the growth and
(Ref. 20, which is far from its limit of unity in an isotropic patterning of stressors. This technique has a long history in
medium. Unfortunately an analytic solution may be possibIe‘,\,a\,eguideg5 and the confinement of excitof%2® Much
only for special orientations if cubic symmetry is retained. |arger stresses and potentials can be generated that we have
We have also shown that unfamiliar sources of Screeninghown here; for examp|e, the stress in Over|ayers gﬂ§|
should be taken into account, notably the surface and elegan react 10° N m2, an order of magnitude higher than in
trons around donors in AGa - As. Both the potential due oyr gate. Clearly there is great scope for developing the pi-

to strain and the screening from these regions are functionszoelectric effect to guide or confine carriers in a hetero-
of time as a sample is cooled to cryogenic temperature. Theyrycture.

final potential energy may therefore depend on the history of
a sample as well as its construction. Relaxation of the poten-
tial may also occur as the surface or donors slowly approach
equilibrium.

A further source of screening which we have not included This work was supported by the U. K. EPSRC. It is a
is provided by the doping of the substrate. This could bepleasure to thank D. E. Petticrew for checking the calcula-
modeled with another equipotential plane at the edge of théons, and to acknowledge discussions with R. R. Gerhardts,
depletion layer. Modern heterostructures for physics experid. Kotthaus, and A. Lorke. We are very grateful to Rachel
ments usually have such a low doping in the substrate thatoldman for pointing out the importance of the piezoelectric
the effect is negligible, but it may be significant in a field- interaction for the usual orientation of gates on GaAs, and
effect transistor on a doped buffer layer. A back gate formedor bringing Ref. 10 to our attention. Professor N. &iic
by a buried conducting layer would have a similar effect. has given valuable advice on elastic theory.
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