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Theory of potential modulation in lateral surface superlattices. II. Piezoelectric effect
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We have calculated the piezoelectric coupling between a two-dimensional electron gas and the stress field
due to a lateral surface superlattice, a periodic striped gate. Stress is assumed to arise from differential
contraction between the metal gate and semiconductor. The piezoelectric potential is several times larger than
the deformation potential and generally gives the dominant coupling. It depends on the orientation of the
device and vanishes on a~100! surface if the current flows parallel to a crystallographic axis. Most devices,
however, are fabricated parallel to$011% cleavage planes in which case the piezoelectric potential is at a
maximum. There are several sources of screening, including the partly occupied donors in a typical
GaAs-AlxGa12xAs heterostructure. We also consider different elastic models for the gate. The best agreement
with experiment is obtained if the force is distributed over the interface between the gate and semiconductor,
rather than being concentrated at its ends.@S0163-1829~97!03440-1#
c-
n

it
e
s
on
e
b

t
su
c

be
m

on
ia
tro

d
t
th
b
s

ed
n

E
ita
on

t
o

yer
ure.
tric
on
les
at

ow-

ted
ts.

lec-
the
ry

hus

of
he

tic
re-

ced

esh-
ct
ur-
a

by
I. INTRODUCTION

The high mobility of electrons in a two-dimensional ele
tron gas~2DEG! in a heterostructure has made it the fou
dation for a huge range of experiments1 in which the mean
free path or wavelength of the electrons is comparable w
the size of a device. Often the electrons are guided by m
gates on the surface, and it is assumed that the electron
influenced only by the electrostatic field from the bias
these gates. This hypothesis can be tested by experim
that measure the potential in the 2DEG, and commensura
ity oscillations in a magnetic field2–4 provide a convenien
tool. These detect the periodic potential under a lateral
face superlattice, a device with a sequence of equally-spa
parallel metal gates perpendicular to the flow of current
tween source and drain. The potential can be deduced fro
straightforward analysis of the magnetoresistance.4–6

An experiment7 that used a lateral surface superlattice
a particularly shallow 2DEG showed a periodic potent
even when the gates were grounded. There was also a s
second harmonic. In a previous paper,8 which we shall refer
to as paper I, we considered possible sources of this mo
lation. We were unable to reproduce the harmonic conten
the measured potential assuming a built-in voltage on
gates. Instead we proposed that differential contraction
tween the gate and semiconductor led to strain which cau
the observed modulation of the 2DEG. It is now recogniz9

that strain plays a role in many experiments where electro
transport is sensitive to weak potentials.

We assumed in paper I that strain coupled to the 2D
through the deformation potential. This gave good qual
tive agreement with experiment and explained the str
second harmonic observed. However, the magnitude was
small by nearly an order of magnitude when all sources
560163-1829/97/56~23!/15242~10!/$10.00
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screening were taken into account, including a parasitic la
of electrons around the donors in the experimental struct

Strain also couples to electrons through the piezoelec
effect in III–V semiconductors. This interaction depends
orientation unlike the deformation potential. Most samp
are grown on~100! surfaces and we assumed in paper I th
the current flowed along the@010# direction. There is no
piezoelectric interaction in this case. Practical devices, h
ever, are usually oriented parallel to the$011% cleavage
planes, and current flows along a^011& direction. This maxi-
mizes the piezoelectric coupling and the potentials calcula
in paper I are therefore incomplete for most experimen
This paper corrects that omission by including the piezoe
tric interaction. We shall also improve other aspects of
physical model, particularly with respect to the bounda
conditions applied to the electrostatic and elastic fields. T
our aims are as follows.

~1! To calculate the piezoelectric potential as a function
orientation and compare its magnitude with that from t
deformation potential.

~2! To clarify the boundary conditions for the electrosta
problem, particularly the role of surfaces and doped
gions.

~3! To consider different elastic models for the gate.

It has been realized for some time that stress is indu
during the manufacture of field-effect transistors~FET’s!. In
a landmark paper, Asbecket al.10 showed that the resulting
piezoelectric potential had a measurable effect on the thr
old voltage of FET’s. A signature of the piezoelectric effe
is its dependence on orientation, with opposite signs for c
rent along@011# and@011̄#. We shall extend their results to
superlattice and calculate in more detail the potential seen
15 242 © 1997 The American Physical Society
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56 15 243THEORY OF POTENTIAL . . . . II. . . .
the electrons. Piezoelectric effects have also been see
resonant-tunneling devices,11 where the peak inI (V) could
be moved in opposite directions by the application of str
along @011# or @011̄#.

There are several important differences between
modulations induced by the piezoelectric effect and the
formation potential.

~1! The piezoelectric effect depends on orientation but
deformation potential does not, within the isotropic a
proximation for the elastic constants.

~2! The piezoelectric effect is several times larger
samples in the usual orientation.

~3! They are affected by screening in different ways. In p
ticular, the piezoelectric charge extendsdeeperthan the
2DEG where it is less affected by screening due to s
face states or electrons around the donors.

~4! The shape of the piezoelectric potential changes dram
cally with the ratio of the period of the superlattice to t
depth of the 2DEG; the deformation potential is less s
sitive.

We shall first review the calculation of the elastic field, usi
three models of the gate. These differ in the distribution
force over the interface between the gate and semicondu
and apply to gates of different thickness. Next we calcul
the potential due to the piezoelectric interaction. This
cludes the effect of orientation and screening by regions
the structure which are often considered inert, such as
surface and doped layer. Finally, we compare our res
with experiments on lateral surface superlattices. We
now able to explain the observed magnitude7 of the periodic
potential. The harmonic content is also in agreement; it
flects the elastic behavior of the gate, but is also sensitiv
the precise dimensions of the structure. A rec
experiment12 has verified the piezoelectric origin of the p
tential through its dependence on orientation.

We made an unfortunate choice of axes in paper I wh
we have changed to avoid confusion here, where a pre
description of the orientation is essential. Figure 1 shows
crystallographic axes for the conventional setting of a~100!

FIG. 1. Construction and orientation of the lateral surface sup
lattice used in the experiment. The donors lie in a planec below the
surface. The 2DEG lies a further distances below the donors
~which includes an allowance for the thickness of the 2DEG!. The
lengths of the gates and gaps are 2a and 2b with the origin in the
center of a gate. The crystal axis~100! is an upward normal to the
surface, opposite toz which points down into the substrate. Th
current flows alongx which makes an angleu with @010#.
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wafer and the orientation of the device. We choosez directed
down into the substrate andx along the direction of current
with the origin in the center of a gate. The current andx axis
make an angleu with the @010# direction. There is transla
tional invariance alongy, parallel to the width of the gates o
the superlattice.

The figure also shows the geometry of the superlattice,
which we shall use parameters to match the device7 studied
in paper I. The layers comprised a GaAs substrate, two
nm thick AlAs barriers separated by 2 nm of AlxGa12xAs
d-doped with Si to 431016 m22, and a 5.4 nm GaAs cap
layer. The 2DEG was confined at an interface 28 nm de
The extent of the wave function normal to this interface w
about 7–8 nm, which is much smaller than the period of
superlattice. We shall therefore treat it simply by adding
thickness to the depth of the 2DEG. Thus the donors are
depthc'17 nm, separated from the the 2DEG by a spa
s'18 nm, which gives an overall depthd5c1s'35 nm.
The gates were deposited as 15 nm Ti followed by 15
Au, giving a thickness h530 nm. Their length was
2a5130 nm and the gaps were 2b5140 nm, with the origin
in the center of a gate. The presence of the donors will
important when we impose boundary conditions on the e
trostatic problem arising from the piezoelectric charge d
sity. A complication of this particular device is that
showed a low density of mobile electrons around the don
even at low temperature13 because of the AlAs barriers.

II. ELASTIC PROBLEM

The first task is to calculate the elastic field generated
the gate. We proposed in paper I that stress arose from
ferential contraction between each gate on the surface
the underlying semiconductor. A patterned, strained layer
the surface could be treated in the same way. The ela
problem is to calculate the stress that this causes throug
the semiconductor. An accurate treatment would require
merical solution of the elastic equations but, for the results
be meaningful, would also need a good description of
interface between the gate and semiconductor. Little inf
mation about this interface is available. Rather than tak
numerical approach, we shall study some simple models a
lytically. These are chosen to encompass the likely range
behavior in real devices.

Several simplifications were made in paper I to render
problem practicable. First, the differences in elastic consta
between GaAs and AlAs were ignored and we treated
material as isotropic. The problem becomes much more c
plicated if we relax these simplifications and we shall the
fore retain them. Second, we assumed that the gate was
‘‘wide’’ along y. Displacement alongy will then be confined
to the extremities of the gate and we can assume that mo
the system is in a plane state of strain in thex-z plane. It is
implicit that the gate covers too small an area to induce m
roscopic bending of the sample. Thus«yy5«xy5«yz50 and
the shear stressessxy andsyz also vanish, butsyyÞ0. Stan-
dard elastic theory14 then shows that the stress in our tw
dimensional problem can be deduced from a biharmo
Airy stress functionx. The components in thexz plane are
given by

r-
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sxx5
]2x

]z2 , sxz52
]2x

]x]z
, szz5

]2x

]x2 . ~2.1!

Setting«yy50 and eliminatingsyy from the usual relation
between normal stress and strain givesE«xx(x,z)
5(12n2)sxx(x,z)2n(11n)szz(x,z) and similarly for«zz,
whereE andn are Young’s modulus and Poisson’s ratio f
the semiconductor.

The gate is likewise in a plane state of strain and we a
take it to be thin,h!a. It is then reasonable to assum
further that the stress and strain are independent ofz through
the thickness of the gate. In particular, asszz

gate50 on the
exposed top surface, this is taken to hold throughout the g
The normal stress and strain alongx, the length of the gate
are then related byEgate«xx

gate(x)5(12ngate
2 )sxx

gate(x).

A. Compatibility between gate and semiconductor

We must now set up equations relating the elastic field
the gate and the surface of the semiconductor in the p
z50. The general equation relating stress to applied forc
F52div s with a body forceF per unit volume. This be-
comesP5s•n̂ at a surface whereP is the force per unit area
and n̂ is an outward unit normal.~These relations are analo
gous tor52div P and s5P•n̂ for the electrostatic polar
ization field.! On the exposed surface of the semiconduc
between the gates this givessxz5szz50. We have assume
that szz

gate50 because the gate is thin andszz50 therefore
holds over the whole surface of the semiconductor. The
harmonic potentialx can then be written asx5zf, where
¹2f50. This is equivalent to an electrostatic problem a
we shall make frequent use of the analogy.

The remaining stresssxx
gate in the gate exerts a force pe

unit areaPx(x) on the semiconductor underneath. We ha
assumed the stress to be constant through the thicknessh of
the gate, so its body force integrates toPx(x)5hdsxx

gate/dx;
the sign accounts for this being a force exerted by the gat
the semiconductor. This in turn generates a shear stres
the semiconductor whose value at the surface
sxz(x,z50)52Px(x); there is a minus sign because o
z-axis points into the semiconductor. Thus the stresses in
gate and semiconductor are related by

sxz~x,z50!52Px~x!52h
dsxx

gate

dx
. ~2.2!

Our picture is that the stress arises from differential th
mal contraction. For definiteness, suppose that the wh
system is initially undistorted and stress free at some c
stant temperature throughout. Now raise the temperatur
the gate alone throughDT. The effect of this can be incor
porated into the elastic equations for the gate14 by changing
the normal stresses so thatsxx

gate→sxx
gate1agateEgateDT/

(122ngate) and similarly for y and z, where agate is the
gate’s coefficient of linear expansion. The stress and st
alongx within the gate then obey

Egate«xx
gate~x!5~12ngate

2 !sxx
gate~x!1~11ngate!EgateagateDT.

~2.3!
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The resulting distortion alongx is transmitted identically to
the semiconductor, assuming perfect bonding,
«xx(x,z50)5«xx

gate(x). This relation, together with Eqs.~2.2!
and ~2.3!, gives

12n2

E
sxx~x,z50!1

12ngate
2

hEgate
E

0

x

sxz~x8,z50!dx8

5~11ngate!agateDT. ~2.4!

This is the compatibility relation for the stresses under
gate. In our problemagateDT should be replaced by the dif
ferential contraction of the gate with respect to the semic
ductor, about20.001. Equation~2.4! is effectively an inte-
gral equation for the potentialf and can be solved
numerically. Alternatively, a semi-infinite gate with a sing
edge can be treated with the Wiener-Hopf technique.
shall instead consider some simple limits of this equation

1. Thick gate—‘‘rigid’’ model

The second term on the left-hand side of Eq.~2.4! can be
neglected ifh@a. This leads to a uniform lateral strain«xx

0

and stresssxx
0 5«xx

0 E/(12n2) on the surface under the gat
given by«xx

0 5(11ngate)agateDT. This is almost the obvious
result from thermal expansion of the gate imposing itself
the semiconductor underneath; the factor of (11ngate) ap-
pears because the gate is clamped alongy. We used this
model in paper I and shall call it a ‘‘rigid’’ gate. It provide
a consistent solution of the compatibility relation~2.4!, but
the conditionh@a describes a thick gate rather than a th
one as we have assumed.

2. Thin gate—‘‘elastic’’ model

It is tempting in the opposite limit of a thin gate,h!a, to
neglect the first term on the left-hand side of Eq.~2.4!. This
corresponds to a uniform stress in the gate
sxx

0,gate52EgateagateDT/(12ngate). In turn this exerts a force
on the underlying semiconductor which is concentrated
the ends of the gate:

sxz~x,z50!52Px~x!52Fx
0@d~x2a!2d~x1a!#.

~2.5!

The force per unit length at each end is

Fx
052hsxx

0,gate5
hEgateagateDT

12ngate
, ~2.6!

which is proportional to the thickness of the gate. This a
proach was taken by Asbecket al.,10 drawing on earlier work
of Kirkby et al.15 and Blech and Meieran.16 The physical
picture is that the thin gate is prevented from expanding
the semiconductor underneath, and instead develops a
form compressive stresssxx

0,gate. We shall therefore call this
an ‘‘elastic’’ gate. The stress acts back on the semicondu
and leads to displacements which must be small if the
proximation is to be consistent. Unfortunately, the soluti
of the elastic equations shows that the displacement dive
logarithmically at the edges of the gate. The solution is the
fore inapplicable to these regions, but we appeal to St.
nant’s principle17 and use it where the distance from th
edges of the gates is large compared withh.
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3. Linear force model

The force between gate and semiconductor diverges a
edges of the gate in both models discussed above. The f
under an elastic gate is concentrated into ad-function, which
is obviously unrealistic and could be spread over a length
roughly the thickness of the gate.18 The force exerted by the
rigid gate is less singular but diverges as an inverse sq
root. A model where the force remains finite would be
tractive. The force is an odd function of position under t
gate, soPx(x)}x is an obvious choice, corresponding to
parabolic profile forsxx

gate(x). This model does not eliminat
all the undesirable features: the step insxz(x,z50) at each
edge of the gate generates a logarithmic divergence
sxx(x,z50), and there is a band near the outside of e
gate wheresxx(x,z50) changes sign, entering compressi
rather than extension. However, this model may provid
useful check on any extreme behavior introduced by the r
or elastic gates.

B. Elastic potentials

The next step is to calculate the elastic potential neede
describe each of the above types of gate. It is convenien
choosef as the imaginary part of a complex potent
w5j1 if, which is a function of the complex coordina
z5x1 iz. The stresses on the surface of the semicondu
~other terms appear whenzÞ0! are given by

sxx~x,z50!52
]f

]z
52

]j

]x
,

sxz~x,z50!52Px~x!52
]f

]x
. ~2.7!

It is also useful to note that

sxx
gate~x!5

f~x,z50!

h
, ux~x,z50!5

2~12n2!j~x,z50!

E
.

~2.8!

The compatibility relation~2.4! can be written in terms of the
potentials onz50 as

2~12n2!

E

]j

]x
2

12ngate
2

hEgate
f~x,z50!5~11ngate!agateDT.

~2.9!

The Kramers-Kronig relations allow this to be written as
integral equation forf or j.

We shall now findf for the three models of the gates.
all cases there is no shear stress on the surface betwee
gates. Equation~2.7! shows thatf must be constant in thes
regions and it is convenient to set it to zero.

1. Rigid gate

In this model there is a constant lateral stresssxx
0 under

the gate, giving]f/]z5 1
2 sxx

0 . In the electrostatic analog
for f this corresponds to a constant charge density un
each gate with zero potential between them. This is a w
known mixed boundary value problem whose solution for
he
rce

f
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to
to

or
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array of gates was obtained by conformal transformation
paper I. PutZ5pz/(a1b) andA5pa/(a1b) for brevity.
Then

wrigid~z!5
sxx

0

2

a1b

p FZ22 arccos
cos 1

2 Z

cos 1
2 A

G . ~2.10!

The solution of Poisson’s equation for the piezoelect
charge is simplified if we exploit the periodic nature of th
superlattice and use a Fourier series. This also facilita
comparison with experiment, which gives only the squa
modulus of the Fourier coefficients. The harmonic functi
f can be expanded as

f~x,z!5 (
n50

`

fn cos~qnx!exp~2qnz!, ~2.11!

where the wave vectorsqn5pn/(a1b). It is easier to start
from the derivative for the rigid gate,

dwrigid

dz
5

sxx
0

2 F12
sin 1

2 Z

Asin2 1
2 Z2sin2 1

2 A
G . ~2.12!

Expansion of the trigonometric functions as complex exp
nentials gives

dwrigid

dz
5

sxx
0

2 F11
eiZ21

A122eiZ cosA1e2iZG . ~2.13!

We recognize the square root as the generating function
Legendre polynomials. Using this expansion, integrating
return to w, and taking the imaginary part finally leads
coefficients

fn
rigid5

sxx
0

2

a1b

p

Pn~cosA!2Pn21~cosA!

n
~2.14!

for n.0. We also findf0
rigid5sxx

0 @(a1b)/p# ln cosA from
the asymptotic expansion ofwrigid(z).

2. Elastic gate

The only shear stress on the surface of the semicondu
is at the edges of the gates in this model, and Eq.~2.7! shows
that f is therefore a piecewise constant function. Equat
~2.5! is satisfied if

felastic~x,z50!5H 2Fx
0 under the gates,

0 elsewhere.
~2.15!

Superposition is simple with this model because the poten
is specified all over the surface, and it can readily be gen
alized. This is equivalent to an electrostatic problem wh
the potential is a square wave on the boundary. It can
extended for allz by standard methods19 to give

welastic52
Fx

0

p
ln

sin 1
2 ~Z2A!

sin 1
2 ~Z1A!

. ~2.16!

A single gate can be treated by settingb→`. The Fourier
expansion is simple,
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fn
elastic52~2Fx

0 sin nA!/np ~2.17!

for n.0, with f0
elastic52aFx

0/(a1b).

3. Sine force model

Complete solution of the model with a linear force gra
ent described in Sec. II A 3 proves troublesome for a p
odic gate. We shall instead use a slightly different ‘‘si
gate’’ model in which the profile of the force follows part o
a sine curve rather than a straight line. It has a comp
potential

wsine~z!5CFA sin Z1~cosA2cosZ!ln
sin 1

2 ~Z2A!

sin 1
2 ~Z1A!

G ,

~2.18!

whereC is a constant to be determined. The force exerted
the gatePx(x)5@p2C/(a1b)#sin@px/(a1b)#. This returns
to a linear profile as in Sec. II A 3 whena!b and the gates
are nearly isolated, but gives a sine wave for a continu
gate. Expansion of the complex potential as in Sec. II B 1
direct integration, shows that the Fourier coefficients are

fn
sine52

C

n Fsin~n21!A

n21
2

sin~n11!A

n11 G . ~2.19!

The limit should be taken for n51 and f0
sine

52C(sinA2A cosA).
This model is only a rough solution to the compatibili

relation ~2.9!, which leaves ambiguity in the choice of th
prefactorC. One method would be to minimize the tot
elastic energy. We have taken the simpler route of integ
ing both sides of Eq.~2.9! across the gate and choosingC to
satisfy this averaged relation, which gives

C5
«xx

0

p F2~12n2!sin A

E~a1b!
1

~12ngate
2 !~sin A2A cosA!

EgatehA G21

.

~2.20!

This has the satisfying feature thatC}h for a thin gate and
saturates for a thick gate, but it must be remembered that
model does not provide a consistent solution to the com
ibility relation ~2.9! in either limit.

C. Comparison of different models

Figure 2 shows the stress on the surface and gate acc
ing to the three elastic models for the gate. Assuming t
differential contraction between Ti and GaAs was resp
sible for the strain, we estimated in paper I that the surfac
the semiconductor was in compression of«xx

0 520.001 un-
der a rigid gate. This figure may be subject to large errors
the precise conditions of deposition are uncertain. We
parameters for GaAs~Ref. 20! throughout the semiconducto
of E590 GPa and n50.31, with Egate5100 GPa and
ngate50.30 for the gate. In general, the stress has a diffe
magnitude in the three models because of their different
pendence on the thickness of the gate; in this example, h
ever, they are very similar.

The force Px(x) between the gate and semiconduc
~thick line! has contrasting behavior in the three mode
There is ad function at each edge of the elastic gate~b! and
i-
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a square-root divergence in the rigid model~a!, but the sine
gate gives a well-behaved function~a half-cycle of a sine
wave, as the name implies! in ~c!. Differential contraction
puts the semiconductor into compression under the middl
each gate, andsxx(x,z50) is constant~dashed line! as ex-
pected under the rigid gate. The semiconductor is in late
extension between the gates and the stress changes s
the edges of a rigid or elastic gate. For a sine gate, howe
sxx(x,z50) changes sign underneath the gate so there
strips under the outside of each gate where the semicon
tor is in extension rather than compression. The str
sxx

gate(x) within the gate~thin line! is constant for the elastic
gate but drops to zero at the edges in the other models.

The Fourier expansions off also show different charac
teristics. These can be deduced from the figure, remembe
that f(x,z50)5hsxx

gate(x) ~thin curve!. The experiment is
close to the limit of equal gates and gaps whereA5p/2. The
even coefficients vanish in this limit for the elastic gate, a
this should be reflected in the potential and magnetore
tance. There is no such cancellation for the rigid gate wh
all coefficients remain nonzero although cosA50 and the
odd Legendre polynomials vanish. The odd coefficients
ceptn51 vanish for the sine gate. Thus the commensura
ity oscillations should be able to distinguish between th
different models for the elastic behavior. This completes
solution of the elastic problem.

III. PIEZOELECTRIC POTENTIAL

We shall now use the stress to calculate the density
polarization charge from the piezoelectric effect, and in

FIG. 2. Stresses according to the~a! rigid, ~b! elastic, and~c!
sine models of the gate. Thick line: forcePx(x)52sxz(x,z50)
exerted by the gate on the semiconductor; this reduces tod-
functions for the elastic gate. Broken line: lateral stresssxx(x,z50)
in semiconductor at surface. Thin line: lateral stresssxx

gate(x) in gate.
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56 15 247THEORY OF POTENTIAL . . . . II. . . .
grate Poisson’s equation with this charge density to find
resulting potential energy in the 2DEG. Most of this
straightforward apart from the boundary conditions on
electrostatic potential.

A. Piezoelectric charge density

The piezoelectric polarization and stress are related
Pi5di jks jk . Most elements of the piezoelectric tensordi jk

vanish in GaAs because of its 43̄m symmetry.21 The excep-
tions, in crystallographic axes, havei jk 5123 and permuta-
tions, all of which take the same value1

2 d14. Two rotations
must be made to bring the tensor into ourxyzaxes. First is a
rotation ofu about@100# which accounts for the direction in
which current flows, taken asx. Second, we must rotate byp
aboutx because ourz-axis points downwards into the sem
conductor. We then find that

Px52d14sxz sin 2u,

Py5d14sxz cos 2u,

Pz5
1
2 d14~syy2sxx!sin 2u. ~3.1!

We can replacesyy5n(sxx1szz) in a plane state of strain
The polarization fieldP can be replaced by a volume char
densityr52div P, which becomes

r~x,z!5 1
2 d14 sin 2uF2

]sxz

]x
1~12n!

]sxx

]z
2n

]szz

]z G .
~3.2!

The contribution fromPy has vanished to leave a characte
istic dependence on sin 2u. We can remove]sxz /]x by us-
ing the condition divs50 for mechanical equilibrium.

Charges also appear at surfaces and interfaces. Thes
~just! smaller for our example and will be discussed in S
III D.

Next, we express the stress in terms of the harmonic fu
tion f. The result is

r~x,z!5 1
2 d14 sin 2u@~522n!f913zf-# ~3.3!

5 1
2 d14 sin 2u (

n51

`

qn
2fn@~522n!23qnz#

3cos~qnx!exp~2qnz!, ~3.4!

where primes indicate derivatives with respect toz. The next
step is to integrate Poisson’s equation with this charge d
sity, but we must first review the boundary conditions.

B. Boundary conditions for electrostatics

We expect the potential to vanish far from the gate,
z→`, and this provides one boundary condition for Po
son’s equation. A second is provided by the surface of
semiconductor and two simplified models were discusse
paper I. It is generally assumed that a high density of surf
states pins the Fermi level at an almost constant energ
the surface of GaAs at room temperature, and the sur
therefore acts as an equipotential. Pinning requires equ
rium to be maintained between the surface states and
e

e

y

-

are
.

c-

n-

t
-
e
in
e

on
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b-
he

2DEG below, a process that must become very slow at
temperature. Then it may be more accurate to treat
charge in the surface states as frozen because it does
have time to adjust during an experiment. The surface n
behaves as a simple dielectric boundary.

We have assumed that the strain arises from differen
contraction between the gate and semiconductor, and th
fore develops gradually as the sample is cooled. Moreo
much of the contraction occurs at higher temperatures wh
the surface states are active. We therefore take the surfa
be pinned in the calculation of the static piezoelectric pot
tial, and treat it as an equipotential at zero.

A conventional modulation-doped sample has a layer
donors between the surface and 2DEG. This can be igno
if all donors are ionized, but silicon in AlxGa12xAs does not
behave in such a simple way. Only about half the donors
ionized in a typical sample, the remainder being neutraliz
as DX centers.22 The occupation of these donors is froze
below TF'150 K, but they act to screen the electrosta
potential above this temperature. The donors therefore
like another equipotential layer atz5c if most of the piezo-
electric charge density is developed aboveTF . We suspect
that this is often the case in structures used for physics
periments but probably not for practical transistors, wh
usually have a recessed gate to eliminate parasitic elect
around the donors. There may, however, be a slow relaxa
of the piezoelectric potential if the donors or surface sta
have not come into equilibrium before an experiment
started.

The shallowd-doped layer used in the experiment studi
in paper I was unusual because it had AlAs barriers, and
donors were surrounded by a parasitic channel of electr
which remained free even at low temperature.13 In this case
it is certainly appropriate to treat the donors as an equipo
tial plane.

C. Potential energy in the 2DEG

We can now integrate Poisson’s equation¹2c52r/ee0
to find the piezoelectric potentialc, with the charge density
given by Eq.~3.4!. We shall assume that the donors act a
zero equipotential, giving the boundary conditio
c(z5c)50; setting c50 returns the equipotential to th
surface of the semiconductor if this is not the case. Again
expand the potential as a Fourier series,c(x,z)5
(ncn(z)cos(qnx), and find

cn~z!5
d14 sin 2u

8ee0
qn~z2c!@724n23qn~z1c!#fn

3exp~2qnz!. ~3.5!

The bare potential energy for electrons in the 2DEG is giv
by 2ec(z5d), which is then screened by the 2DEG. Th
nearby equipotential plane provided by the donors~or sur-
face! makes screening less effective at long wavelengths t
for an isolated 2DEG.23 This is taken into account by th
modified Thomas-Fermi dielectric function introduced in p
per I,

eTF~q,p!511
2

a0q
@12exp~22qp!#. ~3.6!
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In our case the equipotential plane is at a distancep5d2c.
The Fourier coefficients of the potential energy induced
the 2DEG become

vn52
ed14 sin 2u

8ee0

qn~d2c!

eTF~qn ,d2c!
@724n

23qn~d1c!#fn exp~2qnd!. ~3.7!

This is our final expression for the Fourier expansion of
piezoelectric potential energy. Setc50 if the donors do not
act as an equipotential.

An important point is that charge both above and bel
the 2DEG contributes to the potential. Screening from el
trons around the donors therefore has less effect than it
on the deformation potential or an electrostatic poten
from the gate. The numerical results make this clear.

D. Charge density at interfaces

The calculation above has only included the volum
charge density. Discontinuities in the polarization also g
erate a charge densityDP•n at surfaces and interfaces. W
find that these are smaller in the structure that we have u
as an example, but this may not always be the case.

Our assumption of a pinned surface means that we
neglect any charge density here. Effectively we assume
the surface states absorb the piezoelectric charge without
nificant change of the Fermi level.

Charge may build up at interfaces within the heterostr
ture due to differences in the elastic, piezoelectric, or die

FIG. 3. Potential energy in the 2DEG under a lateral surf
superlattice, whose gates are shown as gray rectangles.~a! Deduced
from experiment~Ref. 7! the phases of the Fourier components a
unknown. Curves~b!–~e! show calculations of the potential induce
by strain, assuming a rigid gate giving compression of«xx

0 520.001
on the surface of the semiconductor. Note the different scales.
n

e

-
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ed

n
at
ig-

-
c-

tric constants. This may be important because the 2DEG
trapped at an interface, and the charge here would be
ticularly effective.

The differences in elastic, dielectric, and piezoelect
constants between GaAs and AlAs~Ref. 20! are roughly 2%,
20%, and 40%, so the discontinuity in the piezoelectric c
stant is most significant. We estimate that this gives rise
about 431013 m22 electrons at the interface with the 2DE
in the fundamental wavevector. This is about 1% of the d
sity of the 2DEG so the induced potential energy is a sim
fraction of the Fermi energy or about 0.1 meV. This
smaller than the potential from the space charge but only
a factor of 3 or so. We shall not consider it further in th
paper, and we shall also neglect the discontinuity in the e
tic and dielectric constants whose effects will be small
Interface charges are more significant in other heterost
tures where the properties of the materials are more disti

IV. RESULTS

The results of our calculations of the potential ener
in the 2DEG under a lateral surface superlattice are plo
in Figs. 3–6, and the first three harmonics are summari
in Table I. Again we used parameters to match the dev7

studied in paper I, and most of the calculations are fo
rigid gate with«xx

0 520.001 underneath. The plane of d
nors with a parasitic channel of electrons in this dev
is treated as an equipotential. Current flowed along a^011&
direction so we setu545°, which maximizes the piezoelec
tric potential. We use parameters for GaAs~Ref. 20! of
e513.2, d14522.69310212CN21, and J528.2 eV
throughout. A small inaccuracy arises because most of
material between the 2DEG and the surface is usu

e

FIG. 4. Screened piezoelectric potential for different depths
the 2DEG. Screening by electrons around the donors is negle
other parameters are as in Fig. 3, and successive curves are
by 1 meV.
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Al xGa12xAs ~or AlAs in the experiment studied here!. The
piezoelectric charge also extends below the 2DEG, howe
which reduces the error.

A. Deformation and piezoelectric potentials

The deformation and piezoelectric potentials calcula
for this device are compared in Fig. 3. The piezoelec
potential is about four times stronger than the deformat
potential, and has a higher harmonic content, when o
screening by the 2DEG is included. Further screening du
electrons around the donors reduces the deformation po
tial by a factor of about 4. The piezoelectric potential
reduced to about 40% of its previous value and its harmo
are further emphasized.

Figure 4 shows the screened piezoelectric potential a
function of the depth of the 2DEG, other parameters rema
ing unchanged. Screening due to electrons around the do
is omitted for clarity. The potential decays with increasi
depth, as expected, but there is also a striking chang
harmonic content. The fundamental component pas
through zero and changes sign around 80 nm. This is c

FIG. 5. First three harmonics of the screened piezoelectric
tential as a function of the depth of the 2DEG. Screening by e
trons around the donors is neglected and other parameters are
Fig. 3. The broken line marks the depth of the 2DEG used in
plots for Fig. 3.

FIG. 6. Comparison of screened deformation and piezoelec
potentials under rigid, elastic, and sine gates. Screening by elec
around the donors is neglected and other parameters are as in F
r,

d
c
n
ly
to
n-

s

a
-

ors

in
es
n-

firmed by the plot of Fourier coefficients@Eq. ~3.7!# as a
function of depth in Fig. 5. A small change in the ratio
depth to period clearly has a substantial influence on
piezoelectric potential. The periodic modulation is ma
mized at a depth of about 10 nm which is unfortunately t
shallow to be practicable. The change in sign follows imm
diately from Eq.~3.7! and the critical depth depends main
on the period of the gates. In principle a device could
made with no first harmonic in the piezoelectric potential

In contrast, the bare deformation potential is proportio
to the dilation. This is a harmonic function14 so each Fourier
component decays exponentially as exp(2qnd). Thus the
relative amplitudes of the harmonics changes but their si
do not. Screening has only a small effect on this.

B. Different elastic models

Figure 6 shows the deformation and piezoelectric pot
tials for the elastic, rigid, and sine models of the ga
screened by the 2DEG alone. Figure 2 showed that the s
was of similar magnitude in all three models and this
reflected in the electronic potentials. In contrast, the h
monic content of the potentials is sharply different, co
firmed by Table I. This follows from the nature of the Fo
rier series for the elastic functionf ~Sec. II B!, as the device
is close to the limita5b. The curves for the elastic gat
therefore show a symmetry between the gates and gaps,
ing a small second harmonic and a large third one. Both
rigid and sine gates show a stronger second harmonic bu
third harmonic is different; it is much weaker for the sin
gate but almost as strong as the second harmonic for the
gate.

C. Comparison with experiment

Figure 3~a! shows the potential deduced from
experiment.7 The significant features are its magnitude, t
strong second harmonic, and absence of a third harm
within experimental resolution. It is compared with calcul
tions using a rigid gate.

Qualitatively, the closest match to experiment is offer
by the deformation potential screened by the 2DEG alo
@Fig. 3~b!#. This has the observed strong second harmo
but the third harmonic is noticeable too. Its magnitude is
small by a factor of two but our estimate of the strain m
well contain such an error. The main problem is that t
result takes no account of the mobile electrons around
donors revealed by other experiments.13 The inclusion of
these reduces the potential to that in Fig. 3~c! which is too
small by nearly an order of magnitude.

In contrast, the piezoelectric potential has about the ri
magnitude, even when screening by electrons around the
nors is included@Fig. 3~e!#. Unfortunately the harmonic con
tent agrees much less well, with an excessively strong th
harmonic. However, Figs. 4 and 5 show that the strength
the harmonics is a rapidly varying function of the dimensio
of the device. A small error resulting from, say, lack of a
hesion of the edge of the gates, would have a large effec
the harmonic content. Indeed a reduction ina improves the
agreement with experiment.

These calculations, like those in paper I, employed a ri
gate. The elastic gate might seem more appropriate as

o-
c-
s in
e

ic
ns
. 3.
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TABLE I. The first three harmonics of the potential in the 2DEG observed in experiment~Ref. 7! and
calculated from strain using different models. Under ‘‘Screening,’’ ‘‘2DEG’’ means that the potenti
screened by the 2DEG alone, while ‘‘parasitic’’ includes additional screening by electrons around the d

Gate Coupling Screening
v1

~meV!
v2

~meV!
v3

~meV!

experiment 60.5 60.3 ,0.1
rigid deformation bare 1.9 0.49 20.16
rigid deformation 2DEG 0.24 0.10 20.04
rigid deformation parasitic 0.064 0.028 20.013
rigid piezoelectric bare 6.9 0.47 0.28
rigid piezoelectric 2DEG 0.87 0.091 0.072
rigid piezoelectric parasitic 0.36 20.10 0.13
elastic deformation bare 2.0 0.10 20.38
elastic deformation 2DEG 0.25 0.02 20.10
elastic deformation parasitic 0.055 0.005 20.028
elastic piezoelectric bare 7.1 0.10 0.66
elastic piezoelectric 2DEG 0.90 0.02 0.17
elastic piezoelectric parasitic 0.38 20.02 0.30
sine deformation bare 1.3 0.53 0.020
sine deformation 2DEG 0.16 0.10 0.005
sine deformation parasitic 0.037 0.026 0.002
sine piezoelectric bare 4.8 0.51 20.035
sine piezoelectric 2DEG 0.60 0.10 20.009
sine piezoelectric parasitic 0.25 20.10 20.016
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thickness of the gates, 30 nm, is much smaller than t
length of 130 nm. However, Fig. 6 and Table I show that
harmonics predicted from this model agree much less w
with experiment.

The best agreement is obtained with the sine gate. It
large first and second harmonics but a very small third h
monic, and its magnitude is about right. This success
slightly surprising, given that it is a very rough solution
the elastic equations. We suspect that the reason lies in
way in which the force between the gate and semicondu
is distributed near the edges of the gate. The elastic mo
which might have been expected to be most appropriate,
the force concentrated into ad function at each end. In prac
tice it is more realistic to spread the force over a width sim
lar to the thickness. Furthermore, it is often difficult to obta
good adhesion of the edges of a gate, and it is likely t
relaxation ~perhaps even debonding! occurs to spread this
force over a wider area. This may explain why the rigid a
sine gates work better. An even more extreme model wo
be a purely cohesive interface withPx(x)}sign x. It might
be difficult to treat relaxation even with numerical modelin
and the success of the sine model shows that the effects
be large.

We conclude that the piezoelectric effect is the mo
likely explanation of the observations, but that it is difficu
to resolve the source of the periodic potential from its fun
tional form alone. An obvious distinction between the def
mation and piezoelectric potentials is their dependence
orientation. The deformation potential does not depend ou,
within the validity of the isotropic approximation for th
elastic fields. The piezoelectric potential, in contrast, var
as sin 2u and changes sign between the two common dir
tions of current,@011# and @011̄#. This dependence has bee
ir
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seen in a recent experiment12 which confirms the piezoelec
tric effect as the dominant source of the periodic poten
under an unbiased lateral surface superlattice. This exp
ment used a gate bias to cancel the built-in potential
detect its sign. Unfortunately we predict the opposite si
We do not at present understand this. If the discrepancy c
not be traced to an error in our calculation or the experime
or an ambiguity in the definition of the orientation or piez
electric constant, we must conclude that the GaAs is in t
sion rather than compression under each gate. This wo
imply an origin other than thermal expansion. An indepe
dent experiment to measure the stress under a metal ga
to apply a better defined stress, would be welcome.

V. CONCLUSIONS

Our calculations show that the piezoelectric effect p
vides the dominant interaction between strain under a lat
surface superlattice and the electrons in a 2DEG for dev
in the conventional orientation on GaAs. The magnitude is
good agreement with experiment.7 Although the harmonic
content is predicted less well, the model used for the ela
behavior of the gate has a large effect. The harmonics
also sensitive to small errors in the input parameters. Dir
confirmation comes from the dependence on orientatio12

Screening by electrons around the donors has less of an
fect than it does on the deformation potential, because m
of the piezoelectric charge is deeper than the 2DEG.

We have considered elastic and rigid approximations
the behavior of the gate with an intermediate ‘‘sine’’ mod
A thin gate should be nearer the elastic limit but we find th
the results are closer to experiment using a sine gate, wi
roughly linear shear profile underneath. A rigid gate lies
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between. We speculate that the predictions using the s
gate are successful because of relaxation, or perhaps lac
adhesion, at the edges of the gates.

An improved theory of strain would probably have t
abandon the isotropic approximation for the elastic proble
which is not particularly accurate for the III–V semicondu
tors. The isotropy ratioS5(c112c12)/2c4450.55 for GaAs
~Ref. 20!, which is far from its limit of unity in an isotropic
medium. Unfortunately an analytic solution may be possib
only for special orientations if cubic symmetry is retained

We have also shown that unfamiliar sources of screen
should be taken into account, notably the surface and e
trons around donors in AlxGa12xAs. Both the potential due
to strain and the screening from these regions are functi
of time as a sample is cooled to cryogenic temperature. T
final potential energy may therefore depend on the history
a sample as well as its construction. Relaxation of the pot
tial may also occur as the surface or donors slowly appro
equilibrium.

A further source of screening which we have not includ
is provided by the doping of the substrate. This could
modeled with another equipotential plane at the edge of
depletion layer. Modern heterostructures for physics exp
ments usually have such a low doping in the substrate t
the effect is negligible, but it may be significant in a field
effect transistor on a doped buffer layer. A back gate form
by a buried conducting layer would have a similar effect.
s
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Our work carries two main implications for experiment
If modulation of the potential under a gate isnot required,
the device should be aligned parallel to a crystallograp
axis. The deformation potential remains, as does any buil
voltage, but this orientation eliminates the largest effect.

Where the aim is to influence the electrons as strongly
possible, the potential can be enhanced by the growth
patterning of stressors. This technique has a long history
waveguides15 and the confinement of excitons.24,25 Much
larger stresses and potentials can be generated that we
shown here; for example, the stress in overlayers of Si3N4
can reach10 109 N m22, an order of magnitude higher than i
our gate. Clearly there is great scope for developing the
ezoelectric effect to guide or confine carriers in a hete
structure.
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