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Quantum transport in square and triangular antidot arrays with various periods
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Quantum effects on electron transport in square and triangular antidot arrays are studied in a self-consistent
Born approximation based on full-quantum-mechanical energy bands. When the array period is large and the
Fermi wavelength is comparable to the antidot diameter, a quantum effect increases the effective antidot
diameter and shifts some commensurability peaks toward magnetic fields different from classical ones. When
the array period is small, the Hall conductivity is reduced due to the appearance of magnetic minibands giving
a quantized value opposite to that of the usual Landau levels and the commensurability peak is significantly
enhanced. The Aharonov-Bohm–type oscillation superimposed on the commensurability peak changes its
feature with the decrease of the period.@S0163-1829~97!06847-1#
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I. INTRODUCTION

Lateral surface superlattices with a strong electrostatic
tential modulation are called antidot arrays, where tw
dimensional electron gas~2DEG! at the GaAs/AlxGa12xAs
heterostructure cannot penetrate into the high potential a
dot region. In such antidot arrays, oscillations in magneto
sistances have been observed such as the commensura
oscillation and the Aharonov-Bohm~AB! –type oscillation.
The purpose of the present paper is to clarify quantum eff
on these oscillations in square and triangular arrays.

The resistivity in antidot arrays exhibits a peak around
magnetic field satisfying the commensurability conditio
2r c /a51, A2, . . . , where r c is the classical cyclotron ra
dius anda is the period of the antidot array. This comme
surability oscillation has been widely observed in square
tidot arrays,1–15 whose period and antidot diameter (d) run
over the wide range (a5200 nm;2 mm, d5100 nm;700
nm!. It has also been observed in various geometrical mo
lations ~triangular,16–23 rectangular,18,21–26 recursively
structured,16,27 and disordered arrays19,23,28–30!.

An AB-type oscillation has been observed superimpo
on the commensurability peak in antidot arrays having
small array period or large aspect ratiod/a.8,9,26 A large
Altshuler-Aronov-Spivak~AAS! oscillation has also bee
observed in triangular antidot arrays in weak magne
fields,20,31 although it will not be discussed in the following
Many theoretical works have been reported for the purp
of understanding these interesting phenomena.3,32–54

In a GaAs/AlxGa12xAs heterostructure with a typica
electron concentration the Fermi wavelength is 50–60 n
This indicates that there are only several one-dimensio
channels between neighboring antidots in arrays with a sm
aspect ratio and quantum effects play important roles in v
ous phenomena as well as causing the AB-type and A
oscillations. In fact, the commensurability peak itself is s
nificantly modified by quantum effects.39,50 Furthermore,
when the Fermi wavelength becomes comparable to the
tidot diameter at an extremely low electron concentrati
560163-1829/97/56~23!/15195~7!/$10.00
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quantum effects can appear even in an array having a s
aspect ratio or a large period.

In this paper, we numerically calculate the conductiv
tensor of square and triangular antidot arrays in a s
consistent Born approximation57 ~SCBA! using full-
quantum-mechanical energy bands and varying the as
ratio in a systematic manner. The results are compared
those obtained in classical calculations. In Sec. II, we brie
show the method used for the numerical calculations. In S
III, we show and discuss the numerical results in square
tidot arrays. In Sec. IV, we investigate the case of the tri
gular antidot arrays. A summary and conclusion are given
Sec. V.

II. MODEL FOR ANTIDOT ARRAYS

For square antidot arrays, the Hamiltonian to which t
electrons in 2DEG are assumed to be subjected are the s
as that in Ref. 55. For triangular antidot arrays, the elec
static potential describing the antidots is defined in a Wign
Seitz cell by51,52

V~x,y!5U0UcosS p~A3x1y!

2a D cosS py

a D
3cosS p~A3x2y!

2a D U4b/3

. ~2.1!

We assume the situation that the antidot diameter is fixe
100 nm and the steepness parameterb is changed depending
on the array period, whose values are listed in Table I in R
55.

The conductivity tensor is calculated by the Kub
formula56 in a SCBA method,57 where we assume a
quantum-number-independent self-energy for short-ra
scatterers.58–60,39,36The scattering strength is characteriz
by a mean free path given byl e5vFt, wherevF is the Fermi
velocity. Those conductivity tensors are compared with t
obtained from the classical Kubo formula,56 whose results
15 195 © 1997 The American Physical Society
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15 196 56SATOSHI ISHIZAKA AND TSUNEYA ANDO
for square antidot arrays with various periods have been
ready shown in Ref. 55. In order to rigidly compare the
sults in this paper, the phenomenological relaxation ti
used in the classical calculationt8 is determined so as to
coincide with that expected from the imaginary part of t
averaged self-energy in the SCBA calculation. Namely,
chooset8 in such a way that

\

t8
5

\

t

A~EF!

L2
;^ImS~EF!&, ~2.2!

where L is a linear dimension andA(EF) is the area in
which electrons are allowed to exist classically at the Fe
energy.

It has been pointed out that the fluctuation in the anti
potential can be quite large in actual antidot arrays.51,49 The
conductivity tensor is calculated without explicitly takin
into account such antidot fluctuations except that the ef
tive relaxation time is chosen to be considerably shorter t
that for an unpatterned GaAs/AlxGa12xAs heterostructure
We shall usel e /a51.9 for almost all calculations.

III. SQUARE ARRAYS

A. Commensurability peaks

Figure 1 shows calculated results for relatively small
pect ratios. The solid lines are obtained in SCBA atT54 K
and the dotted lines by the classical simulation atT50. In
the calculation the Fermi wavelength is scaled by the ar
period aslF /a50.3. This giveslF560 nm for d/a50.5

FIG. 1. Calculated~a! rxx , ~b! sxx , and ~c! 2sxy for square
arrays withd/a<0.4. The quantum results obtained in SCBA a
classical Monte Carlo results are shown by the solid and do
lines, respectively. The peak positions insxx are plotted in the inse
of ~b!. Each curve ofsxx is shifted successively by 0.53e2/h.
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corresponding to situations of existing experiments,
lF5150 nm for d/a50.2, which corresponds to electro
concentrations smaller than those of usual experiments b
suitable for clarification of quantum effects.

Quantum-mechanical and classical results are qua
tively quite similar. Many peak structures appear in the
agonal conductivitysxx and resistivityrxx . The magnetic-
field positions of some peaks are shifted with the increas
d/a.55 If we make a detailed comparison between t
quantum-mechanical and classical results forrxx , we notice
some differences: Whend/a50.2, quantumrxx has three
commensurability peaks ata/r c;0.7, 1.3, and 1.9~the peaks
at a/r c;2.3 and 3 are essentially a Shubnikov–de Haas
cillation!. The peaks ata/r c;0.7 and 1.3 do not agree wit
those of the classicalrxx for the same aspect ratio, but the
are closer to corresponding classical peaks ford/a50.3.
Similarly, the quantum peak ata/r c50.5 for d/a50.3 is
close to the classical peak ford/a50.4. These correspon
dences are shown by arrows in Fig. 1~a!. Further, only two
commensurability peaks are resolved in quantumrxx for
d/a50.3 as in classicalrxx for d/a50.4, while three peaks
are resolved in classicalrxx even ford/a50.3.

The inset of Fig. 1 shows the peak positions ofsxx as a
function of d/a. The peaks of quantumsxx’s tend to be
shifted toward classical ones with largerd/a. It is notewor-
thy that both classical and quantum-mechanical results g
the first commensurability peak forrxx at the same magneti
field independent ofd/a. This is highly likely to be just a
coincidence because a structure appearing inrxx is deter-
mined by those ofsxx andsxy in a complicated way depend
ing on their relative importance.55

When the aspect ratio is small, it is natural to regard
antidots as scatterers with a small diameter (;d).53 Classi-
cally we haves5(4/3)d, where s is the transport cross
section defined as

s5E
2p

p

s~u!~12cosu!du, ~3.1!

with s(u) being the differential cross section. Quantum m
chanically, the cross section is enhanced over the class
one because of diffraction effects. Figure 2 shows the qu
tum cross section as a function ofkFd for a hard-wall anti-
dot, wherekF is the Fermi wave number. It contains als
effective antidot diameters for quantum results determin

d

FIG. 2. The transport cross section normalized by the class
value (4/3)d as a function ofkFd for a hard-wall antidot. The
values estimated by the position shift insxx peaks are also plotted
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56 15 197QUANTUM TRANSPORT IN SQUARE AND TRIANGULAR . . .
from the data given in the inset of Fig. 1 and the corresp
dences given by the arrows in Fig. 1~a!. It is clear that es-
sential features of the quantum results can be understoo
terms of the enhancement in the effective antidot diamet

Three commensurability peaks are resolved and their
sitions are close to corresponding classical results
d/a50.3 in a previous calculation made within a simil
approximation scheme.36 There is an important difference i
the Fermi wavelength between the previous and present
culation, i.e.,lF /a50.3 in the latter case whilelF /a50.16
in the former case. The quantum effect is emphasized c
siderably in arrays with large Fermi wavelength.

Figure 3 shows results for systems with a larger asp
ratio (0.5<d/a<0.6). It contains also results for a short
Fermi wavelengthlF /a50.26 andd/a50.52. Classicalsxx
andsxy have essentially no structures and, therefore, on
very broad peak appears in classicalrxx . The important fea-
ture common to all the results is the appearance of a di
quantumsxy arounda/r c;2. As a result quantumrxx ex-
hibits a large commensurability peak ata/r c;2. For
d/a50.6 some broad feature appears in quantumsxx , which
further enhances the commensurability peak ofrxx .

When a periodic potential is introduced in magne
fields, each Landau level splits into different magnetic mi
bands depending onF/F0, with F being the flux per unit
cell defined byF5Ba2 andF0 the flux quantum defined by
F05ch/e.61 When the potential modulation is weak, the e
ergy spectrum has a fractal character known as Hofstad
butterfly.61 The quantized value of the Hall conductivity o
each magnetic miniband for the fractal spectrum can t

FIG. 3. Calculated~a! rxx , ~b! sxx , and ~c! 2sxy in square
arrays withd/a50.5 and 0.6.rxx andsxx for d/a50.6 are shifted
by 0.13h/e2 and e2/h, respectively.rxx , sxx , and 2sxy for
lF /a50.26 are shifted by 0.33h/e2, 23e2/h, and 0.53e2/h, re-
spectively.
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various integers negative or positive.62 A relation between
the broken fractal spectrum and the classical chaotic dyn
ics has been pointed out.63

In Fig. 4, we show calculated Hall conductivity in th
absence of scattering forF/F056 (a/r c51.8 for the Fermi
energyEF /\v55.8), in which each Landau level splits int
six magnetic minibands. The quantized Hall conductivity
each magnetic miniband (sxy

band) is shown in the lower pane
of each figure~each horizontal line corresponds to the wid
of each magnetic miniband!. Many magnetic minibands
overlap each other,34 but some small energy gaps are st
present. The positions and quantized values of the total H
conductivity in these small energy gaps are shown ab
each figure.

With the increase of the energy, the quantized Hall co
ductivity of minibands starts to fluctuate and takes both po
tive and negative values. For small aspect ratiod/a50.2 the
fluctuation is not so big and consequently the total Hall co
ductivity stays almost the same as the ‘‘ideal’’ valu
2sxy5nec/B, where n is the electron concentration ob
tained by usingA(E). With the increase ofd/a, the fluctua-
tion becomes larger and many minibands giving a nega
value for quantized2sxy

bandappear. As a result the Hall con
ductivity becomes much smaller than the ideal value.

Figure 5 gives the distribution of minibands giving a po
tive ~open circle! and negative~closed circle! 2sxy

band to-
gether with corresponding energy spectra. This distribut
is obtained by averaging over minibands whose energy s

FIG. 4. Calculated Hall conductivity without any disorder
zero temperature in square arrays at a magnetic field correspon
to F/F056. The quantized value of the Hall conductivity of eac
magnetic miniband is shown at the bottom of each panel. The
tical line indicates the Fermi energy.
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15 198 56SATOSHI ISHIZAKA AND TSUNEYA ANDO
ration is less than 0.0753EF . The figure contains a parabo
corresponding to the conditiona/r c52 and semiclassically
quantized energy levels~only for d/a50.5) associated with
periodic orbit a localized in a space surrounded by fo
neighboring antidots18 as illustrated in the inset.

First, we notice that in high magnetic fields the miniban
contributing to a positive2sxy

band are distributed regularly
With the decrease of the field for a fixed energy, the dis
bution starts to be less regular. This magnetic field roug
corresponds to that given by the condition that miniban
belonging to different Landau levels start to cross each o
and, therefore, their mixing becomes appreciable. An
ample of such two magnetic minibands are shown by das
lines in Fig. 5~c!. This magnetic field is slightly higher tha
that given by the conditiona/r c52 for d/a50.6, similar for
d/a50.5, and smaller ford/a50.2. Bands contributing to a
negative quantized value of2sxy

band begin to appear at simi
lar magnetic fields. The reduction of2sxy due to the pres-
ence of such minibands is not recovered by minibands ly
higher in energy and giving a positive contribution to2sxy

band

even for largerEF . In fact, the results ford/a50.52 and
lF /a50.26 shown in Fig. 3 corresponds to the Fermi ene
given by the horizontal line in Fig. 5.

The actual Hall conductivity rapidly deviates from th
band Hall conductivity with the decrease of the magne
field due to the presence of scattering. This is presumably
reason that the reduction in the Hall conductivity disappe
in Fig. 3 belowa/r c;1.5 in spite of the presence of min
bands giving negative2sxy

band even in such weak magneti
fields.

B. Aharonov-Bohm–type oscillation

In Fig. 6, calculatedrxx at T51 K is shown by solid lines
for square arrays. An AB-type oscillation appears for all

FIG. 5. Magnetic minibands in square arrays. The closed
open circles indicate the minibands with negative and posi
quantized Hall conductivity, respectively. The parabolic line in ea
panel indicates the conditiona/r c52. The energy levels associate
with periodic orbit a shown in the inset are shown in~b!. The
horizontal line in ~c! gives the Fermi energy corresponding
d/a50.52 andlF /a50.26 shown in Fig. 3. The dashed lines in~c!
give examples of minibands associated with different Landau
els.
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pect ratios. The density of states~DOS! has also an oscilla-
tory structure and its peak positions are indicated by so
triangles. The positions of the Landau levels without a p
tential modulation are shown by open triangles. The cond
tivities sxx and sxy also have a fine oscillation, althoug
they are not explicitly shown here. The results ford/a50.5
are the same as those discussed previously.39

Whend/a50.2, the peak position ofrxx arounda/r c;2
coincides with that of the density of states~DOS! peak and is
very close to that of a Landau level. In this case we ha
usxyu@sxx and usxyu has a dip at the DOS peak. These a
the feature expected in the usual Shubnikov–de Haas~SdH!
oscillation in systems without a potential modulation.57 For
lager aspect ratios,d/a50.3 and 0.4, the oscillatory behavio
remains to be that of an SdH oscillation, although the amo
of the positional shift from the Landau level becomes sign
cant and the form of the oscillation becomes less regula

For arrays withd/a50.5, the phase of the oscillation o
rxx is completely opposite to that of DOS arounda/r c;2. In
fact, usxyu tends to have a peak at the DOS peak arou
a/r c;2 quite in contrast to the conventional SdH behavior39

The correlation between DOS andrxx seems to be recovere
for d/a50.6, except for a few peaks ofrxx in the vicinity of
a/r c52. Note, however, thatsxx.usxyu even in this case
contrary to the expected SdH behaviorsxx,usxyu as in the
case ofd/a50.2.

Figure 7 shows the relaxation time dependence of the
cillation. When d/a50.2, the oscillation amplitude fo
l e /a51.9 andl e /a53.3 are almost the same. In the case

d
e
h

-

FIG. 6. Calculatedrxx at T51 K in square arrays. The pea
position of DOS is indicated by solid triangles and the position
Landau levels in the absence of a potential modulation is shown
open triangles in~a!.
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56 15 199QUANTUM TRANSPORT IN SQUARE AND TRIANGULAR . . .
d/a50.5, however, the oscillation amplitude is quite sen
tive to the relaxation time and becomes about a half when
mean free path is reduced froml e /a53.3 to 1.9, in a quali-
tative agreement with a previous calculation.49 These results
suggest that the AB-type oscillation changes its qualita
feature from that of an SdH oscillation ford/a,0.4 to that
of a new oscillation ford/a.0.4.

There are various possible mechanisms giving such qu
tum oscillations. Energy levels obtained by a semiclass
quantization of periodic orbits lead to peaks in both DOS a
sxx and dips in2sxy .41,42,39 The level repulsion betwee
runaway orbits contributing greatly to the diffusion an
quantized periodic orbits may give rise to an oscillation
the conductivity out of phase with DOS.39 A quasiperiodic
change in the band structure with periodF0 related to the
Hofstadter butterfly spectrum may also contribute to obse
able oscillations.37 It is likely that the actual AB oscillation is
a result of a complicated combination of such differe
mechanisms.

IV. TRIANGULAR ARRAYS

Figure 8 shows calculated results for triangular arra
~solid lines, SCBA atT54 K; dotted lines, classical a
T50). For a small aspect ratio (d/a50.2), many commen-
surability peaks appear insxx together with a step-function
like structure insxy qualitatively in agreement with the cas
of square arrays. The big difference lies in the fact that
first peak is rapidly shifted to the lower-magnetic-field si
with the increase ofd/a, which is much more appreciable i
quantum results. In fact the first peak in quantumsxx seems
to merge into the second peak already ford/a50.3, while
classicalsxx has separate two peaks. The difference betw
quantum and classical results can again be understood e
tially in terms of a quantum enhancement of the effect
antidot diameter.

It is interesting to note that the position of the first com
mensurability peak inrxx is shifted to the lower-field side in

FIG. 7. rxx in square arrays with~a! d/a50.2 and~b! d/a50.5
for two values of the electron mean free path.
-
e

e

n-
al
d

f

-

t

s

e

n
en-
e

contrast to the case of square arrays in which the first p
stays ata/r c;2 independent ofd/a. This big difference in
the behavior of the first commensurability peak arises p
sumably because orbits contributing to the diffusion coe
cient most are easily disturbed by the presence of other
tidots in triangular arrays. In fact, a simple consideration
a hard-wall antidot shows that the orbit starts to be infl
enced already ford/a.(A321)/2'0.37 in the triangular
case in contrast tod/a.2/3'0.67 in the square case as
shown in the inset of Fig. 8~a!.

When d/a50.5, both quantum-mechanical and classi
rxx have no commensurability peaks. Furthermore, ther
no significant difference between quantum and classicalsxx
and sxy . Calculations of the band Hall conductivity reve
that minibands giving a negative2sxy

band appear also in tri-
angular arrays, but they always lie close to minibands wit
positive 2sxy . They tend to cancel each other and, the
fore, a reduction in the quantum Hall conductivity ata/r c;2
is absent in triangular arrays.

It should be noted that three commensurability peaks
pearing in classicalrxx at a/r c51.95, 1.12, and 0.78 agre
well with the experimental results given in Refs. 16, 17, a
18, where these three peaks are denoted by 1, 3, and 7
spectively. In these experiments, the Fermi wavelength
much shorter than that used in the present calculation
quantum effects are much weaker.

In Fig. 9,rxx at T51 K is shown by solid lines for trian-
gular arrays. Ford/a50.2 and 0.3 the peak in the oscillatio
of rxx coincides with that of DOS and this oscillation
qualitatively explained as an SdH oscillation. Ford/a50.4
the oscillation ofrxx starts to have a phase different fro
that of DOS and ford/a50.5 it has a completely opposit

FIG. 8. Calculated~a! rxx , ~b! sxx , and~c! 2sxy in triangular
arrays. Each curve ofsxx is shifted successively by 0.53e2/h.
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15 200 56SATOSHI ISHIZAKA AND TSUNEYA ANDO
phase. Therefore, the oscillation changes its qualitative
havior atd/a;0.4. Although results are not shown explicit
here, the antiphase oscillation observed for larged/a some-
times disappears and turns into an SdH-like oscillation w
the Fermi energy is changed. Further, calculations show
the periodic orbitb surrounding an antidot is more stable
triangular arrays than in square arrays and consequently
corresponding DOS oscillation is larger.

V. SUMMARY

We have calculated the conductivity tensor and mag
toresistivity in square and triangular antidot arrays by s
tematically varying the aspect ratio in a self-consistent B
approximation and compared them with those of a class
calculation. The results are summarized as follows.

FIG. 9. Calculatedrxx in triangular arrays atT51 K.
n

.

.

.
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e-

n
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-
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In arrays with a small aspect ratio, an antidot can be
garded as an almost independent scatterer with a small c
section. When the Fermi wavelength becomes large
comparable to the antidot diameter, the effective diamete
an antidot is enhanced over the classical value due to diff
tion effects. As a result, the position of the quantum co
mensurability peaks is shifted toward the peak position in
classical system with a larger aspect ratio. This quantum
fect is common to square and triangular arrays.

In strong magnetic fields, the Hall conductivity becom
dominated bysxy

band determined by magnetic miniband
With the decrease of the magnetic field, minibands begin
overlap each other and the mixing causes the appearan
bands giving a negative quantized value of2sxy . In square
arrays this occurs roughly ata/r c;2 for a large aspect ratio
leading to a reduction in the Hall conductivity and an e
hancement of the commensurability peak of the resistiv
For arrays with a smaller aspect ratio, such minibands app
only in weaker magnetic fields where the Hall conductivity
no longer determined by the quantized values of miniba
because of strong scattering effects and such quantum ef
are not important. In triangular arrays, they are always
companied by minibands giving a positive value and qu
tum effects are again not important.

At low temperatures, fine oscillations appear being sup
imposed on the commensurability peak. The oscillation ha
character similar to a Shubnikov–de Haas oscillation for
rays with a small aspect ratio, i.e., it has a phase the sam
that of the density of states. For arrays with a large asp
ratio, the oscillation tends to have a phase opposite to tha
the density of states. The crossover occurs aroundd/a50.4.
The oscillation of the former type seems to be more imp
tant in triangular arrays.
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