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Quantum transport in square and triangular antidot arrays with various periods
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Quantum effects on electron transport in square and triangular antidot arrays are studied in a self-consistent
Born approximation based on full-quantum-mechanical energy bands. When the array period is large and the
Fermi wavelength is comparable to the antidot diameter, a quantum effect increases the effective antidot
diameter and shifts some commensurability peaks toward magnetic fields different from classical ones. When
the array period is small, the Hall conductivity is reduced due to the appearance of magnetic minibands giving
a quantized value opposite to that of the usual Landau levels and the commensurability peak is significantly
enhanced. The Aharonov-Bohm-—type oscillation superimposed on the commensurability peak changes its
feature with the decrease of the perip80163-18207)06847-1

I. INTRODUCTION guantum effects can appear even in an array having a small
aspect ratio or a large period.

Lateral surface superlattices with a strong electrostatic po- In this paper, we numerically calculate the conductivity
tential modulation are called antidot arrays, where two-tensor of square and triangular antidot arrays in a self-
dimensional electron ga@DEG) at the GaAs/AlGa; _,As  consistent Born approximatioh (SCBA) using full-
heterostructure cannot penetrate into the high potential antjuantum-mechanical energy bands and varying the aspect
dot region. In such antidot arrays, oscillations in magnetoreratio in a systematic manner. The results are compared with
sistances have been observed such as the commensurabilifgse obtained in classical calculations. In Sec. Il, we briefly
oscillation and the Aharonov-BohiiAB) —type oscillation. show the method used for the numerical calculations. In Sec.
The purpose of the present paper is to clarify quantum effectll, we show and discuss the numerical results in square an-
on these oscillations in square and triangular arrays. tidot arrays. In Sec. IV, we investigate the case of the trian-

The resistivity in antidot arrays exhibits a peak around agular antidot arrays. A summary and conclusion are given in
magnetic field satisfying the commensurability conditionsSec. V.

2r./a=1, \2, ..., wherer, is the classical cyclotron ra-

dius anda is the period of the antidot array. This commen- Il. MODEL FOR ANTIDOT ARRAYS

surability oscillation has been widely observed in square an- _ o _

tidot arrays];_lS whose period and antidot diamet&j’)(run For square antidot arrays, the Hamiltonian to which the

over the wide rangea=200 nm~2 xm,d=100 nm~700 electrons in 2DEG are assumed to be subjected are the same
nm). It has also been observed in various geometrical modu@S that in Ref. 55. For triangular antidot arrays, the electro-

lations  (triangular'®~2  rectangulat®2:-2 recursively sta_tic potentiﬁIS 2describing the antidots is defined in a Wigner-
structured®?” and disordered arraj&*>2%-%. Seitz cell by™

An AB-type oscillation has been observed superimposed
on the commensurability peak in antidot arrays having a 77(\/§X+y) Ty
small array period or large aspect ratida.®%?° A large V(xy)=Uo COS( 2a COS{?
Altshuler-Aronov-Spivak(AAS) oscillation has also been 4pi3

observed in triangular antidot arrays in weak magnetic m(V3X—
9 y 9 xeos{—(\/— ) 2.1

fields?%3! although it will not be discussed in the following. 2a
Many theoretical works have been reported for the purpose
of understanding these interesting phenometia> We assume the situation that the antidot diameter is fixed at
In a GaAs/ALGa;_,As heterostructure with a typical 100 nm and the steepness paramgtés changed depending
electron concentration the Fermi wavelength is 50—60 nmon the array period, whose values are listed in Table | in Ref.
This indicates that there are only several one-dimensiond5.
channels between neighboring antidots in arrays with a small The conductivity tensor is calculated by the Kubo
aspect ratio and quantum effects play important roles in variformula® in a SCBA method’ where we assume a
ous phenomena as well as causing the AB-type and AAguantum-number-independent self-energy for short-range
oscillations. In fact, the commensurability peak itself is sig-scatterers®-5°393€The scattering strength is characterized
nificantly modified by quantum effect&>® Furthermore, by a mean free path given by=uv g7, wherev is the Fermi
when the Fermi wavelength becomes comparable to the awelocity. Those conductivity tensors are compared with that
tidot diameter at an extremely low electron concentrationpbtained from the classical Kubo formufwhose results
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FIG. 2. The transport cross section normalized by the classical
value (4/33 as a function ofkzd for a hard-wall antidot. The

[ Classical \ values estimated by the position shiftd, peaks are also plotted.
. () AZZ:_?Z i corresponding to situations of existing experiments, but
S 6r / B Ne=150 nm ford/a=0.2, which corresponds to electron
L 7 concentrations smaller than those of usual experiments but is
5 ar suitable for clarification of quantum effects.
I i Quantum-mechanical and classical results are qualita-
2r tively quite similar. Many peak structures appear in the di-
0 agonal conductivityo,, and resistivityp,,. The magnetic-

alre field positions of some peaks are shifted with the increase of
d/a.>® If we make a detailed comparison between the

FIG. 1. Calculateda) pyx, (b) oy, and(c) — o, for square  quantum-mechanical and classical resultsggy, we notice
arrays withd/a<0.4. The quantum results obtained in SCBA and some differences: Whed/a=0.2, quantump,, has three
classical Monte Carlo results are shown by the solid and dotte¢ommensurability peaks afr.~0.7, 1.3, and 1.9the peaks
lines, respectively. The peak positionsd, are plotted in the inset ata/r.~2.3 and 3 are essentially a Shubnikov—de Haas os-
of (b). Each curve ooy, is shifted successively by 0:6e’/h. cillation). The peaks aa/r.~0.7 and 1.3 do not agree with

those of the classical,, for the same aspect ratio, but they
for square antidot arrays with various periods have been akre closer to corresponding classical peaks déa=0.3.
ready shown in Ref. 55. In order to rigidly compare the re-Similarly, the quantum peak a/r.=0.5 for d/a=0.3 is
sults in this paper, the phenomenological relaxation timejose to the classical peak fafa=0.4. These correspon-
used in the classical calculatiori is determined so as t0 dences are shown by arrows in Figall Further, only two
coincide with that expected from the imaginary part of thecommensurability peaks are resolved in quantpm for
averaged self-energy in the SCBA calculation. Namely, wej/a=0.3 as in classicab,, for d/a=0.4, while three peaks
chooser’ in such a way that are resolved in classical,, even ford/a=0.3.

The inset of Fig. 1 shows the peak positionsogf, as a
function of d/a. The peaks of quanturar,,’s tend to be
shifted toward classical ones with largefa. It is notewor-
thy that both classical and quantum-mechanical results give
where L is a linear dimension andi(Eg) is the area in the first commensurability peak fer, at the same magnetic
which electrons are allowed to exist classically at the Fermfield independent ofi/a. This is highly likely to be just a
energy. coincidence because a structure appearing,inis deter-

It has been pointed out that the fluctuation in the antidotnined by those obr,, andoy, in a complicated way depend-
potential can be quite large in actual antidot arrZyS.The ing on their relative importanc®.
conductivity tensor is calculated without explicitly taking ~ When the aspect ratio is small, it is natural to regard the
into account such antidot fluctuations except that the effecantidots as scatterers with a small diameterdj.>® Classi-
tive relaxation time is chosen to be considerably shorter thagally we haveo=(4/3)d, where ¢ is the transport cross
that for an unpatterned GaAs/Aba; ,As heterostructure. section defined as
We shall usd./a=1.9 for almost all calculations.

h_h AGEe)

T/ T L2

~(Im3(Ep)), (2.2

UZJW o (6)(1—cosd)do, 3.1)

Ill. SQUARE ARRAYS
A. Commensurability peaks with o(6) being the differential cross section. Quantum me-
Figure 1 shows calculated results for relatively small as-chanically, the cross section is enhanced over the classical
pect ratios. The solid lines are obtained in SCBATat4 K one because of diffraction effects. Figure 2 shows the quan-
and the dotted lines by the classical simulatioriTat0. In  tum cross section as a function lfd for a hard-wall anti-
the calculation the Fermi wavelength is scaled by the arragot, wherekg is the Fermi wave number. It contains also
period as\g/a=0.3. This gives\c=60 nm ford/a=0.5 effective antidot diameters for quantum results determined
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FIG. 3. Calculateda@) pyy, (b) oy, and(c) —oyy in square Energy(ho)
arrays withd/a=0.5 and 0.6p,, and oy, for d/a=0.6 are shifted
by 0.1xh/e* and €?/h, respectively.p,,, oy, and —ao,, for FIG. 4. Calculated Hall conductivity without any disorder at
Ar/a=0.26 are shifted by 0:8h/e?, 2xe?/h, and 0.5<e?/h, re- zero temperature in square arrays at a magnetic field corresponding
spectively. to ®/®,=6. The quantized value of the Hall conductivity of each

magnetic miniband is shown at the bottom of each panel. The ver-

from the data given in the inset of Fig. 1 and the correspontical line indicates the Fermi energy.
dences given by the arrows in Fig@l It is clear that es-
sential features of the quantum results can be understood Karious integers negative or positieA relation between
terms of the enhancement in the effective antidot diameter the broken fractal spectrum and the classical chaotic dynam-

Three commensurability peaks are resolved and their pacs has been pointed ofit.
sitons are close to corresponding classical results for In Fig. 4, we show calculated Hall conductivity in the
d/a=0.3 in a previous calculation made within a similar absence of scattering fdr/®,=6 (a/r.=1.8 for the Fermi
approximation schem®.There is an important difference in energyEg /i w=5.8), in which each Landau level splits into
the Fermi wavelength between the previous and present ca$ix magnetic minibands. The quantized Hall conductivity of
culation, i.e.\g/a=0.3 in the latter case whilez/a=0.16  each magnetic minibandreéy‘”‘ﬁ is shown in the lower panel
in the former case. The quantum effect is emphasized corsf each figurgeach horizontal line corresponds to the width
siderably in arrays with large Fermi wavelength. of each magnetic miniband Many magnetic minibands

Figure 3 shows results for systems with a larger aspeatverlap each othe¥ but some small energy gaps are still
ratio (0.5=d/a<0.6). It contains also results for a shorter present. The positions and quantized values of the total Hall
Fermi wavelength\-/a=0.26 andd/a=0.52. Classicab,, conductivity in these small energy gaps are shown above
ando,, have essentially no structures and, therefore, only ach figure.
very broad peak appears in classipgl. The important fea- With the increase of the energy, the quantized Hall con-
ture common to all the results is the appearance of a dip ifluctivity of minibands starts to fluctuate and takes both posi-
quantumay, arounda/r,~2. As a result quantump,, ex-  tive and negative values. For small aspect refia=0.2 the
hibits a large commensurability peak at/r.~2. For fluctuation is not so big and consequently the total Hall con-
d/a=0.6 some broad feature appears in quanttgn which ~ ductivity stays almost the same as the “ideal” value
further enhances the commensurability pealpgf. —oyy=nedB, wheren is the electron concentration ob-

When a periodic potential is introduced in magnetictained by usingA(E). With the increase ofi/a, the fluctua-
fields, each Landau level splits into different magnetic mini-tion becomes larger and many minibands giving a negative
bands depending of®/®, with ® being the flux per unit value for quantized- o5 “appear. As a result the Hall con-
cell defined by® =Ba? and®, the flux quantum defined by ductivity becomes much smaller than the ideal value.
®,=ch/e.®* When the potential modulation is weak, the en-  Figure 5 gives the distribution of minibands giving a posi-
ergy spectrum has a fractal character known as Hofstadtertve (open circlg¢ and negative(closed circlg —o';g"d to-
butterfly®* The quantized value of the Hall conductivity of gether with corresponding energy spectra. This distribution
each magnetic miniband for the fractal spectrum can takés obtained by averaging over minibands whose energy sepa-
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FIG. 5. Magnetic minibands in square arrays. The closed and |~ T=4K
open circles indicate the minibands with negative and positive 0.2k T
quantized Hall conductivity, respectively. The parabolic line in each (d) d/a=0.5 .
panel indicates the conditical'r .=2. The energy levels associated 0.4} T T e T T T
with periodic orbita shown in the inset are shown ifo). The 03k s
horizontal line in(c) gives the Fermi energy corresponding to b
d/a=0.52 and\ /a=0.26 shown in Fig. 3. The dashed lines(@ 0.2F N
give examples of minibands associated with different Landau lev- E (e) d/9=0.6 . . Agfa=0.3]
els. 0'10 1 2 3
alr,

ration is less than 0.035E; . The figure contains a parabola »
corresponding to the conditioa/r ;=2 and semiclassically FIG. 6. Calculatecp,x at T=1 K in square arrays. The peak
quantized energy level®nly for d/a=0.5) associated with position of DOS is indicated by solid triangles and the position of
periodic orbita localized in a space surrounded by four Landau_ levels i_n the absence of a potential modulation is shown by
neighboring antidof§ as illustrated in the inset. open triangles ir).

First, we notice that in high magnetic fields the minibands

contributing to a positive- oPand are distributed regularly. pect ratios. The density of statd30S) has also an oscilla-

With the decrease of the fieig for a fixed energy, the distritory structure and its peak positions are indicated by solid

bution starts to be less regular. This magnetic field roughlyfiangles. The positions of the Landau levels without a po-
corresponds to that given by the condition that minibandd€ntial modulation are shown by open triangles. The conduc-
belonging to different Landau levels start to cross each othdfViti€s o, and o, also have a fine oscillation, although
and, therefore, their mixing becomes appreciable. An exthey are not explicitly shown here. The results da=0.5
ample of such two magnetic minibands are shown by dashe@® the same as those discussed previctisly.

lines in Fig. §c). This magnetic field is slightly higher than ~ Whend/a=0.2, the peak position giy, arounda/r.~2

that given by the conditioa/r ;=2 for d/a=0.6, similar for ~ c0incides with that of the density of stat@OS) peak and is
d/a=0.5, and smaller fod/a=0.2. Bands contributing to a very close to that of a Landau level. In this case we have

negative quantized value of 0% begin to appear at simi- |9xy/> oxx and|oy| has a dip at the DOS peak. These are
g q Ixy g bp the feature expected in the usual Shubnikov—de Hads)

lar magnetic fields. The reduction efo,, due to the pres- AR . .
ence of such minibands is not recovered by minibands Iyingfsc'”at'on in systems without a potential modulatidrr-or

. . . o Do band ager aspect ratiogl/a=0.3 and 0.4, the oscillatory behavior
zl?ehne:‘(lj? T:regr)éand"?';g;? &:hpeosrggﬁ tgofnot g?gtloonggrgn d remains to be that of an SdH oscillation, although the amount
N /a=0.26 ghowFr{ i Fi 3 corresnonds to th(a_Férmi ener of the positional shift from the Landau level becomes signifi-

plam 9. P eant and the form of the oscillation becomes less regular.

given by the horizontal line in Fig. 5. For arra . - _—
s . : . ys withd/a=0.5, the phase of the oscillation of
The actual Hall conductivity rapidly deviates from this . is completely opposite to that of DOS aro ~2.In

band Hall conductivity with the decrease of the magneticp
field due to the presence of scattering. This is presumably thfeaCt’ |UXV| tends to have a peak at the DOS peak around

reason that the reduction in the Hall conductivity disappear fre~2 qum_a in contrast to the conventional SdH behadfor.
- . . . .~ The correlation between DOS apd, seems to be recovered
in Fig. 3 belowa/r.~1.5 in spite of the presence of mini-

- . band . . for d/a=0.6, except for a few peaks pf, in the vicinity of
]Ei)zlr(\;ls giving negative- o,y even in such weak magnetic alr.=2. Note, however, thatfxx>|0xy| even in thig case
' contrary to the expected SdH behaviag,<|oy,| as in the
case ofd/a=0.2.
Figure 7 shows the relaxation time dependence of the os-
In Fig. 6, calculategh,, at T=1 K is shown by solid lines cillation. When d/a=0.2, the oscillation amplitude for
for square arrays. An AB-type oscillation appears for all asd./a=1.9 andl./a=3.3 are almost the same. In the case of

B. Aharonov-Bohm-type oscillation
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0

d/a=0.5, however, the oscillation amplitude is quite sensi-
tive to the relaxation time and becomes about a half when the
faive agrebment wih a previous calculaithess results FIG 8 CAUBIEAR pos (9 7, and(©) oy n gl
. S "™ arrays. Each curve af,, is shifted successively by 0:&?/h.

suggest that the AB-type oscillation changes its qualitative
feature from that of an SdH oscillation fara<<0.4 to that
of a new oscillation fod/a>0.4. contrast to the case of square arrays in which the first peak

There are various possible mechanisms giving such quarstays ata/r.~2 independent ofl/a. This big difference in
tum oscillations. Energy levels obtained by a semiclassicalhe behavior of the first commensurability peak arises pre-
guantization of periodic orbits lead to peaks in both DOS andsumably because orbits contributing to the diffusion coeffi-
oxx and dips in— oy, .**23 The level repulsion between cient most are easily disturbed by the presence of other an-
runaway orbits contributing greatly to the diffusion and tidots in triangular arrays. In fact, a simple consideration for
quantized periodic orbits may give rise to an oscillation ofa hard-wall antidot shows that the orbit starts to be influ-
the conductivity out of phase with DOS.A quasiperiodic enced already fod/a>(\/3—1)/2~0.37 in the triangular
change in the band structure with peridg, related to the case in contrast td/a>2/3~0.67 in the square case as is
Hofstadter butterfly spectrum may also contribute to observshown in the inset of Fig.(®&).
able oscillations! It is likely that the actual AB oscillation is When d/a=0.5, both quantum-mechanical and classical
a result of a complicated combination of such differentp,, have no commensurability peaks. Furthermore, there is
mechanisms. no significant difference between quantum and classigal
and o, . Calculations of the band Hall conductivity reveal
that minibands giving a negative crfj;”d appear also in tri-
angular arrays, but they always lie close to minibands with a

Figure 8 shows calculated results for triangular arrayspositive —a,,. They tend to cancel each other and, there-
(solid lines, SCBA atT=4 K; dotted lines, classical at fore, a reduction in the quantum Hall conductivityadt .~ 2
T=0). For a small aspect ratial{a=0.2), many commen- is absent in triangular arrays.
surability peaks appear im,, together with a step-function- It should be noted that three commensurability peaks ap-
like structure ino, qualitatively in agreement with the case pearing in classicap,, ata/r.=1.95, 1.12, and 0.78 agree
of square arrays. The big difference lies in the fact that thevell with the experimental results given in Refs. 16, 17, and
first peak is rapidly shifted to the lower-magnetic-field side18, where these three peaks are denoted by 1, 3, and 7, re-
with the increase ofi/a, which is much more appreciable in spectively. In these experiments, the Fermi wavelength is
guantum results. In fact the first peak in quanto) seems much shorter than that used in the present calculation and
to merge into the second peak already @ida=0.3, while  quantum effects are much weaker.
classicalo,, has separate two peaks. The difference between In Fig. 9, ps, at T=1 K is shown by solid lines for trian-
guantum and classical results can again be understood ess@uiar arrays. Fod/a=0.2 and 0.3 the peak in the oscillation
tially in terms of a quantum enhancement of the effectiveof py, coincides with that of DOS and this oscillation is
antidot diameter. gualitatively explained as an SdH oscillation. Fbia=0.4

It is interesting to note that the position of the first com-the oscillation ofp,, starts to have a phase different from
mensurability peak ip,, is shifted to the lower-field side in that of DOS and ford/a=0.5 it has a completely opposite

IV. TRIANGULAR ARRAYS
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In arrays with a small aspect ratio, an antidot can be re-

OASE LL ™peoiroyr r v ] garded as an almost independent scatterer with a small cross
01E E section. When the Fermi wavelength becomes large and
F 3 comparable to the antidot diameter, the effective diameter of
0_055(3) d/a=0.2 . an antidot is enhanced over the classical value due to diffrac-
C L ! 3 tion effects. As a result, the position of the quantum com-
0.15F o7 - mensurability peaks is shifted toward the peak position in the
- . classical system with a larger aspect ratio. This quantum ef-
& 01F b fect is common to square and triangular arrays.
f:,  (b) d/a=0.3 E In strong ma%netic fields, the Hall conductivity becomes
% oaf — dominated byo22" determined by magnetic minibands.
Q@ - With the decrease of the magnetic field, minibands begin to

overlap each other and the mixing causes the appearance of
bands giving a negative quantized value-ofr,, . In square
arrays this occurs roughly afr .~ 2 for a large aspect ratio,
leading to a reduction in the Hall conductivity and an en-

0.2

0.1

04F AN E hancement of the commensurability peak of the resistivity.
0.3F— T=1K ANe? E For arrays with a smaller aspect ratio, such minibands appear
ook T=4K . only in weaker magnetic fields where the Hall conductivity is

-(d) da=05 5 no longer determined by the quantized values of minibands
0 . 1 . > 3 because of strong scattering effects and such quantum effects
a/fc are not important. In triangular arrays, they are always ac-
companied by minibands giving a positive value and quan-
tum effects are again not important.
At low temperatures, fine oscillations appear being super-

phase. Therefore, the oscillation changes its qualitative belmposed on the commensurability peak. The oscillation has a

havior atd/a~0.4. Although results are not shown explicitly character similar to a Shubnikov—de Haas oscillation for ar-

here, the antiphase oscillation observed for laig@ some- rays with a small aspect ratio, i.e., it has a phase the same as
o P ) ; - that of the density of states. For arrays with a large aspect
times disappears and turns into an SdH-like oscillation when__. o :

; . . ratio, the oscillation tends to have a phase opposite to that of
the Fermi energy is changed. Further, calculations show th

o : . N "3he density of states. The crossover occurs aralfad-=0.4.
the periodic orbitb surrpundlng an antidot is more stable in The oscillation of the former type seems to be more impor-
triangular arrays than in square arrays and consequently tf}gnt in triangular arrays

corresponding DOS oscillation is larger.

0.1

FIG. 9. Calculateg,, in triangular arrays alT=1 K.
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