PHYSICAL REVIEW B VOLUME 56, NUMBER 23 15 DECEMBER 1997-I

Theory of X~ at high magnetic fields

D. M. Whittaker and A. J. Shields
Toshiba Cambridge Research Centre, 260 Cambridge Science Park, Milton Road, Cambridge CB4 4WE, United Kingdom
(Received 18 April 1997; revised manuscript received 5 June)1997

We calculate, to high accuracy, the states of the quantum-well negatively charged &citora perpen-
dicular magnetic field. Two GaAs structures are considered: a 100-A “narrow” well and a 300-A “wide”
well. The calculations cover a magnetic field rangarfrd T to 50 T. In thenarrow well, the ground state is
shown to switch from singlet to triplet, at about 30 T, in agreement with the prediction of a triplet ground state
obtained using the lowest-Landau-level approximation. In the wide well, the singlet is still the ground state at
50 T because electron-hole correlations perpendicular to the well plane enhance its binding energy more than
that of the triplet. We also calculate electron-electron correlation functions foX thetates and demonstrate
that in the singlet the motions of the two electrons are correlated, while in the triplet they are anticorrelated. We
show that the triplet binding energies in the wide well are in good agreement with experimental data; the
singlet values, however, turn out to be considerably smaller than those medS0#63-18207)03347-X]

I. INTRODUCTION of the wave function keeps the two electrons apart and re-
duces the Coulomb repulsion. This observation is codefied as
The idea of a negatively charged exciton, ¥r, was one of Hund's rules, though it should be noted that there are
introduced by Lamperttas the semiconductor analog of the important exceptions, including the ground state of the He
negatively charged hydrogen atom HThe X~ consists of  atom, which is a singlet. The ground-state configuration con-
two electrons and a hole, which are bound together by theiists of two electrons in the same spatial state, so only the
mutual Coulomb interactions. Recent interest in the tWO-SymmetriC Sing|et combination, with opposing Spins, is al-
dimensional realization of this SyStem has followed the 0b1owed' In fact’ it can be shown rigorous'y that the ground
servation of X~ features in the spectra of high-quality re- giate of any two-electron “atom,” including , is necessar-
motely doped GaAs quantum wells by Shielelsal® and v 4 singlet in the absence of a magnetic field.
Finkelsteinet al” The behavior of the quantum weXl™ in X~ is rather different from He because the hole carries
elect.rlcff and magnetic fleld’sh_as supsequently bgen St.Ud'ed only one unit of positive charge, making the contributions of
and it is the latter that we investigate theoretically in thethe electron-electron and electron-hole interactions much

preﬁﬁgtxgaggg be thought of as a neutral excitdfwith a more comparable. The perturbative description given above
second electron bound to it. The binding energy of the first> 0 longer appropriate, though the_cla_SS|f|cat|on of states as
singlets or triplets is, of course, still rigorous. In the two-

electron to the hole, forminX?, is fairly large,~8 meV in . . r X ) .
a typical GaAs quantum well. The second electron binds bylimensionalX™”, only the singlet ground state is bound with-

polarizing theX® to produce a dipole. The interaction be- out a magnetic field. This bound state has been investigated

tween the electron and this dipole is weak, so the seconfy @ number of auth4ors, using variatiohaind quantum
electron binding energy is much less, typicaiiyl meV. Monte Carlo method$’

This description oK~ is inaccurate in that it suggests that ~ When a magnetic field is applied, the net chargexon
the two bound electrons are distinguishable. In fact, they argauses its center-of-mass motion to be quantized into Landau
identical, so a proper picture must include the antisymmetdevels? This contrasts with the behavior of the center of mass
of the state when the electrons are exchanged. The role of the neutralX®, which does not “feel” the magnetic field
exchange for the two electrons is the same as in the textbodakirectly and so has a continuous dispersion. The quantization
example of the He atom: The wave function factorizes into acauses theX™ states to be highly degeneraigee Sec. llI
spatial part and a spin part, which can have either ®taD  below). At fields greater than a few tesla, a second, triplet,
(singled or S=1 (triplet). The singlet state is antisymmetric bound state appeatshis happens because the Landau-level
under the exchange of spins, so to retain the correct overatlegeneracy means that the Pauli principle no longer provides
antisymmetry of the wave function, the spatial part must besuch a strong constraint as at zero field. Indeed, at very high
symmetric. The triplet, by contrast, is symmetric, so the corfields, it is generally believed that the triplet should, in ac-
responding spatial part must be antisymmetric. cordance with Hund’s rules, become the ground state. Our

For the He atom, the strong electron-nucleus interactior¢alculations confirm this, but only in narrower wells and then
dominates the electron-electron repulsion, which can thus benly at fields greater than 30 T.
treated as a perturbation. The atomic states are described by Although there is a large literature on tBe system, two
the single-particle quantum numbers of the two electronsglectrons bound to a positive donor, relatively little work has
with the singlet and triplet components of each such configubeen done orX™. Despite the superficial similarities of the
ration split by the exchange contribution to the perturbatiortwo systems, their behavior is both qualitatively and quanti-
energy shift. The triplet always has the lower energy of theatively very different, as we discuss in Sec. lll, so separate
two spin states because the antisymmetry of the spatial pacglculations are required. Previous studieXofbinding en-
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ergies in magnetic fields, by Ste et al,>'° have concen- confinement energy of tHeéh quantum well level andl w the

trated on the low-field regime, using variational wave func-electron cyclotron energy. The full form of the axial and

tions. They are exactly two dimensional, taking no accountadial wave functiong and ¢ are given in Appendix A. For

of the effects of finite well width. The only published high- the hole, the quantum-well paxt is generally different, but

field calculations use a restricted basis of lowest-Landauthe in-plane part is just the complex conjugate of the electron

level stateg!*?which gives unrealistic results for the fields wavefunction, which simply switches the sign of the expo-

of interest experimentally: Though the triplet state is reasonnent. As a result, electrons and holes with the same quantum

ably well described, the singlet is predicted to be unboundnumbers have angular momentum of opposite sign: For elec-

while in fact it is the ground state. The calculations wetronsM.=n—m and for holesM,,=m—n.

present are for the high-magnetic-field regime, with fields in  The wave function forX™ is expanded as a sum over

the range 5-50 T. Though a finite basis of single-particlesymmetrized trios of such single-particle states:

electron and hole states is used, careful attention is paid to

ensure good convergence with respect to the basis size. The 1

calculations take into account the effects of a finite well = g nmyllannMi) —={[11n1mq)|1onmy)

width, through both the modification of the in-plane Cou- {1,n,m} 2

lomb interaction and the inclusion of states from higher sub- +

bands in the basis. The higher subband states are particularly = ll2ngma)llanamy)} @

important for the 300-A quantum well, as they allow for The plus sign is taken for the spatially symmetric sindfet,

correlations perpendicular to the well plane. while the minus sign applies to the antisymmetric triplet. The
The layout of the remainder of the paper is as follows.notation{l,n,m} has been adopted in E(p) as a shorthand

Section Il gives an outline of the calculation. Sections Ill andfor a complete set of nine quantum numbsis, §;,,m;,) for

IV discuss the numerical results, both approximate and eXthe hole and I ,n;,m;),(l,,n,,m,) for the two electrons.

act. Section V describes the wave functions of Xhestates  There are actually eight independent quantum numbers since

and Sec. VI compares our theoretical binding energies withhe total angular momentunM = (n;—m;)+(n,—ms,)

experimental results for a 300-A GaAs quantum well. Ap-(m, —n,) is a constant of motion. A further constant for

pendices A and B give technical details of some of the moreyymmetric wells is the total parity of thé~, the product of

important results used in the numerical work. the parities of they for the two electrons and the hole. The
low-energy states, discussed in the present work, always
[l. CALCULATION have even parity because they are made primarily from basis

states in the lowest electron and hole subbands.

- : ; : The basis states described above are coupled together b
finite barriers and parabolic conduction and valence band?he Coulomb interactions between the two elgctronsgand be-y

Details of the material parameters used are given in Apper}-
. _ ' . ween the electrons and the hole. These conserve total angu-
dix A. The magnetic field is perpendicular to the quantumIar momentum and are two-particle interactions, so the mg—

well and the symmetric gauge= (Bxr)/2 is chosen so that trix element is nonzero only if the other particle has the same

angular momentun is a good quantum number. This sec- uantum numbers in both initial and final states. The ex-

tion describes the analytic and numerical methods we use t .
. - ; : Cchange symmetry of the electrons means that each matrix
obtain theX™ states using this model.

The major difficulty in anyX~ calculation lies in the large element has two parts. There is a direct term, which has the
J y 9€ same sign for singlet and triplet states, and an exchange
$8rm, which has opposite signs. Details of the evaluation of

Our model consists of a finite-width quantum well, with

There are three spatial coordinates for each of the three Pare pair matrix elements are given in Appendix B
t'Cle% giving a total_of nINe. Without a magn_etlc field, it is In principle, theX™ eigenstates are obtained by evaluat-
_relatlvely easy to S|mpl|fy _the problem making use of theing the Coulomb matrix elements within a basis consisting of
in-plane translational invariance to separate out the centeg sufficiently large set ofl,n,m} and diagonalizing the re-
°f'm'?‘ss motiorf. In a magnetic field, this separation Is St'l.l sulting matrix. However, to obtain the accuracy of the calcu-
possible, but the Hamiltonian becomes complicated, W'ﬂ]ations in this paper requires maximum values lof5

terms coupling the relative and center-of-mass parts. How-"" N o X -
ever, this approach was followed by Béet al®*for their 10, anam-~20. Simplistically taking these as upper lim

. . — 7 oy .
low-field work, using variational wave functions. its would give ~10" states, entailing the evaluation of an

For high fields, the most practical way to proceed is toimpossibly large number of matrix elements. The actual ba-

work in a basis of single-particle electron and hole states>”> used in the calculations is much smaller, typically a few

which are eigenstates in the absence of the Coulomb inteFg?llilsa%dthséit?s\/;laiﬂefﬁfcdtiot:]ecause they contribute  signifi-
action. The electron-electron and electron-hole interaction§2™.Y '
are then diagonalized within this basis. The basis states a[[ﬁ

The states used are chosen by an algorithm based upon
products of an axialZ) part, determined by the quantum- e idea of progressively expanding the basis set by trying
well confinement, and an in-plane,f) Landau-level wave

new states and then throwing away those that are not impor-
function. For electrons, the basis states take the form tant. This works because, though several thousand states are

needed to obtain high accuracy, tKé is reasonably well
lInmM)= x1(2) dpm(r) €M7, (1)  described by only a few basis states, withO and smalim
) ) ) ) andn. Hence a good initial approximation to te eigen-
This state is degenerate with respect to the azimuthal quagtate is obtained by diagonalizing within a relatively small
tum numberm and has energ¥,+(n+3)hw. E, is the  basis. The wave function is then examined and states whose
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TABLE I. Convergence of the total binding energy of the=0 The X° binding energies are calculated using a similar
singlet state in a 300-A well at 20 T, as a function of the probabilitydiagonanzaﬂon procedure to the¢™, though with only two
threshold below which basis states are rejected. particles the basis set is much smaller. In fact, for the opti-

— cally active X° with zero center-of-mass momentum, there
Probability Energy Number of are no terms coupling to the relative motion, so it is conve-
threshold (meV) basis states nient to transform to in-plane relative coordinates, further
1x 104 15.778 126 sim_plifying the calculatio.n. The resulf[s agree very weII' with
1x10°5 16.248 454 an mdgpendent cglculatlon of t!)é’ binding energy, using
1% 106 16.544 1633 numerical integration of the radial wave equation.
1x1077 16.714 5317
1x10°8 16.786 13314 Ill. LOWEST-LANDAU-LEVEL APPROXIMATION

The computation of th&X™ states is much simpler if the

amplitude lies below a threshold are removed from the basidiasis space is restricted to the lowest subbaild =1) and
The eigenstate is improved by systematically adding blockéhe lowest Landau levehll n=0). This sort of approxima-
of new states and repeating the diagonalization and winnowtion should be most valid at high fields, where the Landau-
ing processes. The order in which new states are tested igvel separation is large, so the higher Landau levels contrib-
rather arbitrary, and in practice unimportant, but it has to beute relatively little to theX™ wave function. Though it will
chosen in a way that allows convergence to be monitored. be shown later that the results obtained are unrealistic for the

The key parameter that determines the accuracy of thiexperimentally applied fields, the lowest-Landau-leIL )
method is the selection of the threshold below which basisipproximation has been widely used for other problems,
states are rejected. A smaller threshold gives greater accguch as the quantum Hall effect, and so it is of theoretical
racy, but increases the number of basis states that have to bgerest. In this section we show that our method reproduces
treated. Table | shows how the calculated binding energknown results foiX™ and the negatively charged donor sys-
depends on the probability threshold. For each order of magem (D ™), within the LLL approximation. We also contrast
nitude reduction in the threshold, the number of basis statethese two systems, which are superficially very similar, and
roughly doubles and the increment to the binding energy duexplain the significant differences in their behavior.
to the additional states halves. This suggests that for the X~ has essentially just one bound state in the LLL. This is
1x 108 threshold used in most of our calculations, the re-a triplet state. For a perfectly two-dimensional systéan
sidual error should be less than 0.1 meV. infinite well with d—0) it has a binding energy, relative to

The benefit of our method is that, though a similar num-X°, of 0.0544?/¢l ., wherel, is the magnetic length ane
ber of basis states are tested as would be involved in ththe dielectric constant. The present result agrees very well
equivalent large-scale diagonalization, only matrix elementsvith the value of 0.054&/¢| .. obtained by Palaciost al1?
coupling each of these to the few thousand retained statés a similar exact diagonalization calculation.
need be evaluated. The disadvantage is that it is not guaran- In the LLL, there are no singlet states that are bound,
teed to be as accurate: A state rejected early in the processlative to X°. The singlet ground state consists of a free
could become more important when some later states hawsectron and an exciton. Thus th&¢ ground state is ex-
been included. We believe that this is not a serious problerpected to change from the singlet at zero field to a triplet at
in the present calculation, as is shown by two types of evihigh fields. This crossover is consistent with Hund'’s rules,
dence. The first is our ability to reproduce known resultswhich predict that the triplet will generally be at lower en-
those for the neutral excitoX? discussed at the end of this ergy than the singlet. The exception created by the Pauli
section, andK™ andD ~ in the lowest-Landau-level approxi- principle at zero field no longer applies because the degen-
mation, discussed in Sec. Ill. The second type of evidenceracy of the Landau levels means that a triplet state can be
comes from the internal consistency of our algorithm: Theformed with two electrons in different angular-momentum
same results are obtained, to the convergence accuracy, dfates, at no cost in kinetic energy.
basis states are tested in different orders. The comparison of An interesting property of the triplet bound state is that it
binding energies for different values of total angular momen-s infinitely degenerate: The same binding energy is found
tum, in Sec. IV, is a further demonstration of internal con-for all values of total angular momentuki<0. This degen-
sistency. Beyond this, it should be noted that our calculationgracy is shown by the numerical results, but it is a com-
retain the variational character of any finite basis calculationpletely general property, not restricted to the LLL or triplet
The numerical eigenvalues are always a strict upper limit orstates. It is a result of the requirement of gauge invariance for
the true energy levels. charged systems with translational invariance. The gauge ar-

All the X~ binding energies quoted in this paper are givengument is one that applies to any charged particle, including
relative to that of the neutral excitok® plus a free electron, an electron, and shows that for a given Landau levéhe
since a state with lower binding energy is unstable and willenergy cannot depend on the other quantum number that
not be seen experimentally in photoluminescence. XRe defines the state. Though the result must be true for all
binding energy is typically 10-20 meV in the well widths gauges, the argument is clearest using the Landau gauge,
and fields of interest here. Relative to this, #e binding ~A=(0,Bx,0). In this gauge, the value ¢f, that is assigned
energy is 1 meV, so to obtain a reasonable accuracy of 10% a state depends on the choice of the origin for the vector
in this figure,~0.1 meV, the total binding energy has to be potential. For a translationally invariant system, this choice
calculated with an error of less than 0.5%. is arbitrary, sk, can have no physical significance. No mea-
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TABLE Il. D™ andX™ bound states with different angular mo- [
menta M in the lowest-Landau-level approximation for a two- 1.4
dimensional system. The binding energies are given relativ€ to
or DY, in units ofe?/el,.

—
o

M D™ singlet D triplet  X™ singlet X" triplet |
0 0.367 1l
-1 0.184 0.0544
-2 0.027 0.0544
-3 0.0006 0.0544

o
o

surable property of the state, including its energy, can de-
pend on the value df,. Hence the states in a given Landau
level must be degenerate. The argument applies toXthe
system since its center of mass behaves like a simple charged
particle. For a given center-of-mass Landau level, the ener-
gies of theX™ states cannot depend on the total angular
momentumM. -
Superficially, theD ~ system appears to be similar to the 0 I R B R B
X~: It consists of a positive donor ion with two electrons 0O 10 20 30 40 50
bound to it. However, the bound statesf are very dif- . .
ferent from those oK™, as can be seen from Table II, which Magnetlc Fleld (T)
compares the states of the two systems calculated using our o ) ) ) )
algorithm in the LLL for the two-dimensional limit. Th® ~ FIG. 2. Binding energies oK™ singlet and triplet states in a
results agree very well with those of Fox and L afédor SOO-A guantum V\(ell, plotted as a function of mggnetlc field. The
their case of the positive ion in the same plane as the eled€anings of the line styles are the same as in Fig. 1.
trons. The most obvious propertiesdf are that its binding _ 0 )
energy is much larger than that ¥f and its ground state is nondegenerate bound statedXf, relative toD", while the

a singlet rather than a triplet. In addition, there are only four _Pound state is infinitely degenerate. ~
There are two fundamental differences between Xhe

andD ~ systems, which together account for their contrasting

Binding Energy (meV)
o o
N o0

e
b

1.8 behavior. Both arise from the fact that the holexin is in a
[ Landau level, while the positive ion iD~ is a localized
1.6 | point charge. The first difference is that the hole charge in
g\ X~ is spread over a region with a size of the order of the
o 14 cyclotron radius. As a result, the electron-hole interactions
E i are relatively stronger ilD ~, increasing its binding energy
~ 1.2} and allowing more bound states. Furthermore, as will be
gﬁ i shown in Sec. V, stronger electron-hole interactions tend to
= 1 favor the singlet, which explains why it is tH2~ ground
a - state. The second difference is that the fixed donor idd’in
) 0.8 breaks the translational symmetry discussed above, so the
o0 states of different angular momentum are no longer degen-
;_g 0.6 erate and only a finite number are bound.
=
m 041 1 IV. FULL RESULTS
- Triplet , _ , ,
02| In this section we describe the results of calculations that
[ go beyond the lowest-Landau-level approximation of Sec.
Ol i lll. The basis set is expanded to include both higher Landau
0 10 20 30 40 50 levels and higher quantum-well subbands, leading to a real-
Magnetlc Field (T) istic model ofX™.

Figures 1 and 2 show calculated binding energies versus
FIG. 1. Binding energies, relative &° , of the X~ singlet and  field for 100-A and 300'_'& GaAs quantum wells with

triplet states in a 100-A GaAs/AGa,_,As quantum well, plotted Ga.6A! 0.3AS barriers. Various approximations are.used in
as a function of magnetic field. The various line styles correspondh€ calculations and all the energies are given relative to the
to different approximations for the basis used in the calculationsX’ €nergy in the same approximation. The states shown are
The dotted lines are for the lowest-Landau-level approximation, théhe lowest-energy singlet and triplet states, calculated with
dashed lines for the lowest subband approximation, and the solitbtal angular moment& =0 andM = —1, respectively. As
lines for the full results. discussed in Sec. lll, there are degenerate states with more
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negativeM, but it is harder to obtain the same numericalthe wave function is no longer the same for all terms in the
accuracy for them because a larger basis is needed to provithasis.

a good description of their wave functions. Hence the nu- In the 100-A well, the triplet energy is almost the same as
merical results give an erroneol dependence, but this is in the LSB, while the singlet energy is more affected by the
small, with less than 0.1 meV variation in the binding ener-inclusion of the higher subbands, particularly at high fields.
gies for values oM>—5 at 20 T. To the extent that the The difference between the singlet and triplet is a conse-
calculations for differenM are independent, the small size duénce of the relative importance of electron-electron and

of this variation is a good indication of the convergence Ofe!eqron—hole correlations dlscus_sgd_ in Sec. V: The singlet
our algorithm. binding energy depends on maximizing the electron-hole at-

The dotted lines on the figures correspond to the lowestraction, while the triplet minimizes the electron-electron re-

Landau-level approximation discussed in Sec. Ill. but forpulsion. The most important contributions from the higher
finite well Widthpsp rather than the two-dimensi.onall resultsSUbbandS come from those of the hole since they are much

) i .~ ~closer in energy than the electron subbands. Hence including
above. The triplet remains the only bound state and it is stil

- X . igher subbands allows strong correlations between the elec-
degenerate for aM <0. The only difference is that the bind- ong and holes to occur in the axial direction, but only weak

ing energy is no longer proportional &/¢l., which would  ¢orrelations between the electrons. As a result, the singlet
give a/B increase with field. The actual increase is slower.hinding energy increases much more than that of the triplet.
~InB at high fields, because the axial spread of the waverhe increase in importance with field can be readily under-
functions weakens the Coulomb interaction for smallstood using the same sort of perturbation arguments as have
electron-hole separations, less than of order the well widthbeen described above. Just as for the higher Landau levels,
The binding energy is also considerably smaller in the widethe Coulomb matrix elements for the higher subbands in-
well because the weakening of the Coulomb interaction isrease with field. The subband separation, by contrast, is
more significant. This is entirely comparable to the decreas&dependent oB, so the overall result is that the second-
in X% binding energies in wide quantum wells. order terms increase with field.

The dashed lines show the results of calculations in the The difference between the LSB and the full calculations
lowest subbandLSB) approximation, in which the basis set iS much more marked for the 300-A well. When the higher
is restricted to thé=1 subband, but with full convergence Subbands are included, the singlet binding energy actually
for n andm. The major change, compared to the LLL, is that NCréases W|th field, whereas it _decreases rapidly in the LSB.
there is now a bound singlet state in both narrow and wid he explanation for this is straightforward: The higher sub-

wells. At low fields, it is the ground state, but as the field is ands are much closer in energy in the 300-A well than the

raised its energy rapidly decreases and it falls below the trip—lOO'A one, so their contributions to the wave function are

let. This decrease is a direct consequence of the singlet bei much greater. The 300-A well is sufficiently wide to allow

nbound in the LLL n be shown usin ol rt :s%me axial correlations between the two electrons to occur,
unbou € » @S Can bé shown using a simpie pertu EO there is some increase in the triplet binding energy com-

bation argume.nt. Consider a two-d|mens!0nal systgm, SO @fared to the LSB, but the difference is much less significant
Coulomb matrix elements vary ag. As discussed in Sec. than for the singlet.

I, in the LLL the X° and allX~ binding energies, relative to
the Landau-level energy, also increase\& but with dif-
ferent constants of proportionaliy® and «~. Although the V. WAVE FUNCTIONS

singlet is not bound relative t°, there is anX" state at The calculation yields wave functions for the™ states,
higher energy, soa™<a® Now consider the effects of expressed as a set of coefficients for the basis trios used.
higher Landau levels using second-order perturbation theoryrhese can be readily transformed into their full spatial de-
The matrix elements vary agB, but the energy separation, pendencel(ry,6:,21:r 2,602,251, 6,2,) Using the expres-
roughly the cyclotron energy, varies Bs Hence in second sjons for the basis states in Appendix A. Taking the squared
(and indeed highgrorder theB dependences cancel, giving modulus of this wave function and integrating over the re-
an energy shifi3 approximately independent of field. Rela- mainder of the variables, we calculate single coordinate
tive to X° the singlet binding energy is thus probability functions, such aB(r,), and two particle corre-
(e —a° \/§+(,8*—ﬂ°), which decreasesas \/§ because lation functions of single coordinates, suchR& ;,r5). In
a~ <aP. The fact that the singlet is bound in our calculationsfact, the two-particle probabilit$(r,,r,) is dominated by
suggests3™ > B°. This argument predicts that there shouldthe single-particle variations, so the plots show the quantity
be some finite field at which the singl¥t , within the LSB,  P(r,r,)—P(r,)P(r,), which is a measure of the correla-
unbinds, though that has yet to be reached at 50 T for thdons, in that it would be zero without exchange and correla-
systems studied here. The same argument applied to the trifien effects.
let predicts the binding energy increases\& because the Figures 3 and 4 compare the radial probability functions
triplet is bound relative toX° in the LLL. and electron-electron radial correlation functions for the
The full lines on Figs. 1 and 2 show the results of theM =0 singlet andVl = —1 triplet states in the 300-A well at
calculations with no restrictions on the Landau levels and20 T. Note that the more negative angular momentum states
subbands contributing to the wave function. They represerdre degenerate with these states, but their wave functions are
our best results for th&™ binding energies. The inclusion of not the same, so though similar behavior occurs, these plots
higher subbands allows correlations between the axial coolre not general.
dinates of the three particles to occur since the axial part of The difference between the correlation functions for the
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Electron 2 Radius (A) Probability

[

Electron 2 Radius (A) Probability

200
200

100
100

0 100 200 0 100 200
Electron 1 radius (A) Electron 1 radius (&)

FIG. 3. Upper panel: radial probability functions for electrons  FIG. 4. Radial probability and correlation functions, as in Fig. 3,
(solid lineg and holes(dashed linesin the M =0 singlet state for  but for theM = —1 triplet state.
the 300-A quantum well at 20 T. Lower panel: radial correlation
function for the two electrons; white corresponds to regions of highcorrelations imply. Keeping the electrons together in the sin-
joint probability, black to regions of low joint probability. See the glet allows both to interact strongly with the hole, giving a
text for details of the definition of the correlation function. large electron-hole energy, while the anticorrelations in the

triplet prevent both electrons being close to the hole, reduc-

two states is very marked. The triplet shows strong anticoring the electron-hole energy. The total electrostatic contribu-
relations between the two electrons: There are low probabilitions to the binding energy, the sum of the positive electron-
ties along the diagonal,=r, and the high probabilities in electron and negative electron-hole parts, thus turn out very
the regions where the two electrons are at very different rasimilar.
dii. The two electrons in the singlet are, by contrast, radially This discussion can be made more quantitative by evalu-
correlated, though the absolute size of the correlations areting the expectation values of the electron-electron and
about two orders of magnitude less than for the triflee  electron-hole Coulomb interactions using the calculatéd
gray scales on the two figures correspond to different rangesgave functions. In Table Il we show the results of this cal-
of probabilities. The highest probabilities occur for=r,  culation for the 300-A well at 20 T. The total binding ener-
and there is relatively low probability of very different radii. gies given in the table are calculated relative to the Landau-
Similar effects occur for the angular and axial correlationlevel energies; the exciton binding energy at this field is
functions(not shown: In the triplet states the electrons an- 15.54 meV. The column marked “kinetic” is really just the
ticorrelate, while in the singlet they correlate. In the axialdifference between the electrostatic contribution and the total
case, the correlations are much stronger for the singlet thabinding energy. It arises from the inclusion in the wave func-
the triplet, as is to be expected from the difference in sensition of contributions from higher Landau levels and
tivity of the two states to the inclusion of the higher subbandquantum-well subbands. The contrast between the singlet
states in the basis. and triplet states is very marked: Though the total binding

The correlation functions illustrate a major difference be-energies are only-0.3 meV different, the separate electron-
tween the wave functions of the singlet and tripfet states.  electron and electron-hole contributions differ by 3—4 meV.
In the singlet, the two electrons tend to stay together, while o o )
in the triplet they avoid each other. Ultimately, the explana- TABLE lil. Contributions to the binding energyn meV) of the
tion for this lies in the different symmetries for electron ex- [OWest singletand triplet states in a 300-A well at 20 T. The binding
change. The spatially symmetric singlet allows the two elecSNeray 1s given relative to the Landau-level energy, rather Xfan
trons to be in the same place, while the antisymmetric triplef’IS elsewhere.
forbids it. Given this, it is superficially surprising that the

L . . Electron- Electron-
binding energy of the singlet should be so similar to, andx, state electron hole Kinetic Total
even greater than, that of the triplet: The repulsive electron=
electron interaction should be much stronger in the singlesinglet 10.71 —-29.71 2.25 16.75
than the triplet. The resolution of this puzzle lies in the dif- Triplet 7.44 —25.34 1.42 16.48

ferences in the attractive electron-hole interaction that these
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triplet energy, by contrast, changes very little, from 0.69
2 o0Opg o meV to 0.76 meV, so the agreement remains good. There
o H seems, however, to be no real justification for using such a
large value for the in-plane hole mass.

We next discuss some possible reasons for the disparity
15+ o between the theoretical and experimental values of the sin-
glet binding energy. It is important to note that any suggested
o Singlet explanation for enhancing the singlet binding energy should

/// also account for why the triplet value comes out correctly.
One possibility is that the treatment of the valence band is
too simple. The calculations have all assumed that the hole
dispersion is parabolic, while in reality this is far from the
case. The correct, nonparabolic valence-band dispersion
comes from solutions of the Luttinger-Kohn Hamiltonian,
coupling together the heavy- and light-hole states. There is
some experimental evidence that this may be of importance:
In the parabolic model used here, the spin splitting ofXAe
and X~ singlet and triplet states should all be the same.
However, experimentally they are different, with a very
0 ' L L L small spliting for X° and larger values for theX~
0 5 10 15 20 transitions> Such differences in splitting may be explainable
Magnetic Field (T) using the Luttinger-Kohn Hamiltonian because states of op-
posite spin couple in different ways.
FIG. 5. Comparison between theoreti¢tihes) and experimen- We have carried out some calculatibhssing the present

tal (squaresresults for theX~ binding energies in the 300-A well approach, but including a proper treatment of the valence
at fields up to 20 T. band. The main difference is that the hole basis states be-

come a mixture of the simple finite-well states, determined
by the Luttinger-Kohn Hamiltonian. The rest of the calcula-
tion is then essentially the same, with the electron-hole ma-
In this section we compare the best numerical results ofrix elements made up of appropriate combinations of the
Fig. 2 with experimental data for a 300-A GaAs/ simple finite-well forms derived in Appendix B. The binding
Ga Al g3As quantum well in fields up to 20 T. More de- energies obtained depend on the values of all the Luttinger
tails of the experimental structure and procedures are giveparameters, some of which are not accurately known. Vari-
in Ref. 5. The experimental binding energies are obtainedus parameter sets have been tried, but the largest singlet
from photoluminescence spectra, which show features due tainding energy we have been able to obtain-i5.35 meV at
both X° and X~ singlet and triplet recombination. When the 10 T, still well below the experimental value of 1.87 meV.
X~ recombines, one of the electrons and the hole disappear, A second possibility is thaX™ is not free, but in fact
leaving a free electron in the lowest Landau level. Thus théound to a remote donor. This can increase its binding en-
difference in photon energies for the andX° photolumi-  ergy relative toX° because the latter is neutral and so is
nescence features is equal to the difference between the emuch less strongly affected. Taking 600 A as a reasonable
ergy of theX ™ state and the total energy of tX8 plus a free  value for the distance of a remote donor from the well, the
electron. This is just th& ™~ binding energy, relative t&X°,  potential due to a single donor has a depth-& meV. The
that we calculate. shift in the X~ photoluminescence line due to this potential
The comparison between theory and experiment is showis much smaller because the electron left in the final state
in Fig. 5. The agreement we obtain for the triplet states iswill also be bound to the donor. Thus the enhancement of the
impressive, considering that no fine-tuning of the physicabinding energy observed in photoluminescence will only be
parameters was required. The situation for the singlet statebe difference between the binding energy of ¥ie in the
is much less satisfactory, with the experimental values up tdonor potential and that of a lone electron. We have obtained
50% greater than the theory. The calculations do, howevetheoretical values for this difference using calculations in the
reproduce the very weak field dependence at high fields, ddewest subband approximatibrand found that the singlet is
spite the actual values being wrong. The disparity for theenhanced by~0.5 meV, while the triplet is virtually unaf-
singlet is much greater than could be explained by incomfected (<0.1 meV enhancementShifts of this magnitude
plete convergence in the calculations, which we estimate twould give fairly good agreement with the experimental re-
give errors at the level of at most0.1 meV. The Monte sults. The reason for the difference in behavior of the two
Carlo results of Ref. 4 appear to give much better agreemerstates is that the correlated electrons in the singlet can inter-
than this for the zero fiel&k ™, but this is in part a conse- act more strongly with the donor than the anticorrelated elec-
guence of the fact that the method requires the use of introns in the triplet.
plane masses identical to the axial masses. If the in-plane Though this explanation sounds plausible from a theoret-
hole mass is increased to 0.34 in the present calculations, @@l point of view, two pieces of experimental evidence sug-
10 T the binding energy of the singlet state rises to 1.60 me\gest that the observed™ lines are not donor bound. One
much closer to the experimental value of 1.87 meV. Theeason is that the in-plane donor spacing is sufficiently small

oo

05

Binding Energy (meV)

VI. COMPARISON WITH EXPERIMENTS
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that, at a distance of 600 A, there must be considerable over- We believe that our results are very accurate, with nu-

lap between the potentials of individual donors, giving rise tomerical errors no more tharn 0.1 meV. Though good agree-

a disordered electrostatic potential in the well. HenceXXhe ment with experiment is obtained for the triplet state, the

singlet photoluminescence line would be expected to béarge discrepancy for the singlet, much greater than this es-

broader than th&® or triplet, by an amount of the order of timated error, suggests that additional physics needs to be

the singlet enhancement calculated above, about 0.5 me¥onsidered to understand fully the experimental results.

This broadening would be easily measurable in the experi- Finally, we note that since this paper was submitted,

mental spectra, but no such effect is seen. The other expeiGhapmanet al® have published numerical results fr

mental evidence that donor binding is unlikely arises frombinding energies in a magnetic field. Their approach involves

work on double quantum wells by Shieldsal:*® The bind-  an exact diagonalization within a basis of states from several

ing energy ofX™ in one well is measured when there is a Landau levels and so is more realistic than previous calcula-

large electron density in the other, lying between it and thdions using only the lowest Landau level. However, when

donors. This would be expected to screen out the donor paompared to the present work, their treatment has significant

tential in the well containing™. There is, however, no sig- limitations with both quantitative and qualitative conse-

nificant dependence of the observ&d binding energy on quences. The basis they use is too small to obtain high ac-

the charge density in the other well, suggesting that interacsuracy and indeed no attempt is made to check for conver-

tions with donors are unimportant. gence. Moreover, they do not include states from higher
A further, more exotic, possibility for explaining the en- subbands, which our results show to be very important for

hancement comes from considerations of the effects of theven a qualitative understanding of wider wells.

interaction between th¥™ states and photons. Ivanov and

Haug’ have shown that polariton effects can enhance the APPENDIX A: SINGLE-PARTICLE WAVE FUNCTIONS

measured binding energy of a quantum-well biexciton and it ) ) ] ] )

seems reasonable to believe that similar effects may occur 1hiS appendix describes the single-particle electron-hole

for X~. Though no such calculations have been carried ougtates for a finite quantum well with a magnetic field perpen-

for the X~ system, it is worth pointing out that any such dicular to its _plane. The state factor_lzes into an axial part

effect would be greater for the singlet than the triplet becaus&1(2) and an in-plane paw,(r)exp=i(n—m)d, where the

the singlet has a much larger oscillator strength and s§XPonent takes opposite sigrts and — for electrons and

couples more strongly to the electromagnetic field. Hencé'0les, respectively. S _

this explanation too is consistent with the requirement that For the case of a symmetric, finite quantum well of width

the singlet binding energy needs to be enhanced, but not tif the axial wave functions can be written in the form

riplet Z9Y—kde  (z<—df2)

x(2)=1 Z25k2) (—di2<z<dl2) (A1)

O kdi2)e”**  (df2<z),

sin

VII. CONCLUSIONS

We have carried out calculations ¥f  binding energies
in quantum wells with a perpendicular magnetic field. Thewhere the cos form applies for the even-parity states
model consists of a finite width well with finite barrier (I1=1,3,...) and the sinform for odd-parity states
heights and parabolic conduction and valence bands. Ot=2,4, .. .). Thenormalization constang is given by
numerical method is able to cope with large numbers of basis
states, allowing us to obtain highly accurate results.

One of the main results of our calculations is to show that
the widely used lowest-Landau-level approximation gives
poor results for GaAs/AlGa, _,As quantum wells, in the The constant& and «, which, of course, depend on the
range of fields experimentally accessible. Though the LLLstatel, are determined by numerically solving the trancen-
predicts that only the tripleX™ state should be bound rela- dental equation derived from the 1D finite-well eigenprob-
tive to the neutral excitoX®, we find that the triplet does not lem. In the present work, the boundary conditions used are
become the ground state until about 30 T in a 100-A well,continuity of y and (1fm)y’. The calculations are for a
while no crossover occurs below 50 T in a 300-A well. In the GaAs-Al,Ga, _,As system withk=0.33, taking conduction-
latter, correlations perpendicular to the well plane are veryand valence-band offsets to be 224 and 150 meV, respec-
important, suggesting that it lies in the crossover regime betively. The electror(hole) masses for axial motion are 0.065
tween two- and three-dimensional behavior. It is clear that0.34) and 0.07(0.45 in the well and barrier and the in-plane
the singlet state can only become unbound at much higheralues are 0.06%0.18).
fields, perhaps never in the wider well. For the in-plane motion, the conventions of MacDonald

The other important result we obtain is an understandingre followed in choosing the relative phases of the different
of the different ways that the singlet and triplet states bindstates. The radial wave functions are then
Our correlation functions, and calculations of expectation

-1/2

Z= d 2 inkd ! g 2
= §+ﬁsm +;co > . (A2)

values, show very clearly that the singlet binds by maximiz- et fia o\

ing the attractive electron-hole interaction, while the triplet ¢nm(r):(_1)l<ﬁ N

minimizes the electron-electron repulsion. This understand- 2mlg >\ V2l

ing is the key to explaining many of the differences in be- is—ic, 2/92

havior of the singlet and triplet states. x Li< (r7215). (A3)
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wherelL is a generalized Laguerre polynomial and the nota- S| iql
tioni. andi. has been adopted for the greater and lesser of G, (ql.)= \/SL' - \/_c
> 2

S>—S<
n andm, respectively. This definition is consistent with the =

phases of the matrix elements in Appendix B. (B6)
APPENDIX B: CALCULATION OF COULOMB For holes, the sign of the exponent in the angular part of Eq.
MATRIX ELEMENTS (B5) is reversed.

This identity can be used to simplify the matrix elements
This appendix gives details of the analytic part of thein Eq. (B4). The 6 integral just gives angular-momentum
evaluation of the Coulomb matrix element coupling pairs ofconservatiomn; —m; +n,—m,=n,—m,+n,—mj,, leaving
single-particle basis states. In the interests of clarity, the deriy one-dimensiona] integral that has to be evaluated numeri-
vation given is just for the electron-electron interaction, mi'cally'
nor differences for the electron-hole interaction are men- '
tioned in passing. 1 _ -
The required Coulomb matrix elements take the form Zf f q dq Vlllzlilg(Q)e_q 'CGﬂiﬂl(qlc)Gmiml(qlc)

[nymy|[{lonomy|V(r =15,z —25) |1 inimy) | nom)),
<1 1 1|< 2112 2| ( 1 2141 2 | 1''1 l>| 2112 Z%B]_) XGnénz(_qlc)Gmémz(_qlc)- (B7)
where Th ; . .
e same result applies for the electron-hole interaction, ex-
cept the angular-momentum conservation condition correctly
. (B2) becomesig—mg+mp—ny=n,—my +my —ny'.
V(ri—r)?+(z,—2,)? In an exactly two-dimensional system, i.e., the limit of
zero well width, there are no subband labels and

V(q)=27/q. In a finite width well, this is multiplied by a

V(ri—ry,z29—2)=

Formally evaluating the integrals, define

Vi (ri—r2) form factorFy 1,i,(q), where
1 —~ . _ F ’ /(q)
) (277)2f f q dg do Viyp(qre i
= * * —qlz;— 25|
=(l{12IV(ri=r2, 21— 25)[I)]15). (B3) f f dz, dz, XIl(Zl)X'i(Zl)Xlz(ZZ)X'é(ZZ)e s
Then the matrix elemenB1) can be written (B8)

1 _ For the case of a finite quantum well with no electric field,
ZJ f q dq do vV, ,i1(9) this integral can be evaluated analytically. The calculation is
(2m) lengthy, so only the result is given here.
The finite quantum-well wave functions are described in
Appendix A. For each, the numerical solution gives values
The next step requires a result due to MacDotdtr the  of k, the wave vector in the welly, the decay constant in the

Landau-level matrix elements of plane waves. For electrondyarrier; and the normalization constafit To keep the ex-
pressions for the matrix elements compact, a further quantity

X (nymy|e”'9"1nimy) (nom,|€e'd"2[nimy). (B4)

(nmje™'%"n"m") p is defined:p=0 for even-parity states arpl=1 for odd-
— o022 i(n'—n+m-m’)g parity states.
=€ T Gnn(qle)Grym(gle)e™ ~MT e (BS) The form factors are written in terms of a subsidiary func-
where tion
1 / Ka q 1 / Kp, q 1
f(ky,ayKp,ap;q)= + st(ky.kp:q)+ + S (Ka,kp: Q) + ———————F—
(ka a2 ko, a550) KCrq2lapta Kotk (Ka ko ) K2+ g2l @atq Katkp kako i)+ (o T o) (apr )

q q

X (aa+qQ)(ap+0q)(aa+ap) +(ab+q)(k§+q2)

1+

)C+(ka1kb;q) +

ast+ay

. q _ (g*+kako)
(aa+qQ)(Ki+0%)  (q2+KD)(>+kD)

)C_(kavkb;Q)a (B9)

where

s*(Ka Ky 1q) = sin(Ky + ky) d/2+ e~ 99sin(k, — k) d/2,
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c* (K Kp;q)=cogk,+ky)d/2+ e 99og k,—k,)d/2. (B10)
Then

212,22} o
Fiogu@=—"7Fp—(= 1)(P1+P2+P1+Py)I2

XAT(Ky+ K]+ o) 1Ko+ K), ap+ a1 q) + (= 1)P2f (kg + K, g+ a1 ko— Kb, an— a1 q)

+(—=1)P2f(ky+ Kk, + ai;—k2+ké,—a2+aé;q)+(—1)p2+péf(kl+k1,a1+a1;—kz—ké,—az—aé;q)

+(—1)Paf (ky— k], @y — o) Kot Ky, ai0) + (= 1)PrFPaf (kg — ki, @y — af sko— K, ap— ah:0)

+(—1)PLP2f (kg — kg, @y~ af; — kot kg, — apt ag;q)

+ (= 1)PITP2 Pt (Ky — K],y — ap; — ko — kg, — ap— a3} (B11)
Note that the full result has sixteen terms, corresponding to all possible combinations of signs. This form of it has been
simplified by combining pairs of terms in a way that is valid only for parity-allowed matrix elements. It thus does not correctly
give zero for the parity-forbidden case.

A useful special case that can be derived from EB9)—(B11) is the diagonal lowest subbant=1) form factor for an
infinite well (k=/d, a— ). Then, as in Ref. 20,

Fi1149) 2 + qd 2(1—e 99 ! ad 2 (B12)
=—+—-——-—-2(1-¢e — =] .
111100 qd q2d2+4772 qd q2d2+4772
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