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Theory of X2 at high magnetic fields
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We calculate, to high accuracy, the states of the quantum-well negatively charged excitonX2 in a perpen-
dicular magnetic field. Two GaAs structures are considered: a 100-Å ‘‘narrow’’ well and a 300-Å ‘‘wide’’
well. The calculations cover a magnetic field range from 5 T to 50 T. In thenarrow well, the ground state is
shown to switch from singlet to triplet, at about 30 T, in agreement with the prediction of a triplet ground state
obtained using the lowest-Landau-level approximation. In the wide well, the singlet is still the ground state at
50 T because electron-hole correlations perpendicular to the well plane enhance its binding energy more than
that of the triplet. We also calculate electron-electron correlation functions for theX2 states and demonstrate
that in the singlet the motions of the two electrons are correlated, while in the triplet they are anticorrelated. We
show that the triplet binding energies in the wide well are in good agreement with experimental data; the
singlet values, however, turn out to be considerably smaller than those measured.@S0163-1829~97!03347-X#
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I. INTRODUCTION

The idea of a negatively charged exciton, orX2, was
introduced by Lampert1 as the semiconductor analog of th
negatively charged hydrogen atom H2. The X2 consists of
two electrons and a hole, which are bound together by t
mutual Coulomb interactions. Recent interest in the tw
dimensional realization of this system has followed the
servation ofX2 features in the spectra of high-quality r
motely doped GaAs quantum wells by Shieldset al.2 and
Finkelsteinet al.3 The behavior of the quantum wellX2 in
electric4 and magnetic fields5 has subsequently been studi
and it is the latter that we investigate theoretically in t
present paper.

The X2 can be thought of as a neutral excitonX0with a
second electron bound to it. The binding energy of the fi
electron to the hole, formingX0, is fairly large,;8 meV in
a typical GaAs quantum well. The second electron binds
polarizing theX0 to produce a dipole. The interaction b
tween the electron and this dipole is weak, so the sec
electron binding energy is much less, typically;1 meV.

This description ofX2 is inaccurate in that it suggests th
the two bound electrons are distinguishable. In fact, they
identical, so a proper picture must include the antisymme
of the state when the electrons are exchanged. The rol
exchange for the two electrons is the same as in the textb
example of the He atom: The wave function factorizes int
spatial part and a spin part, which can have either totalS50
~singlet! or S51 ~triplet!. The singlet state is antisymmetr
under the exchange of spins, so to retain the correct ove
antisymmetry of the wave function, the spatial part must
symmetric. The triplet, by contrast, is symmetric, so the c
responding spatial part must be antisymmetric.

For the He atom, the strong electron-nucleus interac
dominates the electron-electron repulsion, which can thu
treated as a perturbation. The atomic states are describe
the single-particle quantum numbers of the two electro
with the singlet and triplet components of each such confi
ration split by the exchange contribution to the perturbat
energy shift. The triplet always has the lower energy of
two spin states because the antisymmetry of the spatial
560163-1829/97/56~23!/15185~10!/$10.00
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of the wave function keeps the two electrons apart and
duces the Coulomb repulsion. This observation is codefie
one of Hund’s rules, though it should be noted that there
important exceptions, including the ground state of the
atom, which is a singlet. The ground-state configuration c
sists of two electrons in the same spatial state, so only
symmetric singlet combination, with opposing spins, is
lowed. In fact, it can be shown rigorously that the grou
state of any two-electron ‘‘atom,’’ includingX2, is necessar-
ily a singlet in the absence of a magnetic field.6

X2 is rather different from He because the hole carr
only one unit of positive charge, making the contributions
the electron-electron and electron-hole interactions m
more comparable. The perturbative description given ab
is no longer appropriate, though the classification of state
singlets or triplets is, of course, still rigorous. In the tw
dimensionalX2, only the singlet ground state is bound with
out a magnetic field. This bound state has been investig
by a number of authors, using variational7 and quantum
Monte Carlo methods.8,4

When a magnetic field is applied, the net charge onX2

causes its center-of-mass motion to be quantized into Lan
levels.9 This contrasts with the behavior of the center of ma
of the neutralX0, which does not ‘‘feel’’ the magnetic field
directly and so has a continuous dispersion. The quantiza
causes theX2 states to be highly degenerate~see Sec. III
below!. At fields greater than a few tesla, a second, trip
bound state appears.5 This happens because the Landau-le
degeneracy means that the Pauli principle no longer prov
such a strong constraint as at zero field. Indeed, at very h
fields, it is generally believed that the triplet should, in a
cordance with Hund’s rules, become the ground state.
calculations confirm this, but only in narrower wells and th
only at fields greater than 30 T.

Although there is a large literature on theD2 system, two
electrons bound to a positive donor, relatively little work h
been done onX2. Despite the superficial similarities of th
two systems, their behavior is both qualitatively and quan
tatively very different, as we discuss in Sec. III, so separ
calculations are required. Previous studies ofX2 binding en-
15 185 © 1997 The American Physical Society
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15 186 56D. M. WHITTAKER AND A. J. SHIELDS
ergies in magnetic fields, by Ste´bé et al.,9,10 have concen-
trated on the low-field regime, using variational wave fun
tions. They are exactly two dimensional, taking no acco
of the effects of finite well width. The only published high
field calculations use a restricted basis of lowest-Land
level states,11,12 which gives unrealistic results for the field
of interest experimentally: Though the triplet state is reas
ably well described, the singlet is predicted to be unbou
while in fact it is the ground state. The calculations w
present are for the high-magnetic-field regime, with fields
the range 5–50 T. Though a finite basis of single-parti
electron and hole states is used, careful attention is pai
ensure good convergence with respect to the basis size.
calculations take into account the effects of a finite w
width, through both the modification of the in-plane Co
lomb interaction and the inclusion of states from higher s
bands in the basis. The higher subband states are particu
important for the 300-Å quantum well, as they allow f
correlations perpendicular to the well plane.

The layout of the remainder of the paper is as follow
Section II gives an outline of the calculation. Sections III a
IV discuss the numerical results, both approximate and
act. Section V describes the wave functions of theX2 states
and Sec. VI compares our theoretical binding energies w
experimental results for a 300-Å GaAs quantum well. A
pendices A and B give technical details of some of the m
important results used in the numerical work.

II. CALCULATION

Our model consists of a finite-width quantum well, wi
finite barriers and parabolic conduction and valence ban
Details of the material parameters used are given in App
dix A. The magnetic field is perpendicular to the quantu
well and the symmetric gaugeA5(B3r )/2 is chosen so tha
angular momentumM is a good quantum number. This se
tion describes the analytic and numerical methods we us
obtain theX2 states using this model.

The major difficulty in anyX2 calculation lies in the large
numbers of degrees of freedom that the system posse
There are three spatial coordinates for each of the three
ticles, giving a total of nine. Without a magnetic field, it
relatively easy to simplify the problem making use of t
in-plane translational invariance to separate out the cen
of-mass motion.7 In a magnetic field, this separation is st
possible, but the Hamiltonian becomes complicated, w
terms coupling the relative and center-of-mass parts. H
ever, this approach was followed by Ste´bé et al.9,10 for their
low-field work, using variational wave functions.

For high fields, the most practical way to proceed is
work in a basis of single-particle electron and hole sta
which are eigenstates in the absence of the Coulomb in
action. The electron-electron and electron-hole interacti
are then diagonalized within this basis. The basis states
products of an axial (z) part, determined by the quantum
well confinement, and an in-plane (r ,u) Landau-level wave
function. For electrons, the basis states take the form

u lnm&5x l~z! fnm~r ! ei ~n2m!u. ~1!

This state is degenerate with respect to the azimuthal q

tum numberm and has energyEl1(n1 1
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confinement energy of thel th quantum well level and\v the
electron cyclotron energy. The full form of the axial an
radial wave functionsx andf are given in Appendix A. For
the hole, the quantum-well partx is generally different, but
the in-plane part is just the complex conjugate of the elect
wavefunction, which simply switches the sign of the exp
nent. As a result, electrons and holes with the same quan
numbers have angular momentum of opposite sign: For e
tronsMe5n2m and for holesMh5m2n.

The wave function forX2 is expanded as a sum ove
symmetrized trios of such single-particle states:

c5 (
$ l ,n,m%

a$ l ,n,m%u l hnhmh&
1

A2
$u l 1n1m1&u l 2n2m2&

6u l 2n2m2&u l 1n1m1&%. ~2!

The plus sign is taken for the spatially symmetric single13

while the minus sign applies to the antisymmetric triplet. T
notation$ l ,n,m% has been adopted in Eq.~2! as a shorthand
for a complete set of nine quantum numbers (l h ,nh ,mh) for
the hole and (l 1 ,n1 ,m1),(l 2 ,n2 ,m2) for the two electrons.
There are actually eight independent quantum numbers s
the total angular momentumM5(n12m1)1(n22m2)
1(mh2nh) is a constant of motion. A further constant fo
symmetric wells is the total parity of theX2, the product of
the parities of thex for the two electrons and the hole. Th
low-energy states, discussed in the present work, alw
have even parity because they are made primarily from b
states in the lowest electron and hole subbands.

The basis states described above are coupled togethe
the Coulomb interactions between the two electrons and
tween the electrons and the hole. These conserve total a
lar momentum and are two-particle interactions, so the m
trix element is nonzero only if the other particle has the sa
quantum numbers in both initial and final states. The
change symmetry of the electrons means that each m
element has two parts. There is a direct term, which has
same sign for singlet and triplet states, and an excha
term, which has opposite signs. Details of the evaluation
the pair matrix elements are given in Appendix B.

In principle, theX2 eigenstates are obtained by evalu
ing the Coulomb matrix elements within a basis consisting
a sufficiently large set of$ l ,n,m% and diagonalizing the re
sulting matrix. However, to obtain the accuracy of the calc
lations in this paper requires maximum values ofl;5,
n;10, andm;20. Simplistically taking these as upper lim
its would give ;107 states, entailing the evaluation of a
impossibly large number of matrix elements. The actual
sis used in the calculations is much smaller, typically a f
thousand states, selected because they contribute sig
cantly to theX2 wave function.

The states used are chosen by an algorithm based u
the idea of progressively expanding the basis set by try
new states and then throwing away those that are not im
tant. This works because, though several thousand state
needed to obtain high accuracy, theX2 is reasonably well
described by only a few basis states, withl 50 and smallm
andn. Hence a good initial approximation to theX2 eigen-
state is obtained by diagonalizing within a relatively sm
basis. The wave function is then examined and states wh
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56 15 187THEORY OFX2 AT HIGH MAGNETIC FIELDS
amplitude lies below a threshold are removed from the ba
The eigenstate is improved by systematically adding blo
of new states and repeating the diagonalization and winn
ing processes. The order in which new states are teste
rather arbitrary, and in practice unimportant, but it has to
chosen in a way that allows convergence to be monitore

The key parameter that determines the accuracy of
method is the selection of the threshold below which ba
states are rejected. A smaller threshold gives greater a
racy, but increases the number of basis states that have
treated. Table I shows how the calculated binding ene
depends on the probability threshold. For each order of m
nitude reduction in the threshold, the number of basis st
roughly doubles and the increment to the binding energy
to the additional states halves. This suggests that for
131028 threshold used in most of our calculations, the
sidual error should be less than 0.1 meV.

The benefit of our method is that, though a similar nu
ber of basis states are tested as would be involved in
equivalent large-scale diagonalization, only matrix eleme
coupling each of these to the few thousand retained st
need be evaluated. The disadvantage is that it is not gua
teed to be as accurate: A state rejected early in the pro
could become more important when some later states h
been included. We believe that this is not a serious prob
in the present calculation, as is shown by two types of e
dence. The first is our ability to reproduce known resu
those for the neutral excitonX0 discussed at the end of th
section, andX2 andD2 in the lowest-Landau-level approxi-
mation, discussed in Sec. III. The second type of evide
comes from the internal consistency of our algorithm: T
same results are obtained, to the convergence accurac
basis states are tested in different orders. The compariso
binding energies for different values of total angular mom
tum, in Sec. IV, is a further demonstration of internal co
sistency. Beyond this, it should be noted that our calculati
retain the variational character of any finite basis calculati
The numerical eigenvalues are always a strict upper limit
the true energy levels.

All the X2 binding energies quoted in this paper are giv
relative to that of the neutral excitonX0 plus a free electron
since a state with lower binding energy is unstable and
not be seen experimentally in photoluminescence. TheX0

binding energy is typically 10–20 meV in the well width
and fields of interest here. Relative to this, theX2 binding
energy is 1 meV, so to obtain a reasonable accuracy of 1
in this figure,;0.1 meV, the total binding energy has to b
calculated with an error of less than 0.5%.

TABLE I. Convergence of the total binding energy of theM50
singlet state in a 300-Å well at 20 T, as a function of the probabi
threshold below which basis states are rejected.

Probability Energy Number of
threshold ~meV! basis states

131024 15.778 126
131025 16.248 454
131026 16.544 1633
131027 16.714 5317
131028 16.786 13314
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The X0 binding energies are calculated using a simi
diagonalization procedure to theX2, though with only two
particles the basis set is much smaller. In fact, for the o
cally activeX0 with zero center-of-mass momentum, the
are no terms coupling to the relative motion, so it is conv
nient to transform to in-plane relative coordinates, furth
simplifying the calculation. The results agree very well wi
an independent calculation of theX0 binding energy, using
numerical integration of the radial wave equation.

III. LOWEST-LANDAU-LEVEL APPROXIMATION

The computation of theX2 states is much simpler if the
basis space is restricted to the lowest subband~all l 51) and
the lowest Landau level~all n50). This sort of approxima-
tion should be most valid at high fields, where the Landa
level separation is large, so the higher Landau levels cont
ute relatively little to theX2 wave function. Though it will
be shown later that the results obtained are unrealistic for
experimentally applied fields, the lowest-Landau-level~LLL !
approximation has been widely used for other problem
such as the quantum Hall effect, and so it is of theoreti
interest. In this section we show that our method reprodu
known results forX2 and the negatively charged donor sy
tem (D2), within the LLL approximation. We also contras
these two systems, which are superficially very similar, a
explain the significant differences in their behavior.

X2 has essentially just one bound state in the LLL. This
a triplet state. For a perfectly two-dimensional system~an
infinite well with d→0) it has a binding energy, relative t
X0, of 0.0544e2/« l c , wherel c is the magnetic length and«
the dielectric constant. The present result agrees very
with the value of 0.0545e2/« l c obtained by Palacioset al.12

in a similar exact diagonalization calculation.
In the LLL, there are no singlet states that are bou

relative to X0. The singlet ground state consists of a fr
electron and an exciton. Thus theX2 ground state is ex-
pected to change from the singlet at zero field to a triple
high fields. This crossover is consistent with Hund’s rul
which predict that the triplet will generally be at lower e
ergy than the singlet. The exception created by the P
principle at zero field no longer applies because the deg
eracy of the Landau levels means that a triplet state can
formed with two electrons in different angular-momentu
states, at no cost in kinetic energy.

An interesting property of the triplet bound state is tha
is infinitely degenerate: The same binding energy is fou
for all values of total angular momentumM,0. This degen-
eracy is shown by the numerical results, but it is a co
pletely general property, not restricted to the LLL or tripl
states. It is a result of the requirement of gauge invariance
charged systems with translational invariance. The gauge
gument is one that applies to any charged particle, includ
an electron, and shows that for a given Landau leveln the
energy cannot depend on the other quantum number
defines the state. Though the result must be true for
gauges, the argument is clearest using the Landau ga
A5(0,Bx,0). In this gauge, the value ofky that is assigned
to a state depends on the choice of the origin for the ve
potential. For a translationally invariant system, this cho
is arbitrary, soky can have no physical significance. No me
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15 188 56D. M. WHITTAKER AND A. J. SHIELDS
surable property of the state, including its energy, can
pend on the value ofky . Hence the states in a given Landa
level must be degenerate. The argument applies to theX2

system since its center of mass behaves like a simple cha
particle. For a given center-of-mass Landau level, the e
gies of theX2 states cannot depend on the total angu
momentumM .

Superficially, theD2 system appears to be similar to th
X2: It consists of a positive donor ion with two electron
bound to it. However, the bound states ofD2 are very dif-
ferent from those ofX2, as can be seen from Table II, whic
compares the states of the two systems calculated using
algorithm in the LLL for the two-dimensional limit. TheD2

results agree very well with those of Fox and Larsen14 for
their case of the positive ion in the same plane as the e
trons. The most obvious properties ofD2 are that its binding
energy is much larger than that ofX2 and its ground state is
a singlet rather than a triplet. In addition, there are only fo

FIG. 1. Binding energies, relative toX0 , of theX2 singlet and
triplet states in a 100-Å GaAs/AlxGa12xAs quantum well, plotted
as a function of magnetic field. The various line styles corresp
to different approximations for the basis used in the calculatio
The dotted lines are for the lowest-Landau-level approximation,
dashed lines for the lowest subband approximation, and the s
lines for the full results.

TABLE II. D2 andX2 bound states with different angular mo
menta M in the lowest-Landau-level approximation for a tw
dimensional system. The binding energies are given relative toX0

or D0, in units ofe2/« l c .

M D2 singlet D2 triplet X2 singlet X2 triplet

0 0.367
21 0.184 0.0544
22 0.027 0.0544
23 0.0006 0.0544
-

ed
r-
r

ur

c-

r

nondegenerate bound states ofD2, relative toD0, while the
X2 bound state is infinitely degenerate.

There are two fundamental differences between theX2

andD2 systems, which together account for their contrast
behavior. Both arise from the fact that the hole inX2 is in a
Landau level, while the positive ion inD2 is a localized
point charge. The first difference is that the hole charge
X2 is spread over a region with a size of the order of t
cyclotron radius. As a result, the electron-hole interactio
are relatively stronger inD2, increasing its binding energy
and allowing more bound states. Furthermore, as will
shown in Sec. V, stronger electron-hole interactions tend
favor the singlet, which explains why it is theD2 ground
state. The second difference is that the fixed donor ion inD2

breaks the translational symmetry discussed above, so
states of different angular momentum are no longer deg
erate and only a finite number are bound.

IV. FULL RESULTS

In this section we describe the results of calculations t
go beyond the lowest-Landau-level approximation of S
III. The basis set is expanded to include both higher Land
levels and higher quantum-well subbands, leading to a r
istic model ofX2.

Figures 1 and 2 show calculated binding energies ver
field for 100-Å and 300-Å GaAs quantum wells wit
Ga0.67Al 0.33As barriers. Various approximations are used
the calculations and all the energies are given relative to
X0 energy in the same approximation. The states shown
the lowest-energy singlet and triplet states, calculated w
total angular momentaM50 andM521, respectively. As
discussed in Sec. III, there are degenerate states with m

d
s.
e
lid

FIG. 2. Binding energies ofX2 singlet and triplet states in a
300-Å quantum well, plotted as a function of magnetic field. T
meanings of the line styles are the same as in Fig. 1.
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negativeM , but it is harder to obtain the same numeric
accuracy for them because a larger basis is needed to pro
a good description of their wave functions. Hence the
merical results give an erroneousM dependence, but this i
small, with less than 0.1 meV variation in the binding en
gies for values ofM.25 at 20 T. To the extent that th
calculations for differentM are independent, the small siz
of this variation is a good indication of the convergence
our algorithm.

The dotted lines on the figures correspond to the low
Landau-level approximation discussed in Sec. III, but
finite well widths, rather than the two-dimensional resu
above. The triplet remains the only bound state and it is
degenerate for allM,0. The only difference is that the bind
ing energy is no longer proportional toe2/« l c , which would
give aAB increase with field. The actual increase is slow
; lnB at high fields, because the axial spread of the w
functions weakens the Coulomb interaction for sm
electron-hole separations, less than of order the well wi
The binding energy is also considerably smaller in the wi
well because the weakening of the Coulomb interaction
more significant. This is entirely comparable to the decre
in X0 binding energies in wide quantum wells.

The dashed lines show the results of calculations in
lowest subband~LSB! approximation, in which the basis se
is restricted to thel 51 subband, but with full convergenc
for n andm. The major change, compared to the LLL, is th
there is now a bound singlet state in both narrow and w
wells. At low fields, it is the ground state, but as the field
raised its energy rapidly decreases and it falls below the t
let. This decrease is a direct consequence of the singlet b
unbound in the LLL, as can be shown using a simple per
bation argument. Consider a two-dimensional system, so
Coulomb matrix elements vary asAB. As discussed in Sec
III, in the LLL the X0 and allX2 binding energies, relative to
the Landau-level energy, also increase asAB, but with dif-
ferent constants of proportionalitya0 anda2. Although the
singlet is not bound relative toX0, there is anX2 state at
higher energy, soa2,a0. Now consider the effects o
higher Landau levels using second-order perturbation the
The matrix elements vary asAB, but the energy separation
roughly the cyclotron energy, varies asB. Hence in second
~and indeed higher! order theB dependences cancel, givin
an energy shiftb approximately independent of field. Rela
tive to X0, the singlet binding energy is thu
(a22a0)AB1(b22b0), which decreasesas AB because
a2,a0. The fact that the singlet is bound in our calculatio
suggestsb2.b0. This argument predicts that there shou
be some finite field at which the singletX2, within the LSB,
unbinds, though that has yet to be reached at 50 T for
systems studied here. The same argument applied to the
let predicts the binding energy increases asAB because the
triplet is bound relative toX0 in the LLL.

The full lines on Figs. 1 and 2 show the results of t
calculations with no restrictions on the Landau levels a
subbands contributing to the wave function. They repres
our best results for theX2 binding energies. The inclusion o
higher subbands allows correlations between the axial c
dinates of the three particles to occur since the axial par
l
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the wave function is no longer the same for all terms in
basis.

In the 100-Å well, the triplet energy is almost the same
in the LSB, while the singlet energy is more affected by t
inclusion of the higher subbands, particularly at high fiel
The difference between the singlet and triplet is a con
quence of the relative importance of electron-electron a
electron-hole correlations discussed in Sec. V: The sin
binding energy depends on maximizing the electron-hole
traction, while the triplet minimizes the electron-electron r
pulsion. The most important contributions from the high
subbands come from those of the hole since they are m
closer in energy than the electron subbands. Hence inclu
higher subbands allows strong correlations between the e
trons and holes to occur in the axial direction, but only we
correlations between the electrons. As a result, the sin
binding energy increases much more than that of the trip
The increase in importance with field can be readily und
stood using the same sort of perturbation arguments as
been described above. Just as for the higher Landau le
the Coulomb matrix elements for the higher subbands
crease with field. The subband separation, by contras
independent ofB, so the overall result is that the secon
order terms increase with field.

The difference between the LSB and the full calculatio
is much more marked for the 300-Å well. When the high
subbands are included, the singlet binding energy actu
increases with field, whereas it decreases rapidly in the L
The explanation for this is straightforward: The higher su
bands are much closer in energy in the 300-Å well than
100-Å one, so their contributions to the wave function a
much greater. The 300-Å well is sufficiently wide to allo
some axial correlations between the two electrons to oc
so there is some increase in the triplet binding energy co
pared to the LSB, but the difference is much less signific
than for the singlet.

V. WAVE FUNCTIONS

The calculation yields wave functions for theX2 states,
expressed as a set of coefficients for the basis trios u
These can be readily transformed into their full spatial d
pendencec(r 1 ,u1 ,z1 ;r 2 ,u2 ,z2 ;r h ,uh ,zh) using the expres-
sions for the basis states in Appendix A. Taking the squa
modulus of this wave function and integrating over the
mainder of the variables, we calculate single coordin
probability functions, such asP(r 1), and two particle corre-
lation functions of single coordinates, such asP(r 1 ,r 2). In
fact, the two-particle probabilityP(r 1 ,r 2) is dominated by
the single-particle variations, so the plots show the quan
P(r 1 ,r 2)2P(r 1)P(r 2), which is a measure of the correla
tions, in that it would be zero without exchange and corre
tion effects.

Figures 3 and 4 compare the radial probability functio
and electron-electron radial correlation functions for t
M50 singlet andM521 triplet states in the 300-Å well a
20 T. Note that the more negative angular momentum st
are degenerate with these states, but their wave functions
not the same, so though similar behavior occurs, these p
are not general.

The difference between the correlation functions for t
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two states is very marked. The triplet shows strong antic
relations between the two electrons: There are low proba
ties along the diagonalr 15r 2 and the high probabilities in
the regions where the two electrons are at very different
dii. The two electrons in the singlet are, by contrast, radia
correlated, though the absolute size of the correlations
about two orders of magnitude less than for the triplet~the
gray scales on the two figures correspond to different ran
of probabilities!. The highest probabilities occur forr 15r 2
and there is relatively low probability of very different rad
Similar effects occur for the angular and axial correlati
functions~not shown!: In the triplet states the electrons a
ticorrelate, while in the singlet they correlate. In the ax
case, the correlations are much stronger for the singlet
the triplet, as is to be expected from the difference in se
tivity of the two states to the inclusion of the higher subba
states in the basis.

The correlation functions illustrate a major difference b
tween the wave functions of the singlet and tripletX2 states.
In the singlet, the two electrons tend to stay together, w
in the triplet they avoid each other. Ultimately, the explan
tion for this lies in the different symmetries for electron e
change. The spatially symmetric singlet allows the two el
trons to be in the same place, while the antisymmetric trip
forbids it. Given this, it is superficially surprising that th
binding energy of the singlet should be so similar to, a
even greater than, that of the triplet: The repulsive electr
electron interaction should be much stronger in the sin
than the triplet. The resolution of this puzzle lies in the d
ferences in the attractive electron-hole interaction that th

FIG. 3. Upper panel: radial probability functions for electro
~solid lines! and holes~dashed lines! in the M50 singlet state for
the 300-Å quantum well at 20 T. Lower panel: radial correlati
function for the two electrons; white corresponds to regions of h
joint probability, black to regions of low joint probability. See th
text for details of the definition of the correlation function.
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correlations imply. Keeping the electrons together in the s
glet allows both to interact strongly with the hole, giving
large electron-hole energy, while the anticorrelations in
triplet prevent both electrons being close to the hole, red
ing the electron-hole energy. The total electrostatic contri
tions to the binding energy, the sum of the positive electr
electron and negative electron-hole parts, thus turn out v
similar.

This discussion can be made more quantitative by ev
ating the expectation values of the electron-electron
electron-hole Coulomb interactions using the calculatedX2

wave functions. In Table III we show the results of this ca
culation for the 300-Å well at 20 T. The total binding ene
gies given in the table are calculated relative to the Land
level energies; the exciton binding energy at this field
15.54 meV. The column marked ‘‘kinetic’’ is really just th
difference between the electrostatic contribution and the t
binding energy. It arises from the inclusion in the wave fun
tion of contributions from higher Landau levels an
quantum-well subbands. The contrast between the sin
and triplet states is very marked: Though the total bind
energies are only;0.3 meV different, the separate electro
electron and electron-hole contributions differ by 3–4 me

h

FIG. 4. Radial probability and correlation functions, as in Fig.
but for theM521 triplet state.

TABLE III. Contributions to the binding energy~in meV! of the
lowest singlet and triplet states in a 300-Å well at 20 T. The bind
energy is given relative to the Landau-level energy, rather thanX0,
as elsewhere.

Electron- Electron-
X2 state electron hole Kinetic Total

Singlet 10.71 229.71 2.25 16.75
Triplet 7.44 225.34 1.42 16.48
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VI. COMPARISON WITH EXPERIMENTS

In this section we compare the best numerical results
Fig. 2 with experimental data for a 300-Å GaA
Ga0.67Al0.33As quantum well in fields up to 20 T. More de
tails of the experimental structure and procedures are g
in Ref. 5. The experimental binding energies are obtai
from photoluminescence spectra, which show features du
both X0 andX2 singlet and triplet recombination. When th
X2 recombines, one of the electrons and the hole disapp
leaving a free electron in the lowest Landau level. Thus
difference in photon energies for theX2 andX0 photolumi-
nescence features is equal to the difference between the
ergy of theX2 state and the total energy of theX0 plus a free
electron. This is just theX2 binding energy, relative toX0,
that we calculate.

The comparison between theory and experiment is sh
in Fig. 5. The agreement we obtain for the triplet states
impressive, considering that no fine-tuning of the physi
parameters was required. The situation for the singlet st
is much less satisfactory, with the experimental values u
50% greater than the theory. The calculations do, howe
reproduce the very weak field dependence at high fields,
spite the actual values being wrong. The disparity for
singlet is much greater than could be explained by inco
plete convergence in the calculations, which we estimat
give errors at the level of at most;0.1 meV. The Monte
Carlo results of Ref. 4 appear to give much better agreem
than this for the zero fieldX2, but this is in part a conse
quence of the fact that the method requires the use of
plane masses identical to the axial masses. If the in-p
hole mass is increased to 0.34 in the present calculation
10 T the binding energy of the singlet state rises to 1.60 m
much closer to the experimental value of 1.87 meV. T

FIG. 5. Comparison between theoretical~lines! and experimen-
tal ~squares! results for theX2 binding energies in the 300-Å wel
at fields up to 20 T.
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triplet energy, by contrast, changes very little, from 0.
meV to 0.76 meV, so the agreement remains good. Th
seems, however, to be no real justification for using suc
large value for the in-plane hole mass.

We next discuss some possible reasons for the dispa
between the theoretical and experimental values of the
glet binding energy. It is important to note that any sugges
explanation for enhancing the singlet binding energy sho
also account for why the triplet value comes out correctly

One possibility is that the treatment of the valence ban
too simple. The calculations have all assumed that the h
dispersion is parabolic, while in reality this is far from th
case. The correct, nonparabolic valence-band disper
comes from solutions of the Luttinger-Kohn Hamiltonia
coupling together the heavy- and light-hole states. Ther
some experimental evidence that this may be of importan
In the parabolic model used here, the spin splitting of theX0

and X2 singlet and triplet states should all be the sam
However, experimentally they are different, with a ve
small splitting for X0 and larger values for theX2

transitions.5 Such differences in splitting may be explainab
using the Luttinger-Kohn Hamiltonian because states of
posite spin couple in different ways.

We have carried out some calculations15 using the presen
approach, but including a proper treatment of the vale
band. The main difference is that the hole basis states
come a mixture of the simple finite-well states, determin
by the Luttinger-Kohn Hamiltonian. The rest of the calcul
tion is then essentially the same, with the electron-hole m
trix elements made up of appropriate combinations of
simple finite-well forms derived in Appendix B. The bindin
energies obtained depend on the values of all the Luttin
parameters, some of which are not accurately known. V
ous parameter sets have been tried, but the largest sin
binding energy we have been able to obtain is;1.35 meV at
10 T, still well below the experimental value of 1.87 meV

A second possibility is thatX2 is not free, but in fact
bound to a remote donor. This can increase its binding
ergy relative toX0 because the latter is neutral and so
much less strongly affected. Taking 600 Å as a reasona
value for the distance of a remote donor from the well, t
potential due to a single donor has a depth of;2 meV. The
shift in theX2 photoluminescence line due to this potent
is much smaller because the electron left in the final s
will also be bound to the donor. Thus the enhancement of
binding energy observed in photoluminescence will only
the difference between the binding energy of theX2 in the
donor potential and that of a lone electron. We have obtai
theoretical values for this difference using calculations in
lowest subband approximation15 and found that the singlet is
enhanced by;0.5 meV, while the triplet is virtually unaf-
fected (,0.1 meV enhancement!. Shifts of this magnitude
would give fairly good agreement with the experimental
sults. The reason for the difference in behavior of the t
states is that the correlated electrons in the singlet can in
act more strongly with the donor than the anticorrelated e
trons in the triplet.

Though this explanation sounds plausible from a theo
ical point of view, two pieces of experimental evidence su
gest that the observedX2 lines are not donor bound. On
reason is that the in-plane donor spacing is sufficiently sm
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15 192 56D. M. WHITTAKER AND A. J. SHIELDS
that, at a distance of 600 Å, there must be considerable o
lap between the potentials of individual donors, giving rise
a disordered electrostatic potential in the well. Hence theX2

singlet photoluminescence line would be expected to
broader than theX0 or triplet, by an amount of the order o
the singlet enhancement calculated above, about 0.5 m
This broadening would be easily measurable in the exp
mental spectra, but no such effect is seen. The other ex
mental evidence that donor binding is unlikely arises fro
work on double quantum wells by Shieldset al.:16 The bind-
ing energy ofX2 in one well is measured when there is
large electron density in the other, lying between it and
donors. This would be expected to screen out the donor
tential in the well containingX2. There is, however, no sig
nificant dependence of the observedX2 binding energy on
the charge density in the other well, suggesting that inte
tions with donors are unimportant.

A further, more exotic, possibility for explaining the en
hancement comes from considerations of the effects of
interaction between theX2 states and photons. Ivanov an
Haug17 have shown that polariton effects can enhance
measured binding energy of a quantum-well biexciton an
seems reasonable to believe that similar effects may o
for X2. Though no such calculations have been carried
for the X2 system, it is worth pointing out that any suc
effect would be greater for the singlet than the triplet beca
the singlet has a much larger oscillator strength and
couples more strongly to the electromagnetic field. He
this explanation too is consistent with the requirement t
the singlet binding energy needs to be enhanced, but no
triplet.

VII. CONCLUSIONS

We have carried out calculations ofX2 binding energies
in quantum wells with a perpendicular magnetic field. T
model consists of a finite width well with finite barrie
heights and parabolic conduction and valence bands.
numerical method is able to cope with large numbers of b
states, allowing us to obtain highly accurate results.

One of the main results of our calculations is to show t
the widely used lowest-Landau-level approximation giv
poor results for GaAs/AlxGa12xAs quantum wells, in the
range of fields experimentally accessible. Though the L
predicts that only the tripletX2 state should be bound rela
tive to the neutral excitonX0, we find that the triplet does no
become the ground state until about 30 T in a 100-Å w
while no crossover occurs below 50 T in a 300-Å well. In t
latter, correlations perpendicular to the well plane are v
important, suggesting that it lies in the crossover regime
tween two- and three-dimensional behavior. It is clear t
the singlet state can only become unbound at much hig
fields, perhaps never in the wider well.

The other important result we obtain is an understand
of the different ways that the singlet and triplet states bi
Our correlation functions, and calculations of expectat
values, show very clearly that the singlet binds by maxim
ing the attractive electron-hole interaction, while the trip
minimizes the electron-electron repulsion. This understa
ing is the key to explaining many of the differences in b
havior of the singlet and triplet states.
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We believe that our results are very accurate, with n
merical errors no more than;0.1 meV. Though good agree
ment with experiment is obtained for the triplet state, t
large discrepancy for the singlet, much greater than this
timated error, suggests that additional physics needs to
considered to understand fully the experimental results.

Finally, we note that since this paper was submitt
Chapmanet al.18 have published numerical results forX2

binding energies in a magnetic field. Their approach involv
an exact diagonalization within a basis of states from sev
Landau levels and so is more realistic than previous calc
tions using only the lowest Landau level. However, wh
compared to the present work, their treatment has signific
limitations with both quantitative and qualitative cons
quences. The basis they use is too small to obtain high
curacy and indeed no attempt is made to check for con
gence. Moreover, they do not include states from hig
subbands, which our results show to be very important
even a qualitative understanding of wider wells.

APPENDIX A: SINGLE-PARTICLE WAVE FUNCTIONS

This appendix describes the single-particle electron-h
states for a finite quantum well with a magnetic field perpe
dicular to its plane. The state factorizes into an axial p
x l(z) and an in-plane partfnm(r )exp6i(n2m)u, where the
exponent takes opposite signs1 and 2 for electrons and
holes, respectively.

For the case of a symmetric, finite quantum well of wid
d, the axial wave functions can be written in the form

x l~z!5H Z sin
cos~2kd/2!eaz ~z,2d/2!

Z sin
cos~kz! ~2d/2,z,d/2!

Z sin
cos~kd/2!e2az ~d/2,z!,

~A1!

where the cos form applies for the even-parity sta
( l 51,3, . . . ) and the sinform for odd-parity states
( l 52,4, . . . ). Thenormalization constantZ is given by

Z5H d

2
1

1

2k
sinkd1

1

a
cos2

kd

2 J 21/2

. ~A2!

The constantsk and a, which, of course, depend on th
state l , are determined by numerically solving the trance
dental equation derived from the 1D finite-well eigenpro
lem. In the present work, the boundary conditions used
continuity of x and (1/m)x8. The calculations are for a
GaAs-AlxGa12xAs system withx50.33, taking conduction-
and valence-band offsets to be 224 and 150 meV, res
tively. The electron~hole! masses for axial motion are 0.06
~0.34! and 0.07~0.45! in the well and barrier and the in-plan
values are 0.065~0.18!.

For the in-plane motion, the conventions of MacDonald19

are followed in choosing the relative phases of the differ
states. The radial wave functions are then

fnm~r !5~21! i ,
e2r 2/4l c

2

A2p l c
2
Ai ,!

i .! S r

A2l c
2D i .2 i ,

3Li ,

i .2 i ,~r 2/2l c
2! , ~A3!
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56 15 193THEORY OFX2 AT HIGH MAGNETIC FIELDS
whereL is a generalized Laguerre polynomial and the no
tion i . and i , has been adopted for the greater and lesse
n andm, respectively. This definition is consistent with th
phases of the matrix elements in Appendix B.

APPENDIX B: CALCULATION OF COULOMB
MATRIX ELEMENTS

This appendix gives details of the analytic part of t
evaluation of the Coulomb matrix element coupling pairs
single-particle basis states. In the interests of clarity, the d
vation given is just for the electron-electron interaction, m
nor differences for the electron-hole interaction are m
tioned in passing.

The required Coulomb matrix elements take the form

^ l 1n1m1u^ l 2n2m2uV~r12r2 ,z12z2!u l 18n18m18&u l 28n28m28&,
~B1!

where

V~r12r2 ,z12z2!5
1

A~r12r2!21~z12z2!2
. ~B2!

Formally evaluating thez integrals, define

Vl 1l 2l
18 l

28
~r12r2!

[
1

~2p!2E E q dq du Ṽl 1l 2l
18 l

28
~q!e2 iq•~r12r2!

5^ l 1u^ l 2uV~r12r2 ,z12z2!u l 18&u l 28&. ~B3!

Then the matrix element~B1! can be written

1

~2p!2E E q dq du Ṽl 1l 2l
18 l

28
~q!

3^n1m1ue2 iq•r1un18m18& ^n2m2ueiq•r2un28m28&. ~B4!

The next step requires a result due to MacDonald19 for the
Landau-level matrix elements of plane waves. For electro

^nmue2 iq•run8m8&

5e2q2l c
2/2Gn8n~qlc!Gm8m~qlc!e

i ~n82n1m2m8!u, ~B5!

where
-
of

f
ri-
-
-

s,

Gs8s~qlc!5As,!

s.! S 2
iql c

A2
D s.2s,

Ls,

s.2s,~q2l c
2/2!.

~B6!

For holes, the sign of the exponent in the angular part of
~B5! is reversed.

This identity can be used to simplify the matrix elemen
in Eq. ~B4!. The u integral just gives angular-momentum
conservationn12m11n22m25n182m181n282m28 , leaving
a one-dimensionalq integral that has to be evaluated nume
cally:

1

2pE E q dq Ṽl 1l 2l
18 l

28
~q!e2q2l c

2
Gn

18n1
~qlc!Gm

18m1
~qlc!

3Gn
28n2

~2qlc!Gm
28m2

~2qlc!. ~B7!

The same result applies for the electron-hole interaction,
cept the angular-momentum conservation condition corre
becomesne2me1mh2nh5ne82me81mh82nh8.

In an exactly two-dimensional system, i.e., the limit
zero well width, there are no subband labels a
Ṽ(q)52p/q. In a finite width well, this is multiplied by a
form factorFl 1l 2l

18 l
28
(q), where

Fl 1l 2l
18 l

28
~q!

5E E dz1 dz2 x l 1
~z1!x l

18
* ~z1!x l 2

~z2!x l
28
* ~z2!e2quz12z2u.

~B8!

For the case of a finite quantum well with no electric fie
this integral can be evaluated analytically. The calculation
lengthy, so only the result is given here.

The finite quantum-well wave functions are described
Appendix A. For eachl , the numerical solution gives value
of k, the wave vector in the well;a, the decay constant in th
barrier; and the normalization constantZ. To keep the ex-
pressions for the matrix elements compact, a further quan
p is defined:p50 for even-parity states andp51 for odd-
parity states.

The form factors are written in terms of a subsidiary fun
tion
f ~ka ,aa ;kb ,ab ;q!5
1

ka
21q2S ka

ab1q
1

q

ka1kb
D s1~ka ,kb ;q!1

1

kb
21q2S kb

aa1q
1

q

ka1kb
D s2~ka ,kb ;q! 1

1

~aa1q!~ab1q!

3S 11
q

aa1ab
D c1~ka ,kb ;q! 1S q

~aa1q!~ab1q!~aa1ab!
1

q

~ab1q!~ka
21q2!

1
q

~aa1q!~kb
21q2!

2
~q21kakb!

~q21ka
2!~q21kb

2!
D c2~ka ,kb ;q!, ~B9!

where

s6~ka ,kb ;q!5sin~ka1kb!d/26e2qdsin~ka2kb!d/2,
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c6~ka ,kb ;q!5cos~ka1kb!d/26e2qdcos~ka2kb!d/2. ~B10!

Then

Fl 1l 2l
18 l

28
~q!5

Z1Z2Z18Z28

4
~21!~p11p21p181p28!/2

3$ f ~k11k18 ,a11a18 ;k21k28 ,a21a28 ;q!1~21!p28 f ~k11k18 ,a11a18 ;k22k28 ,a22a28 ;q!

1~21!p2f ~k11k18 ,a11a18 ;2k21k28 ,2a21a28 ;q!1~21!p21p28 f ~k11k18 ,a11a18 ;2k22k28 ,2a22a28 ;q!

1~21!p18 f ~k12k18 ,a12a18 ;k21k28 ,a21a28 ;q!1~21!p181p28 f ~k12k18 ,a12a18 ;k22k28 ,a22a28 ;q!

1~21!p181p2f ~k12k18 ,a12a18 ;2k21k28 ,2a21a28 ;q!

1~21!p181p21p28 f ~k12k18 ,a12a18 ;2k22k28 ,2a22a28 ;q!% . ~B11!

Note that the full result has sixteen terms, corresponding to all possible combinations of signs. This form of it ha
simplified by combining pairs of terms in a way that is valid only for parity-allowed matrix elements. It thus does not co
give zero for the parity-forbidden case.

A useful special case that can be derived from Eqs.~B9!–~B11! is the diagonal lowest subband (l 51) form factor for an
infinite well (k5p/d, a→`). Then, as in Ref. 20,

F1111~q!5
2

qd
1

qd

q2d214p2
22~12e2qd!S 1

qd
2

qd

q2d214p2D 2

. ~B12!
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