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Effect of valley-spin degeneracy on the screening of charged-impurity centers
in two- and three-dimensional electronic devices
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Accurate characterization of charged impurity centers is of importance for electronic devices and materials.
The role of valley-spin degeneracy on the screening of an attractive ion by the mobile carriers is assessed
within a range of systems from spin-polarized single valley to six valley. The screening is treated using the
self-consistent local-field correction of Singwi, Tosi, Land, and Sjo¨lander, known as STLS. The bound electron
wave function is formulated in the form of an integral equation. Friedel oscillations are seen to be influential
especially in two dimensions that cannot be adequately accounted for by the hydrogenic variational ap-
proaches. Our results show appreciable differences at certain densities with respect to simplified techniques,
resulting mainly in the enhancement of the impurity binding energies. The calculated Mott constants are
provided where available. The main conclusion of the paper is the substantial dependence of the charged-
impurity binding energy on the valley-spin degeneracy in the presence of screening.@S0163-1829~97!05048-0#
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I. INTRODUCTION

Impurities are introduced to real electronic systems eit
intentionally, as in the form of doping, or unintentionall
mainly in the growth process. Ionization of these impurit
contributes charged impurity centers to the system and th
play an important role in device operation and material pr
erties; for reviews, see Bassaniet al.1 and Andoet al.2 for
the three-dimensional~3D! and ~2D! systems, respectively
Due to its fundamental and technological importance,
binding of electrons to charged impurity centersin the pres-
ence of screeninghas long been investigated by the resear
ers both in 3D~Refs. 3–9! and 2D~Refs. 10–13!. Most of
these works in 3D aimed to deal with the metal-insula
transition using14,15 Mott’s initial approach, which he de
vised, in fact, for the stability of the metallic phase. The
approaches can be grouped as variational3–6,10–13 and
numerical7–9 treatment of the bound electron wave functio
The former has appealing simplicity but may not be suita
to use in this problem as the resultant binding energy w
inevitably be higher than the true ground-state energy. M
tino et al.7 have shown this to be the case by compar
Krieger and Nightingale’s3 variational hydrogenic wave
function treatment with their numerical method. Cons
quently, variational techniques are refined by replacing
trial wave functions with the Hulthe´n’s form,16 resulting in a
better agreement with Ref. 7. In all these works seve
forms of dielectric screening have been employed such
Thomas-Fermi,3–5 random phase approximation~RPA!,3–6

and Hubbard-Sham.7,4,8 In our work we use the so-calle
self-consistent local-field correction of Singwi, Tosi, Lan
and Sjölander,17 to be referred to as STLS. This technique
one of the best improvements of the RPA,18 considering both
the Pauli and Coulomb holes around the electrons that
part in the screening of any longitudinal disturbance.18 Very
560163-1829/97/56~23!/15115~9!/$10.00
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recently Borgeset al.19 also dealt with impurity binding en-
ergies in 3D using STLS dielectric function, with Hulthe´n
variational wave function.

The aim of this work is primarily to assess the role
valley and spin degeneracy on the screening and hence b
ing strength of charged impurity centers both in 2D and 3
The valley and spin degeneracy means that a numbe
conduction-band minima and two spin states areenergeti-
cally degenerate in the absence of symmetry-breaking
turbations such as strain and magnetic field. The need for
work stems from the current status of electronic devic
evolved into two classes as multivalley systems domina
by silicon and germanium and single-valley systems reali
using mainly gallium arsenide. Another source of motivati
for the present work is related to the recently observed me
insulator transition in a 2D system, Si metal-oxid
semiconductor field-effect transistor, towards ze
temperature.20–23 We commented24 that this observation
could be due to valley phase transition in Si inversion laye
a many-body effect originally anticipated by Bloss, Sha
and Vinter.25 For this reason, the effect of valley degenera
on several physical phenomena needs further investiga
the screening of charged impurity centers is just one of th
We observe that Friedel oscillations18,26 associated with the
screening of an impurity potential are influential in the im
purity binding energies. Appreciable differences are seen
tween our numerical approach based on the computation
efficient solution of an integral equation and the widely us
hydrogenic variational treatments. These results will ha
implications on the accurate characterization of impurities
well as excitons27 under the presence of free-carrier scree
ing. The screened attractive impurity potential has two i
portant aspects: the bound states and the scattering cross
tion. In this paper we focus on the former and do not addr
the equally important problem of the effect of valley-sp
15 115 © 1997 The American Physical Society
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degeneracy on themobility, limited by the screened ionize
impurities.

In Sec. II the theoretical details on the variational expr
sions, the dielectric screening and the integral equation
mulation are included. The results for 3D and 2D cases
be found in Sec. III. We observe that the phenomena in
are quite interesting and thereby require more discuss
Finally, we conclude in Sec. IV. Throughout the text w
mention the assumptions and simplifications made.

II. THEORETICAL DETAILS

We assume that the mobile carriers are over a neutrali
positively charged continuum, that is, the so-called elect
liquid ~EL! model, where electron-electron interactions a
rigorously considered using the dielectric formulation28 but
ionic lattice and disorder effects are ignored. We introduc
degeneracy parameter for the constituent electrons of the
and thereby consider the spectrum ranging from sp
polarized and single-valley EL to six-valley EL to asse
these exchange effects due to valley-spin degeneracy.
consider one singly ionized impurity29 being immersed into
an EL, and investigate whether this impurity can trap
electron with the screening of the EL present. The bind
ability in this model is controlled by three effects:~i! the
attractive bare Coulomb interaction of the ion that enhan
the binding,~ii ! the kinetic energy of the bound electron th
tries to overcome the binding, and~iii ! the screening of the
bare interaction by the free carriers of the EL that weak
the binding of the electron. A negative energy bound st
may not be possible if the last two effects win over the fi
as the concentration of the free carriers in the EL is
creased. We observe that the competition among these
fects becomes more interesting in the 2D case. The z
intercept density of the binding energy is traditionally know
as the Mott value, which renders the comparison of differ
approaches quite simple; we display our results for the M
constant in Sec. III. Our single-impurity consideration pos
one important restriction on the density of impurity cente
basically, if the bound electron wave functions overlap d
to large impurity concentration, then the discrete bou
states broaden into bands by means of tunnelling betw
neighboring sites. However, the aim in high-speed electro
devices is to avoid a large amount of impurities along
mobile carrier paths.

We work at zero temperature, and for the 2D case, aim
for general results, we assume no extension along the t
dimension ~i.e., strictly 2D!, where electrons still interac
with Coulomb 1/R potential.30 We mainly use 3D effective
Rydbergs (Ry* ) for the energies and denote them with
overbar. Also we introduce length-related reduced variab
by scaling with the effective Bohr radiusaB* and denote them
by the subscriptr throughout the text such asar[a/aB* ,
qr[aB* q, for variables having length and reciprocal leng
dimensions, respectively.

A. Variational expressions

For completeness we first list the expressions for the
drogenic variational approach. In the 3D case Krieger a
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Nightingale3 used a variational approach for the bound ele
tron wave function based on a hydrogenic 1s trial wave
function as

c0~r !5
1

Apa3
e2r /a, ~1!

with a being the variational parameter, whereas Panat
Paranjape10 used the same form in two dimensions with r
dial variabler being replaced by the polar radial variabler
as

c0~r!5A 2

pa2
e2r/a. ~2!

The corresponding binding energies are given as

Ē0~ar !5
1

ar
2

2
4

pH E0

` dqr

F S arqr

2 D 2

11G2F 1

e3D~qr !
21GJ 2

2

ar

~3!

in the 3D and

Ē0~ar !5
1

ar
2

22H E0

` dqr

F S arqr

2 D 2

11G3/2F 1

e2D~qr !
21GJ 2

4

ar

~4!

in the 2D case, where bare interaction is added and s
tracted to achieve a faster decaying integrand as suggest
Ref. 10. In these expressionse3D ande2D represent the static
dielectric screening of the EL, which can be computed
different levels of sophistication; in the next section we d
scribe the dielectric function we employ.

B. Dielectric function for a general degeneracy factor

The ultimately important quantity in screening is the sta
dielectric function of the EL. Here we would like to intro
duce an extra label (n), to the free carriers of the EL in
addition to spin (s) and wave-vector (kW ) labels, to account
for the extra valley freedom.31 Then, the zeroth-order polar
ization insertion diagram26 p0(q) is modified as in Fig. 1,
where G0 refers to noninteracting propagator.26 The bare
Coulomb interaction being independent of spin and val

FIG. 1. Zeroth-order polarization insertion diagram,p0(q) for a
fermionic system having spin (s), valley (n), and wave number
(k) labels.
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labels suggests the introduction of an overall degeneracy
tor gd asgd5gsgv , wheregs andgv are the spin and valley
degeneracies, respectively. For the spin-polarized sin
valley EL we havegd51 and for the normal-state EL havin
ed

de
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a
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s,
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g
n

c-

e-

gv energetically degenerate valleys,gd52gv . In turn, p0 is
trivially affected by the overall degeneracy factorgd as a
coefficient in front. The 3D static dielectric function be
comes
s
al-field

at high
tion
e3D
STLS~qn!5

11S 2gd
4

9p4D 1/3
r s

qn
2S 12

42qn
2

4qn
lnU22qn

21qn
U D @12G3D

STLS~qn!#

12S 2gd
4

9p4D 1/3
r s

qn
2S 12

42qn
2

4qn
lnU22qn

21qn
U DG3D

STLS~qn!

. ~5!

In this expression and throughout the textqn refers to a wave number normalized to Fermi wave numberkF and
r s51/aB* ( 4

3 pn3D)1/3, with n3D being the 3D free-electron density.qr and qn are related in three dimensions a
qn5qrr s(2gd/9p)1/3. The Pauli and Coulomb holes surrounding the screening electrons are introduced by the loc
correctionG3D

STLS, which needs a self-consistent calculation as described in Ref. 17. Recently, Gold32 has investigated the
effects of valley degeneracy on the local-field correction. He noted that the many-body effects are important even
electron densities~i.e., low r s values!. We find Gold’s work very useful, however, Gold constrained the local-field correc
to a Hubbard-like form33 that led to simplicity in the computation. Based on our previous observations,34 we avoid this
simplification and use the standard approach.

The static dielectric function in two dimensions is of the form

~6!
o-

gly
as

add
uta-
wherer s in this case is related to 2D electronic density,n2D

by r s51/aB* Apn2D. The relation betweenqn andqr in two
dimensions isqn5qrr sAgd/2. Again the 2D local-field cor-
rection,G2D

STLS(qn), needs to be self-consistently determin
at each value ofr s . We refer to available literature35,36 for
details, however, we would like to mention the work of
Freitaset al.,37 which greatly simplifies the labor in the stat
structure factor calculation by the so-called Ioriatti-Isihar38

transformations. We applied their recipe to a 2D EL hav
an arbitrary spin and valley degeneracy.

C. Integral equation formulation

In spite of the simplicity of the variational technique
they must be used with care in problems such as the bin
energy, where the variational energy only yields an up
bound for the true ground-state energy. As a better alte
tive, we present below an approach that leads to an inte
equation for which we also develop computationally efficie
operator techniques.
g

g
r
a-
ral
t

1. Formulation for 3D

The bound electron feels a centrally symmetric radial p
tential, and for the lowest 1s state, the Schro¨dinger equation
in three dimensions becomes

1

r r
2

d

drr
S r r

2 dc0~r r !

drr
D1@ Ē02Ū3D,scr~r r !#c0~r r !50. ~7!

Ū3D,scr(r r) is the screened potential energy due to a sin
ionized attractive impurity in real space to be computed

Ū3D,scr~r r !52
2

r r
1

4

pE0

`

dqn

sinS qn

r r

r s
F 9p

2gd
G1/3D

qnr r

3F12
1

e3D~qn!G , ~8!

wherer r is the reduced distance in real space; again we
and subtract unscreened Coulomb potential for comp
tional reasons.10
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The principal problem in the numerical solution is th
infinite domain of the wave function. As a remedy, Martin
et al.7 noting the difference with the hydrogen atom proble
due to the presence of screening, setŪ3D,scr(r ) to zero for
distances greater than some large valueR. Then, for r .R
the wave function for bound states becomes8

c0~r !;
e2kr

r
with k5A2m*

\2
uE0u, ~9!

up to a normalization constant. The continuity of the wa
function together with its derivative atr 5R, or equivalently,
the continuity of the logarithmic derivative of the wave fun
tion, yields

dlnc0~r !

dr U
r 5R

52k2
1

R
. ~10!

Equation ~7! is a two-value differential equation problem
usually dealt with shooting-type numerical techniques.39 We,
rather, prefer to convert the radial Scro¨dinger equation to an
integral equation as

G~r r !5S~r r !2
1

r r
E

0

r r
dr8G~r 8!2, ~11!

where

S~r r !5
1

r r
E

0

r r
dr8r 8

2
Ū3D,scr~r 8!1

r r
2

3
uĒ0u,

and

G~r r !5r r

dlnc0~r r !

drr
. ~12!

The energy eigenvalue is determined fromG(Rr)

52RrAuĒ0u21. In our work we extracted the energy eige
value Ē0 from the above equation by sampling the wa
function in the 5% neighborhood ofRr510. Equation~11! is
a nonlinear integral equation of the Volterra type in t
fixed-point form.40 However, we observed very slow conve
gence of the standard techniques; for this purpose we
express Eq.~11! as an operator equation as

P@G~r r !#5G~r r !2S~r r !1
1

r r
E

0

r r
dr8G~r 8!250 ~13!

and resort to the operator form of Newton’s method,41 which
requires the inverse operator of the derivative~Fréchet
derivative41! of the operatorP evaluated at the function
G(r r). This inverse operator acting onG(r r) is given as

$P8@G~r r !#%
215 (

n50

`

~21!n
2

r r
E

0

r r
dr8G~r 8!

2

r 8

3E
0

r 8
dr9G~r 9!•••

2

r ~n21!

3E
0

r ~n21!

dr ~n!G~r ~n!!; ~14!
e

st

here the prime on the left-hand side designates a deriva
whereas, the primes on the right-hand side are used to
duce dummy variables. We retain the first two terms a
approximate the final equation as

Gnew~r r !5Gn~r r !2P@Gn~r r !#1
2

r r
E

0

r r
dr8Gn~r 8!P@Gn~r 8!#,

~15!

whereGn denotesG at thenth iteration; we determineGn11
by mixing Gnew andGn . The final form, then offers a rapidly
converging algorithm, once we initiate the process at l
densities~such asr s520) using the variational wave func
tion as the initial guess and gradually increase the densi

2. Formulation for 2D

The 2D Schro¨dinger equation for the ground-state wa
function reads

1

r r

d

dr r
S r r

dc0~r r !

dr r
D1@ Ē02Ū2D,scr~r r !#c0~r r !50.

~16!

The expression for the screened potential energy due
singly ionized attractive impurity in real space, which sho
Friedel oscillations, is

Ū2D,scr~r r !52
2

r r
1

4

r sAgd
E

0

`

dqnJ0S qn

2

r sAgd

r r D
3F12

1

e2D~qn!G , ~17!

wherer r is the reduced 2D radial coordinate andJ0 is the
zeroth-order cylindrical Bessel function of the first kind. S
Fig. 2 for the screened potential energy at several value
the 2D electronic density; also note the evolution of the Fr
del oscillations as the density decreases. As in 3D, we w
with the functionG(r r)5r rdlnc0 /drr , rather than with the
wave function itself; in this way an exponentially decayin
function is mapped to a linearly decreasing one. The non
ear integral equation satisfied byG becomes

G~r r !5S~r r !2E
0

rr
dr8

G~r8!2

r8
, ~18!

where

S~r r !5E
0

rr
dr8r8Ū2D,scr~r8!1

r r
2uĒ0u
2

, ~19!

which is to be computed with very high precision. A nonli
ear equation needs to be solved for the bound-state en
eigenvalue, of the form

G~Rr !52RrAuE0uK1~RrAuE0u!/K0~RrAuE0u!, ~20!

whereK is the modified Bessel function of the second kin
To achieve much faster convergence than the fixed-p

form, the operatorP is introduced as
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P@G~r r !#5G~r r !2S~r r !1E
0

rr
dr8

G~r8!2

r8
50. ~21!

We give the final form of the iterative equation we use
two dimensions, which closely resembles the 3D case

Gnew~r r !5Gn~r r !2P@Gn~r r !#

12E
0

rr
dr8

Gn~r8!

r8
P@Gn~r8!#. ~22!

III. RESULTS

A. 3D EL results

We investigate the binding energy of the impurity ele
tron as a function of the electron density and valley-s
degeneracy. In Table I, we list the so-called Mott constan
a function of the degeneracy parametergd from spin-
polarized electrons to six valley degeneracy as in the c
duction band of silicon. Here the Mott constant is defined
aB* n3D

1/3, wheren3D is the density at which the binding energ
reaches zero. It can be seen that forgd greater than 4 the
exchange effects do not lead to appreciable changes in

FIG. 2. Potential-energy distribution due to a screened, sin
ionized attractive impurity vs distance. A normal-state, sing
valley EL is considered (gd52) at several densities.
-
n
s

n-
s

he

Mott constant. The spin-polarized EL (gd51) has the high-
est Mott constant, which is due to poor screening of
impurity potential by the participating electrons having lar
Pauli holes around them. In Fig. 3 we plot the variation
~hydrogenic! and integral equation solutions for the bindin
energy of the normal-state single-valley (gd52) EL; the de-
viation is clearly visible towards the Mott constant. The b
havior for other valley-spin degeneracies is the same a
from a translation according to the Mott constant value; re
to Table I.

Our treatment is based on an isotropic effective mass
the screening electrons; however, mass anisotropy is
dominantly effective in multivalley materials such as silico
and germanium. We refer to available works considering
mass anisotropy problem.5,6,19 In single-valley systems the
conduction-band effective mass is close to isotropic, such
in the GaAs or the AlxGa12xAs system. Our calculated Mot
constant value for this system~i.e., gd52) is 0.23. Gold and
Ghazali9 have very recently dealt with the 3D impurity bind
ing energies using STLS type screening and a numerical
lution for the bound electron wave function. They report
for the same 3D Mott constant the value 0.25. We attrib

ly
-

FIG. 3. Binding energy of a bound impurity electron within
normal-state, single-valley (gd52) 3D EL vs the Mott constant,
defined asaB* n3D

1/3 . Solid line refers to integral equation solution
which gives a lower energy than the variational treatment based
the hydrogenic wave function denoted by the dashed lines.
e
TABLE I. Critical Mott densityr sc of the 3D EL. The corresponding Mott constants, defined asaB* n3D
1/3 are indicated in parentheses. Th

numerical results based on the integral equation solution are more reliable~see text!.

Degeneracy factor:gd 1 2 4 8 12
~spin polarized! ~single valley! ~two valley! ~four valley! ~six valley!

Variational hydrogenic:r sc ~Mott const! 2.25 ~0.275! 3.57 ~0.174! 4.11 ~0.151! 4.13 ~0.150! 4.05 ~0.153!
Numerical:r sc ~Mott const! 1.44 ~0.430! 2.70 ~0.230! 3.62 ~0.171! 3.80 ~0.163! 3.75 ~0.166!
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the difference between our and their results to the fact
these authors enforced Hubbard-like form for the local-fi
correction, which differs from the exact STLS local-fie
correction leading to a discrepancy in the dielectric functi

B. 2D EL results

In general, dimensionality is effective in almost all ele
tronic properties; for our concern, in 2D the role of Fried
oscillations is enhanced~see Fig. 2!. However, quite com-
monly the in-plane wave function for~quasi-!2D bound
impurities10–13 in the presence of free carriers~i.e., screen-
ing! has been chosen to be of thee2r/l type, wherel is the
variational parameter. In Fig. 4 the hydrogenic variatio
probability distribution is compared with that of the integr
equation solution. The screened attractive potential energ
also added in this figure to aid the comparison. The proba
ity distribution obtained by integral equation solution
lower in the first repulsive part of the potential energy a
higher in the neighboring attractive region than the var
tional solution; in turn, the electron is expected to be m
tightly bound. This is seen to be the case in Fig. 5 show
the 2D impurity binding energy for the spin-polarized a
normal states. Furthermore, a critical Mott density does
exist for these two cases and negative energy bound s
are available for all densities, unlike the 3D case. Forgd54,
the variational approach predicts a density ran
r s50.3821.81, where the binding energy vanishes. The
tegral equation solution suggests that this window is n
rower and situated aroundr s51 as can be seen in Fig. 6. A
the valley-spin degeneracy further increases togd58 and 12,

FIG. 4. Probability distribution of the bound electron wa
function within a 2D EL havingr s51 and gd52. Solid line is
based on the integral equation solution and dashed line refers t
hydrogenic wave function, i.e., Eq.~ 2!. Also shown by dotted lines
is the screened potential energy experienced by the bound elec
at
d

.

l

l

is
il-

-
e
g

t
tes

,
-
r-

the binding energy curves resemble those in 3D cases;
corresponding Mott densities are atr s51.52 and 1.48, re-
spectively, based on the integral equation solution wher
the variational approach leads to higher values~see Fig. 7!.

FIG. 6. Binding energy of a bound electron within a 2D E
versusr s for gd54 ~i.e., two-valley degeneracy!. Solid line denotes
the integral equation solution and the dashed line denotes 2D
drogenic variational wave function result, both utilizing the STL
screening. Dash-dotted line refers to RPA screening based on
integral equation solution.

2D

on.

FIG. 5. Binding energy of a bound electron within a 2D EL
r s for gd51 and 2. Calculations are based on the integral equa
solution ~solid lines! and 2D hydrogenic variational wave functio
~dashed lines!.
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From these three figures we can also conclude that the
drogenic variational technique is successful for the small v
ues of the degeneracy factor,gd . For a better comprehen
sion, we combine all different degeneracy cases in Fig
and present a larger density range, up tor s510. The main
observation in two dimensions is the remarkable depende

FIG. 8. Binding energies in 2D EL vsr s based on the integra
equation solutions. For comparison purposes severalgd values are
included.

FIG. 7. Binding energy of a bound electron within a 2D EL
r s for gd58 and 12~i.e., four- and six-valley degeneracies!. Solid
lines denote the integral equation solutions and the dashed
denote 2D hydrogenic variational wave-function results.
y-
l-

8,

ce

of the charged impurity binding energies on the valley-s
degeneracy in the presence of screening.

Figure 5 shows an interesting strengthening of binding
the high-density limit,r s→0. The screened interactions fo

FIG. 9. Potential-energy distribution due to a screened, sin
ionized attractive impurity vs distance. The effect of the degener
factor gd is illustrated from spin-polarized (gd51) to six-valley
degeneracy (gd512); all at a very high density (r s50.02) of a 2D
EL.

FIG. 10. The effect of dielectric function on the binding ener
for 2D EL using RPA, Hubbard and STLS screenings; all compu
by solving the integral equation. Also the STLS screened bind
energy is shown based on the 2D hydrogenic variational wave fu
tion labeled by STLS~H!.

es
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several values ofgd at r s50.02 are plotted in Fig. 9. In this
limit, the Friedel oscillations diminish and the screening
determined by the exchange effects. Hence, for the s
polarized case (gd51), the screening electrons cannot a
proach to the ion due to their sensible Pauli holes resultin
poor screening of the ion potential and enhanced binding
the degeneracy parametergd is increased up to 12, the influ
ence of the Pauli hole is weakened and the central well
gion of the screened impurity potential gets narrower so
negative energy bound states are no longer supported. F
10 compares the effect of several dielectric functions~RPA,
Hubbard, and STLS! on the impurity binding energy fo
gd52. Sizeable quantitative differences are observed,
the STLS dielectric function is seen to have stronger scre
ing power leading to a weaker binding. Note the agreem
of the three forr s→0 as expected. Hubbard dielectric fun
tion follows STLS at the high-density end where exchan
effects are dominant. Finally, in Fig. 6 we observe that
the gd54 case RPA result becomes even qualitatively d
ferent and gives negative energy bound states for all de
ties.

IV. CONCLUSION

We investigate the role of valley-spin degeneracy on
screened charged impurity centers. Several complications
suppressed for easy comprehension and computational
plicity. These include the mass anisotropy, the effects of
order and ionic lattice on the mobile carriers, the finite te
perature, overlap of neighboring bound-state wave functi
~impurity band formation!, and the finite well width in the
2D case. However, screening is treated using the STLS
ev

s

n-
-
in
s

e-
at
ure

d
n-
nt

e
r
-
si-

e
re

im-
s-
-
s

lf-

consistent local-field correction scheme and the bound e
tron wave function is handled numerically without resorti
to simplistic approximations. We observe that care in th
two points is rewarding, proven by the appreciable diffe
ences as compared to widely used RPA and variational te
niques, respectively. We anticipate that similar conclusio
can be drawn for the Wannier excitons in the presence
free-carrier screening. Recently, Ping and Jiang42 investi-
gated the effect of screening on the exciton binding energ
GaAs/AlxGa12xAs quantum wells using a rather simple a
proach based on the Debye screening model and
variational-perturbation method for the binding energ
Therefore, the present analysis merits to be extended to
citons.

The dependence on valley-spin degeneracy is very sig
cant, especially in two dimensions. From the current el
tronic devices point of view, Si-based and GaAs-based
vices are shown to have marked differences in the beha
of screened charged impurity centers. For GaAs-based
vices the Pauli exclusion principle is more influential in t
screening and impurity binding energies are larger than
Si-based ones. Binding energy dependence on the de
eracy parameter gradually saturates both in two and th
dimensions for gd>8. Finally, the transport through
screened charged impurities is also expected to have
sensitivity to the valley-spin degeneracy.
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