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Accurate characterization of charged impurity centers is of importance for electronic devices and materials.
The role of valley-spin degeneracy on the screening of an attractive ion by the mobile carriers is assessed
within a range of systems from spin-polarized single valley to six valley. The screening is treated using the
self-consistent local-field correction of Singwi, Tosi, Land, andaBjder, known as STLS. The bound electron
wave function is formulated in the form of an integral equation. Friedel oscillations are seen to be influential
especially in two dimensions that cannot be adequately accounted for by the hydrogenic variational ap-
proaches. Our results show appreciable differences at certain densities with respect to simplified techniques,
resulting mainly in the enhancement of the impurity binding energies. The calculated Mott constants are
provided where available. The main conclusion of the paper is the substantial dependence of the charged-
impurity binding energy on the valley-spin degeneracy in the presence of scre3ii$3-18207)05048-0

[. INTRODUCTION recently Borgest al!® also dealt with impurity binding en-
ergies in 3D using STLS dielectric function, with Hulthe
Impurities are introduced to real electronic systems eithewvariational wave function.

intentionally, as in the form of doping, or unintentionally,  The aim of this work is primarily to assess the role of
mainly in the growth process. lonization of these impuritiesvalley and spin degeneracy on the screening and hence bind-
contributes charged impurity centers to the system and theseg strength of charged impurity centers both in 2D and 3D.
play an important role in device operation and material prop-The valley and spin degeneracy means that a number of
erties; for reviews, see Bassagtiall and Andoet al? for  conduction-band minima and two spin states anergeti-
the three-dimensiond3D) and (2D) systems, respectively. cally degenerate in the absence of symmetry-breaking per-
Due to its fundamental and technological importance, thdurbations such as strain and magnetic field. The need for this
binding of electrons to charged impurity centérghe pres- work stems from the current status of electronic devices,
ence of screeningas long been investigated by the researchevolved into two classes as multivalley systems dominated
ers both in 3D(Refs. 3—9 and 2D (Refs. 10—1R Most of by silicon and germanium and single-valley systems realized
these works in 3D aimed to deal with the metal-insulatorusing mainly gallium arsenide. Another source of motivation
transition using*'® Mott’s initial approach, which he de- for the present work is related to the recently observed metal-
vised, in fact, for the stability of the metallic phase. Theseinsulator transition in a 2D system, Si metal-oxide-
approaches can be grouped as variatibfiaP1® and  semiconductor field-effect transistor, towards zero
numerical~° treatment of the bound electron wave function. temperaturé®~2®> We commentedf that this observation
The former has appealing simplicity but may not be suitablecould be due to valley phase transition in Si inversion layers,
to use in this problem as the resultant binding energy willa many-body effect originally anticipated by Bloss, Sham,
inevitably be higher than the true ground-state energy. Marand Vinter?® For this reason, the effect of valley degeneracy
tino et al” have shown this to be the case by comparingon several physical phenomena needs further investigation;
Krieger and Nightingale® variational hydrogenic wave- the screening of charged impurity centers is just one of them.
function treatment with their numerical method. Conse-We observe that Friedel oscillatiofi$® associated with the
quently, variational techniques are refined by replacing thecreening of an impurity potential are influential in the im-
trial wave functions with the Hulthes form® resulting in a  purity binding energies. Appreciable differences are seen be-
better agreement with Ref. 7. In all these works severatween our numerical approach based on the computationally
forms of dielectric screening have been employed such asfficient solution of an integral equation and the widely used
Thomas-Fermi® random phase approximatiofRPA),>®  hydrogenic variational treatments. These results will have
and Hubbard-Sharh*® In our work we use the so-called implications on the accurate characterization of impurities as
self-consistent local-field correction of Singwi, Tosi, Land, well as exciton¥ under the presence of free-carrier screen-
and Sjdander!’ to be referred to as STLS. This technique ising. The screened attractive impurity potential has two im-
one of the best improvements of the RB#gonsidering both  portant aspects: the bound states and the scattering cross sec-
the Pauli and Coulomb holes around the electrons that takion. In this paper we focus on the former and do not address
part in the screening of any longitudinal disturbafit®ery  the equally important problem of the effect of valley-spin
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degeneracy on thmobility, limited by the screened ionized 0
impurities. Glov (k)
In Sec. Il the theoretical details on the variational expres-
sions, the dielectric screening and the integral equation for-
mulation are included. The results for 3D and 2D cases can
be found in Sec. Ill. We observe that the phenomena in 2D
are quite interesting and thereby require more discussion. q q
Finally, we conclude in Sec. IV. Throughout the text we
mention the assumptions and simplifications made.

Gl (k+q)

FIG. 1. Zeroth-order polarization insertion diagram?(q) for a
fermionic system having spino{), valley (v), and wave number
We assume that the mobile carriers are over a neutralizin(f) labels.
positively charged continuum, that is, the so-called electron
liquid (EL) model, where electron-electron interactions areNightingalé’ used a variational approach for the bound elec-
rigorously considered using the dielectric formulafbbut ~ tron wave function based on a hydrogenie trial wave
ionic lattice and disorder effects are ignored. We introduce dunction as
degeneracy parameter for the constituent electrons of the EL,
and thereby consider the spectrum ranging from spin-
polarized and single-valley EL to six-valley EL to assess Yo(r) =
these exchange effects due to valley-spin degeneracy. We
consider one singly ionized impurftybeing immersed into  with a being the variational parameter, whereas Panat and
an EL, and investigate whether this impurity can trap anParanjap¥ used the same form in two dimensions with ra-
electron with the screening of the EL present. The bindinglial variabler being replaced by the polar radial variahle
ability in this model is controlled by three effect§) the as
attractive bare Coulomb interaction of the ion that enhances

the binding,(ii) the kinetic energy of the bound electron that 2
do(p) =\ =& "=

IIl. THEORETICAL DETAILS

1 —rla
se 1)

aa

2

tries to overcome the binding, ariiii ) the screening of the

bare interaction by the free carriers of the EL that weakens

the binding of the electron. A negative energy bound statgpe corresponding binding energies are given as

may not be possible if the last two effects win over the first

as the concentration of the free carriers in the EL is in- 1 4 - dq 1

creased. We observe that the competition among these efg(a,)= — — — f ; 2[6 @
+l} 3D\ Mr

fects becomes more interesting in the 2D case. The zero a; 7 Jo|[aq

intercept density of the binding energy is traditionally known 2
as the Mott value, which renders the comparison of different 3
approaches quite simple; we display our results for the Mott
. . ; . : . in the 3D and

constant in Sec. lll. Our single-impurity consideration poses

one important restriction on the density of impurity centers;

basically, if the bound electron wave functions overlap dueE_(a )= 1 _ f -1
to large impurity concentration, then the discrete bound ' 2 of(amq\? 3/2[ €2p(dr)
states broaden into bands by means of tunnelling between 2 1
neighboring sites. However, the aim in high-speed electronic (4)

devices is to avoid a large amount of impurities along the ) o
mobile carrier paths. in the 2D case, where bare interaction is added and sub-

We work at zero temperature, and for the 2D case, aimin%aaed to achieve a faster decaying integrand as suggested in

for general results, we assume no extension along the thirgef. 10. In these expressioag, ande,p, represent the static
dimension (i.e., strictly 2D, where electrons still interact dielectric screening of the EL, which can be computed at

with Coulomb 1R potential®® We mainly use 3D effective different levels of sophistication; in the next section we de-
Rydbergs (RY) for the energies and denote them with anScribe the dielectric function we employ.

overbar. Also we introduce length-related reduced variables

by scaling with the effective Bohr radiag;, and denote them B. Dielectric function for a general degeneracy factor

by the subscriptr throughout the text such a&=a/ag , The ultimately important quantity in screening is the static
q-=agq, for variables having length and reciprocal length dielectric function of the EL. Here we would like to intro-
dimensions, respectively. duce an extra labely), to the free carriers of the EL in

addition to spin ¢) and Wave-vectorIZ) labels, to account
for the extra valley freedorit Then, the zeroth-order polar-
ization insertion diagrafi 7°(q) is modified as in Fig. 1,
For completeness we first list the expressions for the hywhere G° refers to noninteracting propagafSrThe bare
drogenic variational approach. In the 3D case Krieger andCoulomb interaction being independent of spin and valley

* dg [ 1 }_4

A. Variational expressions
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labels suggests the introduction of an overall degeneracy fag;, energetically degenerate valleys,= 2g, . In turn, 7° is
tor g4 asgy=09s9, , Wheregg andg, are the spin and valley ftrivially affected by the overall degeneracy facig as a
degeneracies, respectively. For the spin-polarized singlezoefficient in front. The 3D static dielectric function be-
valley EL we havegy=1 and for the normal-state EL having comes

2 4 1/3r 4— 2 2—
1+<ii) _;(1_ 0 = 11— GST ()]
STLS, 97 an 40 2+ 0y
€3p (On)= 2\ 173 2 )
omt| 2T 4, |2+q ) P

In this expression and throughout the text refers to a wave number normalized to Fermi wave numierand

re=1/ag (3 mnsp) Y3, with nsp being the 3D free-electron density, and g, are related in three dimensions as
an=0,r<(294/97) 3. The Pauli and Coulomb holes surrounding the screening electrons are introduced by the local-field
correctionngLS, which needs a self-consistent calculation as described in Ref. 17. Recently? Gaddinvestigated the
effects of valley degeneracy on the local-field correction. He noted that the many-body effects are important even at high
electron densitie§i.e., lowr¢ values. We find Gold’'s work very useful, however, Gold constrained the local-field correction
to a Hubbard-like forr? that led to simplicity in the computation. Based on our previous observattons, avoid this
simplification and use the standard approach.

The static dielectric function in two dimensions is of the form

372
d’s STLS
I+ > [1-G2p7(g,)]
4 for q,<2
3/2
d’s sms
1- G2D (Qn)
n
€30 (qn)= , T ’ ®)
84
1+ 5{1— \/1—(—) [1-G3p(gn)]
an 2 for g,>2
3/2 2
gar 2
1~ s[l— 1—(—) G3p*(9x)
29, dn
|
whererg in this case is related to 2D electronic densityp 1. Formulation for 3D
by rs=1/agymn,p. The relation between, andg; in two The bound electron feels a centrally symmetric radial po-
dimensions isy,=q,rs\/g4/2. Again the 2D local-field cor- tential, and for the lowestdstate, the Sclidinger equation

rection, G>5-%(q,), needs to be self-consistently determinedin three dimensions becomes

at each value of ;. We refer to available literatute® for

details, however, we would like to mention the work of de 1 d | ,dig(r)
Freitaset al,3” which greatly simplifies the labor in the static r2dr, r dr,
structure factor calculation by the so-called loriatti-Isifara '
transformations. We applied their recipe to a 2D EL havingUsp sc(!) is the screened potential energy due to a singly

+[Eo—Usp.sel T 100(r,)=0. (7)

an arbitrary spin and valley degeneracy. ionized attractive impurity in real space to be computed as
) re 9w 3
sinl qn—| =—
. . —_— 2 “ Is 29d
C. Integral equation formulation UspselTr)=— - + _j dq, o
r ntr

In spite of the simplicity of the variational techniques,
they must be used with care in problems such as the binding 1
energy, where the variational energy only yields an upper P e300
bound for the true ground-state energy. As a better alterna- 30{n
tive, we present below an approach that leads to an integratherer, is the reduced distance in real space; again we add
equation for which we also develop computationally efficientand subtract unscreened Coulomb potential for computa-
operator techniques. tional reasong?

: ®
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The principal problem in the numerical solution is the here the prime on the left-hand side designates a derivative,
infinite domain of the wave function. As a remedy, Martino whereas, the primes on the right-hand side are used to pro-
et al.” noting the difference with the hydrogen atom problemduce dummy variables. We retain the first two terms and

due to the presence of screening, Bap, «(r) to zero for ~approximate the final equation as
distances greater than some large vaRieThen, forr>R

) 2 (rr
the wave function for bound states becofhes Tyl =T(r,)— P[F”(rr)Hr_L dr'T,(r)YPIT,(r")],
r
e—Kr - 2m* (15)
Yo(r)~——  with = > |Eol, €)
h wherel’, denoted” at thenth iteration; we determin€&, ;

up to a normalization constant. The continuity of the wavePY MXingT'neandl', . The final form, then offers a rapidly
function together with its derivative at=R, or equivalently, ~CONnverging algorithm, once we initiate the process at low

the continuity of the logarithmic derivative of the wave func- densities(such asrs=20) using the variational wave func-
tion, yields tion as the initial guess and gradually increase the density.

1 2. Formulation for 2D
=—Kk—=. (10

r=R

dingr(r)
dr

The 2D Schrdinger equation for the ground-state wave

. . ) ) , function reads
Equation(7) is a two-value differential equation problem

usually dealt with shooting-type numerical technigtiédle, 1 d dio(p,) o
rather, prefer to convert the radial Sdioger equation to an —do P g +[Eo—Uszp scfpr) ]¢bo(pr) =0.
integral equation as Pr Spr Pr (16)
1(r i i
_ I BT EY The expression for the screened potential energy due to a
F(r)=Sro) rrjo drr(rs, e singly ionized attractive impurity in real space, which shows
Friedel oscillations, is
where
= Ry s Unolpr) = — —+ — quJ Gn—p
S(rr):EJ'O dr'r U3D,scr(r )+§|EO|1 2D,sck Pr o rs@ 0 nvo an@ r
1
and x{ — , (17)
€20(dn)
T _ d'”‘//o(rr) 2
(ro)=ry ar, (12 \wherep, is the reduced 2D radial coordinate adglis the

zeroth-order cylindrical Bessel function of the first kind. See

The energy eigenvalue is determined frofi(R;)  Fig. 2 for the screened potential energy at several values of
=—R,V|Eo|—1. In our work we extracted the energy eigen- the 2D electronic density; also note the evolution of the Frie-
value E_o from the above equation by sampling the waved?| oscillation_s as the density decreases. As in 3D_, we work
function in the 5% neighborhood &, = 10. Equation(11) is  With the functionI"(p,) = pdIny/dp;, rather than with the
a nonlinear integral equation of the Volterra type in theWave function itself, in this way an exponentially decaying
fixed-point form*® However, we observed very slow conver- func_t|on is mappeq to a I_mt_aarly decreasing one. The nonlin-
gence of the standard techniques; for this purpose we fir&ar integral equation satisfied bybecomes
express Eq(11) as an operator equation as

i T(p)?
F(Pr):S(Pr)_fo dp’ P (18)

1(r
PIN(r)1=T(r)-S(r)+ = | "dr'Te?=0 (13

rJO
and resort to the operator form of Newton’s metfbdhich where
requires the inverse operator of the derivatifferechet o=
derivativé?) of the operatorP evaluated at the function S(p ):f"fdp,p,u— (p')+ pr|Eol (19
I'(r,). This inverse operator acting di(r,) is given as o 2D.se 2

L * 2 [ 2 which is to be computed with very high precision. A nonlin-
{P'[T(r)]} "= 2 (—1)nr—f dr'(r’)— ear equation needs to be solved for the bound-state energy
n=0 r’o r eigenvalue, of the form

' 2
<[l arren s P(R) =~ RAElKe(RATESDKo(RATES]),  (20)
i whereK is the modified Bessel function of the second kind.
> f’(” )dr(”)l“(r“‘))' (14) To achieve much faster convergence than the fixed-point
0 ’ form, the operatoP is introduced as
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FIG. 2. Potential-energy distribution due to a screened, singly F|G|' ‘:’ tBlno!lngl enelrlgy of_az b%lgwdE:_mpur:Ly ell/tlec:tron W':hmt a
ionized attractive impurity vs distance. A normal-state, Single_norma-sae, single-valleygg=2) vs the hott constant,

valley EL is consideredg,=2) at several densities. defined asani2. Solid line refers to integral equation solution,

which gives a lower energy than the variational treatment based on
, r( ,)2 the hydrogenic wave function denoted by the dashed lines.

r ! p —
PIT(p0]1=T ) S(p,)+f0 dp o’ 0. (@Y Mott constant. The spin-polarized Elg{=1) has the high-
est Mott constant, which is due to poor screening of the
impurity potential by the participating electrons having large
Pauli holes around them. In Fig. 3 we plot the variational

We give the final form of the iterative equation we use in
two dimensions, which closely resembles the 3D case

_ _ (hydrogeni¢ and integral equation solutions for the binding
Fredp)=Ln(p) = PTa(pr)] energy of the normal-state single-valleyy&2) EL; the de-
or To(p)) viation is clearly visible towards the Mott constant. The be-
+2J’ dp’'——P[Tn(p’)]. (220  havior for other valley-spin degeneracies is the same apart
0 p from a translation according to the Mott constant value; refer
to Table I.
ll. RESULTS Our treatment is based on an isotropic effective mass for

the screening electrons; however, mass anisotropy is pre-
dominantly effective in multivalley materials such as silicon
We investigate the binding energy of the impurity elec-and germanium. We refer to available works considering the
tron as a function of the electron density and valley-spinmass anisotropy proble®f:'° In single-valley systems the
degeneracy. In Table I, we list the so-called Mott constant asonduction-band effective mass is close to isotropic, such as
a function of the degeneracy parametgg from spin-  inthe GaAs or the AlGa _,As system. Our calculated Mott
polarized electrons to six valley degeneracy as in the coneonstant value for this systetne., gq=2) is 0.23. Gold and
duction band of silicon. Here the Mott constant is defined aszhazalf have very recently dealt with the 3D impurity bind-
a’én%’g, wherengsp is the density at which the binding energy ing energies using STLS type screening and a numerical so-
reaches zero. It can be seen that dgrgreater than 4 the lution for the bound electron wave function. They reported
exchange effects do not lead to appreciable changes in tHer the same 3D Mott constant the value 0.25. We attribute

A. 3D EL results

TABLE |I. Critical Mott densityr .. of the 3D EL. The corresponding Mott constants, defined?é/g are indicated in parentheses. The
numerical results based on the integral equation solution are more relsaigleext

Degeneracy factogy 1 2 4 8 12
(spin polarized (single valley (two valley) (four valley) (six valley)
Variational hydrogenicr ¢, (Mott cons} 2.25(0.27H 3.57(0.179 4.11(0.15) 4.13(0.150 4.05(0.153

Numerical:r ¢ (Mott cons} 1.44(0.430 2.70(0.230 3.62(0.17) 3.80(0.163 3.75(0.1669
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DISTANCE in a*B FIG. 5. Binding energy of a bound electron within a 2D EL vs
rs for gg=1 and 2. Calculations are based on the integral equation
FIG. 4. Probability distribution of the bound electron wave solution (solid lines and 2D hydrogenic variational wave function
function within a 2D EL havingr,=1 andgy=2. Solid line is  (dashed lines
based on the integral equation solution and dashed line refers to 2D
hydrogenic wave function, i.e., E§2). Also shown by dotted lines o .
is the screened potential energy experienced by the bound electrofl€ binding energy curves resemble those in 3D cases; the
corresponding Mott densities are af=1.52 and 1.48, re-
the difference between our and their results to the fact tha3Pectively, based on the integral equation solution whereas
these authors enforced Hubbard-like form for the local-fieldthe variational approach leads to higher valtsse Fig. 7.
correction, which differs from the exact STLS local-field

correction leading to a discrepancy in the dielectric function. 00— w1
L’ \ Integral Eq.
B. 2D EL results 01 | -~~~ Hydrogenic
In general, dimensionality is effective in almost all elec- 0.2 |
tronic properties; for our concern, in 2D the role of Friedel I
oscillations is enhancetsee Fig. 2 However, quite com- 03
monly the in-plane wave function fofquasiy2D bound -
impurities®~*in the presence of free carriefse., screen- < 04r
ing) has been chosen to be of tae”’* type, where is the g::B
variational parameter. In Fig. 4 the hydrogenic variational w 03
probability distribution is compared with that of the integral (“_; 06 L
equation solution. The screened attractive potential energy is £
also added in this figure to aid the comparison. The probabil- 2 o7k
ity distribution obtained by integral equation solution is @
lower in the first repulsive part of the potential energy and os |
higher in the neighboring attractive region than the varia-
tional solution; in turn, the electron is expected to be more 09k
tightly bound. This is seen to be the case in Fig. 5 showing I \
the 2D impurity binding energy for the spin-polarized and Y A E T S E E R
normal states. Furthermore, a critical Mott density does not 00 05 10 15 20 25 30 35 40
exist for these two cases and negative energy bound states r

are available for all densities, unlike the 3D case. o+ 4, FIG. 6. Binding energy of a bound electron within a 2D EL
the variational approach predicts a density rangeyersus, for g,=4 (i.e., two-valley degeneragySolid line denotes
rs=0.38—1.81, where the binding energy vanishes. The in+ne integral equation solution and the dashed line denotes 2D hy-
tegral equation solution suggests that this window is nardrogenic variational wave function result, both utilizing the STLS
rower and situated arourrd=1 as can be seen in Fig. 6. As screening. Dash-dotted line refers to RPA screening based on the
the valley-spin degeneracy further increaseg4e 8 and 12, integral equation solution.
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FIG. 7. Binding energy of a bound electron within a 2D EL Vs jgnized attractive impurity vs distance. The effect of the degeneracy

rs for g4=8 and 12(i.e., four- and six-valley degeneracieSolid  tactor g, is illustrated from spin-polarizedgg=1) to six-valley
lines denote the integral equation solutions and the dashed "“%generacyqdzlz); all at a very high densityr(=0.02) of a 2D
denote 2D hydrogenic variational wave-function results. EL.

From these three figures we can also conclude that the hysf the charged impurity binding energies on the valley-spin
drogenic variational technique is successful for the small valgegeneracy in the presence of screening.
ues of the degeneracy factayy. For a better comprehen-  Figure 5 shows an interesting strengthening of binding at

sion, we combine all different degeneracy cases in Fig. 8he high-density limity—0. The screened interactions for
and present a larger density range, up {& 10. The main

observation in two dimensions is the remarkable dependence 0.0 L L A B A B —
.7 T STLS(H) 94=2
0.00
0.5

-0.25

-0.50 [ € 10 |
— > N
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O] w N .
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rS
r FIG. 10. The effect of dielectric function on the binding energy

for 2D EL using RPA, Hubbard and STLS screenings; all computed

FIG. 8. Binding energies in 2D EL ws; based on the integral by solving the integral equation. Also the STLS screened binding

equation solutions. For comparison purposes segyaialues are  energy is shown based on the 2D hydrogenic variational wave func-
included. tion labeled by STL&H).
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several values of4 atr=0.02 are plotted in Fig. 9. In this consistent local-field correction scheme and the bound elec-
limit, the Friedel oscillations diminish and the screening istron wave function is handled numerically without resorting
determined by the exchange effects. Hence, for the spirto simplistic approximations. We observe that care in these
polarized casedy=1), the screening electrons cannot ap-two points is rewarding, proven by the appreciable differ-
proach to the ion due to their sensible Pauli holes resulting iences as compared to widely used RPA and variational tech-
poor screening of the ion potential and enhanced binding. Asiques, respectively. We anticipate that similar conclusions
the degeneracy parametgy is increased up to 12, the influ- can be drawn for the Wannier excitons in the presence of
ence of the Pauli hole is weakened and the central well refree-carrier screening. Recently, Ping and Jfarigvesti-
gion of the screened impurity potential gets narrower so thagated the effect of screening on the exciton binding energy in
negative energy bound states are no longer supported. Figu@&aAs/ALGa, _,As quantum wells using a rather simple ap-
10 compares the effect of several dielectric functiRPA, proach based on the Debye screening model and a
Hubbard, and STLSon the impurity binding energy for variational-perturbation method for the binding energy.
gq=2. Sizeable quantitative differences are observed, andherefore, the present analysis merits to be extended to ex-
the STLS dielectric function is seen to have stronger screersitons.
ing power leading to a weaker binding. Note the agreement The dependence on valley-spin degeneracy is very signifi-
of the three for,—0 as expected. Hubbard dielectric func- cant, especially in two dimensions. From the current elec-
tion follows STLS at the high-density end where exchangdronic devices point of view, Si-based and GaAs-based de-
effects are dominant. Finally, in Fig. 6 we observe that forvices are shown to have marked differences in the behavior
the g4=4 case RPA result becomes even qualitatively dif-of screened charged impurity centers. For GaAs-based de-
ferent and gives negative energy bound states for all densitces the Pauli exclusion principle is more influential in the
ties. screening and impurity binding energies are larger than in
Si-based ones. Binding energy dependence on the degen-
V. CONCLUSION eracy parameter gradually saturates both in two and three
dimensions for g4=8. Finally, the transport through

We investigate the role of valley-spin degeneracy on thecreened charged impurities is also expected to have high
screened charged impurity centers. Several complications ai@nsitivity to the valley-spin degeneracy.

suppressed for easy comprehension and computational sim-

plicity. The'se _mclude the mass an!sotropy, the effe_ct.s of dis- ACKNOWLEDGMENTS
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