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Aspects of the ground state of theU5` Hubbard ladder
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~Received 29 July 1997!

We consider two aspects of the ground state of theU5` Hubbard ladder: ferromagnetism and the metal-
insulator transition at quarter-filling. First, we present rigorous results for theU5` Hubbard ladder in the limit
of the large interchain hopping (t' /t→`). In this limit, the total spinS of the ground state is shown to be zero
for the electron densityn<0.5 and its maximum (S5Smax) for n.0.5. The charge gap at quarter-filling is
2t' . We extend these results to finitet' /t by means of the density-matrix renormalization group method. We
estimate the phase boundaries with respect to spontaneous magnetization and the charge gap at quarter-filling
for finite t' /t. Applying the extended Aharonov-Bohm method, we give numerical evidence that the critical
ratio t' /t, above which the charge gap opens, is less than 0.001. Ferromagnetism in thet-J ladder is briefly
discussed.@S0163-1829~97!05347-2#
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I. INTRODUCTION

Recently, a lot of attention has been given to the Hubb
and t-J ladders. One of the reasons is that these models
believed to describe essential features of various mate
such as (VO)2P2O7 ~Ref. 1! and SrCu2O3.2 Another reason
is that some properties of the ladder models are close
planar models than to single chain models. One such p
erty is the enhancement of thedx22y2-like pairing correla-
tion. In relation to high-Tc superconductivity,3,4 this feature
and the existence of the spin gap have been studied by
ous approaches such as bosonization,5–7 projector Monte
Carlo,8 exact diagonalization9–11 and the density-matrix
renormalization group~DMRG! method.12,13

Another interesting aspect of the ladder models is the
istence of the ferromagnetic ground state. Nagaok
theorem14–16 holds for the ladders and the planar mode
although not for the single chains. Hence, ferromagn
ground states may exist in the strong-coupling regime n
half-filling for the ladders and the planar models, but not
the single chains. For two dimensions, many workers h
investigated the ferromagnetic ground state atU5` for fi-
nite hole-density,17–24 in order to clarify the origin of itiner-
ant ferromagnetism from the electron-correlation viewpo
In spite of such attempts, results are inconclusive, becaus
the lack of efficient methods. On the other hand, for
ladders, there is an efficient method, i.e., the density-ma
renormalization group ~DMRG! method proposed by
White.25 Liang and Pang applied this method to theU5`
Hubbard ladder fort' /t51, and obtained some indication
of ferromagnetism.24 As for the~two-leg! ladder, the DMRG
calculation in Ref. 24 suggests that the fully polarized fer
magnetic state is one of the ground states ford,0.22 (d:
hole density! and that the ground state is a spin singlet
d*0.4. They have tried to extend these results to two dim
sions by investigating multileg ladders. In this paper,
extend their results to various values oft' andJ for the t-J
ladder, in order to understand the ground-state propertie
the Hubbard andt-J ladders in the strong-coupling regime

Another interesting feature of strongly correlated elect
systems is the metal-insulator~MI ! transition. For single
560163-1829/97/56~23!/15015~10!/$10.00
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chains and planar models, there have been a lot of work
the MI transition.26–31However, for ladder models, there a
relatively few. One of the characteristic features of ladd
models is the band structure. In the weak-coupling regi
(U.0), the low-energy physics forn<1 is effectively de-
scribed by the bonding band, ift' /t is large enough. Thus
the MI transition in this parameter regime is essentially
same as that of the single chains.7 This argument may be true
for t'@U. A natural question arising here is what happens
the opposite limit, i.e.,U@t' . In order to answer this ques
tion, we consider the MI transition in theU5` Hubbard
ladder for simplicity.

In the present paper, we mainly consider theU5` Hub-
bard ladder~or t ladder!, which is defined as thet-J ladder at
J5J'50. Later, in Sec. III, we briefly discuss ferromag
netism of thet-J ladder. The Hamiltonian of thet-J ladder is
defined as follows:

HtJ5Ht1HJ ,

Ht52t(
is

~ c̃ is
1†c̃ i 11s

1 1 c̃ is
2†c̃ i 11s

2 1H.c.!

2t'(
is

~ c̃ is
1†c̃ is

2 1H.c.!, ~1.1!

HJ5J(
i

~Si
1
•Si 11

1 2 1
4 ni

1ni 11
1 1Si

2
•Si 11

2 2 1
4 ni

2ni 11
2 !

1J'(
i

~Si
1
•Si

22 1
4 ni

1ni
2!,

where c̃ is
a† denotes a creation operator of an electron at ru

i with spin s(s5↑,↓) in the ath chain (a51,2) with the
constraint that no site is doubly occupied, i.e.,c̃ is

a†[cis
a†(1

2ni 2s
a ). The number operatornis

a is defined as nis
a

[cis
a†cis

a , using the standard electron creation operatorcis
a† .

The spin operator at rungi in the ath chain is defined as
Si

a[ 1
2 (bgcib

a†sbgcig
a , wheres is the vector of Pauli matri-

ces. The number of electrons, the number of sites, and
15 015 © 1997 The American Physical Society
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15 016 56MASANORI KOHNO
number of rungs are denoted byNe , Ns , and L(5Ns/2),
respectively. The electron densityn and the hole densityd
are defined asn[Ne /Ns and d[12n, respectively. The
maximum value of the total spinS is denoted bySmax
(5Ne/2).

This paper is organized as follows: In Sec. II, we pres
rigorous results on the ground state of thet ladder in the
limit t' /t→`. In Sec. III, we present numerical results o
ferromagnetism in thet ladder and thet-J ladder. In Sec. IV,
we discuss the metal-insulator transition at quarter-filling
the t ladder. Section V is a summary.

II. t LADDER IN THE LIMIT t' /t˜`

In this section, we prove the following statements:~1! The
ground state of thet ladder in the limit t' /t→` for n
<0.5 is a spin singlet (S50) and is unique in finite-size
clusters with an even number of electrons with open bou
ary conditions.~2! The ground state of thet ladder in the
limit t' /t→` for n.0.5 has the maximum total spin (S
5Smax) and is unique up to the trivial (2Se11)-fold degen-
eracy in finite-size clusters with open boundary condition

Before investigating the above properties, we consider
t ladder att50. The ground states of this model can
written in the following form:

uF&5 ^

i 51

L

ua& i , ~2.1!

whereua& i ’s correspond to either of states~i!–~iii ! defined in
Table I forn<0.5, and~ii !–~vii ! for n.0.5. The degenerac
of the ground states, the energyE, and the chemical potentia
m([]E/]Ne) are summarized in Table II. The charge g
Dc at quarter-filling (n50.5) is 2t' .

TABLE I. Basis set.

Symbol Definition Energy

~i! u00& i vacuum 0

~ii ! uB↑& i
1

A2
~ c̃ i↑

1†1 c̃ i↑
2†!u00& i

2t'

~iii ! uB↓& i
1

A2
~ c̃ i↓

1†1 c̃ i↓
2†!u00& i

2t'

~iv! u↑↑& i c̃ i↑
1†c̃ i↑

2†u00& i 0

~v! u↓↓& i c̃ i↓
1†c̃ i↓

2†u00& i 0

~vi! u↑↓& i c̃ i↑
1†c̃ i↓

2†u00& i 0

~vii ! u↓↑& i c̃ i↓
1†c̃ i↑

2†u00& i 0
t

r

-

e

Next, we consider thet ladder in the limitt/t'→0. Let us
consider the casesn<0.5 andn.0.5, separately.

A. n<0.5

Up to ordert, the effective Hamiltonian is

Ht
eff52t(

is
~ b̃ is

† b̃ i 11s1H.c.!, ~2.2!

where b̃ is
† denotes a creation operator of an electron in

bonding band at rungi with spin s(s5↑,↓) with the con-
straint that no rung is doubly occupied, orb̃ is

† [bis
† (12ni

1

2ni
2). Here, the creation operatorbis

† is defined asbis
†

[( c̃ is
1†1 c̃ is

2†)/A2. This Hamiltonian is equivalent to theU
5` Hubbard chain. Thus, the ground states are degene
with respect to the spin degrees of freedom. The charge
of the ground-state wave function is simply that of the sp
less fermion model on a chain.

Next, we consider the effective Hamiltonian of ord
t2/t' . Here, we define the local HamiltonianHi ,i 11s

loc :

Hi ,i 11s
loc 52t~ c̃ is

1†c̃ i 11s
1 1 c̃ is

2†c̃ i 11s
2 1H.c.!. ~2.3!

Letting this local Hamiltonian operate onua& i ^ ub& i 11, we
obtain the following relations:

Hi ,i 11s
loc uBs& i ^ uBs& i 1150,

Hi ,i 11s
loc uB2s& i ^ uBs& i 115

st

A2
uS& i ^ u00& i 11 ,

Hi ,i 11s
loc uBs& i ^ uB2s& i 1152

st

A2
u00& i ^ uS& i 11 ,

Hi ,i 11s
loc uS& i ^ u00& i 115

st

A2
~ uB2s& i ^ uBs& i 112uA2s& i

^ uAs& i 11),

TABLE II. Ground states att50.

n,0.5 0.5,n,1

Degeneracy LCNe
32Ne

LCNe2L32Ne

EnergyE 2t'3Ne 2t'3(2L2Ne)
Chemical Potentialm 2t' t'
TABLE III. Second-order perturbation energyE2.

E2 betweenua& and ub& ua& ub&

0 uBs& i ^ uBs& i 11 uBs& i ^ uBs& i 11

2t2/(2t') uBs& i ^ uB2s& i 11 uBs& i ^ uB2s& i 11

t2/(2t') uBs& i ^ uB2s& i 11 uB2s& i ^ uBs& i 11

t2/(4t') u00& i 21^ uBs& i ^ uB2s& i 11 uBs& i ^ uB2s& i ^ u00& i 11

2t2/(4t') u00& i 21^ uBs& i ^ uB2s& i 11 uB2s& i ^ uBs& i ^ u00& i 11
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Hi ,i 11s
loc u00& i ^ uS& i 1152

st

A2
~ uBs& i ^ uB2s& i 112uAs& i

^ uA2s& i 11),

where uS& i and uAs& i are defined as (1/A2)( c̃ i↑
1†c̃ i↓

2†

2 c̃ i↓
1†c̃ i↑

2†)u00& i and (1/A2)( c̃ is
1†2 c̃ is

2†)u00& i , respectively.
Thus, the second-order perturbation energyE2 is obtained as
in Table III. It is also shown that the following relations a
satisfied:

ni↑
B ni 11↓

B uB↑& i ^ uB↓& i 115uB↑& i ^ uB↓& i 11 ,

Si
B2Si 11

B1 uB↑& i ^ uB↓& i 115uB↓& i ^ uB↑& i 11 ,

where Si
B1[ b̃ i↑

† b̃ i↓ and nis
B [ b̃ is

† b̃ is . Thus, the effective
HamiltonianHeff, up to ordert2/t' , is written as follows:

Heff5Ht
eff1HJ

eff~1!1HJ
eff~2! ,

HJ
eff~1!5Jeff(

i
S Si

B
•Si 11

B 2
1

4
ni

Bni 11
B D , ~2.4!

TABLE IV. Matrix elements.

^auHi ,i 11
loc ub& ua& ub&

t uBs& i ^ uss& i 11 uss& i ^ uBs& i 11

uBs& i ^ us2s& i 11 us2s& i ^ uBs& i 11

uBs& i ^ us2s& i 11 uss& i ^ uB2s& i 11

t/2 uBs& i ^ u2ss& i 11 u2ss& i ^ uBs& i 11

uBs& i ^ u2ss& i 11 uss& i ^ uB2s& i 11

uBs& i ^ u2s2s& i 11 u2ss& i ^ uB2s& i 11

uBs& i ^ u2s2s& i 11 us2s& i ^ uB2s& i 11

0 otherwise
HJ
eff~2!5

Jeff

4 (
is

~ b̃ i 212s
† b̃ is

† b̃ i 2s b̃ i 11s2 b̃ i 21s
† ni 2s

B b̃ i 11s

1H.c.!,

whereSi
B is the spin operator in the bonding band at rungi

andJeff5t2/t' . Hence, it is shown that the effective Hami
tonian, up to ordert2/t' for n<0.5, has the same form a
that of theU→` Hubbard chain, up to ordert2/U for n
<1.32–35 As a result, the ground-state properties of thet
ladder in the limitt' /t→` for n<0.5 are the same as thos
of theU→` Hubbard chain forn<1.35 This leads to a spin-
singlet ground state by the Lieb-Mattis theorem.36

B. n>0.5

In this subsection, we consider the casen.0.5. The un-
perturbed ground states are written in the form of Eq.~2.1!.
The matrix elements of the local Hamiltonian, Eq.~2.5!, are
summarized in Table IV.

Hi ,i 11
loc 52t(

s
~ c̃ is

1†c̃ i 11s
1 1 c̃ is

2†c̃ i 11s
2 1H.c.!. ~2.5!

Considering the matrix elements in Table IV, it is shown th
the state uB2s& i ^ uss& i 11 can reach the stateuss& i
^ uB2s& i 11 after successive multiplication by the loc
HamiltonianHi ,i 11

loc as follows:

uB2s& i ^ uss& i 11→us2s& i ^ uBs& i 11

→uBs& i ^ us2s& i 11

→uss& i ^ uB2s& i 11.

Using this property, we can show that the following pr
cesses are possible by applying the local HamiltoniansHi 21,i

loc

andHi ,i 11
loc successively:
uBs& i 21^ uss& i ^ us2s& i 11↔uBs& i 21^ us2s& i ^ uss& i 11 ,

uBs& i 21^ uss& i ^ u2ss& i 11↔uBs& i 21^ u2ss& i ^ uss& i 11 ,

uBs& i 21^ u2s2s& i ^ u2ss& i 11↔uBs& i 21^ u2ss& i ^ u2s2s& i 11 ,

uBs& i 21^ u2s2s& i ^ us2s& i 11↔uBs& i 21^ us2s& i ^ u2s2s& i 11 ,

uBs& i 21^ uss& i ^ u2s2s& i 11↔uBs& i 21^ u2s2s& i ^ uss& i 11 ,

uBs& i 21^ us2s& i ^ u2ss& i 11↔uBs& i 21^ u2ss& i ^ us2s& i 11 .
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15 018 56MASANORI KOHNO
Thus, u↑↑&, u↑↓&, u↓↑&, and u↓↓& can have their positions
changed after successive multiplication by the Hamilton
(Ht), if there exists at least oneuB↑& or uB↓&. Furthermore,
the following processes are also possible:

uss& i 21^ uBs& i ^ uB2s& i 11

↔uss& i 21^ uB2s& i ^ uBs& i 11 ,

us2s& i 21^ uBs& i ^ uB2s& i 11

↔us2s& i 21^ uB2s& i ^ uBs& i 11 .

Thus, uB↑& and uB↓& can have their positions changed,
there exists at least oneu↑↑&, u↑↓&, u↓↑&, or u↓↓&. As a
result, any unperturbed ground state in the form of Eq.~2.1!

FIG. 1. Energy per site as a function of the totalSz, for the t-J
ladder atJ5J'50.05 andt5t'51 in a 1032-site cluster with 18
electrons. The solid diamonds and open squares correspond t
data obtained by the DMRG method and the exact diagonaliza
method, respectively. For the DMRG method, we tookm550 @m:
the number of states kept in the superblock~Ref. 25!# and repeated
2–3 sweeps for convergence.

FIG. 2. Energy differenceDEF per site between the ground-sta
energy in the subspace ofSz50 and that ofSz5Smax as a function
of filling for the t ladder att' /t51. The solid diamonds and ope
squares correspond to the data ofm550 andm5100, respectively.
t51.
n

can be reached after successive multiplication by the Ha
tonian (Ht) for 0.5,n,1 in the subspace of fixed totalSz

and fixed electron number. This property is usually cal
connectivity. Owing to this property and the fact that t
matrix elements of the Hamiltonian in this representation
not negative~Table IV!, the Perron-Frobenius theorem e
sures that the state of the largest eigenvalue is unique an

the
n

FIG. 3. Energy differenceDEF per site as a function of filling
for the t ladder att' /t52.5 @~a!#, 1.0 @~b!#, and 0.5@~c!#. t51.



th

t
tio
th

f

ese
en-
uge

und

en-

e

e

to
s
-

other
etic
ge
n of
so
e
f.

re-
glet
ion
the

t
eg
u

e

th
t

ec
is

ol

.

56 15 019ASPECTS OF THE GROUND STATE OF THEU5` . . .
wave function is positive~nodeless! in this representation in
each subspace.

Next, we consider the ground-state wave function in
subspace of the maximum totalSz (Sz5Smax). The Hamil-
tonian in this subspace has the same form as that of
spinless fermion model on a chain. Thus, the wave func
of the largest eigenvalue in this subspace is nothing but
of the spinless fermion model (uCSF&). Applying the spin-
lowering operatorS2 to uCSF&, we obtain the eigenstates o

FIG. 4. Phase diagram of theU5` Hubbard ladder with respec
to spontaneous magnetization. The dashed lines denote the r
where the ground state is rigorously shown to have the maxim
total spin S (S5Smax) ~theorem 2 and Nagaoka’s theorem!. The
dotted line in the limitt' /t→` corresponds to the region where th
ground state is shown to be a spin singlet~theorem 1!. The solid and
open diamonds correspond to the phase boundariesnc1

and nc2
,

estimated by the DMRG method. The bold lines are guides to
eye. Att' /t50, the ground states are degenerate with respect to
spin degrees of freedom, because the model reduces to the d
pled U5` Hubbard chains. At quarter-filling, the charge gap
expected~Sec. IV!.

FIG. 5. Energy per site as a function of the totalSz, measured
from that ofSz5Smax, for the t ladder att5t'51 in a 1632-site
cluster with 22, 20, and 18 electrons starting from above. The s
and open symbols denote the data form550 andm5100, respec-
tively.
e

he
n
at

various totalSz’s. These states have all positive~nodeless!
wave functions in the present representation. Thus, th
states have finite overlap with the states of the largest eig
value in the corresponding subspaces. By use of the ga

transformationc̃ i
a→(21)i c̃ i

a ,a51,2, the sign of the hop-
ping amplitudet can be changed, i.e.,t→2t, with spin op-
erators unchanged. As a result, it is shown that the gro
state of thet ladder in the limitt' /t→` for 0.5,n,1 has
the maximum total spin (S5Smax) and is unique up to the
trivial (2Se11)-fold degeneracy.

C. Remarks

Here, we give some remarks on the above theorems.
~1! Part of theorem 1 can be extended to higher dim

sions. The effective Hamiltonian of double-layert models up
to order t2/t' for n<0.5 has the same form as that of th
single-layer Hubbard models up to ordert2/U for n<1.32–34

Thus, the ground-state properties of double-layert models in
the limit t' /t→` for n<0.5 are the same as those of th
single-layerU→` Hubbard models forn<1.37

~2! The proof of theorem 2 is mathematically similar
that of Kubo’s theorem.38 However, the physical situation i
different. In Kubo’s theorem, the limit of the strong Hund
coupling is taken, i.e.,HHund[2JH( iSi

1
•Si

2 , JH→`. Fur-
thermore, almost degenerate bands are assumed. On the
hand, in theorem 2, we do not assume explicit ferromagn
couplings. In contrast to Kubo’s case, the limit of the lar
band splitting is taken in the present case. The extensio
Kubo’s theorem ton<0.5 shows that the ground state is al
ferromagnetic,39 which is contrasted with theorem 1. Th
proof of theorem 2 is mathematically similar to that of Re
40 for the one-dimensional Kondo-lattice model, too.

~3! The restriction on the boundary condition can be
laxed such that the Hubbard chain has a unique spin-sin
ground state for theorem 1 and that the spinless ferm
model on a chain has non-negative matrix elements in

ion
m

e
he
ou-

id

FIG. 6. Energy differenceDEF per site as a function of filling
for the t-J ladder in 1232-site and 1632-site clusters atJ/t
5J' /t50.00, 0.05, 0.07, 0.10, and 0.15 starting from abovet
5t'51.
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15 020 56MASANORI KOHNO
site representation for theorem 2. For example, theorem
can be extended to the case of periodic boundary conditi
with an odd number of electrons and an even number
rungs. Nagaoka’s theorem is recovered for the one-h
case14–16

FIG. 7. Energy per site as a function of the totalSz, measured
from that ofSz5Smax, for thet-J ladder att5t'51 in a 1632-site
cluster with 26@~a!#, 28 @~b!# and 30@~c!# electrons atJ/t5J' /t
50.05, 0.07, 0.10, and 0.15 starting from above. The dotted lin
correspond to the energy ofSz50. The data are normalized byJ.
2
ns
of
le

s

FIG. 8. Chemical potentialm as a function of filling att' /t
52.5 @~a!#, 1.0 @~b!#, and 0.5@~c!#. For comparison, the chemica
potentialm for the noninteracting case~dotted line! and that of the
spinless fermion model~solid line! are shown (Ns516032). The
pointsA andB correspond to the anomalies due to the band bott
of the antibonding band and the band top of the bonding ba
respectively. The pointsF and S correspond to the phase boun
ariesnc1

andnc2
, respectively, which are estimated by the DMR

method~Sec. III!. t51.
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III. FERROMAGNETISM

In this section, we present the numerical results on tht
ladder for finitet' /t and thet-J ladder for smallJ and J'

obtained by the DMRG method~finite-size algorithm!.25 The
DMRG calculation has been performed with open bound
conditions.

As a test of the DMRG calculation, we compare t
ground-state energy obtained by the DMRG method w
that of the exact diagonalization method. In Fig. 1, the agr
ment of the data obtained by these two methods is good.
maximum error is about 0.01%. Next, we consider the tr
cation error, i.e., the error due to smallm, wherem is the
number of states kept in the superblock.25 The difference
betweenm550 andm5100 is very small as shown in Fig
2, suggesting thatm550 is sufficient.~See also Fig. 5.!
Thus, we mainly report the results ofm550 hereafter.

Let us consider ferromagnetism of thet ladder. In Fig. 3,
we show the energy differenceDEF between the ground
state energy in the subspace ofSz50 and that ofSz5Smax as
a function of filling. The data in various-size clusters a
scaled to a single line, indicating that the finite-size erro

FIG. 9. ~a! Size dependence of the charge gapDc for the t
ladder att' /t52.5, 1.5, 1.2, 1.0, 0.8, 0.7, 0.5, and 0.2 starting fro
above.~b! The charge gapDc as a function oft' /t. The bold line is
a guide to the eye.t51.
y

h
e-
he
-

s

small.~See also Fig. 8.! From this plot, we find the region FF
where the fully-polarized ferromagnetic state is one of t
ground states. The phase boundarync1

between FF and

non-FF is estimated as shown in Fig. 4. Att' /t51, the
result in Ref. 24 (nc1

.0.78) is recovered. Qualitatively, the

region FF becomes larger ast' /t increases. The phas
boundarync1

gets closer to 0.5 ast' /t increases. This is
consistent with the rigorous results in Sec. II.

Next, we consider the phase boundarync2
between SS

and non-SS, where SS is defined as the region in which
ground state is a spin singlet. Figure 5 shows the grou
state energy as a function of the totalSz at t' /t51 for n
50.5625, 0.625, and 0.6875. The ground state is a spin
glet for n50.5625 and not forn50.625 and 0.6875. Hence
the phase boundarync2

is estimated asnc2
50.5960.03,

which is consistent with Ref. 24 (nc2
.0.6). In this way, the

phase boundarync2
is estimated for varioust' /t as shown in

Fig. 4. The region PF shrinks ast' /t increases, where PF is
defined as the region that is neither FF nor SS. This is a
consistent with the rigorous results in Sec. II.

FIG. 10. Spectral flow of thet ladder fort' /t50.001 in a 12-
site cluster with six electrons for 0<F/F0<1 @~a!#, and the
blow-up region forF/F0.0.5 @~b!#. The solid diamonds corre-
spond to the spectral flow of the ground state. The data are obta
by the exact diagonalization method.t51.
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15 022 56MASANORI KOHNO
Here, we present the numerical results on thet-J ladder
for small J and J' . For simplicity, we chooset'5t and
J'5J, and sett51 as the energy unit. Figure 6 shows then
dependence ofuDEFu at J50.00, 0.05, 0.07, 0.10, and 0.1
As shown in this figure,DEF becomes large near half-filling
(n51) due to antiferromagnetic correlation, anduDEFu
seems to be the smallest nearn.0.8 for n.0.5. Figure 6
also indicates thatJ50.05 is enough to destroy the regio
FF.

Next, we consider the stability of PF againstJ. The
ground-state energy as a function of the totalSz near half-
filling for J50.05, 0.07, 0.10, and 0.15 is shown in Fig.
This figure suggests that FF is surrounded by PF in the ph
diagram of thet-J ladder for finited.

IV. METAL-INSULATOR TRANSITION
AT QUARTER-FILLING

Before discussing the metal-insulator transition, we c
sider the charge gapDc at quarter-filling (n50.5). Figure 8
shows then dependence of the chemical potentialm
([]E/]Ne). The chemical potentialm in a finite-size cluster
is defined as

m~ n̄ ![
E~n1!2E~n2!

~n12n2!Ns
, ~4.1!

whereE(ni) denotes the ground-state energy at fillingni , i

51,2, and n̄[(n11n2)/2. We took (n22n1)Ns52. The
charge gapDc is defined asDc[m(nc10)2m(nc20),
where nc is the critical electron density (nc50.5 in the
present case!. It is expected that the charge gap opens
quarter-filling, if t' /t is large enough~Sec. II!. Actually, for
large values oft' /t, the charge gap seems to open as sho
in Fig. 8~a!. For smaller values oft' /t, we cannot determine
whether the charge gap opens from Fig. 8. Thus, we extra
late the charge gap in a finite-size cluster@Eq. ~4.2!# as a
1b/L, using the data forL512224, and estimate the charg
gap as shown in Fig. 9.
s
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m
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se
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FIG. 11. Spectral flow of thet ladder fort' /t50.001 in a 12-

site cluster with four electrons for 0<F/F0<1 @~a!#, and the
blow-up region forF/F0.0 @~b!#. The solid diamonds correspon
to the spectral flow of the ground state. The data are obtained by
exact diagonalization method.t51.
Dc~Ne5Ns/2![
E~Ne5Ns/212!1E~Ne5Ns/222!22E~Ne5Ns/2!

2
. ~4.2!
to
nd

ed
There are some possibilities for the critical valuet'c /t
above which the charge gap opens. One of the possibilitie
that the critical valuet'c /t is zero and that the gap is expo
nentially small in the limitt' /t→0 as in the case of the
Hubbard chain in the limitU→0.26 In order to determine the
critical valuet'c /t, we adopt the extended Aharonov-Boh
~AB! method proposed by Kusakabe and Aoki.41 In the
framework of this method, we investigate the extended sp
tral flow by introducing a Peierls phase as
is

c-

c̃ is
a† c̃ i 11s

a →expS i
2pF

LF0
D c̃ is

a† c̃ i 11s
a . ~4.3!

It is expected that the period of the spectral flow reduces
LF0 /M if M -particle bound states are formed in the grou
state. For example,M51 for a metallic state, andM52 for
a BCS state. We apply this method to thet ladder with a very
small value oft' /t (t' /t50.001). As shown in Fig. 10, the
spectral flow at quarter-filling has the minimum extend
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AB period, i.e.,F5F0, suggesting that the ground state
anL-particle bound state or, in this case, an insulator.42 This
behavior is contrasted with the case off quarter-filling. F
example, atn51/3, the extended AB period is larger tha
F0 as shown in Fig. 11. This implies that the ground state
quarter-filling is an insulator already fort' /t50.001. It is
plausible to consider that the critical valuet'c /t is probably
zero. A possible scenario is the following: The perturbat
of the smallt' term produces the relevant Umklapp proce
that leads to an insulator, at the same time as the degene
with respect to the spin degrees of freedom is removed.
numerical results presented above are quite different f
the case in the weak-coupling limit (U→10). In the weak-
coupling limit, it is shown by bosonization thatt'c /t is one.7

Thus, it is expected thatt'c /t decreases from 1 to 0 as th
interactionU increases from 0 tò .

Now, let us consider the metal-insulator~MI ! transition at
quarter-filling. As discussed in Sec. II, in the limitt' /t→`,
the MI transition forn→0.520 is effectively described by
the equivalent model to theU→` Hubbard chain, and the
MI transition forn→0.510 is described by the spinless fe
mion model on a chain. It is interesting to compare the
features with those in the weak-coupling regime. In t
weak-coupling regime (U→10), the charge gap is also ex
pected at quarter-filling fort' /t.1 because of the relevan
Umklapp process.7 This MI transition is understood as th
Mott transition, which is described by theU→10 Hubbard
model on a chain written in terms of the bonding-band o
erators. In both weak-coupling@U!t'(.t)# and strong-
coupling @U@t'(@t)# regimes, asn→0.520, the MI tran-
sition is described by single-chain effective Hubba
Hamiltonians. However, the value of the charge gap w
have different energy scales. In the weak-coupling regi
the value of the charge gap would be determined mainly
U. On the other hand, in the strong-coupling regime,
would be determined mainly byt' . This feature is similar to
the two types of the MI transition for transition-met
Q.
r

t
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acy
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e
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compounds,43 i.e., the Mott-Hubbard type and the charg
transfer type.

V. SUMMARY

In summary, two aspects of the ground state of theU
5` Hubbard ladder are investigated. One is ferroma
netism, the other is the metal-insulator~MI ! transition. In the
limit t' /t→`, it is rigorously shown that the ground state
a spin singlet forn<0.5 and that the total spin is maximum
for 0.5,n,1. For finite t' /t, we have estimated the phas
boundaries, with respect to spontaneous magnetization
the density-matrix renormalization group method. It is n
merically shown that the region FF becomes larger a
spreads down to quarter-filling ast' /t increases. This is con
sistent with the rigorous results presented in Sec. II. T
rigorous results (t' /t→`) and the numerical results for fi
nite t' /t support one another and confirm that the grou
state can be ferromagnetic for theU5` Hubbard ladder
with finite hole density. The numerical results for thet-J
ladder suggest that FF is surrounded by PF for finited in the
small J regime. We have also estimated the value of
charge gap at quarter-filling (n50.5). Applying the extended
Aharonov-Bohm method, we have obtained numerical e
dence that the critical valuet'c /t, above which the charge
gap opens, is less than 0.001. This is quite different from t
of the weak-coupling limit (U→10) (t'c /t51).7
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