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Aspects of the ground state of theJ = Hubbard ladder
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We consider two aspects of the ground state oflkex Hubbard ladder: ferromagnetism and the metal-
insulator transition at quarter-filling. First, we present rigorous results fodthee Hubbard ladder in the limit
of the large interchain hoppind (/t— o). In this limit, the total spir§ of the ground state is shown to be zero
for the electron density<0.5 and its maximum&{=S,,,) for n>0.5. The charge gap at quarter-filling is
2t, . We extend these results to finite/t by means of the density-matrix renormalization group method. We
estimate the phase boundaries with respect to spontaneous magnetization and the charge gap at quarter-filling
for finite t, /t. Applying the extended Aharonov-Bohm method, we give numerical evidence that the critical
ratio t, /t, above which the charge gap opens, is less than 0.001. Ferromagnetisit-id tudder is briefly
discussed[S0163-1827)05347-7

[. INTRODUCTION chains and planar models, there have been a lot of works on
the MI transition?® =3 However, for ladder models, there are
Recently, a lot of attention has been given to the Hubbardelatively few. One of the characteristic features of ladder
andt-J ladders. One of the reasons is that these models amodels is the band structure. In the weak-coupling regime
believed to describe essential features of various materialdJ=0), the low-energy physics far<1 is effectively de-
such as (VO)P,0; (Ref. 1) and SrCy0s.2 Another reason scribed by the bonding band, tif /t is large enough. Thus,
is that some properties of the ladder models are closer tthe MI transition in this parameter regime is essentially the
planar models than to single chain models. One such propsame as that of the single chaftiBhis argument may be true
erty is the enhancement of thig2_,2-like pairing correla-  fort, >U. A natural question arising here is what happens in
tion. In relation to high¥. superconductivity;* this feature  the opposite limit, i.e.J>t, . In order to answer this ques-
and the existence of the spin gap have been studied by vafiion, we consider the MI transition in thg = Hubbard
ous approaches such as bosonizatidnprojector Monte ladder for simplicity.
Carlo® exact diagonalizatich!! and the density-matrix In the present paper, we mainly consider the <« Hub-
renormalization grougfDMRG) method?13 bard laddexor t laddey, which is defined as thieJ ladder at
Another interesting aspect of the ladder models is the exdJ=J, =0. Later, in Sec. lll, we briefly discuss ferromag-
istence of the ferromagnetic ground state. Nagaoka'setism of thet-J ladder. The Hamiltonian of thieJ ladder is
theorent*~1® holds for the ladders and the planar models,defined as follows:
although not for the single chains. Hence, ferromagnetic
ground states may exist in the strong-coupling regime near Hiy=Hi+Hy,
half-filling for the ladders and the planar models, but not for
the single chains. For two dimensions, many workers have
investigated the ferromagnetic ground statdJat~ for fi-
nite hole-density/~2%in order to clarify the origin of itiner-
ant ferromagnetism from the electron-correlation viewpoint. ~14~2
In spite of such attempts, results are inconclusive, because of _ti%: (CigC
the lack of efficient methods. On the other hand, for the
ladders, there is an efficient method, i.e., the density-matrix
renormalization group (DMRG) method proposed by Hy=J3>, (SH-S—ininl, + S-S, — in?n?
White?® Liang and Pang applied this method to tHe= !
Hubbard ladder fot, /t=1, and obtained some indications
of ferromagnetisn? As for the (two-leg) ladder, the DMRG +3, > (§-S2— inin?),
calculation in Ref. 24 suggests that the fully polarized ferro- :
magnetic state is one of the ground states §&r0.22 (5:
hole density and that the ground state is a spin singlet for

_ =111 =2t3%2
Ht__tz (CiUCi+lo'+Ci0Ci+la'+H'C')
lo

isCiytH.C), (1.1

wherec?! denotes a creation operator of an electron at rung

6=0.4. They have tried to extend these results to two dimen* with spin o(o=1,1) in the ath chain (@=1,2) with the

sions by investigating multileg ladders. In this paper, wec0nstraint that no site is doubly occupied, |_.ef‘Jch“;(1

extend their results to various valuestofandJ for thet-J ~ —Ni-,). The number operatom;, is defined asnj,

ladder, in order to understand the ground-state properties 6 Ciy Ci,, Using the standard electron creation operaffr.

the Hubbard and-J ladders in the strong-coupling regime. The spin operator at rungin the ath chain is defined as
Another interesting feature of strongly correlated electronS'=33 Byci“g 04,C",, whereo is the vector of Pauli matri-

systems is the metal-insulatgMl) transition. For single ces. The number of electrons, the number of sites, and the

0163-1829/97/5@3)/1501510)/$10.00 56 15015 © 1997 The American Physical Society



15016 MASANORI KOHNO 56

TABLE |. Basis set. TABLE Il. Ground states at=0.
Symbol Definition Energy n<0.5 0.5<n<1
0) |00); vacuum 0 Degeneracy LCy X 2Ne LCy, L X 2Ne
) 1 . EnergyE —t, XNg —t, X(2L—Ny)
(ii)) IBT)i E(cﬁu c2h|o0); -t Chemical Potentiak -t t,
1
. =1t w2t — . . L
(iii) IBL)i E(Cu +¢i)[00); L Next, we consider theladder in the limitt/t, —0. Let us
(iv) 117, 311521 00) 0 consider the casas<0.5 andn>0.5, separately.
i it it i
(v) [L1) ci'cil00); 0 A n<05
(vi) 171 ci'eZf|ooy, 0 T
(vii) |11 TiE2M 00), 0 Up to ordert, the effective Hamiltonian is
il >i? 1

eff _ _ bl b,
number of rungs are denoted ., Ng, andL(=N/2), M= t% (Bigbi+15H.C), 22

respectively. The electron densityand the hole density
are defined asn=N,/N; and 6=1—n, respectively. The whereb/, denotes a creation operator of an electron in the
maximum value of the total spir® is denoted bySy.x  bonding band at rung with spin o(c=1,]) with the con-
(=Ne/2). straint that no rung is doubly occupied, bf,=b! (1—n!
This paper is organized as follows: In Sec. Il, we present g y pied, bf,=b/( !

2 . T . +
. . -n{). H h : f :
rigorous results on the ground state of théadder in the nl.) ere, the creation operatds;, is defined asby,

— 1t k2t . . . . .
limit t, /t—. In Sec. Ill, we present numerical results on = (Cioc Ciy)/\2. This Hamiltonian is equivalent to tHe

ferromagnetism in theladder and the-J ladder. In Sec. Iv, =2 Hubbard chain. Thus, the ground states are degenerate
we discuss the metal-insulator transition at quarter-filling forWith respect to the spin degrees of freedom. The charge part
thet ladder. Section V is a summary. of the ground-state wave function is simply that of the spin-

less fermion model on a chain.
Next, we consider the effective Hamiltonian of order

loc

Il t LADDER IN THE LIMIT 1, /t— t?/t, . Here, we define the local Hamiltonig’, ;. :

In this section, we prove the following statemertfy: The
ground state of the ladder in the limitt, /t—c for n e o= —t(ciel ,+cilc? ,+He). (23
<0.5 is a spin singlet$=0) and is unique in finite-size
clusters with an even number of electrons with open boundketting this local Hamiltonian operate da);®|B8); .1, we
ary conditions.(2) The ground state of the ladder in the obtain the following relations:
limit t, /t—o for n>0.5 has the maximum total spir5(
=S and is unique up to the trivial (&+ 1)-fold degen- !?ﬁr 10/B0)i®|Ba)i;1=0,
eracy in finite-size clusters with open boundary conditions.
Before investigating the above properties, we consider the ot
t ladder att=0. The ground states of this model can be H{loc [B—0)®|Bo)i1=——=|S)i®|00) 1,

written in the following form: bt e J2
. t
= X g

@)= la). @3 HE.1/B0) 9B o)1=~ 510,91

where|a);’s correspond to either of statés—(iii ) defined in
Table | forn<0.5, and(ii)—(vii) for n>0.5. The degeneracy t

of the ground states, the eneryand the chemical potential \/§(| B-0)i®[B0)i1~[A-0)
u(=0E/IN,) are summarized in Table Il. The charge gap

A, at quarter-filling 0=0.5) is &, . ®|AT)i 1),

o

M 1,19)i®]00)4,=

TABLE lll. Second-order perturbation enerdsp.

E, between «) and|B) | @) |B)

0 [Bo)i®[Bo)isy [Bo)i®[Bo)isy
_tZ/(ZtL) |B‘7>i®|B_0’>i+1 |Bo'>i®|B_0'>i+1
t2/(2tl) |B‘7>i®|B_0’>i+1 |B_U>i®|BU>i+1
t%/(4t,) |00);-1®[B0)i®|B—0)i41 |B0)i®|B—0);®|00); 1

—t?/(4t,) |00)i_1®|B0)i®|B— o)1 |B—0)i®|Ba);®[00);
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TABLE IV. Matrix elements.

(@ HalB) |a) |1B)

t |Bo)i®|oo)iiq loo)i®|Bo)iiq
|Bo)i®|o—0)ii1 lo—0)i®|Bo)iiq
|Bo)i®|o—a)is1 lo0)i®[B—0a)is1

t/2 |Bo'>i®|_0'0'>i+1 |_UU>i®|BU>i+1
|Bo)i®|—aa)is1 loo)i®|B—a)is1

|Bo)i®|—o—0)is1 |—00)®|B=0)iiy
|Bo)i®|—o—0)is1 lo—0)i®|B—0)is1

0 otherwise

ot
—(|B0o)i®|B=0)is1—|Ad),

2
®|A=0)i+1),

where [S); and |Ac); are defined as (32)(c’c?]
—cifezhlo0y and (142)(c{y—'cZ)|00);, respectively.
Thus, the second-order perturbation endggyis obtained as
in Table Ill. It is also shown that the following relations are
satisfied:

NN 1B1)i®[B)ir1=IBT)i®[B)ii1,
PSP IBT)i®|B)iv1=(Bl)i®|B1)ii1,

= bl(,b.(r Thus, the effective

up to ordert?/t, , is written as follows:

:o|c+1a|00> ®[S)i+1=

where SP* = %b,l and n2
HamHtomanHe

Heff: H:aff + Hgff( 1) + Hgff( 2)

HE" = 0en 20 | S8

n nt. |, (2.9

15017

eﬁ eﬁE (bl 1- a'

~ B ~
Ubi+la' b| 1o'| o-b|+1o'

+H.c),

WhereSB is the spin operator in the bonding band at rung
andJ=t2/t, . Hence, it is shown that the effective Hamil-
tonian, up to ordet?/t, for n<0.5, has the same form as
that of theU— Hubbard chain, up to order/U for n
<1.3273% As a result, the ground-state properties of the
ladder in the limitt, /t— for n=<0.5 are the same as those
of the U— o Hubbard chain fon<13° This leads to a spin-
singlet ground state by the Lieb-Mattis theor&.

B.n>0.5

In this subsection, we consider the case0.5. The un-
perturbed ground states are written in the form of &q1).
The matrix elements of the local Hamiltonian, Eg.5), are
summarized in Table IV.

2.5

Ioc —
||+1 _tz (Cm- |+1(r+C|(rC|+1<r+HC)

Considering the matrix elements in Table 1V, it is shown that
the state |B—o);®|oa);,1 can reach the statgéoo);
®|B—o);,, after successive multiplication by the local
HamiltonianH°, ; as follows:

|B—0)i®|oa)i1—|0—0)i®|Bo)iiy
—[Bo)i®o—0)i
—lo0)i®[B=0)ii1.

Using this property, we can show that the following pro-

cesses are possible by applying the local Hamllton?aHSl
and H: "+1 successively:

|Bo)i_1®|00)i®|0—0)i11-|B0o)i_ 10— 0)i®|00)i41,

[Bo)i-1®[00)i®]—

|Bo)i_1®|—0—0);®|—

00)i+1-|Bo)i19|

0'0'>i+1‘—>|BO'>i—1®|

—00)i®|oa)iiq,

—00)®|=0=0)ii1,

|Bo)i_1®|—0—0)i®|o—0)i11-|Bo)i_1®|o—0)i®|—0—0)i1,

[Bo)i-1®[00)i®]—

|Bo)i_1®|o—0)®|—

00)i+1-|Bo)i_18|

U_U>i+1‘—>|BU>i—1®|_U_U>i®|(7ff>i+1,

—00)i®|0— )1
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FIG. 1. Energy per site as a function of the to#3) for thet-J 0.02 . - - '
ladder atJ=J, =0.05 andt=t, =1 in a 10x 2-site cluster with 18
electrons. The solid diamonds and open squares correspond to th 1 - omemo 4
data obtained by the DMRG method and the exact diagonalization ‘e
method, respectively. For the DMRG method, we took 50 [m: 2") 0.02 O‘ " |
the number of states kept in the superbléRlef. 25] and repeated >~ ol .
2-3 sweeps for convergence. TR .
“." -0.04 |- } = .
Thus,|17), |T1), [L1), and||]) can have their positions . .
changed after successive multiplication by the Hamiltonian ~ g6 | N 4
(H,), if there exists at least orl®7) or |B] ). Furthermore, . K X Ngfég
the following processes are also possible: -0.08 L . . Ns;% ]
Ol. [] S=.
7o) -18]Bo),@[B= 0. R e
—|oa)i_1®|B=-0)i®|Bo)ii1, 0 02 04 n 06 08 !
lo—0)i-1@|B0)i®[B=0)i11 0.01 . . . .
—|lo—0)_1®|B—0);®|Bo)i 1.
Thus, |BT) and |B|) can have their positions changed, if L mxmem—t
there exists at least ong 1), |T1), |L1), or |[[]). As a = . S
result, any unperturbed ground state in the form of dl) = .01l - )
L [ ] I |
0.02 ; : . : L e
Ly -0.02 F ks _
L T - B ~ . =
b4 o S=
P * -0.03 | . + Ns=32 |-
< 002} . i .o . Ne=32
n . (€) " ~- 00
004 | i -0.04 . ' : '
Lll.l 0.04 ® ” 0 0.2 0.4 0.6 0.8 1
n
~-0.06 | E
L]
008 L = * m=50 FIG. 3. Energy differenc@ E per site as a function of filling
’ . . o 8~|=100 for thet ladder att, /t=2.5[(a)], 1.0[(b)], and 0.5[(c)]. t=1.
® ---00
0104 02 04 06 08 1
' ’ n ’ ' can be reached after successive multiplication by the Hamil-

FIG. 2. Energy differenca E per site between the ground-state @nd fixed electron number. This property is usually called
connectivity. Owing to this property and the fact that the

of filling for the t ladder att, /t=1. The solid diamonds and open Matrix elements of the Hamiltonian in this representation are
not negative(Table 1V), the Perron-Frobenius theorem en-
sures that the state of the largest eigenvalue is unique and the

energy in the subspace 8f=0 and that ofS’=S,,,, as a function

squares correspond to the datanof 50 andm= 100, respectively.
t=1.

tonian (H,) for 0.5<n<1 in the subspace of fixed tot&
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FIG. 4. Phase diagram of tié= o Hubbard ladder with respect FIG. 6. Energy differenc@ E per site as a function of filling
fpy the t-J ladder in 1 2-site and 1&2-site clusters atl/t

to spontaneous magnetization. The dashed lines denote the regi )
where the ground state is rigorously shown to have the maximuniJ. /t=0.00, 0.05, 0.07, 0.10, and 0.15 starting from abave.

total spinS (S=Sy,) (theorem 2 and Nagaoka’s theorerithe  —t=1.

dotted line in the limitt, /t— <0 corresponds to the region where the

ground state is shown to be a spin singteeorem 1. The solid and  yarious totalS?s. These states have all positiveodeless

open diamonds correspond to the phase boundadesndn.,,  \yave functions in the present representation. Thus, these
estimated by the DMRG method. The bold lines are guides t0 thgiates have finite overlap with the states of the largest eigen-

eye. Att, /t=0, the ground states are degenerate with respect to th@alue in the corresponding subspaces. By use of the gauge
spin degrees of freedom, because the model reduces to the decou- ‘ fiorge ( 1)i~a 12 the si f the h
ormationc; —(—1) ¢;",a=1,2, the sign of the hop-

pled U= Hubbard chains. At quarter-filing, the charge gap is rans . . . !
expectedSec. V). ping amplitudet can be changed, i.e.+~ —t, with spin op-

erators unchanged. As a result, it is shown that the ground
wave function is positivénodelessin this representation in  state of thet ladder in the limitt, /t—c for 0.5<n<1 has
each subspace. the maximum total spin§=S,,,) and is unique up to the
Next, we consider the ground-state wave function in therivial (2S.+ 1)-fold degeneracy.
subspace of the maximum tot&f (S*=S,,,). The Hamil-
tonian in this subspace has the same form as that of the

spinless fermion model on a chain. Thus, the wave function C. Remarks
of the largest eigenvalue in this subspace is nothing but that
of the spinless fermion mode| ¥ sp). Applying the spin- Here, we give some remarks on the above theorems.

lowering operatoiS~ to |¥'gp), we obtain the eigenstates of (1) Part of theorem 1 can be extended to higher dimen-
sions. The effective Hamiltonian of double-layenodels up

0 . . . . . to ordert?/t, for n<0.5 has the same form as that of the
+ Ne=18 single-layer Hubbard models up to ordéfU for n<1 3234
0.01 - % m::gg a - Thus, the ground-state properties of double-layeodels in
@ - the limit t, /t—o for n<0.5 are the same as those of the
Z 0.02 - . i single-layerU — o Hubbard models fon<1 %’
’II 003 = | (2) The proof of theorem 2 is mathematically similar to
W = beee e eete that of Kubo’s theoreni® However, the physical situation is
Ll|.| 004 L " i different. In Kubo’s theorem, the limit of the strong Hund-
= | . coupling is taken, i.e.Hyun=—JnuZiSH S, Jy—=. Fur-
-0.05 | . g thermore, almost degenerate bands are assumed. On the other
hand, in theorem 2, we do not assume explicit ferromagnetic
-0.06 |- . N 1 couplings. In contrast to Kubo's case, the limit of the large
. band splitting is taken in the present case. The extension of
0.07 5 02 04 06 08 1 Kubo’s theorem t1=<0.5 shows that the ground state is also
S, /S ferromagnetic® which is contrasted with theorem 1. The
z | Smax

proof of theorem 2 is mathematically similar to that of Ref.
FIG. 5. Energy per site as a function of the to4 measured 40 for the one-dimensional Kondo-lattice model, too.
from that of S2=S,,,,, for thet ladder att=t, =1 in a 16x 2-site (3) The restriction on the boundary condition can be re-
cluster with 22, 20, and 18 electrons starting from above. The solidaxed such that the Hubbard chain has a unique spin-singlet
and open symbols denote the data fio=50 andm=100, respec- ground state for theorem 1 and that the spinless fermion
tively. model on a chain has non-negative matrix elements in the



15020 MASANORI KOHNO 56

0'0 T T T T - T T T T T
LIS x No=16 ‘
| | * =.
ﬁ '005 S . 777*77:”””7— ™ NS=4O
-~ . - : @ 48
(2] LT SEEs TR e
< 010} . .
S v
—— A
Lle- ,,,‘,,,A,,,A,,A,__A._.f _______ A
LII.J R ' » J=0.05] |
~— v + J=0.07
v s J=0.10
-0.20 - v v J=0.15 |1
B A ,
_025 1 1 1 1 (a)
0 0.2 0.4 0.6 0.8 1
Sz/Smax
0.0 . T T T
n
. mg--E. .3 g -E. . E_ B _E_® _l....,,,:”%,,,
-0.05 F .. 4
2 010 R
~ -U. - . . 4
Zw ——0‘“6—7*——.—--’--------——v--‘v‘w—A—”—' ——————————
~ '0.15- A v 4
———
Ll_ A
W -020} . ' ]
1 B Sl ey SRR T v o -
w v = J=0.05
= -0251L « J=0.07 |
M a J=0.10
0.30 LT v J=0.15
-0.30 | . |
2 _
-0.35 1 1 L 1 (b)
0 0.2 04 0.6 0.8 1
Sz/Smax
0'0 T T T T
= J=0.05 '
« J=0.07
010 F1 L Jo0t0 . ]
) v J=0.15 Jd
S~ *
» -0.20 L . 3 7
*
< E
w -0.30 | . " " . : -
R g Y
Wy 040k e e
e A
-0.50 LA¢“V'_
,,y,,,',,,v, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (C)
_060 1 1 1 1
0 0.2 0.4 0.6 0.8 1 ’ '
S/ Smax n

FIG. 7. Energy per site as a function of the to8) measured

from that of S*= , for thet-J ladder at=t, =1 in a 16X 2-site . . ) -
Smax - FIG. 8. Chemical potentiak as a function of filling att, /t

cluster with 26[(a)], 28 [(b)] and 30[(c)] electrons atl/t=J, /t } X

=0.05, 0.07, 0.10, and 0.15 starting from above. The dot%ed Iines=2'5 [(a)], 1.0[(B)], and 0'5[(_C)]' For compa_rlson, the chemical

correspond to the eneray 6f=0. The data are normalized potentialu for the noninteracting cadelotted ling and that of the
P 9y ized by spinless fermion moddkolid ling) are shown Ng=160x2). The

site representation for theorem 2. For example, theorem RointsA andB correspond to the anomalies due to the band bottom
can be extended to the case of periodic boundary conditionsf the antibonding band and the band top of the bonding band,
with an odd number of electrons and an even number ofespectively. The points& and S correspond to the phase bound-
rungs. Nagaoka’s theorem is recovered for the one-holeriesnCl and Ne, respectively, which are estimated by the DMRG
case*~16 method(Sec. ). t=1.
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FIG. 10. Spectral flow of theé ladder fort, /t=0.001 in a 12-
FIG. 9. (a) Size dependence of the charge ghp for thet site cluster with six electrons for 9d/Py<1 [(a)], and the
ladder att, /t=2.5, 1.5, 1.2, 1.0, 0.8, 0.7, 0.5, and 0.2 starting from blow-up region for®/®,=0.5 [(b)]. The solid diamonds corre-

above.(b) The charge gap . as a function of, /t. The bold lineis ~ spond to the spectral flow of the ground state. The data are obtained
a guide to the eye.=1. by the exact diagonalization methadd=1.

Ill. FERROMAGNETISM small.(See also Fig. 8 From this plot, we find the region FF
where the fully-polarized ferromagnetic state is one of the

In this section, we present the numerical results ontthe ground states. The phase boundaraé between EE and

ladder for finitet, /t and thet-J ladder for smalld andJ, ) i o

obtained by the DMRG methd@inite-size algorithm?® The =~ NOn-FF is estimated as shown in Fig. 4. At/t=1, the

DMRG calculation has been performed with open boundary€Sult in Ref. 24 6, =0.78) is recovered. Qualitatively, the

conditions. region FF becomes larger as/t increases. The phase
As a test of the DMRG calculation, we compare theboundarynCl gets closer to 0.5 as, /t increases. This is

ground-state energy obtained by the DMRG method withconsistent with the rigorous results in Sec. II.

that of the exact diagonalization method. In Fig. 1, the agree- Next, we consider the phase boundary, between SS

ment of the data obtained by these two methods is good. The, hon.SS, where SS is defined as the region in which the
maximum error is about 0.01%. Next, we consider the fruny . nq state is a spin singlet. Figure 5 shows the ground-
cation error, i.e., the error due to smail, wherem is the state energy as a function of the to@f att, /t=1 for n
number of states kept in the superbldckThe difference =0.5625, 0.625, and 0.6875. The ground sitate is a spin sin-
betweenm =50 andm=100 is very small as shown in Fig. g for n=0.5625 and not fon=0.625 and 0.6875. Hence

2, suggesting tham=50 is sufficient.(See also Fig. 5. the phase boundarynCZ is estimated as,,=0.59+0.03, ’

Thus, we mainly report the results of=50 hereafter. L . ) .
Let us consider ferromagnetism of théadder. In Fig. 3, Which is consistent with Ref. 24 =0.6). In this way, the

we show the energy differencREr between the ground- Phase boundamy., is estimated for various /t as shown in
state energy in the subspace3f=0 and that ofs’=S,,xas  Fig. 4. The region PF shrinks as/t increases, where PF is

a function of filling. The data in various-size clusters aredefined as the region that is neither FF nor SS. This is also
scaled to a single line, indicating that the finite-size error isconsistent with the rigorous results in Sec. Il.
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Here, we present the numerical results on thkeladder
for small J and J, . For simplicity, we choose, =t and
J, =J, and set=1 as the energy unit. Figure 6 shows the
dependence dfAEg at J=0.00, 0.05, 0.07, 0.10, and 0.15.
As shown in this figureAEg becomes large near half-filling
(n=1) due to antiferromagnetic correlation, andEg]|
seems to be the smallest nea=0.8 for n>0.5. Figure 6
also indicates thai=0.05 is enough to destroy the region
FF.

Next, we consider the stability of PF againdt The
ground-state energy as a function of the tdalnear half-
filling for J=0.05, 0.07, 0.10, and 0.15 is shown in Fig. 7.
This figure suggests that FF is surrounded by PF in the phas
diagram of thet-J ladder for finited.

IV. METAL-INSULATOR TRANSITION
AT QUARTER-FILLING

4.0x10° .
Before discussing the metal-insulator transition, we con- 3.0x105 a2
sider the charge gap. at quarter-filling 6=0.5). Figure 8 ' " ! i
shows then dependence of the chemical potential 2.0x10°| 4
(=0E/IN,). The chemical potentigk in a finite-size cluster o “bviqm ;
is defined as g 1010 Ngo, 1
—_ E(ny)—E(ny) + a2,
p(n)=———"—, (4.9 00 1
(ng—n3)N; w %y
-1.0x10°5 - Euﬂ _
WhereE(ni)_denotes the ground-state energy at fillmg i 204105 L E“Fh i
=1,2, andn=(n;+n,)/2. We took fi,—n;)Ng=2. The :
charge gapA. is defined asA.=u(n.+0)—u(n.,—0), -3.0<10° L (b) Su,
where n; is the critical electron densityn(=0.5 in the 4.010% L. L %3
present cage It is expected that the charge gap opens at ©-1.0x10° 0.0 1.0x10°8
quarter-filling, ift, /t is large enoughSec. ). Actually, for D/ P,

large values of, /t, the charge gap seems to open as shown

in Fig. 8(@). For smaller values df, /t, we cannot determine FIG. 11. Spectral flow of the ladder fort, /t=0.001 in a 12-
whether the charge gap opens from Fig. 8. Thus, we extrapgite cluster with four electrons for @d/dy<1 [(a)], and the

late the charge gap in a finite-size clusf&. (4.2] asa  blow-up region for®/®,=0 [(b)]. The solid diamonds correspond
+b/L, using the data fok = 12— 24, and estimate the charge to the spectral flow of the ground state. The data are obtained by the
gap as shown in Fig. 9. exact diagonalization methotk= 1.

E(No=Ny2+2)+E(Ne=Ng/2—2) — 2E(No=N//2)

A(Ng=Ny2)= 5 . (4.2)
|
There are some possibilities for the critical valug /t i 27P\ - e
above which the charge gap opens. One of the possibilities is Cio Cit10— ex;{ I_Lq)o Cig Citig- 4.3

that the critical valug, ./t is zero and that the gap is expo-

nentially small in the limitt, /t—0 as in the case of the |t is expected that the period of the spectral flow reduces to
Hubbard chain in the limit) —0.26 In order to determine the L®,/M if M-particle bound states are formed in the ground
critical valuet, ./t, we adopt the extended Aharonov-Bohm state. For exampléyl =1 for a metallic state, anf =2 for
(AB) method proposed by Kusakabe and Abkiln the a BCS state. We apply this method to tHadder with a very
framework of this method, we investigate the extended spesmall value oft, /t (t, /t=0.001). As shown in Fig. 10, the
tral flow by introducing a Peierls phase as spectral flow at quarter-filing has the minimum extended



56 ASPECTS OF THE GROUND STATE OF THB=x ... 15023

AB period, i.e.,®=®,, suggesting that the ground state is compound$? i.e., the Mott-Hubbard type and the charge-
an L-particle bound state or, in this case, an insul&tarhis  transfer type.
behavior is contrasted with the case off quarter-filling. For

example, an=1/3, the extended AB period is larger than

®, as shown in Fig. 11. This implies that the ground state at

quarter-filling is an insulator already far /t=0.001. It is
) . . ) In summary, two aspects of the ground state of the
plausible to consider that the critical valug,/t is probably — _ Hubbard ladder are investigated. One is ferromag-
zero. A possible scenario is the following: The perturbationnetism, the other is the metal-insulat®fl ) transition. In the
of the smallt, term produces the relevant Umklapp processlimit t, /t—oe, it is rigorously shown that the ground state is
that leads to an insulator, at the same time as the degeneraayspin singlet fon<0.5 and that the total spin is maximum
with respect to the spin degrees of freedom is removed. Théor 0.5<n<1. For finitet, /t, we have estimated the phase
numerical results presented above are quite different frofpoundaries, with respect to spontaneous magnetization, by
the case in the weak-coupling limiU(— +0). In the weak- the _densny-matnx renormahza_tlon group method. It is nu-
coupling limit, it is shown by bosonization that, /t is one’ merically shown that the region FF becomes larger and
N ' c : spreads down to quarter-filling &s/t increases. This is con-
Thus, it is expected thdt ./t decreases from 1 to 0 as the gistent with the rigorous results presented in Sec. Il. The
interactionU increases from O te. rigorous resultst( /t—o) and the numerical results for fi-
Now, let us consider the metal-insula(®l) transition at  nite t, /t support one another and confirm that the ground
quarter-filling. As discussed in Sec. Il, in the limijt/t—oo, state can be ferromagnetic for thé=c~ Hubbard ladder
the MI transition forn—0.5—0 is effectively described by with finite hole density. The numerical results for the
the equivalent model to the— Hubbard chain, and the ladder suggest that FF is surrounde.d by PF for fidite the
MI transition forn—0.5+0 is described by the spinless fer- Small J regime. We have also estimated the value of the

mion model on a chain. It is interesting to compare thes&harge gap at quarter-filingi& 0.5). Applying the extended

features with those in the weak-coupling regime. In theharonov-Bohm method, we have obtained numerical evi-

weak-coupling regimel— +0), the charge gap is also ex- dence that the critical valug ./t, above which the charge
piing regim ' g€ gap gap opens, is less than 0.001. This is quite different from that
pected at quarter-filling fot, /t>1 because of the relevant

N -
Umklapp proces$.This Ml transition is understood as the of the weak-coupling fimit U= +0) (t, ¢/t=1).
Mott transition, which is described by th¢— +0 Hubbard
model on a chain written in terms of the bonding-band op-
erators. In both weak-couplinfU<t, (>t)] and strong-

coupling[U>t, (>t)] regimes, as—0.5-0, the MI tran- The author would like to thank M. Takahashi, M. Ogata,

sition is described by single-chain effective Hubbardyk kysakabe, and F. V. Kusmartsev for helpful discussions
Hamiltonians. However, the value of the charge gap Willang yseful comments. The author also thanks D. Lidsky for
have different energy scales. In the weak-coupling regimeyeading of the manuscript. The exact diagonalization pro-
the value of the charge gap would be determined mainly byjram is partly based on the subroutine package “TITPACK
U. On the other hand, in the strong-coupling regime, itver. 2 coded by H. Nishimori. Part of the calculations were

would be determined mainly Ry . This feature is similarto  performed on the Fujitsu VPP500 at the Institute for Solid
the two types of the MI transition for transition-metal State Physics, University of Tokyo.

V. SUMMARY
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