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Numerical analysis of eigenmodes localized at line defects in photonic lattices
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~Received 16 July 1997!

We calculated the eigenfrequencies and eigenfunctions of localized electromagnetic modes brought about by
line defects introduced into two-dimensional photonic lattices by means of the numerical simulation of their
excitation process by a virtual oscillating dipole moment. In addition to quite excellent agreement with the
experimental result by Linet al. @Appl. Phys. Lett.68, 3233~1996!#, we showed that the observed localized
mode hasB2 spatial symmetry. We also obtained the dispersion relation of the one-dimensional impurity band,
which can be easily compared with experiments.
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Localization of radiation field in disordered photon
lattices1 has been attracting much scientific interest.2–15

In addition to the novelty and the significance of t
phenomenon itself, many important ideas for its technolo
cal applications such as extremely narrow-band opt
filters, single-mode light-emitting diodes,2 and optical
waveguides with high transmittance3 fueled recent intensive
investigations. The presence of photonic band gaps,
the frequency ranges where no electromagnetic mode ex
is essential for the localized modes because they bec
mixed with extended Bloch wave functions if their eigenfr
quencies lie in the continuum of the band states. T
constraint is somewhat relaxed if the polarization of t
localized modes and/or the conservation of their wave v
tors prevent them from being mixed with the Bloch stat
The analysis of the nature of the wave functions as wel
the eigenfrequencies of the localized modes is important
cause their optical properties such as the coupling streng
external fields and the quality factor are subject to
former.

The localized eigenmodes were found experimentally
introducing a defect to the regular dielectric structures of
photonic lattices.4,5 Later, several theoretical works such
impurity-band calculations based on the plane-wave exp
sion method,5–8 analyses of the transmission spectra
means of the finite-difference time-domain method,8–11 and
calculations of the eigenfrequencies by a real-space Gree
function method12,13 were reported. On the other han
one of the present authors and his co-worker repo
another method recently that is based on a numer
simulation of the excitation process of the localized mod
by a virtual oscillating dipole moment located near the
electric defect.14 This method was applied to a two
dimensional~2D! photonic lattice that had been investigat
experimentally by McCallet al.,4 and excellent agreemen
between the experimental observation and the nume
calculation was shown for the eigenfrequency of t
localized mode. In addition, the eigenfunctions with th
peculiar symmetries were analyzed in detail. Memories
CPU time necessary for our method are small compared
560163-1829/97/56~23!/14905~4!/$10.00
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other methods, and accurate and efficient calculations
possible.

It is essential for our method that the eigenfrequency
the relevant localized mode is isolated since it is obtain
from the resonance structure in the spectrum of the dip
radiation, and if it is close to other eigenmodes, we can
distinguish it from them. Therefore, this method does n
seem at first glance to be applicable to the problem of
impurity band that is brought about by a one-dimensio
~1D! or 2D array of dielectric defects, for which the spe
trum of the localized eigenmodes forms a continuum. Ho
ever, we would like to show in this paper that the applicati
of an appropriate boundary condition that matches Bloc
theorm when we solve the problem of the dipole radiat

FIG. 1. The top view of the 2D square array of circular rods th
was assumed for the numerical calculation~see text for details!.
14 905 © 1997 The American Physical Society
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numerically leads to the distinction of a particular eigenmo
with a designated wave vector. Then we will apply th
method to a 1D array of defects, which will be called lin
defects hereafter, in a 2D square lattice that was investig
experimentally by Linet al.,15 and quite excellent agreeme
between the experimental observation and the numerical
culation will be shown. The dispersion relation of the imp
rity band and the eigenfunctions will also be calculated, a
the spatial symmetry of the localized mode that was fou
by Lin et al.15 will be examined.

Now, in a previous paper,14 we formulated the radiation
from an oscillating dipole moment embedded in a photo
lattice that contains a dielectric defect by means of
Green’s-function method developed in Ref. 16. Here,
us summarize it briefly. When we denote the eigenfunct
~of the electric field! and eigenangular frequency of the l
calized mode byEd(r ) andvd , respectively, then the elec
tric field E(r ,t) radiated from the oscillating dipole is give
by

E~r ,t !.2
2pvd$m•Ed* ~r0!%Ed~r !exp~2 ivt !

V~v2vd1 iG!
, ~1!

where m is the amplitude of the oscillating dipole,r0 is
its position vector, v is the angular frequency of th
oscillation, G is the decay rate of the localized mode, a
V is the volume of the lattice. When we derived Eq.~1!,
we assumed thatv was close tovd , and neglected the
contribution from all other eigenmodes. On the other ha
the electromagnetic energy radiated in a unit timeU is given
by

U.
pvd

2Gum•Ed~r0!u2

V$~v2vd!21G2%
. ~2!

Then we solve the wave equation derived from the M
well’s equations numerically to obtainE(r ,t) andU, and we
obtain vd from the resonance frequency ofU and Ed(r )
from E(r ,t).

FIG. 2. The photonic band structure of the regular square lat
of the circular rods forE polarization. The ordinate is the norma
ized frequency. According to the experimental condition of L
et al. ~Ref. 15!, the following values were assumed:a51.27 mm,
R50.255 mm,e510.0.
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The geometry for the present numerical calculation
shown in Fig. 1. This is the top view of a 2D square latti
composed of circular dielectric rods that was investigated
Lin et al.15 Here,a andR denote the lattice constant and th
radius of the rods, respectively.e is the dielectric constant o
the rods, and that of the background~air! is assumed to be
unity. The lattice is completely regular except that t
distance between the centers of two layers that sandwich
x axis, 2b, is different froma. This part of the lattice acts a
the line defects. When we solve the wave equation,
assumed, according to the experimental condition
Lin et al., that the electric field was parallel to the rod ax
or the z axis ~E polarization!. We discretized the wave
equation to obtain a difference equation, and solved the la
numerically with the initial conditionEz(r ,0)50. Every
unit cell was divided into 40340 parts, and one period o
the oscillation was divided into 640 parts. The further d
crease of the size of the spatial and temporal meshes did
give an apparent change in the eigenfrequencies of the lo
ized modes. The area surrounded by a broken line in Fig.
the supercell on which the numerical calculation was carr
out. The number of the rods included in the supercell w
more than 6. We imposed a boundary condition onEz(x,y,t)
such that

Ez~x1a,y,t !5eikaEz~x,y,t !, ~3!

wherek is the wave vector of the localized eigenmode in t
x direction. Then we could extract the contribution
the radiated electromagnetic field from this particular eig
mode with the fixed wave vector. In what follows, w
will show that this simple procedure works quite well an
that excellent agreement with the experimental result
obtained.

Figure 2 shows the photonic band structure of the regu
~i.e., 2b5a! square lattice of the circular rods forE polar-

e

FIG. 3. The electromagnetic energy radiated by the dipole m
ment as a function of the oscillation frequency.h, s, L, andd

denote the accumulated electromagnetic energy after 10, 20, 35
50 cycles of the oscillation, respectively. The same parameter
for Fig. 2 were used.b andk were assumed to be 1.5a and 0. The
inset shows the dispersion relation of the 1D impurity band.
abscissa is the normalized wave vector in thex direction.
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ization, which was calculated by means of the plane-w
expansion method after Plihal and Maradudin.17 441
plane waves were used as a basis set for the band calcula
and the eigenfrequencies for 16 000k vectors in the
first Brillouin zone were calculated in order to obtain t
state density. The ordinate of the figure is the normaliz

FIG. 4. ~a! The eigenfrequencies at theG point of the 1D impu-
rity bands as a function of the widthb of the defect structure. The
ordinate is the normalized frequency, and horizontal lines repre
the edges of the first and second bands of thex point in the 2D
Brillouin zone. The symmetry of the localized modes is also sho
where the number in parentheses is the band index that di
guishes branches with the same symmetry.~b!–~e! The distribution
of the electric fields for theA1 modes and~f!–~i! that for theB2

modes. The maximum of each electric field is normalized to un
e

on,

d

frequency wherec denotes the light velocity in vacuum
According to the experimental condition of Linet al.,15 the
following values were assumed: a51.27 mm,
R50.255 mm, e510.0. Figure 2 shows the presence
three band gaps. We will deal with the lowest one hereaf
since the experiment by Linet al. was concerned with this
band gap.

As will be shown below, the localized mode at theG point
(k50) of the 1D impurity band found by Linet al.proved to
be ofB2 spatial symmetry. So, let us first examine this ca
for which b51.5a. Figure 3 shows the frequenc
dependence of the electromagnetic energy radiated by
oscillating dipole moment located 0.2 mm apart fro
the origin in they direction. Open squares, open circle
open diamonds, and closed circles denote the accumul
electromagnetic energy after 10, 20, 35, and 50 cyc
of the oscillation, respectively. In this figure, we find
clear resonance atva/2pc50.3602, orv/2p585.03 GHz,
which is quite close to the experimental observation by L
et al.,15 that is,v/2p585.5 GHz. The discrepancy betwee
them is less than 0.6%. On the other hand, the inset of Fi
shows the calculated dispersion relation of the 1D impu
band where the abscissa represents the normalized wave
tor in thex direction. In the experiments carried out by L
et al., transmission spectra of the specimen were measu
with a microwave at normal incidence. Therefore, they o
served the localized mode at theG point. If the angle of
incidence is tilted, then this dispersion curve can be
served.

Next, Fig. 4~a! shows the b dependence of the
eigenfrequencies of the localized modes at theG point where
open and solid circles represent theA1 and B2 modes,
respectively. Modes of other symmetries, i.e.,A2 and B1
symmetries, were not found in this parameter range.
this figure, horizontal lines represent the edges of the fi
and second bands at theX point in the 2D Brillouin zone
~see Fig. 2!, between which the localized modes withk50
can exist. The number in parentheses in Fig. 4~a! is a
band index in order to distinguish branches with the sa
symmetry. Figures 4~b!–4~e! and 4~f!–4~i! show the 2D dis-
tribution of the electric fields of the localized modes of t
A1 andB2 symmetries, respectively. The maximum of ea
electric field is normalized to unity in these figures. Note th
the number of the nodes of the eigenfunctions along thy
axis increases with the increasing band index. Also note
the A1 (B2) modes are symmetric~antisymmetric! on thex
axis.

In conclusion, we calculated the eigenfrequencies a
eigenfunctions of the localized electromagnetic mod
brought about by the line defects introduced to the
photonic lattices by means of the numerical simulation
their excitation process by a virtual oscillating dipole m
ment. In addition to quite excellent agreement between
numerical calculation and the observation by Linet al.,15 we
showed that the observed localized mode has theB2 spatial
symmetry. We also obtained the dispersion relation of
1D impurity band, which can be easily compared with e
periments.
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