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Numerical analysis of eigenmodes localized at line defects in photonic lattices
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We calculated the eigenfrequencies and eigenfunctions of localized electromagnetic modes brought about by
line defects introduced into two-dimensional photonic lattices by means of the numerical simulation of their
excitation process by a virtual oscillating dipole moment. In addition to quite excellent agreement with the
experimental result by Liret al. [Appl. Phys. Lett.68, 3233(1996], we showed that the observed localized
mode ha®, spatial symmetry. We also obtained the dispersion relation of the one-dimensional impurity band,
which can be easily compared with experiments.
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Localization of radiation field in disordered photonic other methods, and accurate and efficient calculations are
latticed has been attracting much scientific interesf.  possible.
In addition to the novelty and the significance of the It is essential for our method that the eigenfrequency of
phenomenon itself, many important ideas for its technologilhe relevant localized mode is isolated since it is obtained
cal applications such as extremely narrow-band opticaffom the resonance structure in the spectrum of the dipole
filters, single-mode light-emitting diodés,and optical ~radiation, and if it is close to other eigenmodes, we cannot
waveguides with high transmittaricieled recent intensive distinguish it from them. Therefore, this method does not
investigations. The presence of photonic band gaps, of€em at first glance_ to be applicable to the prot_)lem qf the
the frequency ranges where no electromagnetic mode existénpurity band that is brought about by a one-dimensional
is essential for the localized modes because they becom{@D) or 2D array of dielectric defects, for which the spec-
mixed with extended Bloch wave functions if their eigenfre- trum of the localized eigenmodes forms a continuum. How-
quencies lie in the continuum of the band states. Thi€Ver, we woulq like to show in thls'paper that the application
constraint is somewhat relaxed if the polarization of theOf an appropriate boundary condition that matches Bloch’s
localized modes and/or the conservation of their wave vecth€orm when we solve the problem of the dipole radiation
tors prevent them from being mixed with the Bloch states. y
The analysis of the nature of the wave functions as well as
the eigenfrequencies of the localized modes is important be-

A
cause their optical properties such as the coupling strength to Q Q F€>1 Q O
! |

external fields and the quality factor are subject to the

i I
former. | ,
The localized eigenmodes were found experimentally by Q O i <> i Q O

introducing a defect to the regular dielectric structures of the ! [

photonic Igttice§:5 Later, sevgral theoretical works such as O Q i <> E Q Q
impurity-band calculations based on the plane-wave expan- | '

sion method,® analyses of the transmission spectra by O Ol()io O
means of the finite-difference time-domain mettiotf,and b[ ; !

calculations of the eigenfrequencies by a real-space Green'’s- 3 3 » X
function metho®'® were reported. On the other hand, b] 2 2

one of the present authors and his co-worker reported O OE()jO Q

another method recently that is based on a numerical
simulation of the excitation process of the localized modes Q O
by a virtual oscillating dipole moment located near the di-

Q

e mmmm———mm

electric defect® This method was applied to a two-

dimensional2D) photonic lattice that had been investigated Q O <

experimentally by McCallet al,* and excellent agreement aI

between the experimental observation and the numerical @ O {

calculation was shown for the eigenfrequency of the 5

localized mode. In addition, the eigenfunctions with their

peculiar symmetries were analyzed in detail. Memories and FIG. 1. The top view of the 2D square array of circular rods that
CPU time necessary for our method are small compared witlvas assumed for the numerical calculatisee text for details
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FIG. 2. The photonic band structure of the regular square lattice %
C

of the circular rods folE polarization. The ordinate is the normal-
ized frequency. According to the experimental condition of Lin  FIG. 3. The electromagnetic energy radiated by the dipole mo-
et al. (Ref. 15, the following values were assumegl=1.27 mm,  ment as a function of the oscillation frequency, O, ¢, and®
R=0.255 mm,e=10.0. denote the accumulated electromagnetic energy after 10, 20, 35, and
50 cycles of the oscillation, respectively. The same parameters as
for Fig. 2 were usedb andk were assumed to be h&nd 0. The
numerically leads to the distinction of a particular eigenmodenset shows the dispersion relation of the 1D impurity band. Its
with a designated wave vector. Then we will apply thisabscissa is the normalized wave vector in xhdirection.
method to a 1D array of defects, which will be called line
defects hereafter, in a 2D square lattice that was investigated
experimentally by Liret al,'® and quite excellent agreement ~ The geometry for the present numerical calculation is
between the experimental observation and the numerical cafhown in Fig. 1. This is the top view of a 2D square lattice
culation will be shown. The dispersion relation of the impu-composed of circular dielectric rods that was investigated by
rity band and the eigenfunctions will also be calculated, and.in et al: 15 Here,a andR denote the lattice constant and the
the spatial symmetry of the localized mode that was foundadius of the rods, respectivelyis the dielectric constant of
by Lin et alX® will be examined. the rods, and that of the backgroutalr) is assumed to be
Now, in a previous papéf, we formulated the radiation unity. The lattice is completely regular except that the
from an oscillating dipole moment embedded in a photoniadistance between the centers of two layers that sandwich the
lattice that contains a dielectric defect by means of ax axis, 2, is different froma. This part of the lattice acts as
Green's-function method developed in Ref. 16. Here, lethe line defects. When we solve the wave equation, we
us summarize it briefly. When we denote the eigenfunctiorassumed, according to the experimental condition of
(of the electric field and eigenangular frequency of the lo- Lin et al, that the electric field was parallel to the rod axis,
calized mode byE4(r) and wy, respectively, then the elec- or the z axis (E polarization. We discretized the wave
tric field E(r,t) radiated from the oscillating dipole is given equation to obtain a difference equation, and solved the latter
by numerically with the initial conditionE,(r,0)=0. Every
unit cell was divided into 4840 parts, and one period of
2 wg{ - EX (o)} Eq(r)exp —iwt) the oscillation was divided ir)to 640 parts. The further .de-
V(o= wgtiT) , crease of the size of the §pat|al qnd temporal _meshes did not
d give an apparent change in the eigenfrequencies of the local-
ized modes. The area surrounded by a broken line in Fig. 1 is
the supercell on which the numerical calculation was carried
out. The number of the rods included in the supercell was
more than 6. We imposed a boundary conditiorEg¢x,y,t)
such that

E(r,t)=-—

where u is the amplitude of the oscillating dipole, is

its position vector,w is the angular frequency of the
oscillation, I" is the decay rate of the localized mode, and
V is the volume of the lattice. When we derived E@),
we assumed thaty was close towy, and neglected the
contribution from all other eigenmodes. On the other hand,

— qika
the electromagnetic energy radiated in a unit tithés given E(x+ay,t)=e™E,(x.y.1), @)
by wherek is the wave vector of the localized eigenmode in the
) 5 x direction. Then we could extract the contribution to
_ magl| - Ey(ro)| the radiated electromagnetic field from this particular eigen-

)

mode with the fixed wave vector. In what follows, we
will show that this simple procedure works quite well and
Then we solve the wave equation derived from the Maxthat excellent agreement with the experimental result is
well’'s equations numerically to obtale(r,t) andU, and we  obtained.

obtain wy from the resonance frequency &F and E4(r) Figure 2 shows the photonic band structure of the regular
from E(r,t). (i.e., 2b=a) square lattice of the circular rods f& polar-

o V{(w— wd)2+ FZ}'
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0.45r frequency wherec denotes the light velocity in vacuum.
According to the experimental condition of Lit al,'® the
following  values were  assumed: a=1.27 mm,

0401 R=0.255 mm, €e=10.0. Figure 2 shows the presence of
three band gaps. We will deal with the lowest one hereafter,
s o35k since the experiment by Liet al. was concerned with this
gla ’ C

band gap.

I As will be shown below, the localized mode at th@oint
0.30) B2(1)\ A1(2)\ B2(2) (k=0) of the 1D impurity band found by Liet al. proved to

I XX \ \ \ be of B, spatial symmetry. So, let us first examine this case,

for which b=1.5a. Figure 3 shows the frequency
)T AU R U SN S dependence of the electromagnetic energy radiated by the
0.0 3.0 4.0 50 oscillating dipole moment located 0.2 mm apart from

the origin in they direction. Open squares, open circles,
open diamonds, and closed circles denote the accumulated

(a)

(1)8 electromagnetic energy after 10, 20, 35, and 50 cycles
06 of the oscillation, respectively. In this figure, we find a
04 clear resonance ata/2wc=0.3602, orw/27=285.03 GHz,
02 which is quite close to the experimental observation by Lin
0 et al,'® that is, w/27=85.5 GHz. The discrepancy between
-0.2 them is less than 0.6%. On the other hand, the inset of Fig. 3
:8'2 shows the calculated dispersion relation of the 1D impurity
08 band where the abscissa represents the normalized wave vec-
1 tor in thex direction. In the experiments carried out by Lin
et al, transmission spectra of the specimen were measured
6 6 5 ¢ - with a microwave at normal incidence. Therefore, they ob-
050 05 050 05 050 05 050 05 served the localized mode at thepoint. If the angle of
x/a x/a x/a x/a incidence is tilted, then this dispersion curve can be ob-
® A1) © 4,2 @A)  @©AG served.
6 6 Next, Fig. 4a) shows the b dependence of the
1 eigenfrequencies of the localized modes atlth@oint where
g'z open and solid circles represent tdg and B, modes,
04 respectively. Modes of other symmetries, i.8, and B;
02 symmetries, were not found in this parameter range. In
0 this figure, horizontal lines represent the edges of the first
B} -0.2 and second bands at thé point in the 2D Brillouin zone
-0.4 (see Fig. 2, between which the localized modes wkk=0
:g': can exist. The number in parentheses in Figp) 4s a
q band index in order to distinguish branches with the same
symmetry. Figures @)—4(e) and 4f)—4(i) show the 2D dis-
. p P “ tribution of the electric fields of the localized modes of the
050 05 050 05 -050 05 050 05 A; andB, symmetries, respectively. The maximum of each
x/a x/a x/a xfa electric field is normalized to unity in these figures. Note that
® B, (®) B, M B,3) OB, the number of the nodes of the eigenfunctions alongythe

axis increases with the increasing band index. Also note that

FIG. 4. (a) The eigenfrequencies at thepoint of the 1D impu-  the A; (B,) modes are symmetri@ntisymmetri¢ on thex
rity bands as a function of the width of the defect structure. The 5yis.

ordinate is the normalized frequency, and horizontal lines represent |4 conclusion. we calculated the eigenfrequencies and

the edges of the first and second bands ofitfgoint in the 2D gigenfunctions of the localized electromagnetic modes
Brillouin zone. The symmetry of the localized modes is also Shownbrought about by the line defects introduced to the 2D
Wh.ere the number .in parentheses is the band ind.ex.tha.t OIiStir}:’)hotoni«: lattices by means of the numerical simulation of
guishes branCh?S with the same symme(tu)/.—(e_) The distribution their excitation process by a virtual oscillating dipole mo-
of the electric fields for thet; modes andf)—() that for theB, 0 1" dition to quite excellent agreement between the
modes. The maximum of each electric field is normalized to unity'numérical calculationqand the observa%ion by Eiral 1516

o ) showed that the observed localized mode hasBthspatial
ization, which was calculated by means of the plane-waveymmetry. We also obtained the dispersion relation of the

expansion method after Plihal and Maradutiin441 1D impurity band, which can be easily compared with ex-
plane waves were used as a basis set for the band calculatiqfhriments.

and the eigenfrequencies for 16 000 vectors in the
first Brillouin zone were calculated in order to obtain the This work was financially supported by the Research
state density. The ordinate of the figure is the normalizedroundation for Opto-Science and Technology.
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