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Pancake-antipancake gas in layered superconductors

A. Yu. Martynovich and A. N. Artemov
Donetsk Phystech, Donetsk 340114, Ukraine
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We consider the statistical mechanics of a layered superconductor in a magnetic field. The superconductor is
described as a periodic system of superconducting layers coupled via a magnetic field. Each layer contains a
gas of two-dimensional pancakes and antipancakes. To obtain the free energy of the pancake gas we used the
method of collective variables which gives not only the main results of the DebgkeHtheory, but correc-
tions to it as well. We have calculated the magnetization which shows all the main features of the reversible
magnetization of high-temperature superconduc{®8163-18207)01146-9

[. INTRODUCTION peculiarities of magnetization curves appear in the region of
high fields and temperatures where the magnetization is re-
Two-dimensional magnetic vortices—also known asversible.

pancakes—exist in high-temperature superconductors due to In this paper we describe magnetization of layered super-
their layered structure. The pancakes were described in detdiPnductors using a model of the two-dimensional gas of pan-
in a set of theoretical papets® The interaction between two cakes and antipancakes. The main idea of the model is that
pancakes in the same layer grows as a logarithm of distandB® magnetization at high fields and temperatures is deter-
between them. This interaction is of principal importance inMined mainly by the presence of two-dimensional gas of
topological excitations in two-dimensiondlD) systems. Pancakes. What distinguishes a pancake gas from liquid or
The well-known manifestation of the 2D nature of pancakeéatt'ce of vortices is the large entropy term in the free energy.

is the Kosterlitz-Thoules$KT) phase transitid® at which We assume that the equilibrium pancake density is

pancake-antipancake pairs dissociate and a gas of free pa{H-r med by two mechanisms. In one of them, pancakes fprm
in the superconductor under pressure of the external field.

cakes atatemperature_that exceeds the criticallonr is The other mechanism is dissociation of thermally excited
formed. The KT transmo_n .Ieads to an abrupt change O.f ancake-antipancake pairs. The first mechanism provides the
current-voltage characterlstlgs qf superconductors which i3, o of magnetic inductioB that is equal approximately to
known as the_NeIson-#(c:ssterlltzJump of_ the temperature degytarnal magnetic fielH. The gas of pancakes has been
pendence o& in V”'a_( )% Such a behavior of IV's has been considered in Ref. 17 to only describe reversible magnetiza-
observed not only in superconductors with pronouncedion of irradiated highF, superconductors. A screening ef-
layered  structure  such as  fr,CaCuOy,” fect has been discussed for one pancake in the vortex
Bi 1 78Pbg 255r2Ca,Cuz040,% and ThBa,CaCw0g,” but  |iquid. !
also in  YBaCuzO;_,,"° HgBa,CuzOg. 5" and We will show that the second mechanism of pancake gen-
HgBa,CuO,, s (Ref. 12 with their strong Josephson cou- eration takes place at any temperature and in any magnetic
pling between layers. Intervals between the mean field critifield. But its influence is noticeable nedg; where the den-
cal temperaturd .o and Tyt amount to several degrees. sity of dissociated pancakes is comparable V@tlb,. This
Are there other properties of layered superconductorsnmechanism allows us to describe the magnetization above
which can be explained in the framework of the pancake ga3yr .
approximation? We argue below that the reversible magne- Taking into consideration both mechanisms we can de-
tization of highT; superconductors is one such property. scribe experimental magnetization curves up and down the
Numerous experiments were devoted to the magnetizatiolemperaturdl * . Possible consequences from this model will
of high-T. superconductors. At high magnetic field layeredbe discussed below.
superconductors demonstrate unusual dependeididy,
namely, all curves cross at the same temperafdrand up
to this temperature they are linédrThese dependences
were described in Ref. 14 in which the contribution of vortex At zero magnetic field, a pancake cannot be excited ther-
fluctuations to the free energy of a layered superconductamally because of its large self-energy. However, pancake-
was taken into consideration. This model describes wellntipancake pairs, or “pancake dipoles,” with zero topologi-
magnetization curves only far<T*. A detailed analysis of cal charge and with energy proportional to the logarithm of
magnetization curves of various superconductors is given ithe dipole length, are present in the system at any nonzero
Ref. 15. In the critical region nedf., the scaling modé?  temperature. Collective effects in the pancake system reveal
describes magnetization by taking into account two-themselves as the screening of pancake interactions above
dimensional fluctuations. Both models complement eaclthe temperaturd «+ when dipole dissociates and a gas of
other but the theory still cannot fit the full set & (H) free pancake forms.
curves obtained in the region from 0.1 to 5°The above In an external magnetic field, the superconductor is a to-

Il. GENERAL CONSIDERATION
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pologically charged system. Magnetic flux penetrates super- The partition function of the gas ™% pancakes antl*
conductors in the form of vortices. In this paper we considemntipancakes with interactio@) is
a region of high temperatures and inductions where the mag-

netic flux is carried mainly by the gas of pancakes and anti- 1 s dx | VN
pancakes and we can neglect the contribution of vortex linez[N, ,N_]=e #F= H (— *3EOJ —

In this case the number of pancakes whose flux is directed « NIINOH\ 7g? S

along the external field is larger than the number of antipan-

cakes. The number of “particles” in the system is not fixed xex;{ 18> X U (x=x) . ()
and has to be found from conditions of thermodynamic equi- L aal

librium.

We assume that a layered superconductor is a periodi
system of Josephson decoupled superconducting planes with
Nap>> €4 and with distance between planes. We choose the

axis z along the crystal axi€ perpendicular to the layers.
The free energy of superconductor is

b5 f ( 2 )2
F= d3r(Ve,——A| 8(z—us
167T3A% T g R 2z ms)

VA]?
+J d3r[ 817] , (1)

whereA(r) is the vector potential of magnetic field, (x) is
the phase of order parameter irth layer, r=(x,z), and
A=2\2s.

Varying the potentia(l) relative toA and @ leads to the
equilibrium equations

a(aA) .S 47
7% —AA(r)= > ?I#(x)b‘(z—#s), (2

oX
4m  2[ ¢,
TIM(X)_ X Evaﬂ(X)—A#(X) . (3)

The phase changes byr2along any closed curve contain-
ing the pancake centey, and by— 2= for an antipancake:

J
—,Vo(x)

g :i27ri(x—x0).

Excluding the vector potenti#l , from Eq.(3) we find an
equation for currents,, . If the right-hand side of the equa-

I(-:|ereE0 is the vortex core energy, is the free energy of the
stem,8=1/T, S is the area of the superconducting layer,
and ¢ is the coherence length.

To determine equilibrium numbend, and N_ of the
vortices in the system we have to calculate the grand parti-
tion function:

H=p A= 2 eﬁ(“iNi+”§Ni)Z[N+,N,], (6)
N NE

where .. are the chemical potentials of pancakes and anti-
pancakes, anfl is the thermodynamic potential of the sys-
tem with a variable number of particles. The equilibrium
number of particles is determined Bls=dQ/du . at equi-
librium values ofu.. .1°

Equations(5),(6) differ from usual formulas of statistical
mechanics of classical particles because pancakes are mass-
less particles. Thus pancakes do not have kinetic energy and
their partition function coincides with the path integral.

Ill. FREE ENERGY OF PANCAKE GAS

In the first approximation the free energy of a layered
superconductor in an external magnetic field contains two
contributions. The first one is the magnetic field energy. This
energy does not depend on details of the field distribution in
high fields. It can be obtained by averaging the expo@nt
over space variables

dx® [ dx® , ,
Ug=2 f?'f—s' U (=)

(N§—N%)?¢f B2

tion is a gradient of the phase of a single vortex then it :E L 7 = — v )
determines a current generated by this vortex only. Multiply- @ 8mS? 87

ing it by the phase gradient of any other vortex we find the

equation for the interaction potential

AU (x)+ 2, | dyKE# (x—y)U*" ' (y)

)2
=47TPS(X) 8,1, (4)

with the kernel

dqg ﬂ
(2m)? A

e aslu—p'[+i(gx)

KA# (x) = f
Here

2
$oS

P 2wt

HereV is the volume of superconductor. The differences of
the numbers of pancakes and antipancakes are the same in all
layers.

The other contribution to energy depends on mutual posi-
tions of pancakes and is a configurational correction. To
evaluate this contribution we use the method presented in the
Appendix and consisting in a representation of the partition
function (5) in terms of a path integral over a scalar field
variable. As shown in the Appendix, EGA8), the main part
of the interaction energy of the pancakes system per layer is

u=4pk?(n.—n_)?>+p(n,+n_)[1—In8p(n,+n_)]

®

which is the main result of the Debye-ekel theory. Here
we use dimensionless energy= BU w&2/S, and density of
pancakesi. =N. 7&%/S. k=\4,/ &, The first term in this
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expression is the energy of magnetic fli& and the other T T T e

one is the main configurational correctigA8). It agrees n (h=0.1) j

with the result using the Debye-ldkel method. In the ap- A

pendix we calculate corrections to the energy and show thai 102 s

they are small. n, (0.01) S
The self-energy of the superconductor also contains thec’ 5

- .

sum of core contributionsBEy=pe,, where g, is the " " .-
temperature-independent value3?° The actual value o, - '° n©4) 2
will be found by analyzing experimental data. et r

The free energy has to be complemented by the entropy .4 n(0.01)
term. Taking into account expressiofi3, (8) the dimension- 10° :

less free energy= BF w£%/S can be written in the form

0.6 0.7 0.8 0.9 1
f(ny,n_)=u+(ny+n_)pe+n,(Inn,—1) T

+n_(Inn_—1). 9 . . .
FIG. 1. Equilibrium densities of pancakea () and antipan-
cakes (1_) vs temperature. For calculation we usgg; /T.=0.9,

Substituting this energy itb) and(6) we obtain the grand
J ay itB) © I k=100, e,=3, and two values of external field=hgg/wé?.

partition function. The sun6) contains exponents with pow-

ers
which determines the nonzero densityT) at T>Tgr. In

BluNy+u _N_—F(N, ,N_)] the case of a nonzero field the densities of pancakes and

antipancakes are different and the dependemcdd) can
) be used to calculate the magnetization.

= W_éz[SpK h(n,—n_)—f(n,,n)]. (10 Numerical solutions of the equilibrium equations

(11),(22) are shown in Fig. 1 for two values of the external
Since the equilibrium densities of pancakes and antipancakdild. Several features of the densities(T) andn_(T) are
are results of a dynamic balance between recombination arwlorth noting. At any temperatures and field, the density

dissociation of vortex dipoles, the condition of the balance i®f the pancakes exceeds the density of the antipancakes. The

the vanishing chemical potential of dipolgs=pu,—u_.  Vvalue of inductionn,—n_ is slightly less than the applied
We have taken into consideration this relation and used difield h. At small temperatures the density of the antipancakes
mensionless parametér=Bu . /(8p«?) instead of u,. n_ is exponentially small. This means that we can neglect

Note that the equilibrium value of the chemical potential isthe dipole dissociation at low temperatures and all the main
proportional to the Maxwell fieltH which coincides with the  results of Ref. 14 can be confirmed. On the contrary, at tem-

applied field for a long cylindrical sample: peraturesT>Tyr, the majority of the pancakes results in
dipole dissociation, while the field influence on the gas den-
_ $oHs sity is negligible.
M+ = 4

IV. MAGNETIZATION OF LAYERED

H=hgo/m¢”. . . . SUPERCONDUCTOR
We assume that the main contribution to the si@nis

ensured by densitigs, ,n_ which are minima of expression Equilibrium value of magnetizatioM =(B—H)/4x of a
(10) which follow from the solution of the system of equa- layered superconductor is related in a simple way to equilib-

tions rium densitieg11) and (12):
affon,=Inn_ —pIn(n,+n_)—p(In8p—ey) 1 n,
m=8pk?(n.—n_—h)=—=In—, (13
+8px?(n,—n_) 2 'n_
=8p«?h, (11)  or in common units
= — — — T n
dflon_=Inn_—pin(n,+n_)—p(In8p—ey) M= — o |nn—+- (14
—8pk?(n.—n_) o -
= —8p«2h. (12) Note thatM <0 sincen,>n_.

Magnetization curve$l4) obtained by solving the equi-

By solving these equations we find the equilibrium densitiedibrium equations(11),(12) are presented in Fig. 2. They re-

n,, n_ in the mean field approximation. flect all the main peculiarities of the unusual behavior of the
The free energy9) and this system of equations are the magnetization of layered high; superconductors at low

main result of our paper. In zero magnetic field we obtaintemperatureI <T; as well as at high oneB> Ty .
n,=n_=n and Experimental curve$/(T) of real superconductors cross

at point M*.2® Numerically calculated curves cross at the
(1—p)Inn=p(Inl6p—egy), temperaturel* = Tt and at magnetization value
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FIG. 2. The temperature dependence of magnetization. We used F!G- 3. The field depindence bf near the temperature of KT
Ter/Te=0.9, k=100, e,=3. The values ofH=hg,/m¢? are  transitionTyr=0.9Tc. M*=M(T7).
shown.M* =M (Tgy).

M(H) B IN[Ho(Tkr)]=In(H)+In(T/T7)
M(Hs)  IN[Ho(Tr)]—=IN(Hg) +In(T/Tyr)

Ter

Seho
As a rule, field region in experiments is several T and
Experimental curved$!(T) are almost linear functions in  Hy(Tx1)~100 T. Thus the variation of/ T from 0.4 to 1

T in a wide temperature region up ;.3 This feature is  leads to small change of this function which correctly de-
clearly seen in the theoretical dependences of Fig. 2. Ascribes the drift of experimental curves at increasing tem-
T<Tkr, M is given by perature. We should note that these experimental data have

been explained in Ref. 15 by using a nonlocal correction to

oo Ho the London approach.

- m'nﬁ- (16) The valueHq(T) obtained from experimental magnetiza-

tion data can be used to determine the upper critical field of
For conventional superconductors, the fielg differs from @ superconductor; namely,
the upper critical field by a factor of order unity. In our

M*=M(Tyr)=—

cosh‘l( e_eo) (15)
16/°

model Hea(T)=Ho(T)4pe .
H :eeo47”<2T (17) Using experimental datisl (T) from Refs. 13,15 we extract a
0 Ség value of the upper critical field for BSCCB,(0)~70 T
: . : ) o i and for TSCCCH,(0)~ 120 T.
differs fromH_,; in particular, unlikeH .,, it increases with
temperature.
Now we will discuss the consequences of our model in ACKNOWLEDGMENTS
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Here the term 1.56 is the energy of the nonuniform order
parameter in the coré.Note that the core energy of an Abri-
kosov vortex is 0.16 of our dimensionless units and the value The main difficulty in evaluating the partition functigg)
e,~1.6 is noticeably less than the value for layered superis the long-range nature of the pancake interaction. As a rule,
conductors. For BSCCQRefs. 13,22,2B M*=0.3 Oe, to calculate the free energy of such a system, the summation
T*=88 K, s=15 A; using expressiofil5) we gete,=3. of the ring graph serié3?®is used. However, there are two
Magnetization curved experimentally obtained at differ- unresolved questions in this method. The first one is the
ent temperature3 <Ty; have almost the same shapes andmethod accuracy. The interlayer interaction evokes the sec-
can be put on each other in the sckléH)/M(H;) (see Fig. ond. To overcome these difficulties we propose a method
3). Here Hy is the same field for all sets of curves. Upon which allows us to construct nonsingular perturbation theory
careful examination it can be seen that these curves haver a system of long-range interacting particles.
only one common poinH=Hg. At other fields we see a The energy of the 2D vortex interaction depends on the
small but systematical deviation of curves which depends otayer labels and the sign is defined by the mutual directions
temperature. From Eq§16) and(17) we can get the relation of the pancake fluxes

APPENDIX: METHOD OF COLLECTIVE VARIABLES
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BU (x*—x* )= QrQ! us® (x*—x™'). J D e S4!

The dimensionless chard@= = 2p controls the energy 1
sign and the dimensionless potential obeys the equation :f ngexp{ _ E% E ‘i’a(Q)MS‘a’(Q)ﬁbm(—q)J
—Au (0 + 2 | YK (x=y)u () =4mE(X) S i (E S gror

‘ (AL) 0 (b)!2° :

,\b
To transform the partition function, we substitute the unit X d*(q)d* (—q)e @ X )) : (A4)

representation by a functional integral over a scalar variable a

¢ Now we have to carry out the integration over particle
1 coordinates. It produces additional selection rules which are
1=A‘1J quexp{ -—> J dy{[vgﬁ“(y)]2 just the momentum conservation laws.
87 It is convenient first to separate the contribution into the
free energy of termg=0. This can be done directly in the
(A2) exponents of the partition functio(b) as an average over
space variables. In zero magnetic field, it results in no con-
tribution. In field it gives the magnetic energy. As a result of
under integral sign in Eq5). To regularize the integral we the averaging, any term in seri€&4) containing variables
divide it by the constanA which is equal to the integral and #“(q=0) which can arise due to integration over pancake
may formally be expressed as a functional determinant of theoordinates does not contribute to the integral.
operatorM0—1/47r(V2+ K) A~1=(detv o2 First we can select and sum up the sequence of the space
independent terms in EqA4). They consist of pairs with

equal coordinatexf“zxf' (and of coursex=a'). The sum-
mation of this sequence leads to a quadratic formpoin
¢"(y)=>¢“()/)+l2 E Q' u*'(y—x).  (A3)  exponentials:

©

2 f dy’ ¢ (y)K* (y—y") p*(y")

The next step is to carry out the change of the variahle

_13\b b
The change is chosen in such a way that after integrating b (-1 > (N® + N®)Q2, ¢)a(q)¢a(_q)>
parts ovely and using Eq(A1l) it leads to a compensation of b=0 (b)!2P\ “a q
the sum of interaction potentials in the power of the expo- 1
tnheen:clc(;:lrlnf]unctlon(5) and transforms the partition function to :expl _ 5; (Ni+Ni)QZ% ¢a(q)¢a(_q)+_

This term is most significant in our consideration. Adding
f D e 54 it to the unperturbed functional in the exponeiis}) we
' obtain a new perturbation theory which is determined by the
unperturbed action renormalized by collective effects

z=11

1 /SeﬁEO)Ni+Naf dx

NEINOT| g2 S

with the effective functional 1
f D¢>e-8[¢1=f Dqsexp[ DR ACIL
q aa'

1 P —
5[925]:52, G MEY p +i D, Z QP (X")=S,+S,. ,
aa +5aa/(Ni+Ng)]¢a (_q)}

For further transformations of the functional integral it is
convenient to go over a Fourier representationSp$| in i (—1)°
which the operatoM, is diagonal for functional variables. Xb:0 b12b
Expanding the exponential functiasi %2 in a power series
we can keep only even terms beca&sds quadratic ing®.
Furthermore, the diagonality df/lo(q) produces selection
rules corresponding to the Wick theorem. In accordance with
these rules only the combinatiods’(q) ¢“'(—q) contribute (A5)
to the integral. The contribution of all pairings unlike Eq.(A4), integrals oveq in the each ternfA5) con-
¢“(q)¢“ (—q) are the same. So we can keep a single paiverges ag—0.
in each term and multiply it by a number of pairings The leading contribution to the configurational correction
(2b—1)!! for the bth term. As a result, the series takes theto the system energy is obtained by the integration of the
form exponential functiofA5). This portion of the energy is

aa

(EEQQ

\b
X2 $(@ et (—qel i >) :
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5In def 6,/ cake interactions, while nondiagonal terms are interactions
of pancakes in different layers. Sint®,,(q)~ s/A<1,
we can evaluate the infinite determinant in EA7). The
(AB) leading contribution to the determinant is the product of the
diagonal terms. The correction to the inlayer interaction due
. toW,,(q) is small and may be neglected. The main correc-
It corresponds to the well-known sum of the ring graphtion to the energy due to interlayer interactions arises in the

tser::eéf | nan(rd ﬁccollr“'w?tf fotlrnthe Cr%"TCt'V_T_heffreth '? tthhe tS)r/ri term of second ordéW,,.(q), which can be neglected also.
€m ot long-range interacting particies. The rest ot the terms Thus, the main portion of the configurational energy of a

are due to the interaction of screened particles. :
As follows from Eq.(Al) and the definition of the charge layered superconductor is
V=33 [ 1

St d The diagonal terms in the square brackets are inlayer pan-
f Dge ¢ ~ex -3

+QANT+N) (Mg )]

Q,

2n? ( 52_q2)

=> ap(N*+N*)[1—-In8p(n? +n%)], (A8)

47QA (M e (@)=U**'(q).

So, inverting the matri>t\7lo we find the configurational en-
ergy of the pancake-antipancake gas

S( dqg 47p(NY+N%)
BUcorr_Ef (277)2"1 de{<1+T 1)

where 6 2=4mp(n,+n_) is the screening length and
) n.=N.m&%/S are the pancake densities.
The next correction to the configurational energy may be
obtained by integration over pancake coordinates and sum-

aa

_Amp(NT+NI) ,(q)] (A7)  Mation of the seriegAb):
Scf o
where _A(Bucorr)wspg (n§+n?).

sinhgs [G(q) — \/m]la—a’\ This correction does not affect such properties of the
W, (Q)= A > , pancake-antipancake system as the KT transition tempera-

q VG(g)°—1 ture. It may renormalize the core energy which is anyway a

phenomenological parameter in our model. Next corrections

G(q)=costgs+ isinl*qs. are pro_portional to the second or higher power of the con-

centrations.
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