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Pancake-antipancake gas in layered superconductors

A. Yu. Martynovich and A. N. Artemov
Donetsk Phystech, Donetsk 340114, Ukraine

~Received 22 July 1997!

We consider the statistical mechanics of a layered superconductor in a magnetic field. The superconductor is
described as a periodic system of superconducting layers coupled via a magnetic field. Each layer contains a
gas of two-dimensional pancakes and antipancakes. To obtain the free energy of the pancake gas we used the
method of collective variables which gives not only the main results of the Debye-Hu¨ckel theory, but correc-
tions to it as well. We have calculated the magnetization which shows all the main features of the reversible
magnetization of high-temperature superconductors.@S0163-1829~97!01146-6#
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I. INTRODUCTION

Two-dimensional magnetic vortices—also known
pancakes—exist in high-temperature superconductors du
their layered structure. The pancakes were described in d
in a set of theoretical papers.1–3 The interaction between two
pancakes in the same layer grows as a logarithm of dista
between them. This interaction is of principal importance
topological excitations in two-dimensional~2D! systems.
The well-known manifestation of the 2D nature of pancak
is the Kosterlitz-Thouless~KT! phase transition4,5 at which
pancake-antipancake pairs dissociate and a gas of free
cakes at a temperature that exceeds the critical oneT.TKT is
formed. The KT transition leads to an abrupt change
current-voltage characteristics of superconductors whic
known as the Nelson-Kosterlitz jump of the temperature
pendence ofa in V;I a(T).6 Such a behavior of IV’s has bee
observed not only in superconductors with pronounc
layered structure such as Bi2Sr2CaCu2Ox ,7

Bi 1.75Pb0.25Sr2Ca2Cu3O10,8 and Tl2Ba2CaCu3O8,9 but
also in YBa2Cu3O72x ,10 HgBa2Cu3O81d ,11 and
HgBa2CuO41d ~Ref. 12! with their strong Josephson cou
pling between layers. Intervals between the mean field c
cal temperatureTc0 andTKT amount to several degrees.

Are there other properties of layered superconduct
which can be explained in the framework of the pancake
approximation? We argue below that the reversible mag
tization of high-Tc superconductors is one such property.

Numerous experiments were devoted to the magnetiza
of high-Tc superconductors. At high magnetic field layer
superconductors demonstrate unusual dependenciesM (T),
namely, all curves cross at the same temperatureT* and up
to this temperature they are linear.13 These dependence
were described in Ref. 14 in which the contribution of vort
fluctuations to the free energy of a layered supercondu
was taken into consideration. This model describes w
magnetization curves only forT,T* . A detailed analysis of
magnetization curves of various superconductors is give
Ref. 15. In the critical region nearTc , the scaling model16

describes magnetization by taking into account tw
dimensional fluctuations. Both models complement e
other but the theory still cannot fit the full set ofM (H)
curves obtained in the region from 0.1 to 5 T.13 The above
560163-1829/97/56~22!/14827~6!/$10.00
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peculiarities of magnetization curves appear in the region
high fields and temperatures where the magnetization is
versible.

In this paper we describe magnetization of layered sup
conductors using a model of the two-dimensional gas of p
cakes and antipancakes. The main idea of the model is
the magnetization at high fields and temperatures is de
mined mainly by the presence of two-dimensional gas
pancakes. What distinguishes a pancake gas from liquid
lattice of vortices is the large entropy term in the free ener

We assume that the equilibrium pancake density
formed by two mechanisms. In one of them, pancakes fo
in the superconductor under pressure of the external fi
The other mechanism is dissociation of thermally exci
pancake-antipancake pairs. The first mechanism provides
value of magnetic inductionB that is equal approximately to
external magnetic fieldH. The gas of pancakes has be
considered in Ref. 17 to only describe reversible magnet
tion of irradiated high-Tc superconductors. A screening e
fect has been discussed for one pancake in the vo
liquid.18

We will show that the second mechanism of pancake g
eration takes place at any temperature and in any magn
field. But its influence is noticeable nearTKT where the den-
sity of dissociated pancakes is comparable withB/f0. This
mechanism allows us to describe the magnetization ab
TKT .

Taking into consideration both mechanisms we can
scribe experimental magnetization curves up and down
temperatureT* . Possible consequences from this model w
be discussed below.

II. GENERAL CONSIDERATION

At zero magnetic field, a pancake cannot be excited th
mally because of its large self-energy. However, panca
antipancake pairs, or ‘‘pancake dipoles,’’ with zero topolo
cal charge and with energy proportional to the logarithm
the dipole length, are present in the system at any nonz
temperature. Collective effects in the pancake system re
themselves as the screening of pancake interactions a
the temperatureTKT when dipole dissociates and a gas
free pancake forms.

In an external magnetic field, the superconductor is a
14 827 © 1997 The American Physical Society



pe
de
a
nt
e
te
an
ed
u

od
w
e
.

-

-

ly
th

r,

rti-

nti-
s-
m

l
ass-
and

ed
two
his

in

of
in all

si-
To
the

ion
ld

r is

14 828 56A. YU. MARTYNOVICH AND A. N. ARTEMOV
pologically charged system. Magnetic flux penetrates su
conductors in the form of vortices. In this paper we consi
a region of high temperatures and inductions where the m
netic flux is carried mainly by the gas of pancakes and a
pancakes and we can neglect the contribution of vortex lin
In this case the number of pancakes whose flux is direc
along the external field is larger than the number of antip
cakes. The number of ‘‘particles’’ in the system is not fix
and has to be found from conditions of thermodynamic eq
librium.

We assume that a layered superconductor is a peri
system of Josephson decoupled superconducting planes
lab@jab and with distances between planes. We choose th
axis z along the crystal axisc perpendicular to the layers
The free energy of superconductor is

F5
f0

2

16p3L
(
m

E d3r S ¹um2
2p

f0
AD 2

d~z2ms!

1E d3r
@¹A#2

8p
, ~1!

whereA(r ) is the vector potential of magnetic field,um(x) is
the phase of order parameter inmth layer, r5(x,z), and
L52lab

2 /s.
Varying the potential~1! relative toA andu leads to the

equilibrium equations

]

]xS ]A

]x D2DA~r !5(
m

4p

c
I m~x!d~z2ms!, ~2!

4p

c
I m~x!5

2

LF fo

2p
¹um~x!2Am~x!G . ~3!

The phase changes by 2p along any closed curve contain
ing the pancake centerx0, and by22p for an antipancake:

F ]

]x
,¹u~x!G562p ẑ~x2x0!.

Excluding the vector potentialAm from Eq.~3! we find an
equation for currentsIm . If the right-hand side of the equa
tion is a gradient of the phase of a single vortex then
determines a current generated by this vortex only. Multip
ing it by the phase gradient of any other vortex we find
equation for the interaction potential

DUmm8~x!1(
m9

E dyKmm9~x2y!Um9m8~y!

54pTpd~x!dmm8, ~4!

with the kernel

Kmm8~x!5E dq

~2p!2

q

L
e2qsum2m8u1 i ~qx!.

Here

p5
f0

2s

32p2l2T
.

r-
r
g-
i-
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d
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The partition function of the gas ofN1
m pancakes andN2

m

antipancakes with interaction~4! is

Z@N1 ,N2#5e2bF5)
a

1

N1
a !N2

a !
S S

pj2
e2bE0E dx

S D N1
a

1N2
a

3expF2 1
2 b(

i , j
(
a,a8

Ua,a8~xi
a2xj

a8!G . ~5!

HereE0 is the vortex core energy,F is the free energy of the
system,b51/T, S is the area of the superconducting laye
andj is the coherence length.

To determine equilibrium numbersN1 and N2 of the
vortices in the system we have to calculate the grand pa
tion function:

J5e2bV5 (
N1

a ,N2
a

eb~m1
a N1

a
1m2

a N2
a

!Z@N1 ,N2#, ~6!

wherem6 are the chemical potentials of pancakes and a
pancakes, andV is the thermodynamic potential of the sy
tem with a variable number of particles. The equilibriu
number of particles is determined asNi5]V/]m6 at equi-
librium values ofm6 .19

Equations~5!,~6! differ from usual formulas of statistica
mechanics of classical particles because pancakes are m
less particles. Thus pancakes do not have kinetic energy
their partition function coincides with the path integral.

III. FREE ENERGY OF PANCAKE GAS

In the first approximation the free energy of a layer
superconductor in an external magnetic field contains
contributions. The first one is the magnetic field energy. T
energy does not depend on details of the field distribution
high fields. It can be obtained by averaging the exponent~5!
over space variables

UB5(
aa8

E dxi
a

S E dxj
a8

S
Uaa8~xi

a2xj
a8!

5(
a

~N1
a 2N2

a !2f0
2

8pS2
sS5

B2

8p
V. ~7!

HereV is the volume of superconductor. The differences
the numbers of pancakes and antipancakes are the same
layers.

The other contribution to energy depends on mutual po
tions of pancakes and is a configurational correction.
evaluate this contribution we use the method presented in
Appendix and consisting in a representation of the partit
function ~5! in terms of a path integral over a scalar fie
variable. As shown in the Appendix, Eq.~A8!, the main part
of the interaction energy of the pancakes system per laye

u54pk2~n12n2!21p~n11n2!@12 ln8p~n11n2!#
~8!

which is the main result of the Debye-Hu¨ckel theory. Here
we use dimensionless energyu5bUpj2/S, and density of
pancakesn65N6pj2/S. k5lab /jab . The first term in this
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56 14 829PANCAKE-ANTIPANCAKE GAS IN LAYERED . . .
expression is the energy of magnetic flux~7! and the other
one is the main configurational correction~A8!. It agrees
with the result using the Debye-Hu¨ckel method. In the ap-
pendix we calculate corrections to the energy and show
they are small.

The self-energy of the superconductor also contains
sum of core contributionsbE0[pe0, where e0 is the
temperature-independent value; 3.20 The actual value ofe0
will be found by analyzing experimental data.

The free energy has to be complemented by the entr
term. Taking into account expressions~7!, ~8! the dimension-
less free energyf 5bFpj2/S can be written in the form

f ~n1 ,n2!5u1~n11n2!pe01n1~ lnn121!

1n2~ lnn221!. ~9!

Substituting this energy in~5! and~6! we obtain the grand
partition function. The sum~6! contains exponents with pow
ers

b@m1N11m2N22F~N1 ,N2!#

5
S

pj2
@8pk2h~n12n2!2 f ~n1 ,n2!#. ~10!

Since the equilibrium densities of pancakes and antipanc
are results of a dynamic balance between recombination
dissociation of vortex dipoles, the condition of the balance
the vanishing chemical potential of dipolesm5m12m2 .
We have taken into consideration this relation and used
mensionless parameterh5bm1 /(8pk2) instead of m1 .
Note that the equilibrium value of the chemical potential
proportional to the Maxwell fieldH which coincides with the
applied field for a long cylindrical sample:

m15
f0Hs

4p
,

H5hf0 /pj2.
We assume that the main contribution to the sum~6! is

ensured by densitiesn1 ,n2 which are minima of expressio
~10! which follow from the solution of the system of equ
tions

] f /]n15 lnn12pln~n11n2!2p~ ln8p2e0!

18pk2~n12n2!

58pk2h, ~11!

] f /]n25 lnn22pln~n11n2!2p~ ln8p2e0!

28pk2~n12n2!

528pk2h. ~12!

By solving these equations we find the equilibrium densit
n1 , n2 in the mean field approximation.

The free energy~9! and this system of equations are t
main result of our paper. In zero magnetic field we obt
n15n25n and

~12p!lnn5p~ ln16p2e0!,
at

e

y

es
nd
s

i-

s

n

which determines the nonzero densityn(T) at T.TKT . In
the case of a nonzero fieldh the densities of pancakes an
antipancakes are different and the dependencesn6(T) can
be used to calculate the magnetization.

Numerical solutions of the equilibrium equation
~11!,~12! are shown in Fig. 1 for two values of the extern
field. Several features of the densitiesn1(T) andn2(T) are
worth noting. At any temperatures and field, the densityn1

of the pancakes exceeds the density of the antipancakes
value of inductionn12n2 is slightly less than the applied
field h. At small temperatures the density of the antipanca
n2 is exponentially small. This means that we can negl
the dipole dissociation at low temperatures and all the m
results of Ref. 14 can be confirmed. On the contrary, at te
peraturesT.TKT , the majority of the pancakes results
dipole dissociation, while the field influence on the gas d
sity is negligible.

IV. MAGNETIZATION OF LAYERED
SUPERCONDUCTOR

Equilibrium value of magnetizationM5(B2H)/4p of a
layered superconductor is related in a simple way to equi
rium densities~11! and ~12!:

m58pk2~n12n22h!52
1

2
ln

n1

n2
, ~13!

or in common units

M52
T

2sf0
ln

n1

n2
. ~14!

Note thatM,0 sincen1.n2 .
Magnetization curves~14! obtained by solving the equi

librium equations~11!,~12! are presented in Fig. 2. They re
flect all the main peculiarities of the unusual behavior of t
magnetization of layered high-Tc superconductors at low
temperaturesT,TKT as well as at high onesT.TKT .

Experimental curvesM (T) of real superconductors cros
at point M* .13 Numerically calculated curves cross at th
temperatureT* 5TKT and at magnetization value

FIG. 1. Equilibrium densities of pancakes (n1) and antipan-
cakes (n2) vs temperature. For calculation we usedTKT /Tc50.9,
k5100,e053, and two values of external fieldH5hf0 /pj2.
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14 830 56A. YU. MARTYNOVICH AND A. N. ARTEMOV
M* 5M ~TKT!52
TKT

sf0
cosh21S ee0

16D . ~15!

Experimental curvesM (T) are almost linear functions in
T in a wide temperature region up toTKT .13 This feature is
clearly seen in the theoretical dependences of Fig. 2.
T,TKT , M is given by

M52
f0

32p2l2~T!
ln

H0

H
. ~16!

For conventional superconductors, the fieldH0 differs from
the upper critical field by a factor of order unity. In ou
model

H05ee0
4pk2T

sf0
~17!

differs from Hc2; in particular, unlikeHc2, it increases with
temperature.

Now we will discuss the consequences of our model
detail. Expression~15! contains dimensionless value of e
ergy e0, the half energy of a 2D dipole with intervorte
distance 2j,

e0' ln411.56'3.

Here the term 1.56 is the energy of the nonuniform or
parameter in the core.21 Note that the core energy of an Abr
kosov vortex is 0.16 of our dimensionless units and the va
e0'1.6 is noticeably less than the value for layered sup
conductors. For BSCCO~Refs. 13,22,23! M* 50.3 Oe,
T* 588 K, s515 Å; using expression~15! we gete053.

Magnetization curves24 experimentally obtained at differ
ent temperaturesT,TKT have almost the same shapes a
can be put on each other in the scaleM (H)/M (Hs) ~see Fig.
3!. Here Hs is the same field for all sets of curves. Upo
careful examination it can be seen that these curves h
only one common pointH5Hs . At other fields we see a
small but systematical deviation of curves which depends
temperature. From Eqs.~16! and~17! we can get the relation

FIG. 2. The temperature dependence of magnetization. We
TKT /Tc50.9, k5100, e053. The values ofH5hf0 /pj2 are
shown.M* 5M (TKT).
t
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e
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M ~H !

M ~Hs!
5

ln@H0~TKT!#2 ln~H !1 ln~T/TKT!

ln@H0~TKT!#2 ln~Hs!1 ln~T/TKT!
.

As a rule, field region in experiments is several T a
H0(TKT)'100 T. Thus the variation ofT/TKT from 0.4 to 1
leads to small change of this function which correctly d
scribes the drift of experimental curves at increasing te
perature. We should note that these experimental data h
been explained in Ref. 15 by using a nonlocal correction
the London approach.

The valueH0(T) obtained from experimental magnetiz
tion data can be used to determine the upper critical field
a superconductor; namely,

Hc2~T!5H0~T!4pe2e0.

Using experimental dataM (T) from Refs. 13,15 we extract a
value of the upper critical field for BSCCOHc2(0)'70 T
and for TSCCOHc2(0)' 120 T.
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APPENDIX: METHOD OF COLLECTIVE VARIABLES

The main difficulty in evaluating the partition function~5!
is the long-range nature of the pancake interaction. As a r
to calculate the free energy of such a system, the summa
of the ring graph series25,26 is used. However, there are tw
unresolved questions in this method. The first one is
method accuracy. The interlayer interaction evokes the s
ond. To overcome these difficulties we propose a meth
which allows us to construct nonsingular perturbation the
for a system of long-range interacting particles.

The energy of the 2D vortex interaction depends on
layer labels and the sign is defined by the mutual directi
of the pancake fluxes

ed FIG. 3. The field dependence ofM near the temperature of KT
transition,TKT50.9Tc . M* 5M (TKT).
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56 14 831PANCAKE-ANTIPANCAKE GAS IN LAYERED . . .
bUaa8~xi
a2xj

a8!5Qi
aQj

a8uaa8~xi
a2xj

a8!.

The dimensionless chargeQi
a56A2p controls the energy

sign and the dimensionless potential obeys the equation

2Duaa8~x!1(
a9

E dyKaa9~x2y!ua9a8~y!54pd~x!daa8.

~A1!

To transform the partition function, we substitute the u
representation by a functional integral over a scalar varia
f:

15A21E DfexpH 2
1

8p(
a

E dyF @¹fa~y!#2

1(
a8

E dy8fa~y!Kaa8~y2y8!fa~y8!G J ~A2!

under integral sign in Eq.~5!. To regularize the integral we
divide it by the constantA which is equal to the integral an
may formally be expressed as a functional determinant of
operatorM̂051/4p (¹21K̂): A215(detM̂0)1/2.

The next step is to carry out the change of the variablef:

fa~y!⇒fa~y!1 i(
a8

(
i

Qi
a8uaa8~y2xi

a8!. ~A3!

The change is chosen in such a way that after integrating
parts overy and using Eq.~A1! it leads to a compensation o
the sum of interaction potentials in the power of the exp
nential function~5! and transforms the partition function t
the form

Z5)
a

F 1

N1
a !N2

a !
S Se2bE0

pj2 D N1
a

1N2
a

E dx

S G E Dfe2S[f] ,

with the effective functional

S@f#5
1

2(aa8
faM̂0

aa8fa81 i(
a

(
i

Qi
afa~xi

a!5S11S2 .

For further transformations of the functional integral it
convenient to go over a Fourier representation ofS@f# in
which the operatorM̂0 is diagonal for functional variables
Expanding the exponential functione2S2 in a power series
we can keep only even terms becauseS1 is quadratic infa.
Furthermore, the diagonality ofM̂0(q) produces selection
rules corresponding to the Wick theorem. In accordance w
these rules only the combinationsfa(q)fa8(2q) contribute
to the integral. The contribution of all pairing
fa(q)fa8(2q) are the same. So we can keep a single p
in each term and multiply it by a number of pairing
(2b21)!! for the bth term. As a result, the series takes t
form
t
le

e

by

-

th

ir

E Dfe2S[f]

5E DfexpH 2
1

2(q
(
aa8

fa~q!M0
aa8~q!fa8~2q!J

3 (
b50

`
~21!b

~b!!2bS (
aa8

(
i j

Qi
aQj

a8

3(
q

fa~q!fa8~2q!ei ~q,xi
a

2xj
a8!D b

. ~A4!

Now we have to carry out the integration over partic
coordinates. It produces additional selection rules which
just the momentum conservation laws.

It is convenient first to separate the contribution into t
free energy of termsq50. This can be done directly in th
exponents of the partition function~5! as an average ove
space variables. In zero magnetic field, it results in no c
tribution. In field it gives the magnetic energy. As a result
the averaging, any term in series~A4! containing variables
fa(q50) which can arise due to integration over panca
coordinates does not contribute to the integral.

First we can select and sum up the sequence of the s
independent terms in Eq.~A4!. They consist of pairs with

equal coordinatesxi
a5xj

a8 ~and of coursea5a8). The sum-
mation of this sequence leads to a quadratic form off in
exponentials:

(
b50

`
~21!b

~b!!2bS (a ~N1
a 1N2

a !Q2(
q

fa~q!fa~2q! D b

5expH 2
1

2(a ~N1
a 1N2

a !Q2(
q

fa~q!fa~2q!J .

This term is most significant in our consideration. Addin
it to the unperturbed functional in the exponents~A4! we
obtain a new perturbation theory which is determined by
unperturbed action renormalized by collective effects

E Dfe2S[f]5E DfexpH 2
1

2(q
(
aa8

fa~q!@M0
aa8

1daa8~N1
a 1N2

a !#fa8~2q!J
3 (

b50

`
~21!b

b!2b S (
aa8

(
iÞ j

Qi
aQj

a8

3(
q

fa~q!fa8~2q!ei ~q,xi
a

2xj
a8!D b

.

~A5!

Unlike Eq. ~A4!, integrals overq in the each term~A5! con-
verges asq→0.

The leading contribution to the configurational correcti
to the system energy is obtained by the integration of
exponential function~A5!. This portion of the energy is
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E Dfe2S[f]'expH 2
S

2E dq

~2p!2
ln det@daa8

1Q2~N1
a 1N2

a !~M0
21!aa8#J . ~A6!

It corresponds to the well-known sum of the ring gra
series25,26 and accounts for the collective effects in the sy
tem of long-range interacting particles. The rest of the ter
are due to the interaction of screened particles.

As follows from Eq.~A1! and the definition of the charg
Q,

4pQ2~M0
21!aa8~q!5Uaa8~q!.

So, inverting the matrixM̂0 we find the configurational en
ergy of the pancake-antipancake gas

bUcorr5
S

2E dq

~2p!2
ln detF S 11

4pp~N1
a 1N2

a !

Sq2 D daa8

2
4pp~N1

a 1N2
a !

Sq2
Waa8~q!G , ~A7!

where

Waa8~q!5
sinhqs

Lq

@G~q!2AG~q!221# ua2a8u

AG~q!221
,

G~q!5coshqs1
1

Lq
sinhqs.
tt

ica

,

s,

F.
a C

D.
v.
-
s

The diagonal terms in the square brackets are inlayer p
cake interactions, while nondiagonal terms are interacti
of pancakes in different layers. SinceWaa8(q);As/L!1,
we can evaluate the infinite determinant in Eq.~A7!. The
leading contribution to the determinant is the product of
diagonal terms. The correction to the inlayer interaction d
to Waa(q) is small and may be neglected. The main corre
tion to the energy due to interlayer interactions arises in
term of second orderWaa8(q), which can be neglected also

Thus, the main portion of the configurational energy o
layered superconductor is

bUcorr5
S

2(a E dq

~2p!2
lnS 11

1

d2q2D
5(

a
pp~N1

a 1N2
a !@12 ln8p~n1

a 1n2
a !#, ~A8!

where d2254pp(n11n2) is the screening length an
n65N6pj2/S are the pancake densities.

The next correction to the configurational energy may
obtained by integration over pancake coordinates and s
mation of the series~A5!:

2D~bUcorr!;Sp(
a

~n1
a 1n2

a !.

This correction does not affect such properties of
pancake-antipancake system as the KT transition temp
ture. It may renormalize the core energy which is anywa
phenomenological parameter in our model. Next correcti
are proportional to the second or higher power of the c
centrations.
u,

,

.
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