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Quantum corrections to the ground state of a trapped Bose-Einstein condensate
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In the mean-field approximation, the number densityr(r ) for the ground state of a Bose-Einstein condensate
trapped by an external potentialV(r ) satisfies a classical field equation called the Gross-Pitaevskii equation.
We show that quantum corrections tor are dominated by quantum fluctuations with wavelengths of order
1/Ara, wherea is theS-wave scattering length. By expanding the equations for the Hartree-Fock approxima-
tion to second order in the gradient expansion, we derive local correction terms to the Gross-Pitaevskii
equation forr that take into account the dominant effects of quantum fluctuations. We also show that the
gradient expansions for the density and for the condensate break down at fourth order and at second order,
respectively.@S0163-1829~97!07445-6#
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I. INTRODUCTION

The successful achievement of Bose-Einstein conde
tion of atomic gases in magnetic traps1–3 has created an ex
plosion of interest in interacting Bose gases. The condens
in existing magnetic traps are sufficiently dilute that t
mean-field approximation gives a satisfactory description
present experimental measurements. However, accurate
oretical predictions require that quantum fluctuations aro
the mean field also be taken into account. The relative m
nitude of these corrections grows as the square root of
number density of the atoms. They will therefore beco
more important as higher trap densities are achieved an
the precision of experimental measurements improves.

One of the basic observables of a Bose-Einstein cond
sate trapped in an external potentialV(r ) is the number-
density profiler(r ) of the ground state. In the mean-fie
approximation,r(r ) satisfies the time-independent Gros
Pitaevskii equation

S \2

2m
¹21m2V~r ! DAr~r !2

4p\2a

m
rAr~r !50, ~1!

wherea is the S-wave scattering length of the atoms. Th
chemical potentialm must be tuned so that*d3r r5N,
where N is the number of atoms in the trap. The dens
profile of a trapped Bose-Einstein condensate has been
ied extensively using Eq.~1!. The solutions to this equatio
have been calculated using numerical methods4,5 and varia-
tional methods.6–9 The solutions have also been studied a
lytically in the Thomas-Fermi limit, in which the gradien
term in Eq. ~1! is neglected.6 The corrections due to th
breakdown of this approximation near the edge of the c
densate have also been studied.10,11

There are corrections to the mean-field approximat
from quantum fluctuations around the mean field. In a dil
homogeneous Bose gas, the relative magnitude of the co
butions of quantum fluctuations to thermodynamic quanti
is characterized by the dimensionless quantityAra3. For
560163-1829/97/56~22!/14745~21!/$10.00
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condensates in existing magnetic traps, the peak valu
Ara3 is small, but not negligible. Since there are some o
servables that are more sensitive than the density to the
fects of quantum fluctuations, it is important to be able
calculate the effects of quantum fluctuations quantitative

In this paper, we calculate the effects of quantum fluct
tions on the density profile for a Bose-Einstein condensat
a trapping potential. The expansion parameter that chara
izes the relative magnitude of these effects isAra3, wherer
is the local number density. We point out that the quant
corrections are dominated by quantum fluctuations w
wavelengths on the order of 1/Ara. The leading effects of
these short-distance quantum fluctuations can be calcul
using the gradient expansion. By carrying out a se
consistent one-loop calculation through second order in
gradient expansion, we determine the correction terms
must be added to the Gross-Pitaevskii equation~1! for r to
take into account the effects of quantum fluctuations:

05S \2

2m
¹21m2V~r ! DAr~r !2

4p\2a

m
rAr~r !

2
128Ap\2a5/2

3m
r2~r !2

17\2a3/2

18Apm
@2Ar¹2Ar~r !

1~“Ar!2~r !#. ~2!

Our method involves a combination of the Hartree-Fo
approach12 and the Thomas-Fermi approach.13,14 In the
Hartree-Fock approximation, which involves the se
consistent treatment of one-loop quantum corrections,
equation for the density is an integral equation. We obt
the local differential equation~2! by applying a gradient ex-
pansion to the integral equation, which corresponds to
panding around the Thomas-Fermi limit.

In the mean-field approximation, the number density
related to the condensate^c& by r5u^c&u2. We find that the
gradient expansion for the quantum corrections to this re
tion breaks down at second order. Thus the effects of qu
14 745 © 1997 The American Physical Society
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14 746 56ERIC BRAATEN AND AGUSTIN NIETO
tum fluctuations on the condensate cannot be summarize
a local differential equation as in Eq.~2!. This suggests tha
it may not be straightforward to generalize the Eq.~2! to the
case of a Bose-Einstein condensate containing a vortex
the presence of a vortex, it iŝc& rather thanAr that in the
mean-field approximation satisfies the time-independ
Gross-Pitaevskii equation.

We begin in Sec. II by formulating the problem of Bos
Einstein condensation in a trapping potential as a problem
quantum field theory. In Sec. III, we develop a perturbat
expansion for calculating the effects of quantum fluctuatio
around an arbitrary background field. In Sec. IV, we calc
late the one-loop quantum corrections to the density pro
and the condensate profile. We show that the ultraviolet
vergences that arise in the calculation can be removed by
same renormalizations of the action and the number den
that are required in the absence of the potential. We find
the number density can be expanded to second order in
gradient of the mean field, while the gradient expansion
the condensate breaks down at that order. In Sec. V,
calculate the self-consistent one-loop quantum correction
the density profile to second order in the gradient expans
and show that they are given by Eq.~2!. We repeat the cal-
culation in Sec. VI using an alternative parametrization
the quantum field and demonstrate that the final resul
independent of the parametrization. We also use this par
etrization to show that the gradient expansion for the den
breaks down at fourth order. Finally, in Sec. VII, we exa
ine the implications of our results for Bose-Einstein cond
sation in present magnetic traps. Details of the calculati
of Feynman diagrams are included in several appendixe

II. QUANTUM FIELD THEORY FORMULATION

Consider a large numberN of identical bosonic atoms
trapped in an external potentialV(r ) at zero temperature. I
the momenta of the atoms are sufficiently low, their de B
glie wavelengths are much smaller than the range of the
teratomic potential, which is comparable in magnitude to
Bohr radius. In this case, the scattering of two atoms will
dominated byS-wave scattering and can be described b
single number, theS-wave scattering lengtha. Our problem
is to determine the number-density profiler(r ) of the atoms.
We begin by formulating this many-body quantum mech
ics problem as a problem in quantum field theory.

A convenient way to describe a system containing a
numberN of atoms is in terms of a quantum fieldc(r ,t) that
annihilates an atom. If the atom is a boson, the field satis
the equal-time commutation relations

@c~r ,t !,c~r 8,t !#50, ~3!

@c~r ,t !,c†~r 8,t !#5d~r2r 8!. ~4!

The time evolution of the field is given by the equation

i\
]

]t
c5F2

\2

2m
¹21V~r !Gc1

g1dg

2
c†cc, ~5!

where the coupling constantg is related to theS-wave scat-
tering lengtha by
by
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g5
8p\2a

m
. ~6!

The parameterdg in Eq. ~5! is a counterterm associated wit
the renormalization ofg. It is necessary to impose an ultra
violet cutoff LUV on the wave numbers of virtual particles
order to avoid ultraviolet divergences due to quantum fl
tuations of the field. Renormalization of a quantum fie
theory is the tuning of its parameters so that physical qu
tities are independent of the ultraviolet cutoff. All the depe
dence of first-order quantum corrections onLUV can be re-
moved by adjustingdg in Eq. ~5! as a function ofLUV .

The number operator, which counts the number of ato
is

N̂5E d3rc†c~r ,t !. ~7!

That this is a number operator follows from the commutat
relations~3! and~4!, which imply thatc† andc act as rais-
ing and lowering operators forN̂. Equation~5! implies that
N̂ is independent of time, so the number of atoms is c
served. Equation~5! can also be expressed in the form

i\
]

]t
c52@Ĥ,c#, ~8!

where the Hamiltonian operatorĤ is

Ĥ5E d3r S c†F2
\2

2m
¹21V~r !Gc1

g1dg

4
c†c†cc D .

~9!

The HamiltonianĤ measures the energy of the atoms.
The vacuumu0&, defined byc(r ,t)u0&50, represents the

state containing zero atoms. One can show that a Sc¨-
dinger wave function forN atoms can be represented as
matrix element of an operator between a state withN̂5N
and the vacuum. The simplest case is a stateuf& containing
one atom, which satisfiesN̂uf&5uf&. Since the last term in
Eq. ~5! annihilates the single-particle stateuf&, the matrix
element̂ 0uc(r ,t)uf& satisfies the Schro¨dinger equation

F i\
]

]t
1

\2

2m
¹22V~r !G^0uc~r ,t !uf&50. ~10!

Thus ^0uc(r ,t)uf& can be interpreted as the Schro¨dinger
wave function for an atom in the potentialV(r ).

The next simplest case is a stateuf& containing two at-
oms, which satisfiesN̂uf&52uf&. It is straightforward to
show using Eq. ~5! that the matrix elemen
^0uc(r1 ,t)c(r2 ,t)uf& satisfies the Schro¨dinger equation for
two particles in the external potentialV(r ) interacting
through a two-body potential proportional tod3(r12r2). In
the absence of the potentialV(r ), one can calculate the am
plitude for the scattering of two atoms exactly.15 The scatter-
ing amplitudef (u) is independent of the scattering angleu,
so it describesS-wave scattering. If the total energy of th
two atoms in the center-of-momentum frame
E52(p2/2m), the scattering amplitude is
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f 52
1

4pF 2\2

m~g1dg!
1E d3k

~2p!3

1

k22mE/\22 i e
G21

.

~11!

The integral over the wave vectork is ultraviolet divergent.
A particularly convenient regularization of the integral is
introduce an ultraviolet cutoffLUV through the following
prescription:

E d3k

~2p!3

1

k22mE/\22 i e

[
1

2p2E0

`

k2dkS 1

k22mE/\22 i e
2

1

k2D
1

1

2p2E0

LUV
k2dk

1

k2
. ~12!

The scattering amplitude then becomes

f 52
1

4pF 2\2

m~g1dg!
1

1

2p2
LUV1 i

AmE

4p\ G21

. ~13!

The dependence on the ultraviolet cutoff can be comple
canceled by choosing the bare coupling constantg1dg to be

g1dg 5
g

12mgLUV /~2p\!2
. ~14!

The scattering amplitude~13! then reduces to

f 52
a

11 iaAmE/\
. ~15!

This confirms the identification ofa as theS-wave scattering
length. The scattering of atoms is correctly reproduced
the pointlike interaction term in Eq.~5! as long as the energ
of the atoms is sufficiently low that Eq.~13! is a good ap-
proximation to the scattering amplitude. Note that the ene
dependence in Eq.~15! is that required by the optical theo
rem.

It is sometimes stated that ad-function potential in three
dimensions is trivial in the sense that it gives no scattering
more accurate statement is that there is no scattering if
take the ultraviolet cutoff to infinity with the strength of th
potential held fixed. This is evident from Eq.~13!, which
shows thatf→0 if we take LUV→` with g1dg fixed.
However, if we allow the strength of the potential to va
with LUV in accordance with Eq.~14!, we obtain the non-
trivial scattering amplitude~15!.

From the expression~13! for the scattering amplitude, on
can infer an upper limit on the ultraviolet cutoff that must
satisfied in order for perturbative calculations to be accur
The expansion forf in powers ofg, including the first quan-
tum correction, which is proportional tog2, is

f 52
mg

8p\2F11S mgLUV

~2p\!2
2dg1 i

mgAmE

8p\3 D 1•••G .

~16!
ly

y

y

A
e

e.

If the ultraviolet cutoffLUV is too large, there is a delicat
cancellation between the term proportional toLUV in Eq.
~16!, which comes from an integral overk, and the counter-
term dg. Since a perturbative calculation is necessarily a
proximate, the cancellation can lead to large errors. Suc
large cancellation can be avoided if the term proportiona
LUV in Eq. ~16! is much less than 1. This sets an upp
bound on the ultraviolet cutoff:

LUV!
~2p\!2

mg
5

p

2a
. ~17!

If this upper bound onLUV is not satisfied, then in order to
obtain an accurate calculation, it is necessary to use a n
perturbative calculational method that sums up all orders
g.

A stateuf& containing three atoms satisfiesN̂uf&53uf&.
In the absence of the potentialV(r ), one can calculate the
amplitude for 3→3 scattering as an expansion in powers
g. The leading contribution is proportional tog2 and comes
from two successive 2→2 scatterings. Higher-order terms i
g represent quantum corrections. The dependence of the
quantum correction on the ultraviolet cutoffLUV is canceled
by the countertermdg in Eq. ~5!. However, the second quan
tum correction, which is proportional tog4, has a logarithmic
ultraviolet divergence that is not canceled.16 Thus corrections
to physical quantities from second order in the quantum fl
tuations depend on the ultraviolet cutoff. One can elimin
the dependence onLUV from second-order quantum corre
tions by adding to Eq.~5! the term (g31dg3)c†c†ccc/12.
The logarithmic ultraviolet divergence is canceled by cho
ing the counterterm to be

dg35
3~4p23A3!

32p3 m3g4log
LUV

k
, ~18!

where the value ofk, which was introduced to make th
argument of the logarithm dimensionless, depends on
precise definition ofg3. The parameterg3 represents a point
like contribution to the 3→3 scattering amplitude. Thus th
S-wave scattering lengtha does not contain enough informa
tion about the low-energy scattering of atoms to calcul
second-order quantum fluctuations. It is also necessar
know the 3→3 coupling constantg3. In this paper we will
avoid this complication by calculating only to first order
the quantum corrections.

A stateuf& containingN atoms satisfiesN̂uf&5Nuf&. In
the presence of the potentialV(r ), the ground state in the
N̂5N sector, which we denote byuVN&, is the state that
minimizes ^fuĤuf& subject to the constraintN̂uf&5Nuf&.
The desired number-density profile is

r~r !5^VNuc†c~r !uVN& . ~19!

If N is large, we expectr(r ) to be insensitive to changes i
N that are small compared toN. This suggests that we ca
relax the constraint on the particle number and replace
stateuVN& in Eq. ~19! by the state that minimizeŝfuĤuf&
subject to the weaker constraint^fuN̂uf&5N. If the root-
mean-square fluctuations ofN̂ in that state are small com
pared toN, the expectation value ofc†c(r ) in that state
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14 748 56ERIC BRAATEN AND AGUSTIN NIETO
should give a good approximation to Eq.~19!. But that state
is precisely the ground stateuVm& of the quantum field
theory whose Hamiltonian isĤ2mN̂, where the value of the
chemical potentialm is such that

^VmuN̂uVm&5N. ~20!

Thus, if N is sufficiently large, the density profile can b
approximated by the ground-state expectation value of
operatorc†c(r ) in the stateuVm&.

We have now formulated the problem of calculating t
density profile as a quantum field theory problem. The fi
theory is summarized by the action

S@c#5E dtE d3r H c†F i\
]

]t
1

\2

2m
¹21~m1dm!2V~r !Gc

2
g1dg

4
~c†c!2J . ~21!

The countertermsdm anddg are needed to cancel ultraviole
divergences associated with quantum fluctuations of
field. The countertermdm would also have been required
Eq. ~5! if the interaction termc†cc had not been norma
ordered. A different operator-ordering prescription forc†cc
corresponds to adding a term proportional
@c,c†#c5d3(0)c. The extra term can be canceled by al
adding to Eq.~5! a term2dmc, with dm proportional to the
ultraviolet divergent constantd3(0). While the normal-
ordered prescription is convenient when considering the s
tering of atoms in the vacuum, it is awkward for carrying o
perturbative calculations in the Bose-condensed state. Ra
than specifying an operator-ordering prescription explicit
it is more convenient to simply use the countertermdm to
cancel any ultraviolet divergences that might be generate
operator ordering.

The local number-density operatorc†c(r ) is also usually
defined to be normal ordered. A different operator-order
prescription corresponds to adding a term proportiona
@c,c†#5d3(0). Theextra term can be canceled by subtra
ing an ultraviolet divergent constantdr proportional to
d3(0). Thenumber-density profile is the expectation value
the number density operator in the ground state of the fi
theory:

r~r !5^c†c~r !&2dr. ~22!

Here and below we use angular brackets to denote the
pectation value in the ground stateuVm&. Rather than speci
fying an operator-ordering prescription forc†c explicitly, it
is more convenient to simply use the countertermdr to can-
cel any ultraviolet divergences in the number density that
generated by operator ordering. The chemical potentialm in
Eq. ~21! must be adjusted so that the integral of the lo
number density is equal to the number of atoms:

E d3rr~r !5N. ~23!

Thus our problem reduces to calculating the ground-s
expectation value~22! for the quantum field theory define
by Eq. ~21!. Another important observable is the condens
^c(r )&, which is the ground-state expectation value of t
e
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field. A nonzero value of the condensate indicates the sp
taneous breaking of the phase symmetryc→eiac of the
action ~21!.

The ultraviolet divergences that are canceled by the co
tertermdg arise from treating the interaction between ato
as pointlike down to arbitrarily short distances. The dive
gences could be avoided by replacing the pointlike (c†c)2

interaction term in the action~21! by an interaction through a
two-body potentialv(r12r2). A physically realistic two-
body potential would have a range comparable to the siz
an atom and its shape would have to be adjusted so th
gives the correctS-wave scattering lengtha. It would be
rather inefficient to calculate the effects of interactions us
a physically realistic two-body potential. The reason is th
physical quantities depend on the two-body potential in
very simple way. Almost all of the dependence ente
through theS-wave scattering lengtha. Thus we can obtain
the same result for physical quantities by using any sim
two-body potential whose inverse rangeLUV is much larger
than the momenta of the atoms and whose strengthg1dg is
tuned to give the correct scattering length. The tuning ofdg
makes low-energy 2→2 scattering insensitive to the beha
ior of v(r12r2) at short distances comparable to 1/LUV .
This tuning is also sufficient to make the first-order quant
corrections to other low-energy observables insensitive to
short-distance behavior of the two-body potential. At high
order in the quantum corrections, there are additional par
eters that must be tuned. For example, at second order in
quantum corrections, it is necessary to also tune the stre
g31dg3 of a three-body potential. However, as long as o
considers only first-order quantum corrections, all lo
energy observables can be calculated in terms of the si
parametera.

At short distances, a slowly varying external potent
V(r ) in Eq. ~21! is equivalent to a shift in the chemica
potentialm. It has no effect on the scattering of atoms a
therefore does not change the value of the countertermdg
that is required to tune the scattering length to the valuea.
The countertermsdm anddr associated with operator orde
ing are also independent ofV(r ). Thus the renormalizations
required to remove ultraviolet divergences in the case o
Bose gas in a trapping potential are identical to those
quired for a homogeneous Bose gas.

An alternative way to deal with ultraviolet divergences
to replace the interatomic potential (g1dg)d3(r )/2 by a
pseudopotentialgd3(r )(]/]r )r /2.17 Ultraviolet divergences
can be avoided by evaluating the partial derivative in
pseudopotential at the appropriate stage of the calculat
We find it simpler to introduce an ultraviolet cutoff and u
the renormalization machinery of quantum field theory
remove the dependence on the cutoff.

Most previous work on the density profile has been c
ried out within the mean-field approximation. In this a
proximation, quantum fluctuations are neglected. The co
terterms dm, dg, and dr, which cancel ultraviolet
divergences associated with those quantum fluctuations,
all be set to zero. The fieldc satisfies the time-dependen
Gross-Pitaevskii equation, which is the classical field eq
tion for the action~21!:
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i\
]

]t
c1S \2

2m
¹21m2V~r ! Dc2

g

2
~c†c!c50. ~24!

The ground stateuVm& corresponds to a time-independe
solution f0(r ) that can be chosen to be real valued. T
mean field therefore satisfies

S \2

2m
¹21m2V~r ! Df0~r !2

g

2
f0

3~r !50. ~25!

The number density~22! reduces to

r~r !5f0
2~r !. ~26!

Thus the density profile in the mean-field approximation s
isfies the Gross-Pitaevskii equation~1!. The condensate in
the mean-field approximation is

^c~r !&5f0~r !, ~27!

and it therefore satisfieŝc&5Ar.
The density profile is modified by quantum correction

The corrections can be obtained by expanding the quan
field around the mean fieldf0(r ), which satisfies Eq.~25!:

c~r ,t !5f0~r !1c̃~r ,t ! . ~28!

The expression~22! for the number density becomes

r~r !5f0
2~r !12f0~r !Rê c̃~r !&1^c̃ †c̃~r !&2dr.

~29!

The condensate differs fromAr because of the effects o
quantum fluctuations:

^c~r !&5f0~r !1^c̃~r !&. ~30!

Having formulated our problem in terms of quantum fie
theory, there are quantum fluctuations on all length sca
ranging fromL, the length scale associated with variations
r(r ), down to the inverse of the ultraviolet cutoffLUV . The
quantum fluctuations with length scales of orderL depend in
detail on the shape of the potentialV(r ). For quantum fluc-
tuations with length scales much smaller thanL, the effects
of variations inV(r ) are negligible. The short-distance qua
tum fluctuations therefore behave locally like those of a
mogeneous Bose gas with chemical potentialm2V(r ). We
will show that these fluctuations give the dominant corr
tions to the density profile.

The one-loop quantum corrections to the number den
can be obtained by keeping the terms in the action that
quadratic in the fluctuating fieldsc̃(r ,t). If these fields are
expanded in terms of normal modes, the corrections~29! to
r(r ) can be expressed as a sum over the normal modes.
contribution of an individual normal mode to the numb
density scales like 1/L3. This is negligible compared to th
contribution from the mean field, which scales likeN/L3. A
significant contribution can only arise from summing ove
large number of normal modes. Normal modes with ve
short wavelengths approach a continuum and can be lab
by the wave vectork. The contribution to the density from
such modes scales like*d3k. The integral is ultraviolet di-
vergent. The ultraviolet divergence is proportional toLUV

3

and is canceled by the countertermdr in Eq. ~29!. After
renormalization, modes withk comparable toLUV do not
e

t-

.
m

s

-

-

ty
re

he

y
led

contribute tor(r ). Since the density of modes grows rapid
with k, the dominant quantum corrections tor(r ) come from
the largest values ofk whose effects are not removed b
renormalization. To understand the scale ofk that dominates,
it is useful to recall some simple facts about the homo
neous Bose gas.

The properties of a homogeneous Bose gas with posi
scattering lengtha and low number densityr are well un-
derstood. The dimensionless quantityAra3 serves as an ex
pansion parameter for the low-density expansion. For
ample, the ground-state energy density, including the fi
quantum correction, is

E5
2p\2ar2

m S 11
128

15Ap
Ara3D . ~31!

The coefficient ofAra3 in the quantum correction term wa
first obtained by Lee and Yang.18 The quasiparticle excita
tions of the system are Bogoliubov modes, which are pla
waves with the dispersion relation

e~k!5
\2kAk21L2

2m
. ~32!

This dispersion relation changes from linear ink to quadratic
at a scaleL given by

L5A16par. ~33!

This is the scale of the wave numberk that dominates the
quantum corrections to the energy density. The one-lo
quantum correction is the sum over normal modes of
zero-point energies\v/2, wherev is the angular frequency
of the normal mode. The contribution from largek behaves
like *d3k e(k)/2, wheree(k) is the Bogoliubov dispersion
relation given in Eq.~32!. This integral is ultraviolet diver-
gent, with the leading divergence proportional to\2LUV

5 /m.
This leading divergence and the subleading divergences
all be removed by renormalization. After renormalizatio
the integral is dominated by the scaleL given in Eq.~33!
and it therefore scales like\2L5/m;\2r5/2a5/2/m. This es-
timate agrees with the explicit result given in Eq.~31!.

Generalizing to the case of a nonhomogeneous Bose
we can anticipate that the quantum corrections to the den
profile r(r ) will be dominated locally by modes with wav
number k on the order ofA16par(r ). The contributions
from much shorter wavelengths are removed by renormal
tion. The contributions from much longer wavelengths a
suppressed by phase space. These modes can be ap
mated by a continuum as long as the corresponding wa
lengths are much shorter than the scaleL for significant
variations inr(r ):

A16par~r !@
2p

L
. ~34!

If this lower bound on the density is satisfied, then the me
ods of continuum quantum field theory can be used to ca
late the dominant quantum corrections. The condition~34! is
also necessary in order to calculate quantum corrections
ing a gradient expansion, which is an expansion in 1/LL.
There is an upper bound onr(r ) that must be satisfied in
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14 750 56ERIC BRAATEN AND AGUSTIN NIETO
order to allow perturbative calculations in the quantum fi
theory with the pointlike interaction in Eq.~21!. This condi-
tion is that the scaleL must be much less than the maximu
ultraviolet cutoff given in Eq.~17!:

A16par~r !!
p

2a
. ~35!

If this upper bound is not satisfied, then nonperturbat
methods must be used to calculate the effects of quan
corrections. The condition~35! is also necessary in order fo
the effects of quantum fluctuations to be small enough to
treated as perturbative corrections to the mean-field appr
mation. For example, in the case of a homogeneous B
gas, the condition that the quantum correction to the ene
density, which is given by the second term in Eq.~31!, is
small compared to the mean-field contribution is essenti
identical to Eq.~35!. In our analysis of quantum correction
to the density profile, we will assume that the number den
is in the range specified by the inequalities~34! and ~35!.

III. PERTURBATIVE FRAMEWORK

In this section we present a general framework for car
ing out perturbative calculations of the effects of quant
fluctuations around an arbitrary time-independent ba
groundv(r ). In Sec. IV, we will setv equal to the mean field
f0 and use this framework to calculate one-loop correcti
to the condensate and density profiles. In Sec. V, we sv
equal to the condensate^c& and determine the self-consiste
one-loop corrections to the equation for the density profi

It is convenient to parametrize the quantum fieldc(r ,t) in
terms of two real-valued quantum fieldsj and h that de-
scribe quantum fluctuations around an arbitrary tim
independent backgroundv(r ):

c~r ,t !5v~r !1
j~r ,t !1 ih~r ,t !

A2
. ~36!

We will refer to this as theCartesian parametrizationof the
quantum field. An alternative field parametrization is cons
ered in Sec. VI. If the phase ofc is chosen so thatv is real
valued, the condensate profile is

^c~r !&5v~r !1
1

A2
^j~r !&. ~37!

The number density is

r~r !5v2~r !1A2v~r !^j~r !&1
1

2
^j2~r !&1

1

2
^h2~r !&2dr.

~38!

Inserting the field parametrization~36! into the action~21!
and expanding in powers of the quantum fieldsj and h, it
becomes
e
m

e
i-

se
y

ly

ty

-

-

s

.

-

-

S@c#5S@v#1E dtE d3r H A2Tj1
1

2
~hj̇2jḣ!

1
1

4m
j~¹22L21X!j1

1

4m
h~¹21Y!h

1
1

A2
Zj~j21h2!2

g1dg

16
~j21h2!2J , ~39!

where ḟ [ (]/]t) f and T, X, Y, andZ are external source
that depend onv:

T~r !5F ~m1dm!2V~r !2
g1dg

2
v2~r !Gv~r !1

1

2m
¹2v~r !,

~40!

X~r !5L212mF ~m1dm!2V~r !2
3~g1dg!

2
v2~r !G ,

~41!

Y~r !52mF ~m1dm!2V~r !2
g1dg

2
v2~r !G , ~42!

Z~r !52
g1dg

2
v~r !. ~43!

We have set\51 in the action. Dimensional analysis can b
used to reinsert the factors of\ at the end of the calculation
The parameterL appears both in the sourceX and explicitly
in the j2 term in the action and cancels between them. T
arbitrariness of this parameter can be exploited to simp
calculations.

To organize the quantum corrections into a loop exp
sion, we separate the terms in the action that depend onj and
h into a free part and an interaction part:

S@c#5S@v#1Sfree@j,h#1Sint@v,j,h#. ~44!

The free part of the action is

Sfree@j,h#5E dtE d3r H 1

2
~hj̇2jḣ!1

1

4m
j~¹22L2!j

1
1

4m
h¹2hJ . ~45!

This action describes Bogoliubov modes with the dispers
relation ~32!, whereL is now an adjustable parameter. Th
Fourier transform of the propagator for the fieldsj andh is
a 232 matrix

S Djj~k,v! Djh~k,v!

Dhj~k,v! Dhh~k,v!
D

5
1

v22e2~k!1 i01S k2/2m 2 iv

iv 2me2~k!/k2D , ~46!

where k is the wave vector andv is the frequency. The
diagonal elements of the propagator matrix~46! are repre-
sented by solid lines forj and dashed lines forh, as illus-
trated in Figs. 1~a! and 1~b!. The off-diagonal elements ar
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represented by a line that is half solid and half dotted, a
Fig. 1~c!. All the remaining terms in the action~39! are
treated as interactions:

Sint@v,j,h#5E dtE d3r H A2Tj1
1

4m
Xj21

1

4m
Yh2

1
1

A2
Zj~j21h2!2

g1dg

16
~j21h2!2J .

~47!

They include interactions with the external sourcesT, X, Y,
andZ as well as the four-point couplingg1dg. The sources
are represented by dots labeled by the appropriate lette
illustrated in Fig. 2. The four-point couplings are represen
by points that connect four lines.

It is possible to diagonalize the propagator matrix~46! by
applying a Bogoliubov transformation to the fieldsj andh.
However, such a transformation makes the interaction te
in the action significantly more complicated and increa
the number of diagrams that contribute to most quantit
For explicit calculations, it is more economical to minimiz

FIG. 1. Diagrammatic representation of the components of
232 propagator matrix:~a! the diagonal propagator forj, ~b! the
diagonal propagator forh, and~c! the off-diagonal propagator forj
andh.

FIG. 2. Diagrammatic representation of the interaction verti
associated with the sourcesT, X, Y, andZ and the four-point cou-
plings.
in

as
d

s
s
s.

the number of diagrams. We therefore prefer to use a pro
gator matrix with off-diagonal elements.

In the case of a homogeneous Bose gas, the trapping
tentialV is zero and we can choose the background fieldv to
be a constant, independent ofr . If we choose
v252(m1dm)/(g1dg) and L252m(g1dg)v2, then the
sourcesT, X, andY in Eq. ~47! vanish and the interaction
reduce to three-point couplings and four-point couplin
Such a perturbative framework has been used recentl
reproduce the classic one-loop corrections to the thermo
namic properties of a homogeneous Bose gas.19

The leading quantum corrections to the ground-state
pectation values in Eqs.~37! and~38! are given by one-loop
Feynman diagrams. Examples of one-loop diagrams
contribute to^j2& and ^h2& are shown in Figs. 3 and 4
respectively. The dot on the left-hand side of each diagr
represents the operatorj2, which creates two solid lines, o
the operatorh2, which creates two dashed lines. The lin
form a loop that can include any number of insertions of
sourcesX and Y. It is convenient to introduce the notatio
^ &XY for the expectation value of an operator in the prese
of the sourcesX andY, but with no other self-interactions fo
the quantum fields. The sum of all one-loop diagrams
^j2& and ^h2& can then be represented as

e

s

FIG. 3. One-loop Feynman diagrams that contribute to^j2&.

FIG. 4. One-loop Feynman diagrams that contribute to^h2&.
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^j2~r !&u1-loop5^j2~r !&X,Y , ~48!

^h2~r !&u1-loop5^h2~r !&X,Y . ~49!

The advantage of this notation is that the expectation va
^j& at one-loop order can also be expressed succinctl
terms of ^j2&X,Y and ^h2&X,Y . Examples of diagrams tha
contribute to^j& are shown in Figs. 5–7. The operatorj
creates a single solid line. In the diagrams of Fig. 5, thj
field propagates to a sourceT, where it is annihilated. In the
diagrams of Figs. 6 and 7, it propagates to a sourceZ, which
creates a pair of solid lines or dashed lines that form a lo
In all of these diagrams, thej propagator and the propagato
inside the loop can include any number of insertions of
sourcesX and Y. The sum of all such diagrams can be e
pressed as

FIG. 5. Feynman diagrams contributing to^j& that involve the
sourceT.

FIG. 6. One-loop Feynman diagrams contributing to^j& that
involve a pair ofj lines produced by the sourceZ.
e
in

p.

e
-

^j~r !&u1-loop52A2E d3r 8S E dt8DX,Y
jj ~r ,r 8,t8! D

3S T~r 8!1
3

2
Z~r 8!^j2~r 8!&X,Y

1
1

2
Z~r 8!^h2~r 8!&X,YD , ~50!

whereDX,Y
jj is the diagonal component of the propagator

j in the presence of the sourcesX andY.
The quantitieŝ j2&X,Y and ^h2&X,Y in Eqs.~48!–~50! are

functionals of the sourcesX andY. These functionals include
terms of arbitrarily high orders inX andY. They are nonlo-
cal because the loop diagrams involve an integral over
positions of the sourcesX and Y. After renormalization,
these integrals are dominated by wavelengths of or
2p/L, while the sources vary significantly only over muc
larger distances of orderL. It is therefore reasonable to ex
pand the sourcesX(r 8) and Y(r 8) as Taylor series around
the point r . This reduces the expressions for^j2&X,Y and
^h2&X,Y to an infinite sum of local quantities involvingX, Y,
and their derivatives at the pointr :

^j2~r !&X,Y5a01a1X~r !1a2Y~r !1a3¹2X~r !1a4X2~r !

1a5~“X!2~r !1•••, ~51!

^h2~r !&X,Y5b01b1X~r !1b2Y~r !1b3¹2X~r !1b4X2~r !

1b5~“X!2~r !1•••. ~52!

FIG. 7. One-loop Feynman diagrams contributing to^j& that
involve a pair ofh lines produced by the sourceZ.
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56 14 753QUANTUM CORRECTIONS TO THE GROUND STATE OF . . .
The terms on the right-hand sides of Eqs.~51! and ~52! in-
clude all possible rotationally invariant combinations ofX
and Y and their derivatives. The constraint of rotational i
variance arises from the rotational invariance of the free
tion ~45!. In Eqs. ~51! and ~52! we have shown explicitly
only those terms that will ultimately be needed to calcul
the quantum corrections to the density profile.

The coefficientsai and bi in Eq. ~51! and ~52! can be
reduced to integrals over a wave vectork, as illustrated by
the explicit calculation of a diagram presented in Appen
B. Having expanded the sources as Taylor series arounr ,
the only scale in the integrand isL. By dimensional analysis
a convergent integral must have the form of the appropr
power ofL multiplied by a numerical coefficient. Howeve
some of the integrals have infrared or ultraviolet divergen
and thus require infrared or ultraviolet cutoffs. The ultrav
let divergences either cancel in quantities such asr(r ) and
^c(r )& or they are removed by renormalization. Infrared
vergences reflect a failure of the assumption that the sou
can be expanded in a Taylor series inside the loop integra
these divergences do not cancel, it simply indicates a bre
down of the gradient expansion due to the sensitivity of
quantum corrections to nonlocal effects involving the len
scaleL.

The propagator factor*dt8DX,Y
jj (r ,r 8,t8) in Eq. ~50! can

be expanded in powers ofX and its derivatives at the pointr .
The dependence on the sourceY is removed by the integra
tion over t8, which corresponds to evaluating the Fourie
transformed propagator atv50. Since the off-diagonal com
f

t

e

c-

e

x

te

s
-

-
es
If
k-
e
h

-

ponents of the propagator~46! vanish at zero frequency, th
sourceY does not contribute. Examples of diagrams th
contribute to*dt8 DX,Y

jj are shown in Fig. 8. The contribu
tion from the first diagram is given by the upper-left comp
nent of the propagator matrix in Eq.~46!:

E dt8Djj~r ,r 8,t8!522mE d3k

~2p!3
e2 ik•~r2r8!

1

k21L2
.

~53!

The other diagrams in Fig. 8 involve integrals over the po
tionsr 9 of sourcesX(r 9). In coordinate space, the propagat
factor ~53! falls exponentially whenur2r 8u exceeds 1/L. If
we assume that the sourceX varies significantly only over a
much greater length scaleL, then we can expandX(r 9) as a
Taylor series around the pointr 95r . The function
*dt8 DX,Y

jj (r ,r 8,t8) can then be expressed in terms ofX(r )
and its derivatives at the pointr . The terms coming from the
diagrams in Fig. 8 include

FIG. 8. Feynman diagrams that contribute to the propaga
DX,Y

jj at zero frequency.
E dt8DX,Y
jj ~r ,r 8,t8!522mE d3k

~2p!3
e2 ik•~r2r8!H 1

k21L2
1X~r !

1

~k21L2!2
22i¹ iX~r !

ki

~k21L2!3

1¹ i¹ jX~r !F d i j

~k21L2!3
24

kikj

~k21L2!4G12¹ iX¹ jX~r !F d i j

~k21L2!4
26

kikj

~k21L2!5G1•••J .

~54!
nd

ec-
e
pro
The complete expression involves all possible powers oX
and gradients ofX.

The result~54! can be used to express^c(r )& andr(r ) as
an expansion in powers ofX andY and their derivatives a
the point (r ). In the expression for̂j(r )& in Eq. ~50!, the
propagator factor is integrated against a functionf (r 8) that
depends on the sourcesT, Z, X, andY. The integral can be
evaluated by expandingf (r 8) as a Taylor series around th
point r 85r . Using the expression~54! for the propagator
factor, we can evaluate the integral overr 8. The resulting
expression for the integral includes the terms

E d3r 8S E dt8 DX,Y
jj ~r ,r 8,t8! D f ~r 8!

522mH F 1

L2
1

1

L4
X~r !1

1

L6
¹2X~r !1

2

L8
~“X!2~r !G
3 f ~r !1
2

L6
“X~r !•“ f ~r !1

1

L4
“

2f ~r !1•••J . ~55!

Applying this formula to the integral in Eq.~50! and using
the expansions~51! and~52! for ^j2& and^h2&, we obtain an
expansion for̂ j& in powers ofX, Y, and their derivatives.
Inserting the expansions for^j&, ^j2&, and ^h2& into Eqs.
~37! and ~38!, we obtain expansions for the condensate a
the density in powers ofX, Y, and their derivatives.

IV. ONE-LOOP CALCULATION

In this section we calculate the one-loop quantum corr
tions to the density profiler(r ) and to the condensate profil
^c(r )& to second order in the gradient expansion. The ap
priate choice for the background fieldv is the mean fieldf0,
which satisfies Eq.~25!:
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v~r !5f0~r !. ~56!

The quantum fieldsj and h in Eq. ~36! describe quantum
fluctuations around the mean field. The condensate pro
~37! reduces to

^c~r !&5f0~r !1
1

A2
^j~r !&, ~57!

while the number density~38! reduces to

r~r !5f0
2~r !1A2f0~r !^j~r !&1

1

2
^j2~r !&

1
1

2
^h2~r !&2dr. ~58!

The fact that the mean fieldf0 satisfies the classical equatio
~25! can be used to simplify the expressions~40!–~43! for
the sources. We can also drop the countertermsdm anddg in
the sourcesX, Y, andZ. These sources appear only in di
grams that are at least first order in the loop expansion.
counterterms appearing in these sources are therefore ne
only to cancel ultraviolet divergences that arise at sec
order or higher in the loop expansion. Thus the sources
be simplified to

T~r !5dmf0~r !2
dg

2
f0

3~r !, ~59!

X~r !5L222mgf0
2~r !2

¹2f0

f0
~r !, ~60!

Y~r !52
¹2f0

f0
~r !, ~61!

Z~r !52
g

2
f0~r !. ~62!

The expressions~57! and~58! for the condensate and th
density are nonlocal functionals of the mean fieldf0. If
^c(r )& and r(r ) are expanded in powers of the sourcesX
and Y and their derivatives at the pointr , the expansions
le

e
ded
d

an

include infinitely many terms. They can be reduced to lo
functionals off0 by consistently truncating the expansion
We will reduce Eqs.~57! and ~58! to local equations at a
specific pointr0 by ~a! choosing a specific value for th
arbitrary parameterL and ~b! truncating the equations a
second order in the gradient expansion. Note that the so
Y in Eq. ~61! is already second order in the gradient expa
sion. Thus, if we truncate the equations at second order in
gradient expansion, we need only include terms up to fi
order in Y and we can omit all derivatives ofY. We also
need only include terms up to first order in¹2X and up to
second order in“X. However, we still must include all pos
sible powers ofX.

In order to reduce the expansions for^c& andr to a finite
number of terms, we will chooseL so thatX(r0) is second
order in the gradient expansion at a specific pointr0. If we
evaluatê c& andr at the pointr0 and then truncate them a
second order in gradients off0, the resulting expressions fo
^c(r0)& andr(r0) are algebraic functions off0, “f0, and
¹2f0 evaluated at the pointr0. Since we could have chose
any particular point forr0, these algebraic relations mu
hold at any pointr . The most convenient choice forL is the
wave number that appears in the Bogoliubov dispersion
lation ~32! for a homogeneous gas with number dens
f0

2(r0):

L252mgf0
2~r0!. ~63!

The sourceX and its derivatives at the pointr0 then reduce
to

X~r0!52
¹2f0

f0
~r 0!, ~64!

“X~r0!524mgf0“f0~r0!, ~65!

¹2X~r0!524mg@f0¹2f01~“f0!2#~r0!. ~66!

We proceed to calculate the one-loop correction to
condensatê c(r )&, which is given by Eq.~50!. Inserting
Eqs.~51! and~52! into Eq. ~50! and using Eq.~55! to evalu-
ate the integral overr 8, we obtain an expansion for^j& in
powers of the sources and their derivatives. Inserting
expressions~59!, ~61!, ~62!, and~64!–~66! for the sources at
the pointr0, we obtain
^j~r0!&52A2mgf0H F3a01b0

2
22

dm

g
1

dg

g
f0

2G 1

L2

2F S 3a01b024
dm

g D 1

L4
1

9a113b113a21b2

2

1

L2
1~3a31b3!G¹2f0

f0

1F S 3a01b024
dm

g D 1

L4
1~3a11b1!

1

L2
2~3a31b3212a424b4!12~3a51b5!L2G ~¹f0!2

f0
2 J . ~67!
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The coefficientsai and bi are given in Appendix C. The
coefficientsa0 and b0 are cubically ultraviolet divergent
while a1 andb1 are linearly divergent. The divergences a
canceled by taking the countertermsdm anddg to have the
values

dm5
1

12p2
gLUV

3 , ~68!

dg5
1

4p2
~mgLUV!g. ~69!

The countertermdg in Eq. ~69! agrees with that obtained b
expanding Eq.~14! to first order inmgLUV . Using the re-
sults forai andbi in Appendix C and the value ofL given in
Eq. ~63!, the condensate at the pointr0 reduces to

^c&5f0H 12
5

48p2
~2mg!3/2f0

2
1

16p2
A2mgF S 49

18
2

5

24
log

8mgf0
2

l IR
2 D ¹2f0

f0
2

1S 29

9
2

1

16
log

8mgf0
2

l IR
2 D ~“f0!2

f0
3 G J , ~70!

wherel IR is an infrared cutoff. The logarithmic infrared d
vergences arise from the coefficientsb2, b3, and b5. The
divergences indicate that the gradient expansion for the c
densate breaks down at second order. Thus we can obt
local expression for the condensate only to leading orde
the gradient expansion. Keeping only the first correct
term in Eq.~70!, the result is

^c~r !&5f0~r !F12
5

48p2
~2mg!3/2f0~r !G . ~71!

We derived this equation at the pointr0 defined by our
choice~63! for the arbitrary parameterL. However, our final
result for ^c(r0)& is an algebraic expression in terms
f0(r0). Since we could have chosen any particular point
r0, that algebraic expression must be valid at any pointr .

We next calculate the one-loop corrections to the dens
which is given by Eq.~58!. The expression for̂j& at the
point r0 is given by Eq.~67!. The corresponding expression
for ^j2& and ^h2& are obtained by inserting the expressio
~61! and ~64!–~66! for the sources at the pointr0 into Eqs.
~51! and~52!. The resulting expression for the density at t
point r0 is
n-
n a
in
n

r

y,

r~r0!5f0
22Fa01dr22

dm

g
1

dg

g
f0

2G
1F S 3a01b024

dm

g D 1

L2
1~4a11b11a2!

12a3L2G¹2f0

f0

2F S 3a01b024
dm

g D 1

L2
1~3a11b1!

22~a326a422b4!L214a5L4G ~“f0!2

f0
2

.

~72!

After using the expressions~68! and ~69! for the counter-
termsdm anddg, the only remaining ultraviolet divergenc
is a cubic divergence that can be canceled by choosing
density counterterm to be

dr5
1

12p2
LUV

3 . ~73!

The infrared divergent coefficientsb2, b3, andb5 have can-
celed in the expression~72! for the number density. Thus th
density has a well-defined gradient expansion through s
ond order, in contrast to the condensate. Our final expres
for the number density, including one-loop quantum corr
tions, is

r~r !5f0
2~r !H 12

1

6p2
~2mg!3/2f0~r !

2
1

16p2
A2mgF41

9

¹2f0

f0
2 ~r !1

113

18

~“f0!2

f0
3 ~r !G J .

~74!

We derived this equation at the specific pointr0. However,
our final expressions forr(r0) is an algebraic expressio
involving f0, “f0, and ¹2f0 evaluated at the pointr0.
Since we could have chosen any particular point forr0, these
algebraic relations must hold at any pointr .

Combining Eqs.~71! and ~74!, we obtain a local expres
sion for the condensate in terms of the density that is cor
to leading order in the gradient expansion:

^c~r !&5Ar~r !F12
1

48p2
~2mg!3/2Ar~r !G . ~75!

This agrees with a result obtained recently by Timmerma
Tommasini, and Huang.14

The choice~63! for L is not unique. Any choice tha
makesX(r0) second order in the gradient expansion will
equally acceptable and must give the same final answer.
example, we could have chosen

L252mgf0
2~r0!1

¹2f0

f0
~r0!. ~76!

In that case, Eq.~64! would be replaced byX(r0)50. Fol-
lowing the effects of this change through the calculation,
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find that the coefficient 4a1 of ¹2f0 /f0 in Eq. ~72! is re-
placed by 3a1. However, the term2a0 in Eq. ~72! depends
onL, which is given in Eq.~76!. When this term is expande
in powers of gradients off0, it generates additional term
proportional to¹2f0 /f0 that precisely cancel the change
Eq. ~72!. Thus we recover the same final result~74!.

Note that the counterterms~68!, ~69!, and ~73! do not
depend on the potentialV(r ). Thus the ultraviolet diver-
gences in one-loop diagrams are removed by the same re
malizations that are required for a homogeneous Bose g

V. SELF-CONSISTENT ONE-LOOP CALCULATION

In this section we present aself-consistent one-loop ca
culationof the equation for the density profiler(r ) to second
order in the gradient expansion. The calculation involves t
ing the equations for the density in the Hartree-Fock appro
mation and expanding them around the Thomas-Fermi lim
The result is the differential equation~2! that generalizes the
Gross-Pitaevskii equation forr by taking into account the
leading effects of quantum fluctuations.

The self-consistent one-loop equations can be expre
as classical field equations for the one-loop effect
action.20 We describe briefly the diagrammatic represen
tion of these equations. They correspond to summing all c
nected diagrams with arbitrarily many one-loop subd
grams, but no subdiagrams with two or more loops. Th
diagrams have the structure of tree diagrams, with one-l
corrections added to the vertices and arbitrarily many o
loop corrections inserted into the propagators. These
grams can be calculated using the perturbative framew
developed in Sec. III. The sum of all such diagrams is in
pendent of the choice of the background fieldv(r ) in Eq.
~36!. However, the sum of all such diagrams can be gre
simplified by choosing the background fieldv so that the
ground-state expectation values of the quantum fieldsj and
h vanish. This choice eliminates all one-particle-reduci
diagrams that can be disconnected by cutting a singlej or h
line. The only diagrams that remain are one-partic
irreducible diagrams.

With the Cartesian parametrization~36!, the choice of the
background field that simplifies self-consistent one-loop c
culations is the condensate itself:

v~r !5^c~r !&. ~77!

With this choice, the fieldsj and h represent the quantum
fluctuations around the ground-state expectation value oc.
Sincev is real valued, the expectation value ofh vanished
automatically and the condition~77! can be written

^j~r !&50. ~78!

Thus the background fieldv must be chosen self-consistent
so that the quantum fluctuations around that background
erage to zero. We will refer to the Eq.~78! as thetadpole
equationbecause the one-loop quantum corrections to
equation correspond to Feynman diagrams like those in F
6 and 7 that look like tadpoles. Using the tadpole equat
the density~38! reduces to
or-
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r~r !5v2~r !1
1

2
^j2~r !&1

1

2
^h2~r !&2dr. ~79!

The ground-state expectation values in Eqs.~78! and~79!
are nonlocal functionals of the backgroundv(r ). Our strat-
egy is to use the gradient expansion to reduce these func
als to local functions involvingv(r ) and its derivatives. The
tadpole equation~78! then reduces to an algebraic relatio
betweenv(r ) and its derivatives, while Eq.~79! expressesr
in terms ofv and its derivatives. If we eliminatev from these
two equations, we obtain an algebraic relation betweenr and
its derivatives. This is the differential equation forr(r ) that
includes self-consistent corrections from one-loop quant
fluctuations.

To calculate the one-loop quantum corrections, we use
decomposition~44! of the action for quantum fluctuation
around a general background fieldv. The free part~45! in-
volves only the quantum fieldsj and h, but introduces an
arbitrary scaleL. The interaction part~47! involves sources
T, X, Y, andZ that are given in Eqs.~40!–~43!. At one-loop
order, the tadpole equation states that the expression~50! for
^j& vanishes, which implies

05T~r !1
3

2
Z~r !^j2~r !&X,Y1

1

2
Z~r !^h2~r !&X,Y . ~80!

Similarly, the expression~79! for the number density reduce
at one-loop order to

r~r !5v2~r !1
1

2
^j2~r !&X,Y1

1

2
^h2~r !&X,Y2dr. ~81!

Eqs. ~80! and ~81! are integral equations whose solutio
give the condensate and the density in the Hartree-Fock
proximation. The quantitieŝj2&X,Y and^h2&X,Y in Eqs.~80!
and ~81! can be expanded in powers ofX and Y and their
derivatives using Eqs.~51! and~52!. Since these expansion
include infinitely many terms, the Eqs.~80! and ~81! can be
reduced to local equations only by consistently truncating
expansions. We will reduce them to local equations at a s
cific point r0 by ~a! using the classical equations forr andv
to simplify the expressions for the sources,~b! choosing a
specific value for the arbitrary parameterL, and~c! truncat-
ing the equations at second order in the gradient expans

We begin by simplifying the sourcesX, Y, andZ in Eqs.
~41!, ~42!, and~43! by using the classical equationsT(r )50
andr(r )5v2(r ). SinceX, Y, andZ appear only in one-loop
diagrams, any quantum corrections to the sources contri
only at second order in the quantum loop expansion. Us
T50, we can eliminate the potentialV from X andY. Using
v5Ar, we can expressX, Y, andZ in terms ofr only. We
can also simplifyT by settingv5Ar in the terms propor-
tional to the countertermsdm anddg. Finally, we can drop
the terms inX andZ that involve the countertermdg since it
is needed only to cancel ultraviolet divergences that aris
two loops or higher in the quantum loop expansion. Thus
expressions for the sources can be reduced to
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T~r !5Fm2V~r !2
g

2
v2~r !Gv~r !1

1

2m
¹2v~r !

1Fdm2
dg

2
r~r !GAr~r !, ~82!

X~r !5L222mgr~r !2
¹2Ar

Ar
~r !, ~83!

Y~r !52
¹2Ar

Ar
~r !, ~84!

Z~r !52
g

2
Ar~r !. ~85!

Note that the sourceY in Eq. ~84! is already second order i
the gradient expansion. Thus, if we truncate the equation
second order in the gradient expansion, we need only inc
terms up to first order inY and we can omit all derivatives o
Y. We also need only include terms up to first order in¹2X
and up to second order in“X. However, we still must in-
clude all possible powers ofX.

In order to reduce the expansions for Eqs.~80! and~81! to
a finite number of terms, we chooseL so thatX(r0) is sec-
ond order in the gradient expansion at a specific pointr0. A
convenient choice forL is the wave number that appears
the Bogoliubov dispersion relation~32! for a homogeneous
Bose gas with number densityr(r0):

L252mgr~r0!. ~86!

With this choice forL, the sourceX and its derivatives at the
point r0 reduce to

X~r0!52
¹2Ar

Ar
~r0!, ~87!
at
de

“X~r0!524mgAr“Ar~r0!, ~88!

¹2X~r0!524mg@Ar¹2Ar1~“Ar!2#~r0!. ~89!

We proceed to determine the differential equation sa
fied byr in the self-consistent one-loop approximation. Th
equation can be obtained by solving Eq.~81! for the conden-
satev in terms of the densityr and its derivatives and the
eliminatingv from the tadpole equation~80!. If the tadpole
equation is evaluated at the pointr0 and then truncated a
second order in the gradient expansion, it reduces to

05T~r0!1Z~r0!F3a01b0

2
1

3a11b1

2
X~r0!

1
3a21b2

2
Y~r0!1

3a31b3

2
¹2X~r0!

1
3a51b5

2
~“X!2~r0!G . ~90!

The expression~82! for the sourceT involves v and ¹2v.
Solving Eq.~81! for v(r ) to first order in the quantum cor
rections, we obtain

v~r !5Ar~r !2
1

2Ar~r !
Fa01b022dr

2
1

a11b1

2
X~r !

1
a21b2

2
Y~r !1

a31b3

2
¹2X~r !1

a41b4

2
X2~r !

1
a51b5

2
~“X!2~r !1••• G . ~91!

We then substitute this expression forv into the sourceT(r )
in Eq. ~82! and expand to first order in quantum fluctuation
After calculating the derivative¹2v appearing inT, we can
set r5r0 and then truncate at second order in the gradi
expansion. Using the expressions~84! and~87!–~89! for the
sources and their derivatives, the expression forT(r0) re-
duces to
the
rrences
T5S m2V2
g

2
r DAr1

1

2m
¹2Ar1S a01b022dr

4
1

dm

g DgAr2
dg

2
rAr

1S a01b022dr

4
1

a11b12a22b2

8
L22

a31b3

4
L4D¹2Ar

mr

2S a01b022dr

4
1

a11b1

4
L21

a31b314a414b4

4
L42

a51b5

2
L6D ~“Ar!2

mrAr

1~v2Ar!Fm2V2
g

2
r1

1

2m

¹2Ar

Ar
G , ~92!

where we have used the expression~86! for L. The last term in Eq.~92! can be dropped because it is proportional to
classical equation~1!. Its effects are therefore of second order in the quantum loop expansion. This eliminates all occu
of the potentialV in the quantum corrections. Inserting the resulting expression forT(r0) into Eq. ~90!, the tadpole equation
reduces to
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05S m2V2
g

2
r DAr1

1

2m
¹2Ar2S a01dr

2
2

dm

g DgAr2
dg

2
rAr

1S a01b022dr

4
1

2a11b11a2

4
L21

a3

2
L4D¹2Ar

mr

2S a01b022dr

4
1

a11b1

4
L22

a322a422b4

2
L41a5L6D ~“Ar!2

mrAr
. ~93!
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Using the results for the coefficientsai andbi given in Ap-
pendix C and using Eq.~86! to setL252mgr(r0), the equa-
tion for r reduces to

05@m2V~r !#Ar~r !2
g

2
rAr~r !1

1

2m
¹2Ar~r !

2
1

48p2
~2mg!3/2F4gr2~r !1

17

24m
@2Ar ¹2Ar~r !

1~“Ar!2~r !#G . ~94!

We derived this equation at the pointr0 defined by our
choice~86! for the arbitrary parameterL. However, our final
result is an algebraic equation relatingAr and its derivatives
at the pointr0. Since we could have chosen any spec
point for r0, this algebraic relation must hold at any pointr .
Using Eq.~6! to eliminateg in favor of a and using dimen-
sional analysis to insert the appropriate factors of\ into our
Eq. ~94!, we obtain the differential equation~2! for the den-
sity profile.

The r2 term in Eq.~94! can be obtained from previou
work on the homogeneous Bose gas. Differentiating the
sult ~31! for the energy density with respect toAr, we obtain

]E
]Ar

5grArF11
1

6p2
~2mg!3/2ArG . ~95!

Multiplying by 2 1/2, we reproduce therAr andr2 terms in
Eq. ~94!. The Ar ¹2Ar and (“Ar)2 terms in Eq.~94! are
new results.

As a check of the Eq.~94!, we can verify that our one
loop expression forr given in Eq.~74! satisfies Eq.~94! after
expanding to first order in the quantum fluctuations. Ther
an important qualitative difference between the approxim
solution ~74! and the solution to the self-consistent equat
~94!. The solution to Eq.~94! has the correct qualitative be
havior even outside the condensate. In this region, the d
sity is very small and only the terms in Eq.~94! that are
linear inAr are important. The equation therefore reduces

0'@m2V~r !#Ar~r !1
1

2m
¹2Ar~r !. ~96!

The quantum correction terms in Eq.~94! were calculated
using a gradient expansion that is valid only inside the c
densate. However, since these terms are all higher orde
Ar, their effects are negligible outside the condensate an
does no harm to include them. In contrast, the approxim
e-

is
te

n-

o

-
in
it

te

solution~74! has the wrong qualitative behavior whenf0 is
small because it is dominated by the¹2f0 and (“f0)2/f0
terms. Thus that solution can only be used inside the cond
sate.

VI. POLAR FIELD PARAMETRIZATION

The one-loop calculations in Secs. IV and V were carr
out using the Cartesian parametrization of the quantum fi
given in Eq.~36!. There is nothing special about this param
etrization aside from its simplicity. Other field parametriz
tions should give the same final result for physical quantiti
An example of an alternative field parametrization is thepo-
lar parametrization

c~r ,t !5Av2~r !1s~r ,t !exp@ ia~r ,t !#. ~97!

The advantage of this parametrization is that it elimina
infrared divergences from individual Feynman diagrams t
contribute to the number density. In this section we ver
that the polar parametrization gives the same equation for
density profile. We also use this parametrization to show t
the gradient expansion of the density breaks down at fou
order.

With the polar parametrization~97!, the choice for the
background fieldv that simplifies self-consistent one-loo
quantum corrections is the one specified by the tadpole e
tion

^s~r !&50. ~98!

The expression~22! for the number density reduces to

r~r !5v2~r !2dr. ~99!

Thus the choice of the backgroundv(r ) implied by the tad-
pole condition~98! is

v~r !5Ar~r !1
dr

2

1

Ar~r !
1•••. ~100!

Since this expression involves the ultraviolet divergent c
stantdr, v has no simple physical interpretation. It is be
regarded as a theoretical construct that should appear on
intermediate stages of a calculation. The simplicity of t
expression~99! for r comes at the expense of the express
for the condensate. Expanding Eq.~97! as a power series in
s and a and taking the ground-state expectation value,
obtain
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^c~r !&5v~r !2
1

8v3~r !
^s2~r !&2

v~r !

2
^a2~r !&1•••.

~101!

The expansion~101! includes infinitely many terms and w
have written explicitly only those terms that contribute
one-loop order. The expectation values of operators invo
ing four or more powers ofs or a contribute at two-loop
order or higher.

We begin our calculation by inserting the parametrizat
~97! into the action~21! and expanding in powers of th
quantum fieldss anda:

S@c#5S@v#1E dtE d3r H 1

v
Ts1

1

2
~aṡ2sȧ!

2
v2

2m
~“a!22

1

8mv2
~“s!22S g1dg

4
1

¹2v

4mv3

2
~“v !2

4mv4 D s22
1

2m
s~“a!21

1

8mv4
s~“s!2

1S ¹2v

6mv5
2

~¹v !2

3mv6 D s31•••J , ~102!

whereT is the external source given in Eq.~40!. The param-
etrization ~97! leads to an infinite series of momentum
dependent interactions. We have dropped terms that
fourth and higher order in the quantum fields since they
not contribute to the one-loop quantum corrections to
density profile. It is convenient to introduce an arbitrary p
rameterL into the action by rescaling the quantum fields
follows:

s~r ,t !5
L

Amg
j~r ,t !, ~103!

a~r ,t !5
Amg

L
h~r ,t !. ~104!

After these rescalings, we separate the action into a free
and an interaction part as in Eq.~44!. The free part is iden-
tical to Eq.~45! and the interaction part is

Sint@v,j,h#5E dtE d3r H A2
L

A2mgv2
Tj1

1

4m
Xj2

1
1

4m
U~“j!21

1

4m
S~“h!2

1
1

A2
Zj31

1

A2
Wj~“j!2

2
1

A8mv

A2mgv2

L
j~“h!21•••J , ~105!

whereX, Z, U, S, andW are external sources that depend
the backgroundv:

X~r !522
L2

2mgv2~r !
F¹2v

v
2

~“v !2

v2 G~r !2
dg

g
L2,

~106!
t
-

n

re
o
e
-
s

art

Z~r !5
2

3mv~r ! S L2

2mgv2~r !
D 3/2F¹2v

v
22

~“v !2

v2 G ~r !,

~107!

U~r !512
L2

2mgv2~r !
, ~108!

S~r !512
2mgv2~r !

L2
, ~109!

W~r !5
1

2mv~r ! S L2

2mgv2~r !
D 3/2

, ~110!

The arbitrary parameterL, which was introduced through
the rescaling of the fields, appears in both the free part of
action and the interactions. We will exploit the arbitrarine
of this parameter to simplify the calculation of quantum co
rections.

The tadpole equation~98! can be written̂ j(r )&50. To
first order in the quantum corrections, this equation impl
that (L/A2mgv2)T plus the sum of all one-loop tadpol
diagrams vanishes. The one-loop diagrams include all p
sible insertions of the sourcesX, U, and S. The one-loop
tadpole equation can be written succinctly in the form

05
L

A2mgv2
T1

3

2
Z^j2&X,U,S2

1

2
“•@W“^j2&X,U,S#

1
1

2
W ^~“j!2&X,U,S2

1

4mv

A2mgv2

L
^~“h!2&X,U,S ,

~111!

where^ &X,U,S denotes the ground-state expectation value
the presence of the sourcesX, U, andS, but with no other
interactions. The expectation values in Eq.~111! are nonlo-
cal functionals of these sources. After Taylor expanding
sources around the pointr , these functionals can be ex
panded in powers ofX, U, andS and their derivatives at the
point r :

^j2&X,U,S5c01c1U1c2S1c3 U21c4 US1c5 S21•••,
~112!

^~“j!2&X,U,S5d01d1 X1d2 ¹2U1d3 ¹2S1d4~“U !2

1d5 “U•“S1d6~“S!21•••, ~113!

^~“h!2&X,U,S5e01e1 X1e2 ¹2U1e3 ¹2S1e4~“U !2

1e5“U•“S1e6~“S!21•••. ~114!

The terms on the right-hand sides of Eqs.~112!–~114! in-
clude all combinations ofX, U, S, and their derivatives tha
are allowed by rotational symmetry. We have written expl
itly only those terms that are required to calculate the eq
tion for the density through second order in the gradi
expansion.

The right-hand side of Eq.~111! is a nonlocal functional
of v. When it is expanded in powers ofX, U, S, and their
derivatives, there are infinitely many terms. The equation
be reduced to a local one only by consistently truncating
expansions. We will reduce Eq.~111! to a local equation at a
specific pointr0 by ~a! choosing a specific value for th



t
es
e
r

cifi

o

-

er.

res-
ic

o-

ing
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arbitrary parameterL and ~b! truncating the equations a
second order in the gradient expansion. Since the sourcX
andZ in Eqs.~106! and~107! are already second order in th
gradient expansion, we need only keep terms of first orde
X andZ and we can omit any derivatives ofX. Moreover, we
need only include terms that are first order in¹2U and¹2S
and terms up to second order in“U and“S. However, Eq.
~111! still includes all possible powers ofU andS. We can
reduce this equation to a finite number of terms at a spe
point r0 by choosingL so that the sourcesU andS vanish at
the pointr0. The required value is

L252mgv2~r0! . ~115!

With this choice ofL, the sources on the right-hand sides
Eqs.~112!–~114! reduce to

X~r0!522F¹2v
v

2
~“v !2

v2 G~r0! , ~116!

U~r0!50 , ~117!

“U~r0!52
“v
v

~r0!, ~118!

¹2U~r0!52F¹2v
v

23
~“v !2

v2 G ~r0!, ~119!

S~r0!50, ~120!

“S~r0!522
“v
v

~r0!, ~121!

¹2S~r0!522F¹2v
v

1
~“v !2

v2 G ~r0!, ~122!

In the expression~116! for X(r0), we have dropped the term
involving the countertermdg since it is needed only to can
t.
re
fi

ut
in

c

f

cel ultraviolet divergences that arise at two loops or high
With the choice~115! for L, the tadpole equation~111! sim-
plifies at the pointr0 to

05T1
1

mF¹2v

v2
22

~“v !2

v3 G ^j2&X,U,S2
1

4mv
¹2^j2&X,U,S

1
“v

mv2
•“^j2&X,U,S1

1

4mv
@^~“j!2&X,U,S

2^~“h!2&X,U,S#. ~123!

After inserting the expansions~112!–~114! into the tadpole
equation~123! and evaluating it atr0, we can truncate it at
second order in the gradient expansion. Using the exp
sions ~116!–~122! for the sources, we obtain an algebra
equation relatingv, “v, and¹2v at the pointr0. To express
this equation in terms ofr and its derivatives, we eliminatev
using Eq.~100!. Since the termdr/2Ar in Eq. ~100! is first
order in quantum fluctuations, it is needed only in the termT
in Eq. ~123!. The sourceT then becomes

T5S m2V2
g

2
r DAr1

1

2m
¹2Ar2S dr

2
2

dm

g DgAr

2
dg

2
rAr2

dr

2 S ¹2Ar

mr
2

~“Ar!2

mrAr
D

1
dr

2 F S m2V2
g

2
r D 1

Ar
1

1

2m

¹2Ar

r G . ~124!

The last term in Eq.~124! can be dropped because it is pr
portional to the classical equation~1!. Its effects are therefore
second order in the quantum loop expansion. After insert
Eq. ~124! into Eq. ~123!, the tadpole equation reduces to
05S m2V2
g

2
r DAr1

1

2m
¹2Ar1

d02e0

4

1

mAr
1S dm

g
2

dr

2 DgAr2
dg

2
rAr

1S c02
c12c2

2
2

d12d21d3

2
1

e12e21e3

2
2

dr

2 D¹2Ar

mr

2S 2c02
7c123c2

2
12~c32c41c5!2

d123d22d3

2
2~d42d51d6!1

e123e22e3

2
1~e42e51e6!2

dr

2 D ~“Ar!2

mrAr
.

~125!
n-
The coefficientsci , di , andei are given in Appendix C. The
coefficients are all infrared finite but ultraviolet divergen
The ultraviolet divergences from individual diagrams a
more severe than those encountered with the Cartesian
parametrization used in Secs. IV and V. The integralsd0 and
e0 diverge as the fifth power of the ultraviolet cutoff, b
they cancel in the combinationd02e0. The remaining ultra-
violet divergences are canceled by the countertermsdm, dg,
anddr, whose values are given in Eqs.~68!, ~69!, and~73!.
eld

Using the expression for the coefficients given in Appe
dix C, Eq. ~125! reduces to

05~m2V!Ar2
g

2
rAr1

1

2m
¹2Ar

2
1

48p2F2
L5

mAr
1

17

12

L3

mr
¹2Ar1

17

24

L3

mrAr
~“Ar!2G .

~126!
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After using Eq.~115! to setL252mgr(r0), we reproduce
the self-consistent one-loop equation~94! for the density
profile.

There has been a previous attempt to calculate the q
tum corrections to the Gross-Pitaevskii equation.21 The au-
thors used the polar field parametrization~97!, with the back-
ground field v(r ) equal to the mean fieldf0(r ). They
dropped all terms in the action that were third order a
higher ina ands and they also dropped second-order ter
that involved gradients off0 or s. The only terms remaining
in the action that contribute to the density profile are

S@c#5S@f0#1E dtE d3r H 1

2
~aṡ2sȧ!

2
f0

2~r !

2m
~“a!22

g

4
s2J . ~127!

With such a drastic truncation of the action, the quant
corrections that they ultimately calculate are of no releva
to the problem of atoms in a trapping potential. This is e
dent from the fact that the Bogoliubov dispersion relati
~32! never enters into the quantum corrections that they
culate. Thus their approach is incapable of reproducing
known results for a homogeneous Bose gas.

A comparison of the calculation above with that presen
in Sec. V demonstrates that the Cartesian field paramet
tion is more efficient than the polar field parametrization
explicit calculations. With the polar field parametrizatio
one avoids infrared divergent integrals at intermediate sta
of the calculation, but this advantage is compensated by
fact that the integrals are more severely ultraviolet diverge
The simplicity of the relation~99! betweenr andv is com-
pensated by a tadpole equation~111! that is more compli-
cated than the corresponding equation~80! in the Cartesian
field parametrization.

The advantage of the polar field parametrization is tha
avoids cancellations of infrared divergences between dif
ent diagrams. This makes it easier to identify the source
infrared divergences that are responsible for the breakd
of the gradient expansion. We will use this parametrizat
to show that the gradient expansion of the density bre
down at fourth order. The component of the propagator m
trix ~46! that is most infrared sensitive isDhh. For small loop
momentumk, the frequencyv in the loop scales likeLk/2m
andDhh scales like 2m/k2. The most infrared singular dia
grams are those for which all the lines areh lines. The term
in the tadpole equation~111! that is most infrared sensitive i
^(“h)2&X,U,S , because the operator (“h)2 creates twoh
lines. In the expansion~114! for that matrix element, the
most infrared singular terms are those that involve only
sourceS, which couples to a pair ofh lines. The infrared
behavior of the coefficient of a term in Eq.~114! that in-
volvesm factors of“ andn factors ofS can be determined
by simple power counting. The integrand has a factor of 1k2

for each of then11 propagators. There is a factor ofk2 for
the operator (“h)2 and a factor ofk2 for each insertion ofS.
Finally, dimensional analysis requires that each factor o“

be compensated by a factor of 1/k in the integrand. Thus the
integral must scale like
n-

d
s

e
-

l-
e

d
a-
r

es
he
t.

it
r-
of
n

n
s
-

e

E dvE d3kk2S 1

k2D n11

~k2!nS 1

kD m

;E dk k32m.

~128!

An infrared divergence can appear only ifm>4. Thus infra-
red divergences first appear in the tadpole equation when
expanded to fourth order in the gradient expansion.

Our explicit one-loop calculation of̂ c& in Eq. ~70!
showed that the gradient expansion for the condensate br
down at second order. The analysis presented above sh
that the gradient expansion for the densityr does not break
down until fourth order. The breakdown of the gradient e
pansion implies that the quantum corrections depend on n
local effects involving the length scaleL for significant
variations inr. While we have identified the orders at whic
the gradient expansions break down, we have not identi
any deep reason for the gradient expansion of the densit
be better behaved than that of the condensate.

VII. IMPLICATIONS FOR PRESENT TRAPS

In this section we estimate the magnitude of the effects
quantum fluctuations for Bose-Einstein condensates in ex
ing magnetic traps. For numerical estimates, we will use
rameters characteristic of the sodium experiment,3 which has
achieved the highest density condensates to date. In this
periment, N'53106 sodium atoms were condensed in
trapping potential with a length scalel '2 mm. TheS-wave
scattering length for sodium atoms isa'0.005 mm. The
number density that was attained at the center of the con
sate wasr'400/mm3.

Baym and Pethick have presented a simple qualita
analysis of the solution to the Gross-Pitaevskii equation t
allows one to determine how various quantities scale w
the numberN of atoms.6 The qualitative behavior of the
solution to Eq.~1! depends crucially on a dimensionless p
rameterz given by

z5S 8pNa

l
D 1/5

, ~129!

wherel is the length scale associated with significant var
tions in the potentialV(r ). For a harmonic oscillator poten
tial, l 5\/Amv, wherev is the angular frequency of th
harmonic oscillator. Ifz is less than or of order 1, the size o
the condensate is comparable tol and the number density
inside the trap scales likeN/l 3. If z is much greater than 1
the sizeL of the condensate scales likeL5zl and the den-
sity inside the trap scales likeN/(zl )3. The condensates in
existing magnetic traps are characterized by values ofz that
are significantly greater than 1.~For the sodium experiment
z'13.! We will determine how the correction terms in ou
equation for the density profile scale withN in the casez@1.
The expansion parameterAra3 for the low-density expan-
sion scales likeza/l . Althoughz is large for existing traps,
a/l is tiny and the productza/l is small.~For the sodium
experiment, za/l '0.03.! The modes that dominate th
quantum corrections have wavelengths on the order
1/Ara, which scales likel /z. Since this is small compare
to the length scalezl for significant variations inr(r ), it is
reasonable to expand the quantum corrections using the
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dient expansion. The gradient expansion corresponds t
expansion in powers of the dimensionless quantity 1/Arazl ,
which scales like 1/z2. Thus, inside the condensate, quantu
corrections are suppressed byza/l and corrections from
second order in the gradient expansion are suppresse
1/z4.

Outside the condensate, the densityr rapidly approaches
0. The only terms in Eq.~2! that are important in this region
are the terms that are linear inAr. The scale of the gradien
is now set by the length scalel for significant variations in
V(r ). In this region, the basic assumption underlying o
calculation, that the quantum corrections are dominated
wavelengths of order 1/Ara, breaks down completely. How
ever, all the quantum corrections terms are higher orde
Ar and therefore have a negligible effect on the solut
outside the condensate. Thus it does no harm to include
quantum correction terms in Eq.~2! in the exterior region.

The crossover region between the interior and exterio
the condensate can be characterized by the fact that
¹2Ar term and therAr terms become comparable in impo
tance. The gradient expansion breaks down in this region
the beginning of the crossover region,“ still scales like
1/zl , but the density has decreased to the point thatr scales
like a/(zl )2. Therefore, the quantum loop expansion para
eterAra3 scales likea/zl . As long as this quantity is suf
ficiently small, the quantum correction terms in Eq.~2! are
negligible. ~In the sodium experiment, we hav
a/zl '0.0002.! Thus it does no harm to include the quantu
correction terms in Eq.~2! in the crossover region. We con
clude that the differential equation~2! can be used to calcu
late the density profile everywhere.

We now give a quantitative estimate of the error fro
truncating the quantum loop expansion at one-loop orde
simple estimate of the relative magnitude of the quant
corrections is the ratio of ther2 correction term in Eq.~2! to
the rAr term, which is (32/3)Ara3/p. For the sodium ex-
periment, this ratio is approximately 0.04 at the center of
condensate. This is small enough that quantum correct
can be treated as small perturbation to the mean-field
proximation. SinceAra3 scales likeN1/5, the number of at-
oms in the trap could be increased by many orders of m
nitude and the condensate would still be within t
perturbative region.

A naive estimate of the relative magnitude of two-lo
quantum corrections is the square of the magnitude of
one-loop quantum corrections. Their effects should there
be negligible. One complication is that the two-loop corre
tion depends not only on theS-wave scattering lengtha, but
also on a second parameter that represents a pointlike
tribution to the 3→3 scattering amplitude.16 If this param-
eter is anomalously large, the two-loop quantum correcti
could be significantly larger than the naive estimate.

We next quantify the errors from truncating the equat
for the density at second order in the gradient expansion
simple estimate of the relative magnitude of contributio
from second order in the gradient expansion is the ratio
the¹2Ar term to therAr term in the Gross-Pitaevskii equa
tion ~1!. Assuming that¹2Ar scales likeAr/(zl )2, the ratio
is 1/8ra(zl 2). In the sodium experiment, this ratio
roughly 1025 at the center of the condensate. These corr
an
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tions are therefore negligible. The relative importance
quantum corrections that are second order in the grad
expansion increases as one approaches the edge of the
densate, where the gradient expansion breaks down. H
ever they are still suppressed by a quantum loop facto
ordera/zl .

The gradient expansion for the density breaks down
fourth order, but the breakdown in only logarithmic
8ra(zl )2. We can estimate the magnitude of these corr
tions by taking the logarithms to be of order 1. These c
rections are therefore suppressed by two powers
1/8ra(zl )2. There is also an additional suppression fac
of Ara3, since terms of fourth order in the gradient expa
sion enter only through quantum corrections. Thus these
rections should be completely negligible.

VIII. CONCLUSION

In this paper we have developed a framework for cal
lating the dominant effects of quantum fluctuations in
Bose-Einstein condensate trapped by an external poten
Our method is based on a combination of the Hartree-F
approximation and an expansion around the Thomas-Fe
limit. We have illustrated the method by calculating the se
consistent one-loop equation for the density profile to sec
order in the gradient expansion and the relation between
condensate and the density to zeroth order in the grad
expansion. It should be straightforward to use this method
calculate the effects of quantum fluctuations on other pr
erties of the condensate at zero temperature, such as
spectrum of its collective excitations. It would also be inte
esting to extend the method to nonzero temperature so
one could study how the effects of quantum fluctuations v
with temperature.
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APPENDIX A: INTEGRALS

In this appendix we give analytic expressions for the f
quency integrals and the wave-vector integrals that are
quired to calculate the one-loop quantum corrections to
density and the condensate. Since time-independent sou
do not change the energy, the frequency integrals are ra
simple. They can be evaluated using contour integration.
specific integrals that are required are

E dv

2p

1

~v22e2!n

5 i ~21!n11
~21!3133•••~2n23!

2n~n21!!

1

e2n21
, ~A1!
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E dv

2p

v2

~v22e2!n11

5 i ~21!n11
~21!3133•••~2n23!

2n11n!

1

e2n21
. ~A2!

Time-independent sources that are inserted into a l
diagram change the wave vectork of the propagators in the
loop. The gradient expansion corresponds to expanding
loop integral in powers of the wave vectorspi of the sources
and of the external lines of the diagram. After averaging o
integration angles, thek integrals that are required have th
form

I m,n[E d3k

~2p!3

~k2!m

~kAk21L2!n
, ~A3!

wherem andn are integers. Ifm andn satisfym2n,2 3/2,
this integral is ultraviolet convergent. If 2m2n.23, the
integral is infrared convergent. If it is both ultraviolet an
infrared convergent, its value is

I m,n5
G~n2m2 3/2!G„~32n!/21m…

4p2G~n/2!
L312m22n,

m1
3

2
,n,2m13. ~A4!

The ultraviolet-divergent integrals that are required
I m,n for n2m521,0,1, which have power ultraviolet diver
gences. A convenient way to regularize the integral is
subtract pure powers ofk from the integrand that will re-
move the ultraviolet divergence and then to add those pow
of k back in with an ultraviolet cutoffk,LUV . The regular-
ized integral is then

I m,n[
1

2p2E0

`

dkF k212m2n

~k21L2!n/2

2 (
i 50

m2n11 S 2
n

2
i
D L2ik212m22n22iG

1
1

2p2 (
i 50

m2n11 S 2
n

2
i
D L2iE

0

LUV
dk k212m22n22i ,

n,m1
3

2
. ~A5!

The first integral in Eq.~A5! is convergent and is equal to th
expression on the right-hand side of Eq.~A4!. The only de-
pendence on the ultraviolet cutoff comes from the remain
integrals in Eq.~A5!, and they give a polynomial inLUV .
The ultraviolet divergent integrals that arise in our calcu
tion are

I n21,n5
1

4p2S 2 LUV1
G~2 1/2!G„~n11!/2…

G~n/2!
L D ,

~A6!
p

he

r

e

o

rs

g

-

I n,n5
1

4p2S 2

3
LUV

3 2nLUVL21
G~2 3/2!G„~n13!/2…

G~n/2!
L3D ,

~A7!

I n11,n5
1

4p2S 2

5
LUV

5 2
n

3
LUV

3 L21
n~n12!

4
LUVL4

1
G~2 5/2!G„~n15!/2…

G~n/2!
L5D . ~A8!

The infrared-divergent integrals that are required areI m,n
for n52m13, which have logarithmic infrared divergence
The integrals can be regularized by imposing an infra
cutoff k.l IR . In the limit l IR!L, the regularized integra
reduces to

I m,2m13[
1

2p2E0

`

dkS 1

k~k21L2!m13/2
2

u~L2k!

kL2m13 D
1

1

2p2
L22m23log

L

l IR
. ~A9!

The specific integrals that are needed in our calculations

I 22,215
1

4p2F2 LUV1S log
4L2

l IR
2

22D LG , ~A10!

I 21,15
1

4p2 S log
4L2

l IR
2 D 1

L
, ~A11!

I 0,35
1

4p2 S log
4L2

l IR
2

22D 1

L3
. ~A12!

Note that the integralI 22,21 is ultraviolet divergent as wel
as infrared divergent.

APPENDIX B: EXPLICIT CALCULATION
OF A DIAGRAM

In this appendix we illustrate the calculation of one-lo
diagrams that contribute to the quantum corrections to
density by calculating one diagram in detail. We consider
last diagram in Fig. 3, which represents a contribution to
matrix element ^j2&X,Y involving two insertions of the
sourceX.

It is convenient to calculate the diagram in wave-vec
space, and then Fourier transform to get the diagram in
ordinate space. The diagram involves an integral over
frequencyv and an integral over the wave vectork running
around the loop. Letting the wave vectors of the two sour
be p1 andp2, the expression for the diagram is

1

2E dv

2pE d3k

~2p!3
2

i ~k1p1!2/~2m!

v22e2~ uk1p1u!

3
iX~p1!

2m

ik2/2m

v22e2~k!

iX~p2!

2m

i ~k2p2!2/2m

v22e2~ uk2p2u!
. ~B1!

We have written the Feynman rules for each of the propa
tors and vertices in the loop in the order in which they app
as one goes clockwise around the loop. There is a symm
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factor of 1/2 and the factor of 2 inside the integral is t
Feynman rule for the operatorj2. There is an implied1 i01

prescription in the denominator of each of the propagato
The first step in evaluating the diagram is to expand

integrand to second order in powers of the external w
vectorsp1 and p2. The expansion of the denominators h
the form

1

v22e2~ uk1pu!
5

1

v22e2~k!

1F S k2

2m
1

e2~k!

k2/2m
D p212p–k

2m
1

~p–k!2

m2 G 1

@v22e2~k!#2

1S k2

2m
1

e2~k!

k2/2m
D 2

~p–k!2

m2

1

@v22e2~k!#3
. ~B2!

We can now use the formula~A1! to evaluate the integra
over v. This reduces the diagram to an integral overk. We
can average over the angles ofk by making the substitutions
kikj→k2d i j /3 andki→0. After simplifying the diagram, we
find the terms

1

16~2m!2
X~p1!X~p2!E d3k

~2p!3H 3
~k2/2m!3

e5~k!

2
p1•p2

6~2m! F35
~k2/2m!6

e9~k!
210

~k2/2m!4

e7~k!
13

~k2/2m!2

e5~k!
G .

~B3!

There are also terms proportional to (p1
21p2

2)X(p1)X(p2)
that we have dropped. They correspond to terms of the f
X¹2X, which first contribute to the density at fourth order
the gradient expansion. Expressing the integrals overk in
Eq. ~B3! in terms of the integralsI m,n defined in Appendix
A, the expression reduces to

3

16
X~p1!X~p2!I 3,5

2
1

192
~35I 6,9210I 4,713I 2,5!p1•p2X~p1!X~p2!. ~B4!

After Fourier transforming to coordinate space, this becom

3

16
I 3,5X

2~r !1
1

192
~35I 6,9210I 4,713I 2,5!~“X!2~r !.

~B5!

From this expression, we can now read off the coefficie
a4 anda5 in the expansion~51! for ^j2&X,Y .

APPENDIX C: COEFFICIENTS

In this appendix we express the coefficients that appea
the calculation of one-loop quantum corrections to the d
sity in terms of the integralsI m,n that were defined in Ap-
pendix A. We first list the coefficients that are used in Se
IV and V to calculate the condensate and the density pro
using the Cartesian field parametrization. The coefficient
.
e
e

m

s

ts

in
-

.
le
in

the expansion~51! for ^j2&X,Y are

a05
1

2
I 1,1, ~C1!

a15
1

4
I 2,3, ~C2!

a252
1

4
I 0,1, ~C3!

a35
1

48
~210I 5,7113I 3,52I 1,3!, ~C4!

a45
3

16
I 3,5, ~C5!

a55
1

192
~35I 6,9210I 4,713I 2,5! . ~C6!

The coefficients in the expansion~52! for ^h2&X,Y are

b05
1

2
I 21,21 , ~C7!

b152
1

4
I 0,1, ~C8!

b25
1

4
I 22,21 , ~C9!

b35
1

48
~2I 3,523I 1,32I 21,1!, ~C10!

b452
1

16
I 1,3, ~C11!

b552
5

192
~ I 4,712I 2,51I 0,3!. ~C12!

We next list the coefficients that are required in Sec. VI
calculate the density profile using the polar field parame
zation. The coefficients in the expansion~112! for ^j2&X,U,S
are

c05
1

2
I 1,1, ~C13!

c15
1

4
I 3,3, ~C14!

c252
1

4
I 1,1, ~C15!

c35
3

16
I 5,5, ~C16!

c452
1

8
I 3,3, ~C17!



56 14 765QUANTUM CORRECTIONS TO THE GROUND STATE OF . . .
c552
1

16
I 1,1. ~C18!

The coefficients in the expansion~113! for ^(“j)2&X,U,S are

d05
1

2
I 2,1, ~C19!

d15
1

4
I 3,3, ~C20!

d25
1

48
~210I 7,7125I 5,529I 3,3!, ~C21!

d35
1

48
~2I 5,527I 3,32I 1,1!, ~C22!

d45
1

192
~35I 9,9290I 7,7191I 5,5!, ~C23!

d55
1

96
~25I 7,7114I 5,5221I 3,3!, ~C24!

d65
1

192
~25I 5,516I 3,3213I 1,1!. ~C25!
ol.

st

3

The coefficients in the expansion~114! for ^(“h)2&X,U,S are

e05
1

2
I 0,21 , ~C26!

e152
1

4
I 1,1, ~C27!

e25
1

48
~2I 5,527I 3,32I 1,1!, ~C28!

e35
1

48
~2I 3,323I 1,117I 21,21!, ~C29!

e45
1

192
~25I 7,716I 5,5213I 3,3!, ~C30!

e55
1

96
~3I 5,522I 3,3213I 1,1!, ~C31!

e65
1

64
~ I 3,312I 1,119I 21,21!. ~C32!
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