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Quantum corrections to the ground state of a trapped Bose-Einstein condensate
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In the mean-field approximation, the number dengity) for the ground state of a Bose-Einstein condensate
trapped by an external potentidlr) satisfies a classical field equation called the Gross-Pitaevskii equation.
We show that quantum corrections goare dominated by quantum fluctuations with wavelengths of order
1/\/pa, wherea is the S-wave scattering length. By expanding the equations for the Hartree-Fock approxima-
tion to second order in the gradient expansion, we derive local correction terms to the Gross-Pitaevskii
equation forp that take into account the dominant effects of quantum fluctuations. We also show that the
gradient expansions for the density and for the condensate break down at fourth order and at second order,
respectively[S0163-18207)07445-9

[. INTRODUCTION condensates in existing magnetic traps, the peak value of
Jpa® is small, but not negligible. Since there are some ob-
The successful achievement of Bose-Einstein condensaervables that are more sensitive than the density to the ef-
tion of atomic gases in magnetic trapshas created an ex- fects of quantum fluctuations, it is important to be able to
plosion of interest in interacting Bose gases. The condensateslculate the effects of quantum fluctuations quantitatively.
in existing magnetic traps are sufficiently dilute that the In this paper, we calculate the effects of quantum fluctua-
mean-field approximation gives a satisfactory description otions on the density profile for a Bose-Einstein condensate in
present experimental measurements. However, accurate thetrapping potential. The expansion parameter that character-
oretical predictions require that quantum fluctuations aroundizes the relative magnitude of these effects/Eg, wherep
the mean field also be taken into account. The relative mags the local number density. We point out that the quantum
nitude of these corrections grows as the square root of theorrections are dominated by quantum fluctuations with
number density of the atoms. They will therefore becomeyavelengths on the order of \Iga. The leading effects of
more important as higher trap densities are achieved and @ese short-distance quantum fluctuations can be calculated
the precision of experimental measurements improves. using the gradient expansion. By carrying out a self-
One of the basic observables of a Bose-Einstein condertonsistent one-loop calculation through second order in the
sate trapped in an external potenti(r) is the number- gradient expansion, we determine the correction terms that
density profilep(r) of the ground state. In the mean-field must be added to the Gross-Pitaevskii equatibrfor p to
approximation,p(r) satisfies the time-independent Gross-take into account the effects of quantum fluctuations:
Pitaevskii equation

h? 4mh?a
o, Amha 0=| 5 VZ+u=V(r) | p(r) = ———pp(r)
2m Vi =V [Np(n) = ——pp(r)=0, ()
128\/wh%a%? 17h2a%?
wherea is the S-wave scattering length of the atoms. The - 3—mpz(f)— W[Z\/;VZ\/;(F)
chemical potentialu must be tuned so thafd® p=N, mm
where N is the number of atoms in the trap. The density +(Vp)2(N]. ©)

profile of a trapped Bose-Einstein condensate has been stud-
ied extensively using Ed1). The solutions to this equation Our method involves a combination of the Hartree-Fock
have been calculated using numerical metfddsd varia- approach? and the Thomas-Fermi approath?* In the
tional method$~° The solutions have also been studied anaHartree-Fock approximation, which involves the self-
lytically in the Thomas-Fermi limit, in which the gradient consistent treatment of one-loop quantum corrections, the
term in Eq. (1) is neglected. The corrections due to the equation for the density is an integral equation. We obtain
breakdown of this approximation near the edge of the conthe local differential equatiof2) by applying a gradient ex-
densate have also been studigd: pansion to the integral equation, which corresponds to ex-
There are corrections to the mean-field approximatiorpanding around the Thomas-Fermi limit.
from quantum fluctuations around the mean field. In a dilute In the mean-field approximation, the number density is
homogeneous Bose gas, the relative magnitude of the contrielated to the condensaté) by p=|({)|2. We find that the
butions of quantum fluctuations to thermodynamic quantitiegyradient expansion for the quantum corrections to this rela-
is characterized by the dimensionless quantjtya®. For  tion breaks down at second order. Thus the effects of quan-
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tum fluctuations on the condensate cannot be summarized by 8ha

a local differential equation as in ER). This suggests that g=

it may not be straightforward to generalize the E2).to the

case of a Bose-Einstein condensate containing a vortex. Mhe parametedg in Eq. (5) is a counterterm associated with

the presence of a vortex, it {g/) rather thanyp that in the  the renormalization 0f. It is necessary to impose an ultra-

mean-field approximation satisfies the time-independentiolet cutoff A, on the wave numbers of virtual particles in

Gross-Pitaevskii equation. order to avoid ultraviolet divergences due to quantum fluc-
We begin in Sec. Il by formulating the problem of Bose- tuations of the field. Renormalization of a quantum field

Einstein condensation in a trapping potential as a problem itheory is the tuning of its parameters so that physical quan-

guantum field theory. In Sec. lll, we develop a perturbationtities are independent of the ultraviolet cutoff. All the depen-

expansion for calculating the effects of quantum fluctuationgience of first-order quantum corrections &gy can be re-

around an arbitrary background field. In Sec. IV, we calcu-moved by adjustingsg in Eq. (5) as a function ofA ,, .

late the one-loop quantum corrections to the density profile The number operator, which counts the number of atoms,

and the condensate profile. We show that the ultraviolet diis

vergences that arise in the calculation can be removed by the

same renormalizations of the action and the number density N 3 ot

that are required in the absence of the potential. We find that N:f drgtyg(r,0). ™

the number density can be expanded to second order in the

gradient of the mean field, while the gradient expansion forThat this is a number operator follows from the commutation

the condensate breaks down at that order. In Sec. V, weelations(3) and(4), which imply thaty" and ¢ act as rais-

calculate the self-consistent one-loop quantum corrections ting and lowering operators fox. Equation(5) implies that

the density profile to second order in the gradient expansiog g independent of time, so the number of atoms is con-

and show that they are given by E@). We repeat the cal- geryed. Equatior5) can also be expressed in the form
culation in Sec. VI using an alternative parametrization for

the quantum field and demonstrate that the final result is 9 A
independent of the parametrization. We also use this param- iﬁﬁzp: —[H, ], (8
etrization to show that the gradient expansion for the density

breaks down at fourth order. Finally, in Sec. VII, we exam- I o

) R . . where the Hamiltonian operatét is

ine the implications of our results for Bose-Einstein conden-
sation in present magnetic traps. Details of the calculations

of Feynman diagrams are included in several appendixes. H :J’ d3r

(6)

m

h? +6
‘ﬁT[_ﬁVZ"'V(r) Yt %MTW :
C)

The HamiltonianH measures the energy of the atoms.

Consider a large numbed of identical bosonic atoms : .t
trapped in an external potentisl(r) at zero temperature. If The vacu_u_rdO), defined byy(r,t)[0)=0, represents"the
state containing zero atoms. One can show that a Schro

the momenta of the atoms are sufficiently low, their de Bro->. :
glie wavelengths are much smaller than the range of the in(-jmg‘_ar wave function foN atoms can be represennted as a
teratomic potential, which is comparable in magnitude to thenatrix element of an operator between a state Wth N
Bohr radius. In this case, the scattering of two atoms will beand the vacuum. The simplest case is a sfaecontaining
dominated byS-wave scattering and can be described by aone atom, which satisfied|¢$)=|¢). Since the last term in
single number, th&wave scattering lengta. Our problem  Eqg. (5) annihilates the single-particle staté), the matrix
is to determine the number-density profilér) of the atoms. element(0|(r,t)| ¢) satisfies the Schdinger equation
We begin by formulating this many-body quantum mechan-
ics problem as a problem in quantum field theory. _ 2 )

A convenient way to describe a system containing any 1=+ 5 Vo= V() (O y(r,t)| ¢)=0. (10
numberN of atoms is in terms of a quantum fielgr,t) that
annihilates an atom. If the atom is a boson, the field satisfie¥hus (0| (r,t)|¢) can be interpreted as the Sctimger

Il. QUANTUM FIELD THEORY FORMULATION

the equal-time commutation relations wave function for an atom in the potenti(r).
The next simplest case is a stats) containing two at-
Lo(r,),9(r",)]=0, (3)  oms, which satisfied\|¢)=2|¢). It is straightforward to
show wusing Eqg. (50 that the matrix element
[y(r,0), 4 (r" )]=8(r—r"). (4)  (0]y(ry,t)y(ro,t)| @) satisfies the Schainger equation for

two particles in the external potentia¥(r) interacting
The time evolution of the field is given by the equation through a two-body potential proportional ﬁ(rl—rz)_ In
the absence of the potentilr), one can calculate the am-
g+ 49 N plitude for the scattering of two atoms exactiyThe scatter-
Y+ 2 vy, (5) ing amplitudef (6) is independent of the scattering angle
so it describesS-wave scattering. If the total energy of the
where the coupling constagtis related to theS-wave scat- two atoms in the center-of-momentum frame is
tering lengtha by E=2(p?/2m), the scattering amplitude is

2

'ha |k V2+V
Iﬁlﬂ——ﬁ +(I’)
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1 272 d3k 1 -1 If the ultraviolet cutoffA y is too large, there is a delicate
=14 5 +f 33 > . cancellation between the term proportional Ay, in Eq.
m m(g+59) (2m)° kK*—=mE/A°—ie (16), which comes from an integral ovér and the counter-

1D term 6g. Since a perturbative calculation is necessarily ap-
The integral over the wave vectéris ultraviolet divergent. ~Proximate, the cancellation can lead to large errors. Such a
A particularly convenient regularization of the integral is to large cancellation can be avoided if the term proportional to
introduce an ultraviolet cutoff\,, through the following Auv in Eq. (16) is much less than 1. This sets an upper

prescription: bound on the ultraviolet cutoff:
2
f d% 1 AUV<%= % 17
(2m)° KP—mE/fh*—ie _ , . _
If this upper bound on\ yy is not satisfied, then in order to
% 1 1 obtain an accurate calculation, it is necessary to use a non-
= k| ———— turbative calculational method that sums up all orders in
2m2)o (kz—mE/ﬁZ—ns k2> ger
1 [Auw 1 A state|¢) containing three atoms satisfili§¢)=3| ).
+ —zf kd k—. (12)  In the absence of the potentisr), one can calculate the
2m=Jo k amplitude for 3—3 scattering as an expansion in powers of
The scattering amplitude then becomes g. The leading contribution is proportional ¢ and comes
from two successive 22 scatterings. Higher-order terms in
1 272 1 JmE -1 g represent quantum corrections. The dependence of the first
~ I m + FAUVH yr— (13 quantum correction on the ultraviolet cutdff,y is canceled
™ by the counterterndg in Eq. (5). However, the second quan-

The dependence on the ultraviolet cutoff can be completel#™ correction, whichis proportional g, has a logarithmic

canceled by choosing the bare coupling constansg to be ultraviolet divergence that is not cancef@drhus corrections
to physical quantities from second order in the quantum fluc-

tuations depend on the ultraviolet cutoff. One can eliminate
g+dg = 9 . (14)  the dependence oAy, from second-order quantum correc-
1-mgAyy/(27h)? tions by adding to Eq(5) the term @3+ 893) 'y 12,
The logarithmic ultraviolet divergence is canceled by choos-
ing the counterterm to be

a 3(4m—343) Auy
- 15 — 3.4
1+iaymE/F# (15 593 3.3 9 |097, (18

This confirms the identification af as theS-wave scattering Where the value ofc, which was introduced to make the
length. The scattering of atoms is correctly reproduced byargument of the logarithm dimensionless, depends on the
the pointlike interaction term in E@5) as long as the energy precise definition 0f;. The parameteg; represents a point-
of the atoms is sufficiently low that Eq13) is a good ap- like contribution to the 3-3 scattering amplitude. Thus the
proximation to the scattering amplitude. Note that the energys-wave scattering length does not contain enough informa-
dependence in Eq15) is that required by the optical theo- tion about the low-energy scattering of atoms to calculate
rem. second-order quantum fluctuations. It is also necessary to
It is sometimes stated that&function potential in three know the 3—3 coupling constang;. In this paper we will
dimensions is trivial in the sense that it gives no scattering. Aavoid this complication by calculating only to first order in
more accurate statement is that there is no scattering if wée quantum corrections.
take the ultraviolet cutoff to infinity with the strength of the A state|¢) containingN atoms satisfie8l|¢)=N|¢). In
potential held fixed. This is evident from E@L3), which  the presence of the potenti®l(r), the ground state in the

shows thatf—0 if we take Ayy—e with g+4g fixed. N sector, which we denote bjdy), is the state that

However, if we allow the strength of the potential to vary . . . ~ : Lo
with Ay in accordance with Eq(14), we obtain the non- m|n|m|zgs<¢|H|¢) SUbJeCf[ to thg cqnstram|¢>—N|¢>).
The desired number-density profile is

trivial scattering amplitudé€15).
From the expresslo_(iS) for the scattering amplitude, one p(1)=( Q| ()| Qy) - (19)
can infer an upper limit on the ultraviolet cutoff that must be . . B .
satisfied in order for perturbative calculations to be accuratdf N is large, we expegp(r) to be insensitive to changes in
The expansion fof in powers ofg, including the first quan- N that are small compared . This suggests that we can

The scattering amplitudél3) then reduces to

f:

tum correction, which is proportional @7, is relax the constraint on the particle number and replace the
state|Q2y) in Eq. (19) by the state that minimizelsp|H| )
f—__M9 [1 mgAUV—ég+i mg\/ﬁ) e subject to the weaker constraité|N|¢)=N. If the root-
87752\_ (27h)? 8mh3 ' mean-square fluctuations &f in that state are small com-

(16 pared toN, the expectation value of'y(r) in that state
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should give a good approximation to H39). But that state  field. A nonzero value of the condensate indicates the spon-
is precisely the ground stat),) of the quantum field taneous breaking of the phase symmetry-€e'“y of the
theory whose Hamiltonian id — N, where the value of the action(21).

chemical potentiak is such that The ultraviolet divergences that are canceled by the coun-
. tertermdg arise from treating the interaction between atoms
(Q,IN[Q,)=N. (200 as pointlike down to arbitrarily short distances. The diver-

Thus, if N is sufficiently large, the density profile can be gences could be avoided by replacing the pointliké )

approximated by the ground-state expectation value of th!anteraction term in the actio(21) by an interaction through a

operatory y(r) in the statd Q) ). two-body potentialv(r;—r,). A physically realistic two-
We have now formulated tfﬁe problem of calculating thebody potential_ would have a range comparab]e to the size of

density profile as a quantum field theory problem. The field®" atom and its shape would have to be adjusted so that it

theory is summarized by the action gives the correcS-wave scattering lengtla. It would be
rather inefficient to calculate the effects of interactions using
B 3] 4, 9 h? 2 a physically realistic two-body potential. The reason is that
S[‘/’]_f dtf d*ry ¢ 'hE“LﬁV +H(put+ou) =V |y physical quantities depend on the two-body potential in a

very simple way. Almost all of the dependence enters
gt o9 (l//Tl/l)z]- 1) through theS-wave scattering length. Thus we can obtain
4 the same result for physical quantities by using any simple

The countertermgu and 8g are needed to cancel ultraviolet two-body potential whose inverse randgy is much Iarger
divergences associated with quantum fluctuations of th&han the momenta of the atoms and whose streggtiag is
field. The counterterndu would also have been required in tUned to give the correct scattering length. The uning®f
Eq. (5) if the interaction termy' s had not been normal makes low-energy 22 sca_tterlng insensitive to the behav-
ordered. A different operator-ordering prescription #dyy  10r Of v(ry—r;) at short distances comparable to\gy .
Corresponds to add|ng a term proportiona| toThlS tuning is also sufficient to make the first-order quantum
[,y 1= 8%(0)y. The extra term can be canceled by alsocorrections to other low-energy observables insensitive to the
adding to Eq(5) a term— Su, with Su proportional to the ~ short-distance behavior of the two-body potential. At higher
ultraviolet divergent constant®(0). While the normal- order in the quantum corrections, there are additional param-
ordered prescription is convenient when considering the scasters that must be tuned. For example, at second order in the
tering of atoms in the vacuum, it is awkward for carrying outquantum corrections, it is necessary to also tune the strength
perturbative calculations in the Bose-condensed state. Rathgs+ g5 of a three-body potential. However, as long as one
than specifying an operator-ordering prescription explicitly,considers only first-order quantum corrections, all low-
it is more convenient to simply use the countertedp to  energy observables can be calculated in terms of the single
cancel any ultraviolet divergences that might be generated byarametes.
operator ordering. At short distances, a slowly varying external potential
The local number-density operatgt y(r) is also usually  v(r) in Eq. (21) is equivalent to a shift in the chemical
defined to be normal ordered. A different operator-ordenngpotentimM_ It has no effect on the scattering of atoms and

presc:,rriptio3n corresponds to adding a term proportional tQnarefore does not change the value of the counteriggm
[#.4"]=6°(0). Theextra term can be canceled by SUbtraCt'that is required to tune the scattering length to the value

ing an ultraviolet divergent constanfp proportional to Th : .
) o . e counterterm@u and dp associated with operator order-
5%(0). Thenumber-density profile is the expectation value of. K P P

the number density operator in the ground state of the field'd are also independent M(r). Thus the reqormallzat|ons
theory: required to remove ultraviolet divergences in the case of a

Bose gas in a trapping potential are identical to those re-
p(n)=(yTy(r))— op. (22)  quired for a homogeneous Bose gas.
An alternative way to deal with ultraviolet divergences is
Here gnd below_ we use angular brackets to denote th_e % replace the interatomic potentiag g) 53(r)/2 by a
pectation value in the ground st4@,,). Rather than speci- pseudopotentialys3(r) (a/ar)r/21" Ultraviolet divergences
_fylng an operat(_)r-orderl_ng ?rescrlpglon fgr s explicitly, it can be avoided by evaluating the partial derivative in the
Icselmaor:e Slct)rr;\\//(iaglftnéit/oer&r:r?cﬁg?r? tth: ;S;gtsrrtiﬂiﬁ C?hna;t ar seudopotential at the appropriate stage of the calculation.
y 9 Y e find it simpler to introduce an ultraviolet cutoff and use

generated by operator ordering. The chemical poteptiad o : .
Eqg. (21) must be adjusted so that the integral of the Iocalﬁgﬁn éig%meagégggger:: t;lrr:ei;]); CéLt(gijfantum field theory to

number density is equal to the number of atoms: Most previous work on the density profile has been car-
ried out within the mean-field approximation. In this ap-
f d3rp(r)=N. (23 proximation, quantum fluctuations are neglected. The coun-
terterms Su, &g, and Sp, which cancel ultraviolet
Thus our problem reduces to calculating the ground-statdivergences associated with those quantum fluctuations, can
expectation valué22) for the quantum field theory defined all be set to zero. The fielgy satisfies the time-dependent
by Eqg.(21). Another important observable is the condensateGross-Pitaevskii equation, which is the classical field equa-
(¥(r)), which is the ground-state expectation value of thetion for the action(21):
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h? ) 9 . contribute top(r). Since the density of modes grows rapidly
mv +M_V(r)) = 5(':” PP=0. 24  \ith k, the dominant quantum correctionsgd¢r) come from

) ] the largest values ok whose effects are not removed by
The ground statéQ),) corresponds to a time-independent renormalization. To understand the scalé dfiat dominates,
solution ¢o(r) that can be chosen to be real valued. Thej; is yseful to recall some simple facts about the homoge-

'ﬁa +
Iﬁlﬂ

mean field therefore satisfies neous Bose gas.
52 g The properties of a homogeneous Bose gas with positive
(—V2+M—V(r) bo(r)— = ¢p3(r)=0. (25)  scattering lengtra and low number density are well un-
2m 2 derstood. The dimensionless quantitya® serves as an ex-
The number density22) reduces to pansion parameter for the low-density expansion. For ex-
ample, the ground-state energy density, including the first
p(r)=3(r). (260 quantum correction, is
Thus the density profile in the mean-field approximation sat- 2. 2
isfies the Gross-Pitaevskii equatidh). The condensate in &= 2mh”ap ( 128 \/ﬁ _ (31)
the mean-field approximation is m \ 15

((r))= po(r), (27)  The coefficient of/pa® in the quantum correction term was

. - _ first obtained by Lee and Yarl§.The quasiparticle excita-
and it therefpre sau;ﬂq(sp)- ‘/E . tions of the system are Bogoliubov modes, which are plane
The density profile is modified by quantum corrections.

The corrections can be obtained by expanding the quantur\ﬁv"’wes with the dispersion relation

field around the mean fieléy(r), which satisfies Eq(25): “ h2k K2+ A2 -
_ € - .
P, =gpo(r) +9(r 1) . (28) 2m
The expressiori22) for the number density becomes This dispersion relation changes from lineakito quadratic
, _ . at a scaleA given by
p(r)= (1) +2o(r)RE(r)) + (" ih(r)) — Sp.
(29 A=V16map. (33
The condensate differs fronfp because of the effects of This is the scale of the wave numblerthat dominates the
guantum fluctuations: quantum corrections to the energy density. The one-loop
_ quantum correction is the sum over normal modes of the
((r))=o(r) +(u(r)). (30)  zero-point energies w/2, wherew is the angular frequency

of the normal mode. The contribution from largebehaves

gke Jd%k e(k)/2, wheree(k) is the Bogoliubov dispersion
relation given in Eq(32). This integral is ultraviolet diver-
gent, with the leading divergence proportionatfiteA o,/ m.

This leading divergence and the subleading divergences can
all be removed by renormalization. After renormalization,

Having formulated our problem in terms of quantum field
theory, there are quantum fluctuations on all length scale
ranging fromL, the length scale associated with variations in
p(r), down to the inverse of the ultraviolet cutaffyy, . The
guantum fluctuations with length scales of ortedepend in
detail on the shape of the potentM(r). For quantum fluc- : . . ; .
tuations with Ieng;h scalespmuch}‘;(m)aller tf?arwhe effects  the integral is dominated bzy Ehe SC%IES%VSQ n Eq. (33)
of variations inV(r) are negligible. The short-distance quan- qnd it therefore §cales likie A fm~A p-ra ./m. This es-
tum fluctuations therefore behave locally like those of a holimate agrees with the explicit result given in Eg1).

Generalizing to the case of a nonhomogeneous Bose gas,

mogeneous Bose gas with chemical potentiat V(r). We L ; )
9 9 potenfial V(1) we can anticipate that the quantum corrections to the density

will show that these fluctuations give the dominant correc ; : . .
tions to the density profile profile p(r) will be dominated locally by modes with wave

The one-loop quantum corrections to the number densitfUmPerk on the order ofy16map(r). The contributions

can be obtained by keeping the terms in the action that ark®m much shorter wavelengths are removed by renormaliza-
tion. The contributions from much longer wavelengths are

quadratic in the fluctuating fieldg(r,t). If these fields are oy :
. ) ppressed by phase space. These modes can be approxi-
expanded in terms of normal modes, the correcti@® to mated by a continuum as long as the corresponding wave-

p(1) pan'be expresseq as a sum over the normal modes. Trﬂgngths are much shorter than the schlefor significant
contribution of an individual normal mode to the number _ * tions inp(r):

density scales like L2. This is negligible compared to the vana PR

contribution from the mean field, which scales likéL>. A o

significant contribution can only arise from summing over a 16map(r)> T (34
large number of normal modes. Normal modes with very

short wavelengths approach a continuum and can be labeléfithis lower bound on the density is satisfied, then the meth-
by the wave vectok. The contribution to the density from ods of continuum quantum field theory can be used to calcu-
such modes scales likgd3k. The integral is ultraviolet di- late the dominant quantum corrections. The condit®4) is
vergent. The ultraviolet divergence is proportionalzt@v also necessary in order to calculate quantum corrections us-
and is canceled by the countertedp in Eq. (29). After  ing a gradient expansion, which is an expansion inL1/
renormalization, modes witk comparable toA;,, do not There is an upper bound qu(r) that must be satisfied in
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order to allow perturbative calculations in the quantum field 1 . _
theory with the pointlike interaction in Eq21). This condi- S[¢]=S[v]+f dtf d3r{ V2Té+ = (pé—En)
tion is that the scald must be much less than the maximum Z
ultraviolet cutoff given in Eq(17):

+ ig(VZ—A% X) €+ i77(V2+ Y)n
4m 4m

o
V16map(r)< —. (35 1 iy

28 FSZEE+ o) - (39
If this upper bound is not satisfied, then nonperturbative .
methods must be used to calculate the effects of quantufyheref=(d/ot) f andT, X, Y, andZ are external sources
corrections. The conditio(85) is also necessary in order for that depend om:
the effects of quantum fluctuations to be small enough to be g+ 59
trea_ted as perturbative corrections to the mean-field APPrOXIT (1) =| (pu+ Su)—V(r)— v2(r)
mation. For example, in the case of a homogeneous Bose 2
gas, the condition that the quantum correction to the energy (40
density, which is given by the second term in Eg§)), is 3(g+ 5)
small compared to the mean-field contribution is essentially A2 _ _ 2
identical to Eq.(35). In our analysis of quantum corrections X(N)=A2m) (u+op) = V(D) 2 v (r)},
to the density profile, we will assume that the number density (41)
is in the range specified by the inequaliti&) and (35).

1 2
b(1)+ 5= V2u(r),

g+46g9 ,
Y(r)=2m| (u+ou)=V(n—=—F—vi(n)|, (42
Ill. PERTURBATIVE FRAMEWORK
In this section we present a general framework for carry- Z(r)=— g+dg o(r) 43)
ing out perturbative calculations of the effects of quantum 2 '

fluctuations around an arbitrary time-independent baCkWe have seb =1 in the action. Dimensional analvsis can be
groundo (r). In Sec. IV, we will sety equal to the mean field N ' y

b0 and use this framework to calculate one-loop correction sed to reinsert the factors ffat the end of the calculation.
toothe condensate and density profiles. In Sec. V, weyset . he parzamete,t_\ appears both in the sourdeand explicitly
equal to the condensate) and determine the self-consistent in the £ term in the action and cancels between them. The
one-loop corrections to the equation for the density profile. arbifrariness of this parameter can be exploited to simplity

Itis convenient to parametrize the quantum figid. t) in Cal'(lj'glit:ogi.ize the quantum corrections into a loop expan-
terms of two real-valued quantum fieldsand » that de- 9 d P exp

scribe quantum fluctuations around an arbitrary time-S'ON: We separate the terms in the_ action t.hat deperiieoral
7 into a free part and an interaction part:

independent backgroundr):
S 1= v ]+ Syed £ 7]+ Sl v, €, 7] (44)

E(r,t)+in(r,t) The free part of the action is

rt=v(r)+ ————— 36
p(r,t)=v(r) 2 (36) ) )
sfree{g,n]=f dtf d3r[§<n§—§m+ a6V AP
We will refer to this as theCartesian parametrizatioof the
guantum field. An alternative field parametrization is consid- 1
ered in Sec. VI. If the phase af is chosen so that is real *am 7]V277]- (45)

valued, the condensate profile is
This action describes Bogoliubov modes with the dispersion
1 relation (32), where A is now an adjustable parameter. The
_ el Fourier transform of the propagator for the fiellland 7 is
rNy=uv(r)+ r)). 3
(¥(r)=v(r) ﬁ<§( )) (37) 2 2% 2 matrix

&€ £
The number density is D*(k,0) D ”(k.w))

D7(K,w) D"(K,w)

k?/2m —iw

1 1
p(r)=03(N)+320(N(EMN) + S(E(0) + 5(7*(1) = 5p. 1
iw  2me3(k)/k?]) ’

= 4
(39) w?>—e*(k)+i0*t 49

wherek is the wave vector an@ is the frequency. The
Inserting the field parametrizati@@6) into the action(21) diagonal elements of the propagator mat#®6) are repre-
and expanding in powers of the quantum fieldand », it  sented by solid lines foé and dashed lines for, as illus-
becomes trated in Figs. (a) and Xb). The off-diagonal elements are
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(@)

©

FIG. 1. Diagrammatic representation of the components of the
2X 2 propagator matrix(a) the diagonal propagator fa, (b) the
diagonal propagator fon, and(c) the off-diagonal propagator far
and 7.

represented by a line that is half solid and half dotted, as in
Fig. 1(c). All the remaining terms in the actiof89) are
treated as interactions:

X

FIG. 3. One-loop Feynman diagrams that contributé&).

1 1 the number of diagrams. We therefore prefer to use a propa-
Sint[v,§,7l]=f dtf dsr{ V2Té+ mx§2+ mYﬂz gator matrix with off-diagonal elements.

In the case of a homogeneous Bose gas, the trapping po-

1 g+ 59 tentialV is zero and we can choose the background fietd

+ —Z&(E+ D) — ——(&2+ 9?)?}. be a constant, independent of. If we choose

V2 16 v2=2(u+ 6u)/(g+ 6g) and A%=2m(g+ 8g)v?, then the

(47) sourcesT, X, andY in Eq. (47) vanish and the interactions
reduce to three-point couplings and four-point couplings.

Such a perturbative framework has been used recently to

andZ as well as the four-point coupling+ 8g. The sources reproduce the classic one-loop corrections to the thermody-

are represented by dots labeled by the appropriate letter, 2&MIC properties of a homogeneous Bose Jas.

illustrated in Fig. 2. The four-point couplings are represented 1€ léading quantum corrections to the ground-state ex-
by points that connect four lines. pectation values in Eq$37) and(38) are given by one-loop

It is possible to diagonalize the propagator matds) by Feynman diagrams. Examples of one-loop diagrams that

. 2 2 . -
applying a Bogoliubov transformation to the fieldsnd .~ contribute to(&%) and (%) are shown in Figs. 3 and 4,
However, such a transformation makes the interaction termt&€SpPectively. The dot on the left-hand side of each diagram

in the action significantly more complicated and increase£€Presents the operatgf, which creates two solid lines, or

2 . . .
the number of diagrams that contribute to most quantitiest’® Operatorr”, which creates two dashed lines. The lines

For explicit calculations, it is more economical to minimize oM @ loop that can include any number of insertions of the
sourcesX andY. It is convenient to introduce the notation

( Yxy for the expectation value of an operator in the presence

They include interactions with the external sourdes, Y,

or of the sourceX andY, but with no other self-interactions for
the quantum fields. The sum of all one-loop diagrams for
o o . (£€%) and(7?%) can then be represented as
°
z z '
] Q Y ® X
/\ . X
FIG. 2. Diagrammatic representation of the interaction vertices X

associated with the sourc@&s X, Y, andZ and the four-point cou-
plings. FIG. 4. One-loop Feynman diagrams that contributé#).
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FIG. 5. Feynman diagrams contributing {§) that involve the
sourceT.

<§Z(r)>|l-loop:<§2(r)>X,Ya (48

(772(r)>|1-loop=<772(r)>X,Y- (49

The advantage of this notation is that the expectation value X z! z!
(&) at one-loop order can also be expressed succinctly in ¢ ¢ ‘\ x . ® ‘\ j
terms of (é2)x y and (»?)x y. Examples of diagrams that
contribute to(¢) are shown in Figs. 5—7. The operatér X
creates a single solid line. In the diagrams of Fig. 5, ¢he
field propagates to a sourde where it is annihilated. In the ;
diagrams of Figs. 6 and 7, it propagates to a sodroghich o ¢ o @
creates a pair of solid lines or dashed lines that form a loop. k
In all of these diagrams, thiepropagator and the propagators

inside the loop can include any number of insertions of the

sourcesX and Y. The sum of all such diagrams can be ex- F!G 7. One-loop Feynman diagrams contributing(#) that
pressed as involve a pair ofy lines produced by the sourae

(D=2 [ 7| [ avDg 1)

3
X| T+ S Z(r)(E )y

1
+§Z(r’)<772(r'))x,v)v (50

whereD§fY is the diagonal component of the propagator for
¢ in the presence of the sourcEsand.
The quantities £%)x v and( 7%y v in Egs. (48)—(50) are
- functionals of the sources andY. These functionals include
7 terms of arbitrarily high orders iX andY. They are nonlo-
L cal because the loop diagrams involve an integral over the
3 positions of the sourceX and Y. After renormalization,

these integrals are dominated by wavelengths of order

27/ A, while the sources vary significantly only over much
larger distances of orddr. It is therefore reasonable to ex-
X z 2 pand the sourceX(r’) andY(r’) as Taylor series around
the pointr. This reduces the expressions f@2>x'y and
X {7°)x v to an infinite sum of local quantities involving, Y,
and their derivatives at the point

X X z (E4(r))xy=ap+arX(r)+aY(r)+azV2X(r)+aX3(r)
+as(VX)2(r)+---, (51)
(72(1))x y=bo+b1X(r) +b,Y(r) +bsVZX(r) +b,X?(r)

FIG. 6. One-loop Feynman diagrams contributing(# that
involve a pair of¢ lines produced by the sourc +bg(VX)2(r)+-+-. (52
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The terms on the right-hand sides of E¢sl) and (52) in-
clude all possible rotationally invariant combinations Xf

andY and their derivatives. The constraint of rotational in- X
variance arises from the rotational invariance of the free ac- —
tion (45). In Egs. (51 and (52) we have shown explicitly

only those terms that will ultimately be needed to calculate X X

the quantum corrections to the density profile.
The coefﬂmentsai andb; in Eq. (51) and_(52) can be FIG. 8. Feynman diagrams that contribute to the propagator

reduced to integrals over a wave veckgras illustrated by D, at zero frequency.

the explicit calculation of a diagram presented in Appendix ™

B. Having expanded the sources as Taylor series around ponents of the propagato46) vanish at zero frequency, the

the only scale in the integrand #s. By dimensional analysis, sourceY does not contribute. Examples of diagrams that

a convergent integral must have the form of the appropriatgontribute tofdt’ D¢, are shown in Fig. 8. The contribu-

power of A multiplied by a numerical coefficient. However, tion from the first diagram is given by the upper-left compo-

some of the integrals have infrared or ultraviolet divergencesient of the propagator matrix in E¢46):

and thus require infrared or ultraviolet cutoffs. The ultravio-

let divergences either cancel in quantities suctp@y and _ ,

((r)) or they are removed by renormalization. Infrared di- f dt'D¥(r,r' t") = _sz 5 ge )k2+A2'

vergences reflect a failure of the assumption that the sources (2m) (53)

can be expanded in a Taylor series inside the loop integral. If

these divergences do not cancel, it simply indicates a breakFhe other diagrams in Fig. 8 involve integrals over the posi-

down of the gradient expansion due to the sensitivity of thetionsr” of sourcesX(r”). In coordinate space, the propagator

quantum corrections to nonlocal effects involving the lengthfactor (53) falls exponentially wherr —r’| exceeds I. If

scaleL. we assume that the sour¥evaries significantly only over a
The propagator factofdt’Di?Y(r,r’,t’) in Eg. (50) can  much greater length scale then we can expand(r”) as a

be expanded in powers &f and its derivatives at the point ~ Taylor series around the point”=r. The function

The dependence on the soui¢es removed by the integra- [dt’ D;%Y(r,r’,t’) can then be expressed in termsXyfr)

tion overt’, which corresponds to evaluating the Fourier-and its derivatives at the point The terms coming from the

transformed propagator at=0. Since the off-diagonal com- diagrams in Fig. 8 include

d3k 1

Jdt'fo (rr’t')=—2de—3ke‘”"“"') ! +X(r);—2iV-X(r)L
e (2m)° K2+ A2 (K+A22 7T (K4 AY)?

Sl 6 kikl
(K2+A%*  (K2+A?)°

51 A kiki
(K2+A%)%  (K2+A?*

+V,V,X(r) +2V, XV, X(r)

(54)

|
The complete expression involves all possible powerX of 2 1
and gradients oX. Xf(r)+ —GVX(r)-Vf(r)+ —4V2f(r)+---}. (55

The result(54) can be used to expreég(r)) andp(r) as A A
an expansion in powers of andY and their derivatives at
the point ¢). In the expression fof&(r)) in Eq. (50), the  Applying this formula to the integral in E¢50) and using
propagator factor is integrated against a functi¢n’) that  the expansionés1) and(52) for (£2) and(7?), we obtain an
depends on the sourc@s Z, X, andY. The integral can be expansion for &) in powers ofX, Y, and their derivatives.
evaluated by expandinf(r’) as a Taylor series around the Inserting the expansions fdi), (¢2), and(#?) into Egs.
point r’ =r. Using the expressiois4) for the propagator (37) and(38), we obtain expansions for the condensate and
factor, we can evaluate the integral owér The resulting the density in powers aX, Y, and their derivatives.
expression for the integral includes the terms

IV. ONE-LOOP CALCULATION

f d3r’( f dt’ D§(§Y(r,r’,t’)) f(r') In this section we calculate the one-loop quantum correc-
’ tions to the density profile(r) and to the condensate profile
1 1 1 5 (z,//_(r)> to second order in the grac_iien_t expansion._The appro
= —2mi | =+ = X(r)+ —V2X(r)+ — (VX)2(r) priate choice for the background fieldis the mean fieldso,
A% A4 A® A8 which satisfies Eq(25):
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v(r)=¢y(r). (56) include infinitely many terms. They can be reduced to local

) . ) functionals of$ by consistently truncating the expansions.
The quantum fieldg and 7 in Eq. (36) describe quantum \ye will reduce Eqs(57) and (58) to local equations at a

fluctuations around the mean field. The condensate pmﬁl@pecific pointr, by (a) choosing a specific value for the

(37) reduces to arbitrary parameterr and (b) truncating the equations at
second order in the gradient expansion. Note that the source
Y in Eq. (61) is already second order in the gradient expan-

1
((r)y=epo(r)+ —=(&(r)), (57)  sion. Thus, if we truncate the equations at second order in the
V2 gradient expansion, we need only include terms up to first
while the number densit{38) reduces to order inY and we can omit all derivatives of. We also

need only include terms up to first order WX and up to
second order itV X. However, we still must include all pos-
sible powers oiX.

In order to reduce the expansions {@r) andp to a finite
number of terms, we will choos& so thatX(r) is second
+ £<772(r)>— Sp. (58) order in the gradient expansion at a specific pojntlf we

2 evaluate(¢) andp at the pointry and then truncate them at

The fact that the mean field, satisfies the classical equation second order in gradients ¢, _the res_ultlng expressions for
(25 can be used to simplify the expressio@€)—(43) for <’é(r0)> andp(ro) are alggbralc. functions abo, V ¢, and
the sources. We can also drop the counterte¥msind 6g in Vo evqluated at the poimb. Since we cquld ha\_/e chosen
the source, Y, andZ. These sources appear only in dia- any partlcular.pomt forrgy, these algebralc _relatlor_13 must
grams that are at least first order in the loop expansion. ThEC!d at any point. The most convenient choice fdr is the

counterterms appearing in these sources are therefore nee gve number that appears in the Bogoliubov dispersion re-

only to cancel ultraviolet divergences that arise at secontfO" (32) for a homogeneous gas with number density

order or higher in the loop expansion. Thus the sources caﬁo(rO):
be simplified to

1
p(r)=5(1)+V2ho(r){E(N) + 5 (£(r))

A%=2mgei(ro). (63)
T(r)= Sueo(r) — 79%(”, (59) ;I;)he sourceX and its derivatives at the poimng then reduce
2 Vg
X()=A%-2mgin- 20, (6o X(ro) ==~ (64
V2 VX(ro)=—4mgeoV ¢o(ro), (65)
Y(r)=- (r), (61)

b0
VZX(rg)=—4md ¢oV2eo+ (V o) ?1(r). (66)

g We proceed to calculate the one-loop correction to the
Z(r)= =5 ¢o(r). (62 condensatd ¢(r)), which is given by Eq.(50). Inserting
Egs.(51) and(52) into Eqg.(50) and using Eq(55) to evalu-
The expressiongs7) and(58) for the condensate and the ate the integral over’, we obtain an expansion fdg) in
density are nonlocal functionals of the mean fietd. If powers of the sources and their derivatives. Inserting the
(¥(r)) and p(r) are expanded in powers of the sourées expressiong59), (61), (62), and(64)—(66) for the sources at
andY and their derivatives at the poim{ the expansions the pointry, we obtain

Sao+b0 5,(1, 5g 2 1
ro))=—+2m —— 22—+ —d5|—
(&(ro)) gd’o‘ 2 9 9 ®o A2
5#) 1 9a;+3b;+3a,+b, 1 V2,
—[|3ap+by—4—|—+ — +(3az+b
0T Mo G 2 A2 (3a3+bg) bo

(Vo)?
2

0

+

ou\ 1 1
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The coefficientsa; and b; are given in Appendix C. The )
coefficientsay and by are cubically ultraviolet divergent, p(ro)=do—
while a; andb; are linearly divergent. The divergences are

Su 69 2}
agt+op—2—+ —
0T op 9 g¢o

canceled by taking the counterterfig and g to have the Su\ 1
VaerS + 330+ b0_4_ —+(4a1+ b1+az)

g /A2

VZ
1 +2agA2 ¢¢0
0
b= 0%, (69
127 PAR
- 3a0+b0—43 P+(3al+b1)
1 (V o)?
5g= F(mg/\uv)g_ (69) —2(ag—6a,— 2b,) A%+ 4agA* S
T 0

(72)

The counterterndg in Eq. (69) agrees with that obtained by After using the expression&8) and (69) for the counter-
expanding Eq(14) to first order inmgA . Using the re- ftermsﬁ,u. anq &g, the only remaining ultraviolet d|verg¢nce
sults fora; andb; in Appendix C and the value of givenin IS @ cubic divergence that can be canceled by choosing the

Eq. (63), the condensate at the point reduces to density counterterm to be
1 3
o= 12772AUV. 79
5 . . -
()= po} 1— (2mg)®2¢, The infrared divergent coefficients,, b;, andbs have can-
48m? celed in the expressiof72) for the number density. Thus the
) density has a well-defined gradient expansion through sec-
1 2mg 49 5 8mgeg| Vi, ond order, in contrast to the condensate. Our final expression
1672 2mg 18 Z‘Iog A 2 for the number density, including one-loop quantum correc-
tions, is
N ( 29 1 8mg¢§) (V¢o)2] 70 1
———=log———|—35—1 . _ 12 = 32
9 1677 )\ b3 p(r) ¢o(r)[ 1 6772(ng) bo(r)
1 41V? 113(V¢o)?
where\ r is an infrared cutoff. The logarithmic infrared di- - 2‘/2m9[_#(r)+_(—¢si(r)ﬂ )
vergences arise from the coefficiertis, b;, and bs. The 16 9 ¢ 18 ¢%
divergences indicate that the gradient expansion for the con- (74)

densate breaks down at second order. Thus we can obtaiW derived thi " tth ii it H
local expression for the condensate only to leading order i € derived this equation at the Specriic paigl However,
our final expressions fop(ry) is an algebraic expression

the gradient expansion. Keeping only the first correction . .
termgin Eq.(70), ?he result is ping y involving ¢q, V o, and V¢, evaluated at the point,.

Since we could have chosen any particular pointfpthese
algebraic relations must hold at any point
Combining Egs(71) and(74), we obtain a local expres-
5 sion for the condensate in terms of the density that is correct
(p(r))y=dpo(r)| 1 - 28 5(2mg)*?po(r)|.  (71)  to leading order in the gradient expansion:
7T

1

2

We derived this equation at the poing defined by our 48m
choice(63) for the arbitrary parametex. However, our final  This agrees with a result obtained recently by Timmermans,
result for (y(ro)) is an algebraic expression in terms of Tommasini, and Huantf.
$o(ro). Since we could have chosen any particular point for The choice(63) for A is not unique. Any choice that
ro, that algebraic expression must be valid at any point ~ MakesX(ro) second order in the gradient expansion will be

We next calculate the one-loop corrections to the densityedually acceptable and must give the same final answer. For
which is given by Eq.(58). The expression fo(&) at the —€xample, we could have chosen
pointrg is given by Eq.(67). The corresponding expressions V24
for (¢2) and(#?) are obtained by inserting the expressions AZ=2mge(re)+ ——(ro). (76)
(61) and (64)—(66) for the sources at the poing into Egs. bo
(51) and(52). The resulting expression for the density at theln that case, Eq(64) would be replaced b¥(ry)=0. Fol-
pointrg is lowing the effects of this change through the calculation, we

(2mg*AJp(r)|. (79

(p(r)y=p(r)| 1-
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find that the coefficient &, of V2¢y/ b, in Eq. (72) is re-
placed by &;. However, the term-aq in Eq. (72) depends
on A, which is given in Eq(76). When this term is expanded

in powers of gradients of,, it generates additional terms
proportional toV2¢,/ ¢, that precisely cancel the change in

Eqg. (72). Thus we recover the same final resfit).
Note that the counterterm&8), (69), and (73) do not
depend on the potentiad(r). Thus the ultraviolet diver-

ERIC BRAATEN AND AGUSTIN NIETO

1 1
p(N=v*(1)+ (M) + 5(n*(N)=dp. (79

The ground-state expectation values in EF8) and(79)
are nonlocal functionals of the backgroun¢r). Our strat-
egy is to use the gradient expansion to reduce these function-
als to local functions involving (r) and its derivatives. The

gences in one-loop diagrams are removed by the same renaadpole equatior{78) then reduces to an algebraic relation
malizations that are required for a homogeneous Bose gasbetweerv(r) and its derivatives, while Eq79) expressep

in terms ofv and its derivatives. If we eliminate from these
two equations, we obtain an algebraic relation betweand

its derivatives. This is the differential equation fefr) that
includes self-consistent corrections from one-loop quantum

V. SELF-CONSISTENT ONE-LOOP CALCULATION

In this section we present self-consistent one-loop cal-
culationof the equation for the density profi€r) to second  fluctuations.
order in the gradient expansion. The calculation involves tak- To calculate the one-loop quantum corrections, we use the
ing the equations for the density in the Hartree-Fock approxidecomposition(44) of the action for quantum fluctuations
mation and expanding them around the Thomas-Fermi limitaround a general background field The free par{(45) in-
The result is the differential equatid) that generalizes the Vvolves only the quantum fields and #, but introduces an
Gross-Pitaevskii equation fgr by taking into account the arbitrary scale\. The interaction part47) involves sources
leading effects of quantum fluctuations. T, X, Y, andZ that are given in Eqg40)—(43). At one-loop

The self-consistent one-loop equations can be expressedder, the tadpole equation states that the expre¢s@rfor
as classical field equations for the one-loop -effective(¢) vanishes, which implies
action?® We describe briefly the diagrammatic representa-
tion of these equations. They correspond to summing all con-
nected diagrams with arbitrarily many one-loop subdia-
grams, but no subdiagrams with two or more loops. These
diagrams have the structure of tree diagrams, with one-loop
corrections added to the vertices and arbitrarily many oneSimiIarIy
loop corrections inserted into the propagators. These di ’
grams can be calculated using the perturbative framewo
developed in Sec. lll. The sum of all such diagrams is inde-
pendent of the choice of the background fielt) in Eq.
(36). However, the sum of all such diagrams can be greatly
simplified by choosing the background field so that the
ground-state expectation values of the quantum fi¢ldsad ] ] ]
7 vanish. This choice eliminates all one-particle-reducibleEds. (80) and (81) are integral equations whose solutions
diagrams that can be disconnected by cutting a siglen ~ 9ive -the pondensate aqql the density in the Hartree-Fock ap-
line. The only diagrams that remain are one-particle-Proximation. The quantitie§t?)x v and(»?)x v in Egs.(80)
irreducible diagrams. and (81) can be expanded in powers ¥fandY and their

With the Cartesian parametrizatiéd6), the choice of the  derivatives using Eqg51) and(52). Since these expansions

background field that simplifies self-consistent one-loop calinclude infinitely many terms, the EqE80) and(81) can be
culations is the condensate itself: reduced to local equations only by consistently truncating the

expansions. We will reduce them to local equations at a spe-

cific pointrg by (a) using the classical equations ferandv

to simplify the expressions for the sourcéb) choosing a

specific value for the arbitrary parametgr and(c) truncat-

ing the equations at second order in the gradient expansion.
We begin by simplifying the sources, Y, andZ in Egs.

(412), (42), and(43) by using the classical equatiof$r) =0

andp(r)=v2(r). SinceX, Y, andZ appear only in one-loop

diagrams, any quantum corrections to the sources contribute

(&(r))=0. only at second order in the quantum loop expansion. Using

T=0, we can eliminate the potentidlfrom X andY. Using

Thus the background field must be chosen self-consistently v = Jp, we can expresX, Y, andZ in terms ofp only. We

so that the quantum fluctuations around that background awan also simplifyT by settingv = Jp in the terms propor-

erage to zero. We will refer to the Er8) as thetadpole tional to the counterterméu and 6g. Finally, we can drop

equationbecause the one-loop quantum corrections to thishe terms inX andZ that involve the counterterig since it

equation correspond to Feynman diagrams like those in Figés needed only to cancel ultraviolet divergences that arise at

6 and 7 that look like tadpoles. Using the tadpole equationtwo loops or higher in the quantum loop expansion. Thus the

the density(38) reduces to expressions for the sources can be reduced to

3 1
0=T(r)+ Ez(r)<§2(r)>x,v+ EZ(r)(r;Z(r))Xiy. (80)

the expressiofir9) for the number density reduces
?ﬁit one-loop order to

1 1
p(r)=v¥(r)+ §<§z(r)>x,v+ §<ﬂ2(f)>x,v_ op. (8))

v(r)=(y(n)). (77)
With this choice, the fieldg and » represent the quantum
fluctuations around the ground-state expectation valug. of
Sincew is real valued, the expectation value pfvanished
automatically and the conditiofY7) can be written

(78)
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v(r)+ %V%(r) VX(ro)=—4mgypVp(ro), (89)

T(r>=[u—V<r>—§v2<r>

V2X(ro)=—4md VpV2\p+(Vp)2l(rp). (89

We proceed to determine the differential equation satis-
fied by p in the self-consistent one-loop approximation. This
) equation can be obtained by solving Eg1) for the conden-
X(r)= A2—2mgp(r) - \ \/;(r) satev in terms of the density and its derivatives and then

+

o
5 —7gp<r>}fp<r>, (82

Jp (83 eliminatingv from the tadpole equatio(80). If the tadpole
equation is evaluated at the poirg and then truncated at
second order in the gradient expansion, it reduces to

v2Jp
Y(r)=- 5 (r), (84) 3ag+by 3a;+b;
P 0=T(ro)+Z(rp) 5> T X(rg)
3a,+b, 3az+bs_,
Z(r)z—g\/;(r). (85) g Yot 5 VEX(To)
Note that the sourc¥ in Eq.(84) is already second order in T 3as+ bS(VX)Z(r ) (90)
the gradient expansion. Thus, if we truncate the equations at 2 o

second order in the gradient expansion, we need only includﬁhe expressior82) for the sourceT involvesv and V2.

terms up to first order ity and we can omit all derivatives of Solving Eq.(81) for v(r) to first order in the quantum cor-
Y. We also need only include terms up to first ordeVitX rections W'e obtain

and up to second order ¥ X. However, we still must in-
clude all possible powers of.

In order to reduce the expansions for E@@) and(81) to v(r)=p(r)— 1 Jaotbo—24p + a1+ b, X(r)
a finite number of terms, we chooge so thatX(r) is sec- 2\/;(r) 2 2
ond order in the gradient expansion at a specific pgjnA
convenient choice foA is the wave number that appears in N atb, Y(r)+ as+bs V2X(r) + st by X2(r)
the Bogoliubov dispersion relatiof82) for a homogeneous 2 2 2
Bose gas with number densip(r): atb
+%(VX)2(r)+--- : (91)

2 __
A%=2mgp(ro). (86 We then substitute this expression fomnto the sourcd (r)
With this choice forA, the sourceX and its derivatives at the in Eq.(82) and expand to first order in quantum fluctuations.

pointrg reduce to After calculating the derivativ&?y appearing inT, we can
setr=r, and then truncate at second order in the gradient
V2, expansion. Using the expressioi@}) and(87)—(89) for the
X(ro)=— —p(ro), (87)  sources and their derivatives, the expressionTr,) re-
\/E duces to
|
3 g 1, agtbg—26p du 69
a0+b0—25p a1+b1_a2_b2 2 a3+b3A4 Vz\/;
4 8 4 mp
a0+b0—25p a1+b1 2+ a3+b3+4a4+4b4 4 a5+b5A6)(V\/[—))2
4 4 4 2 mpp
g 1V3p
+W=p)| V= Spt 5=, (92
2 2m

where we have used the expressi@6) for A. The last term in Eq(92) can be dropped because it is proportional to the
classical equatiofil). Its effects are therefore of second order in the quantum loop expansion. This eliminates all occurrences

of the potentiaV in the quantum corrections. Inserting the resulting expressioii (i) into Eq. (90), the tadpole equation
reduces to
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a0+5p 5,u,
0={u-v-2p | o+ pme¥2p 0o~ 2o
a0+b0—25p 2a1+b1+a2 2 a3 4 Vz\/;
+ A —
4 4 2 mp
a0+b0—25p a1+bl _2a4_2b4 (V\/;)Z
— —+ 2_ A4+a5A6 . (93)
4 4 2 mpp

Using the results for the coefficiends andb; given in Ap-
pendix C and using Ed86) to setA?=2mgp(r,), the equa-
tion for p reduces to

0=[u—V(r)]Np(r)— pﬂr +—v2fp<r)

- f(zmg>3’2[4gp2<r>+ [2+p VZp(r)

+(Vp)A(n)] (94)

We derived this equation at the poing defined by our
choice(86) for the arbitrary parameteX. However, our final
result is an algebraic equation reIatidE and its derivatives

at the pointry. Since we could have chosen any specific

point for rg, this algebraic relation must hold at any point
Using Eq.(6) to eliminateg in favor of a and using dimen-
sional analysis to insert the appropriate factorg afito our

Eq. (94), we obtain the differential equatidi2) for the den-
sity profile.

The p? term in Eq.(94) can be obtained from previous
work on the homogeneous Bose gas. Differentiating the re

sult (31) for the energy density with respect {®, we obtain

=gpp| 1+ —<2mg)3’2f (95)

w’

Multiplying by — 1/2, we reproduce they/p andp? terms in
Eq. (94). The Jp VZJp and (Vp)? terms in Eq.(94) are
new results.

solution (74) has the wrong qualitative behavior whexg is
small because it is dominated by tR&¢, and (V ¢)?%/ ¢g
terms. Thus that solution can only be used inside the conden-
sate.

VI. POLAR FIELD PARAMETRIZATION

The one-loop calculations in Secs. IV and V were carried
out using the Cartesian parametrization of the quantum field
given in Eq.(36). There is nothing special about this param-
etrization aside from its simplicity. Other field parametriza-
tions should give the same final result for physical quantities.
An example of an alternative field parametrization is pioe
lar parametrization

Y(r,t)=Voi(r)+o(r,t)exdia(r,t)] 97

The advantage of this parametrization is that it eliminates

infrared divergences from individual Feynman diagrams that

contribute to the number density. In this section we verify

that the polar parametrization gives the same equation for the

density profile. We also use this parametrization to show that

the gradient expansion of the density breaks down at fourth
order.

With the polar parametrizatio@7), the choice for the
background fieldv that simplifies self-consistent one-loop
quantum corrections is the one specified by the tadpole equa-
tion

(o(r)y=0.

The expressiofi22) for the number density reduces to

(98)

As a check of the Eq(94), we can verify that our one-
loop expression fop given in Eq.(74) satisfies Eq(94) after p(r)=v2(r)—ép.
expanding to first order in the quantum fluctuations. There is
an important qualitative difference between the approximat&hus the choice of the backgroundr) implied by the tad-
solution(74) and the solution to the self-consistent equationpole condition(98) is
(94). The solution to Eq(94) has the correct qualitative be-
havior even outside the condensate. In this region, the den- p 1
sity is very small and only the terms in E¢P4) that are m
linear in \/p are important. The equation therefore reduces to

Since this expression involves the ultraviolet divergent con-
stant 5p, v has no simple physical interpretation. It is best
regarded as a theoretical construct that should appear only in
The quantum correction terms in E4) were calculated intermediate stages of a calculation. The simplicity of the
using a gradient expansion that is valid only inside the conexpressior(99) for p comes at the expense of the expression
densate. However, since these terms are all higher order fior the condensate. Expanding Ef7) as a power series in
Jp, their effects are negligible outside the condensate and it and o and taking the ground-state expectation value, we
does no harm to include them. In contrast, the approximatebtain

(99

v(r)=\p(r)+

+---. (100

1
0~[ = V() Np(1)+ 5 V*\p(r). (96)
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(W) =0(r) ~ ——(o2(0) ~ S5 a2 + 2(r)= 5 A I R L0
M=o g3\ 2 ¢ ' 3mu(n) | 2mgo2(r)) | v w2 |
(101 , (107
The expansior{101) includes infinitely many terms and we ury=1—- ———, (108
have written explicitly only those terms that contribute at 2mgu?(r)
one-loop order. The expectation values of operators involv- 2ma?(r)
ing four Oor more powers ofr or a contribute at two-loop S(ry=1— w , (109
order or higher. A2
We begin our calculation by inserting the parametrization 5 a2
(97) into the action(21) and expanding in powers of the W(r)= 1 A (110
guantum fieldsr and a: 2mu(r) 2mgo?(r)
B a1 1 .. The arbitrary parameteA, which was introduced through
S[¢]—S[v]+f dtJ d r‘5T0+§(aU_0a) the rescaling of the fields, appears in both the free part of the
action and the interactions. We will exploit the arbitrariness
v? 1 g+dég V% of this parameter to simplify the calculation of quantum cor-
_ﬁ(va)Z__z(vg)Z_ 7 3 rections.
8my 4mo The tadpole equatiof®8) can be writter{ £(r))=0. To
(V)2 1 first order in the quantum corrections, this equation implies
- 4)0'2—2—0'(Va')2+ 0(Va)? that (A/\2mgu?)T plus the sum of all one-loop tadpole
4my m 8mu diagrams vanishes. The one-loop diagrams include all pos-
V2 Vp)2 sible insertions of the sources, U, and S. The one-loop
+< vo_ (Vo) )Ua (102 tadpole equation can be written succinctly in the form
6mv® 3mu® ’

A 3 1
- _ 2 __v. 2
whereT is the external source given in E@0). The param- 0= ‘/ngl)ZTJr 22<§ Mxus 2V [WV(&xu ]
V2mgu?

etrization (97) leads to an infinite series of momentum-
dependent interactions. We have dropped terms that are 1 ) )

fourth and higher order in the quantum fields since they do  + 2 WA(VOIxus™ 700 — 1 (V1) I)xus:
not contribute to the one-loop quantum corrections to the

density profile. It is convenient to introduce an arbitrary pa- (111

rameterA into the action by rescaling the quantum fields asyhere( Yx u.s denotes the ground-state expectation value in
follows: the presence of the sourc¥s U, andS, but with no other
A interactions. The expectation values in Etj11) are nonlo-

o(r,t)= /mg' &(r.v), (103 cal functionals of these sources. After Taylor expanding the
\/m_g sources around the point, these functionals can be ex-
a(r,t)= A 7(r,t). (104  panded in powers dX, U, andS and their derivatives at the
pointr:
After these rescalings, we separate the action into a free part(§2>x,U,S: Co+CU+C,S+c3 U2+c, US+eg S+,
and an interaction part as in E@4). The free part is iden- (112

tical to Eqg.(45) and the interaction part is

3 \/_ A 1 ) <(V§)2>X,U,S:d0+d1 X+d2 V2U+d3 V28+d4(VU)2
.= dtfdr 2———=Té+ —X
Snlv.£7] f J2mgu? £ am*¢ +dg VU-VS+dg(VS)2+--, (113
1 1 V) iyus= X+e, V2U+e; V2S+e,y(VU)?
+——U(VE)2+ —S(V 7)2 (Vn)9)xus=€ote X+e, te3 VStey(VU)
4m 4m
+esVU-VS+eg(VS)2+---. (114
+ izgs+ iwg(vg)Z The terms on the right-hand sides of E¢$12—(114) in-
2 V2 clude all combinations oX, U, S, and their derivatives that

are allowed by rotational symmetry. We have written explic-

1 2mg? V)2 10 itly only those terms that are required to calculate the equa-
~JBmu A €V e (109 ion for the density through second order in the gradient
expansion.

whereX, Z, U, S, andW are external sources that depend on  The right-hand side of Eq111) is a nonlocal functional

the background: of v. When it is expanded in powers &f, U, S, and their
A2 V2% (Vo)? s derivatives, there are infinitely many terms. The equation can
X(r)=—2———|—— ———|(n)— _gAz, be reduced to a local one only by consistently truncating the

2mgu?(r)l v v g expansions. We will reduce E¢L11) to a local equation at a

(1006 specific pointry by (a) choosing a specific value for the



14 760 ERIC BRAATEN AND AGUSTIN NIETO 56

arbitrary parameterA and (b) truncating the equations at cel ultraviolet divergences that arise at two loops or higher.
second order in the gradient expansion. Since the soxtces With the choice(115) for A, the tadpole equatiofl11) sim-

andZ in Egs.(106) and(107) are already second order in the plifies at the point to
gradient expansion, we need only keep terms of first order in

X andZ and we can omit any derivatives ¥t Moreover, we 1[v2y  (Vv)? 1
need only include terms that are first ordeMiAU and VS 0=T+ | ——2—3 (D us HV2<§2>X,U,S
and terms up to second order¥J andVS. However, Eq. v v v

(119 still includes all possible powers & andS. We can Vo 1
reduce this equation to a finite number of terms at a specific +—- V() st 4—[<(V§)2>x,u,s
pointry by choosingA so that the sourcdd andS vanish at m m

the pointry. The required value is
P ° ! _<(V77)2>x,u,s]- (123

AZ=2mgu?(ro) . (119 N . .
) _ ) _ ) After inserting the expansiond12—(114) into the tadpole
With this choice ofA, the sources on the right-hand sides of equation(123 and evaluating it at,, we can truncate it at

Egs.(112—(114) reduce to second order in the gradient expansion. Using the expres-
V2 (V)2 sions (116—(122) for the sources, we obtain an algebraic
X(rg)=—2| — — —5—|(ro) , (11  equation relating, Vv, andV?y at the pointry. To express
v v this equation in terms gf and its derivatives, we eliminate

using Eq.(100). Since the termSp/2\/p in Eq. (100) is first

U(ro)=0, (117 order in quantum fluctuations, it is needed only in the t&rm
Vu in Eqg. (123). The sourcel then becomes
VU(ro):ZT(ro), (118)
g9 1 op Ou
2 2 T=|p=V=Sp\Np+5=-Vp—| 5~ —|gVp
, V& (Vo) 2 2m 2 g
VAU(ro) =2 —==3———1(ro), (119
! %9~ b V%_(vmz)
S(re)=0, (120 2P 2 Tme T T
Vv 2
VS(rg)= — 2~ (ro), (121 o 9L, 1V
v +2 u—V 5P \/;+2m o | (124
) Vv  (Vv)?
ViS(ro)=—2|—+ 2 (ro), (122 The last term in Eq(124) can be dropped because it is pro-

portional to the classical equatiéf). Its effects are therefore
In the expressionl16) for X(ry), we have dropped the term second order in the quantum loop expansion. After inserting
involving the countertern®g since it is needed only to can- Eg. (1249 into Eq. (123, the tadpole equation reduces to

. g 1 2 do_eo 1 5/,L 5p 59
0—(# V-3p Vp+ sm Y Vp+ 7 W;Jr o 29 7/3\/;
" C,1—0C dl_d2+d3+ el_ez+63 (SP VZ\/;
Com 5 2 2 2 ) mp
(2 7C1_302+2( " ) d1_3d2_d3 (d detd )+el_362_e3+( n ) 5p (V\/;)z
- Com——— C3=CytCs)————F—— — (04— 0s 6 - 5 €1—€stT€)~ 5 |/ —-
2 2 2 2 movp
(129

The coefficientg;, d;, ande; are given in Appendix C. The Using the expression for the coefficients given in Appen-
coefficients are all infrared finite but ultraviolet divergent. dix C, Eq.(125 reduces to

The ultraviolet divergences from individual diagrams are g 1

more severe than those encountered with the Cartesian fiel®=(x—V)\p— 59\/54' mvz\/;
parametrization used in Secs. IV and V. The integdglsnd

gy diverge as the fifth power of the ultraviolet cutoff, but 1 A® 17 A3 17 A3
they cancel in the combinatiaty,— e,. The remaining ultra- —— 2=+ 1—2m—V2\/;+ 24 (Vip)?|.
violet divergences are canceled by the countertefmssg, 48m m\/,; P mp ‘/;

and p, whose values are given in E($§8), (69), and(73). (126
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After using Eq.(115 to setA%2=2mgp(r,), we reproduce 1\t 1\m
the self-consistent one-loop equati¢®4) for the density f dwf d3kk? 2 (kz)”(E> ~f dk kKM,
profile.

There has been a previous attempt to calculate the quan- (128

tum corrections to the Gross-Pitaevskii equafibthe au-

thors uscfa'd Ithe polar fielcli para;retrizat(@?, IW ith the baCk' red divergences first appear in the tadpole equation when it is
ground fieldv(r) equal to the mean fieldho(r). They gy anded to fourth order in the gradient expansion.
dropped all terms in the action that were third order and our explicit one-loop calculation of ) in Eq. (70)

h'9h¢r ina ando a_md they also dropped second-orde_r t_ermsshowed that the gradient expansion for the condensate breaks
that involved gradients o, or 0. The only terms remaining  jo\yn at second order. The analysis presented above shows
in the action that contribute to the density profile are that the gradient expansion for the dengitgloes not break
down until fourth order. The breakdown of the gradient ex-
pansion implies that the quantum corrections depend on non-
local effects involving the length scale for significant
variations inp. While we have identified the orders at which
the gradient expansions break down, we have not identified
any deep reason for the gradient expansion of the density to
be better behaved than that of the condensate.

An infrared divergence can appear onlynie=4. Thus infra-

ST1-S[gol+ [ at d3r[%<aér—aa>
P3(r) 2 9

ZUZ].

With such a drastic truncation of the action, the quantum
corrections that they ultimately calculate are of no relevance
to the problem of atoms in a trapping potential. This is evi- |n this section we estimate the magnitude of the effects of
dent from the fact that the Bogoliubov dispersion relationquantum fluctuations for Bose-Einstein condensates in exist-
(32) never enters into the quantum corrections that they caling magnetic traps. For numerical estimates, we will use pa-
culate. Thus their approach is incapable of reproducing theameters characteristic of the sodium experinfemhich has
known results for a homogeneous Bose gas. achieved the highest density condensates to date. In this ex-
A comparison of the calculation above with that presentegheriment, N~5x 10° sodium atoms were condensed in a
in Sec. V demonstrates that the Cartesian field parametrizarapping potential with a length scatée~2 um. TheS-wave
tion is more efficient than the polar field parametrization forscattering length for sodium atoms #<~0.005 um. The
explicit calculations. With the polar field parametrization, number density that was attained at the center of the conden-
one avoids infrared divergent integrals at intermediate stagegte wag~400jum?.
of the calculation, but this advantage is compensated by the Baym and Pethick have presented a simple qualitative
fact that the integrals are more severely ultraviolet divergentanalysis of the solution to the Gross-Pitaevskii equation that
The simplicity of the relation99) betweenp andv is com-  allows one to determine how various quantities scale with
pensated by a tadpole equati@hll) that is more compli- the numberN of atoms® The qualitative behavior of the
cated than the corresponding equati80) in the Cartesian  solution to Eq.(1) depends crucially on a dimensionless pa-

field parametrization. rameter{ given by
The advantage of the polar field parametrization is that it

avoids cancellations of infrared divergences between differ-
ent diagrams. This makes it easier to identify the sources of
infrared divergences that are responsible for the breakdown ) ) o )
to show that the gradient expansion of the density break§ons in the potential/(r). For a harmonic oscillator poten-
down at fourth order. The component of the propagator matial, /'=%/\me, where w is the angular frequency of the
trix (46) that is most infrared sensitive 377. For small loop harmonic oscillator. I£ is less than or of order 1, the size of
momentunk, the frequency in the loop scales like\ k/2m the condensate is comparableAfoand the number density

(127

VII. IMPLICATIONS FOR PRESENT TRAPS

s
, (129

8mNa
/

andD”7 scales like 2n/k?. The most infrared singular dia-
grams are those for which all the lines aydines. The term
in the tadpole equatiofi11) that is most infrared sensitive is
((Vn)®xu.s, because the operatoV ()? creates twoy
lines. In the expansionll4) for that matrix element, the

inside the trap scales likd//3. If { is much greater than 1,
the sizelL of the condensate scales like= ¢/ and the den-
sity inside the trap scales likg/(£/)3. The condensates in
existing magnetic traps are characterized by values thiat

are significantly greater than (For the sodium experiment,

most infrared singular terms are those that involve only the~13.) We will determine how the correction terms in our

sourceS, which couples to a pair ofy lines. The infrared
behavior of the coefficient of a term in E¢L14) that in-
volvesm factors ofV andn factors ofS can be determined
by simple power counting. The integrand has a factor kf 1/
for each of then+1 propagators. There is a factor ko for
the operator ¥ 7)? and a factor ok? for each insertion o8§.
Finally, dimensional analysis requires that each factoV of
be compensated by a factor okl the integrand. Thus the
integral must scale like

equation for the density profile scale within the casg>1.

The expansion paramete/fp_ag for the low-density expan-
sion scales likea//". Although( is large for existing traps,
a// is tiny and the producta// is small.(For the sodium
experiment, /a//'~0.03) The modes that dominate the
guantum corrections have wavelengths on the order of
1/\/pa, which scales like”/¢. Since this is small compared

to the length scalé/” for significant variations ip(r), it is
reasonable to expand the quantum corrections using the gra-
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dient expansion. The gradient expansion corresponds to dions are therefore negligible. The relative importance of
expansion in powers of the dimensionless quantitjpdl~,  quantum corrections that are second order in the gradient
which scales like Z%. Thus, inside the condensate, quantumexpansion increases as one approaches the edge of the con-
corrections are suppressed g/~ and corrections from densate, where the gradient expansion breaks down. How-
second order in the gradient expansion are suppressed Byer they are still suppressed by a quantum loop factor of
¢4, ordera/{/ .

Outside the condensate, the dengityapidly approaches The gradient expansion for the density breaks down at

0. The only terms in Eq(2) that are important in this region gourth/orzd?/r\} but thet_ bretaktcéOWh in .tonc:y Ichgtﬁrithmic in
are the terms that are linear ifp. The scale of the gradient pa(¢/)”. We can estimate the magnitude of these correc-

. - o . tions by taking the logarithms to be of order 1. These cor-
is now set by the length scalé for significant variations in rections are therefore suppressed by two powers of

V(r). In this region, the basic assumption underlying oury;g ., /)2 There is also an additional suppression factor
calculation, that the quantum corrections are dominated by Jpa3, since terms of fourth order in the gradient expan-

wavelengths of order jpa, breaks down completely. How- o enter only through quantum corrections. Thus these cor-
ever, all the quantum corrections terms are higher order ipactions should be completely negligible.

Jp and therefore have a negligible effect on the solution
outside the condensate. Thus it does no harm to include the
guantum correction terms in E(R) in the exterior region. VIIl. CONCLUSION

The crossover region between the interior and exterior of .
the condensate can be characterized by the fact that the !N this paper we have developed a framework for calcu-
v2\/p term and the\/p terms become comparable in impor- lating the dominant effects of quantum fluctuations in a
tance. The gradient expansion breaks down in this region. ApOS€-Einstein condensate trapped by an external potential.
the beginning of the crossover regioW, still scales like OUr method is based on a combination of the Hartree-Fock
1/¢/, but the density has decreased to the point phstales approximation _and an expansion around the Thomas-Ferm|
like a/(¢/)2. Therefore, the quantum loop expansion param—“m't' We have illustrated the method by calculating the self-

: , - o istent one-loop equation for the density profile to second
eter Jpa® scales likea/¢/. As long as this quantity is suf- consis : . .
ficientfy small, the quantum corrgction terrﬂs in Eya) are order in the gradient expansion and the relation between the

negligible. (In the sodium experiment, we have condensate and the density to zeroth order in the gradient

al/{/~0.0002) Thus it does no harm to include the quantumgglpcirllast'grlhg Sé?f%%ltds kz;f Sﬂ:ﬂﬂﬁ?%ﬂﬂ;&f;gzlsotrﬁg:horccj) t(?
correction terms in Eq(2) in the crossover region. We con- q prop

clude that the differential equatid) can be used to calcu- erties of the condensate at zero temperature, such as the
late the density profile everywhere. spectrum of its collective excitations. It would also be inter-

We now give a quantitative estimate of the error fromestmg to extend the method to nonzero temperature so that

truncating the quantum loop expansion at one-loop order. Lne could study how the effects of quantum fluctuations vary

simple estimate of the relative magnitude of the quantumWIth temperature.

corrections is the ratio of the? correction term in Eq(2) to
the_p\/E term, Which is (32/3)/pa3/77. For the sodium ex- ACKNOWLEDGMENTS
periment, this ratio is approximately 0.04 at the center of the
condensate. This is small enough that quantum corrections This work was supported in part by the U.S. Department
can be treated as small perturbation to the mean-field a@f Energy, Division of High Energy Physics, under Grant
proximation. Sin(;e/pa_3 scales |ikeN1/5, the number of at- No. DE-FG02-91-ER40690. We thank T.-L. Ho for valuable
oms in the trap could be increased by many orders of magdiscussions.
nitude and the condensate would still be within the
perturbative region.

A naive estimate of the relative magnitude of two-loop APPENDIX A INTEGRALS

quantum corrections is the square of the magnitude of the |, his appendix we give analytic expressions for the fre-
one-loop quantum corrections. Their effects should thereforauency integrals and the wave-vector integrals that are re-
be negligible. One complication is that the two-loop correc-gired to calculate the one-loop quantum corrections to the
tion depends not only on tH&-wave scattering length, but  gensity and the condensate. Since time-independent sources
also on a second parameter that represents a pointlike cogg ot change the energy, the frequency integrals are rather

tribution to the 3-3 scattering amplitud? If this param-  gimple. They can be evaluated using contour integration. The
eter is anomalously large, the two-loop quantum correctlongpeciﬁC integrals that are required are
could be significantly larger than the naive estimate.
We next quantify the errors from truncating the equation
for the density at second order in the gradient expansion. AJ do 1

simple estimate of the relative magnitude of contributions

2_.2\n
from second order in the gradient expansion is the ratio o 27 (0= €?)

the V2\/p term to thep \/p term in the Gross-Pitaevskii equa- (—1)Xx1X3.--(2n-3) 1
tion (1). Assuming thaW2/p scales likeJp/(£/)?, the ratio =j(—1)"*? - Py (A1)
is 1/8pa({/?). In the sodium experiment, this ratio is 2'(n=1)! €

roughly 10°° at the center of the condensate. These correc-
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dw w? 1 I'(— 32T ((n+3)2)
= —_— |ZA8 _ 2 3
27 (P 'nn 4772(3A“V MwA T ) ’
(A7)
) (—=1)X1x3---(2n—-3) 1
=i(-1)"* +1 — (A2) 1 (2 n n(n+2)
2"l e |n+1,n:m<§Agv_gAavA2+—AuvA4
Time-independent sources that are inserted into a loop B
diagram change the wave vectoof the propagators in the ['(~ 521((n+5)2) (A8)
loop. The gradient expansion corresponds to expanding the I'(n/2)

loop integral in powers of the wave vectgrsof the sources The infrared-di . Is th iredl
and of the external lines of the diagram. After averaging over € Infrare hlvehrgr;]ent |r|1tegrahs that ?re r?jq(;ure s
integration angles, thk integrals that are required have the 0" N~ 2m-+ 3, which have logarithmic infrared divergences.

form The integrals can be regularized by imposing an infrared
cutoff k>N |g. In the limit A \y<<A, the regularized integral
_ f d3k (k%)™ A3) reduces to
™) (2m)3 (kJK2+ AR f 0(A—k))
m+3=_ 5 -
wherem andn are integers. Im andn satisfym—n< — 3/2, Imam+ k2+A )Mz kAR

this integral is ultraviolet convergent. Ifi@—n>—3, the
integral is infrared convergent. If it is both ultraviolet and

: , : +—A 2m=3) g— A
infrared convergent, its value is 272 ° (A9)
_I'(n—=m—23/2)I'((3—n)/2+m) A3+2zm-2n The specific integrals that are needed in our calculations are
m,n 2 )
47T (n/2) 4A2
l_2-1=— 2Ayy+ Iog— 2|A|, (A10)
3 Am MR
m+ §<n<2m+3. (A4) 1 4A2) 1
|_1’1:F |Og)\—2 K, (A11)
The ultraviolet-divergent integrals that are required are & IR
I'mn for n—=m=-1,0,1, which have power ultraviolet diver- 1 4AA2 1
gences. A convenient way to regularize the integral is to log=——| 00— —2|—. (A12)
subtract pure powers d€ from the integrand that will re- 4 MR A

move the ultraviolet divergence and then to add those poweligote that the integrall - »_1 is ultraviolet divergent as well
of k back in with an ultraviolet cutofk<<Ayy . The regular- a5 infrared divergent.
ized integral is then

L fe K2+2m-n APPENDIX B: EXPLICIT CALCULATION
=— | dk| ———— OF A DIAGRAM
2m2Jo | (K2+ A2 . . . .

In this appendix we illustrate the calculation of one-loop
diagrams that contribute to the quantum corrections to the
— =\ 2in 20 om—2n—2i density by calculating one diagram in detail. We consider the
- 2 _2 ATk last diagram in Fig. 3, which represents a contribution to the
I matrix element(£?)y y involving two insertions of the

sourceX.
1 3 5| A2 2+ 2m-2n-2i It is convenient to _calculate the diagram in wave-vector
; = _ A fo dk : space, and then Fourier transform to get the diagram in co-
I ordinate space. The diagram involves an integral over the
3 frequencyw and an integral over the wave vectorunning
n<m4+ —. (A5)  around the loop. Letting the wave vectors of the two sources
2 be p; andp,, the expression for the diagram is

The first integral in Eq(A5) is convergent and is equal to the 3 2
expression on the right-hand side of E44). The only de- } j d*k H(k+py)"/(2m)
pendence on the ultraviolet cutoff comes from the remaining? (2m)?®  w?—€*(Jk+pq))
integrals in Eq.(A5), and they give a polynomial i, .

m-n+1 n

The ultraviolet divergent integrals that arise in our calcula- iX(py) ik#2m iX(p,) i(k—py)%2m
tion are 2 2 2 > > > . (B1)
M w?—e’(k) 2M w?-e*(|k—pyl)
ly1n=—o| 2 A+ r'(- 1/2)F((n+1)/2)A) We have written the Feynman rules for each of the propaga-
T 42 I'(n/2) ’ tors and vertices in the loop in the order in which they appear

(A6)  as one goes clockwise around the loop. There is a symmetry
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factor of 1/2 and the factor of 2 inside the integral is thethe expansiori51) for <§2)X y are
Feynman rule for the operatgf. There is an implied+i0*
prescription in the denominator of each of the propagators. 1 (C1)

The first step in evaluating the diagram is to expand the q0=5 11
integrand to second order in powers of the external wave
vectorsp, and p,. The expansion of the denominators has 1
the form ar=7laa, (€2
1 1 1
= =——lg1, C3
02— e(|k+p))  w?—e(k) B= g0 €3
2 2 2 . k)2
L[, £ pTr2pk (k) 1 2= 48( 1015 7+ 13155~ 11 9), (C4)
2m  k22m/ 2m m? |[w?—€?(k)]?
K QK (pk? 1 _3
N OGRS . 82 a,=1gl3s: (C5)
2m  k2p2m) m? [0?—€X(k)]®
We can now use the formulgAl) to evaluate the integral 1
over w. This reduces the diagram to an integral okeiVe 35= 7g5(3 60~ 101473129 - (C6)
can average over the angleskoby making the substitutions - , . 2
k'kl —k26'/3 andk!—0. After simplifying the diagram, we The coefficients in the expansidh2) for (7°).y are
find the terms 1
bo=51-1-1, (C7
1 X(py)X( )f d3k Q(k2/2m)3
P1) A(P2 S
162m)? @m?” €k oL
1=~ 7l (C8)
P1- P (k?/2m)® (K?/2m)* . (k?/2m)?
— _ _ 1
6(2m) ek e’(k ek
(k) (k) (k) ©3) by=71-2-1, (C9)
There are also terms proportional tp2¢+ p2)X(p1) X(p2) 1
that we have dropped. They correspond to terms of the form bs=75(2l55= 3115711, (C10
XV2X, which first contribute to the density at fourth order in
the gradient expansion. Expressing the integrals dvén 1
Eq. (B3) in terms of the integrals,, , defined in Appendix b,=— 1_6|1’3’ (C1)
A, the expression reduces to
5
]__6)(([‘)1)><(p2)|3Y5 b5— - Ez(lzl'?—’_ 2' 2’5“1‘ I 013). (C12)

We next list the coefficients that are required in Sec. VI to

_i(35| 6.6~ 1014 7+ 3159)p1- P2X(P1)X(Py). (B4)  calculate the density profile using the polar field parametri-
192 zation. The coefficients in the expansitl2) for (£%)y y s

After Fourier transforming to coordinate space, this become&'®
1

3 1 -
7613940 + 155(38 6= 1014731, 9 (VXOX(D). C0=3'1a (13
B5
(B5) 1
From this expression, we can now read off the coefficients Cl_ZI 3.3 (C14
a, andas in the expansior51) for (£%)y v .
1
APPENDIX C: COEFFICIENTS C2=~ 2l (C19
In this appendix we express the coefficients that appear in 3
the calculation of one-loop quantum corrections to the den- | C16
o ; > 3 55 (C16
sity in terms of the integral$;, , that were defined in Ap- 16
pendix A. We first list the coefficients that are used in Secs.
IV and V to calculate the condensate and the density profile C,=— 1| (C17)
using the Cartesian field parametrization. The coefficients in a7 g
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1 The coefficients in the expansiéhl4) for ((V 7)?)x u s are
C5:__|11. (C18)
16~ 1
The coefficients in the expansighl3 for (V&)%) y s are e0=ilo,,1, (C20
1
d0:§|2,1, (C19 1
&=~ 7l (C27)
1
d]_:Z I 3,3y (CZO) 1
€= 48(2|55 Tl3z=119), (C28
d,= 48( 101, 7+ 251559133, (C2)
1 e3= 48(2I33 3l +71-1 1), (C29
d3:4_8(2| 55~ (33— 111, (C22
1
1 e4 192( 5l 7, 7+ 6l 55 13 3, 3)’ (C30)
dy=755(351g9— 90177+ 9155, (C23
192
1 1
ds=gg(~ 5177+ 1455~ 213, (C24) €5=gg(3ls57 21557 13110, (C3D
1 1
dg= 192( S5lg5t+6133—131; ). (C2H e6=6—4(l3,3+ 2111+91-1 ). (C32
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