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Gaussian time-dependent variational principle for bosons: Contact interaction in one dimension
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We investigate the Dirac time-dependent variational method using a Gaussian trial functional for an infinite
one-dimensional system of bosons interacting through a repulsive contact interaction. The method produces a
set of nonlinear time-dependent equations for the variational parameters. By solving the static equations we
have calculated the ground state energy per particle. We have also considered small oscillations about the
equilibrium and obtain mode equations which lead us to a gapless dispersion relation. The existence of an exact
numerical solution for the ground-state energy and excitations obtained by Lieb allow us to compare with the
Gaussian results. We can also, as the system becomes less dilute, see the improvement of the results as
compared with the Bogoliubov scheme.@S0163-1829~97!04846-7#
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I. INTRODUCTION

Recently Bose-Einstein condensation in atomic traps
achieved1–3 in a dilute regime (a3n!1). This is in contrast
with the helium 4 regime where a much higher density le
to (a3n'1). For the high-density regime there is a lar
‘‘depletion’’ ( '90%) ~Ref. 4! where as for the dilute regim
it is very small ('1%).5

Theoretically these experiments have been described
successfully with mean-field theory without quantum flu
tuations using the Gross-Pitaevskii equation6 or the Bogoliu-
bov scheme.5 The Gaussian self-consistent approximati
presented here should be useful in the intermediate reg
Unfortunately due to three-body recombinations there se
to be a limit7 for increasing the number of particles in th
system. Recently it has been pointed out8 that using a strong
magnetic field it would be possible to make the system
fectively less dilute by drastically changing the scatter
length. This makes the comparison between self-consis
results and dilute theories very important. In this context
one-dimensionald function case can produce some insig
because a contact interaction can be used in the
consistent theory in contrast with the three-dimensio
case.9,10 The existence of an exact solution for the groun
state energy and for particle and hole excitations makes
comparison very interesting, provide that we understand h
the separated particle and hole excitations of the ex
solution20 are connected to the particle-hole excitations giv
by the approximate methods.

The objective of this paper is to exhibit the most gene
way of obtaining time-dependent equations of motion in
Gaussian approximation.11 This will lead to the so-called
generalized random-phase approximation~RPA!, when one
examines infinitesimal oscillations about the equilibriu
The static solution in the uniform case can be obtained us
several other methods12,9 leading to a gap in the quasiboso
energy. We show here that the time-dependent RPA eq
tions lead to a gapless mode. In fact thismusthappen be-
cause particle number conservation symmetry is broken
560163-1829/97/56~22!/14733~12!/$10.00
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the static solution, so the zero gap is exactly the associ
Goldstone mode. This discussion can be seen as an alte
tive to the functional derivative13,14 method in the
Girardeau-Arnowitt15 approximation.

The Bogoliubov scheme, for a dilute or weak interacti
system, can be obtained by a particular truncation of
Gaussian results. So, we can compare the Gaussian v
tional results, the dilute Bogoliubov scheme, and the ex
solution for the particular case under discussion here.

The structure of this paper is as follows. Section II r
views the time-dependent variational principle and the
nonical nature of the equations of motion arising from it.
Sec. III we specialize to the one-dimensional uniform ca
end examine the ground-state energy and the excitations
both the approximate methods and the exact solution. S
tion IV contains our numerical solutions and conclusions

II. GENERAL FORMALISM

In this section we shall review some of the results of t
time-dependent variational principle11,16and show how it can
be implemented in the nonrelativistic case. First we define
effective action functional for the time-dependent quant
system

S5E L~ t !dt5E dt^C,tu~ i ] t2Ĥ !uC,t&, ~1!

whereuC,t& is the quantum state of the system andĤ is the
Hamiltonian of the theory. For a system of nonrelativis
interacting bosons we have@we use the notation:*x5*d3x#

Ĥ5E
x,y

ĉ~x!†h~x,y!ĉ~y!1
1

2Ex,y
ĉ~y!†ĉ~x!†V~x2y!

3ĉ~x!ĉ~y!, ~2!
14 733 © 1997 The American Physical Society
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14 734 56ARTHUR K. KERMAN AND PAOLO TOMMASINI
where the one-body Hamiltonianh(x,y) may include a one-
body external potential. The creation and destruction op
tors ĉ† and ĉ can be written in the form

ĉ~x!5
1

A2
@f̂~x!1 i p̂~x!#, ~3!

ĉ~x!†5
1

A2
@f̂~x!2 i p̂~x!#,

where f̂(x) is the field operator andp̂(x) is the canonical
field momemtum.

We can obtain the time-dependent Schro¨dinger equation
by requiring thatS is stationary, supplemented by approp
ate boundary conditions, under the most general variatio
uC,t&. The variational scheme is implemented by chosin
trial wave functional describing the system. Working in t
functional Shro¨dinger picture we replace the abstract st
uC,t& by a wave functional of the fieldf8(x)

uC,t&→C@f8,t#. ~4!

The action of the operatorsf̂(x) and the canonical momen
tum p̂(x) are realized, respectively, by

f̂~x!uC,t&→f8~x!C@f8,t#, ~5!

p̂~x!uC,t&→2 i
d

df8~x!
C@f8,t#.

The mean value of any operator is calculated by the fu
tional integral

^C,tuOuC,t&5E ~Df8!C* @f8,t#OC@f8,t#, ~6!

whereC is normalized to unity. The Gaussian approxim
tion consists of taking a Gaussian trial wave functional in
most general parametrization

C@f8,t#5NexpH 2E
x,y

df8~x,t !FG21~x,y,t !

4

2 iS~x,y,t !Gdf8~y,t !1 i E
x
p~x,t !df8~x,t !J ,

~7!

with df8(x,t)5f8(x)2f(x,t). Due to the fact that the
Hamiltonian commutes with the number of particl
N̂5*xĉ

†(x)ĉ(x), i.e.,

@Ĥ,N̂#50, ~8!

we can actually define a more general trial functional

uC8,t&5e2 iN̂u~ t !uC,t&, ~9!

whereu(t) is another variational parameter introduced b
cause of this continuous symmetry. Thus our variational
rameters aref(x,t), p(x,t), u(t), G(x,y,t), andS(x,y, t),
with G andS being real symmetric matrices. These quan
ties are related to the following mean values:
a-

of
a

e

-

-
s

-
-

-

^C8,tuf̂~x!uC8,t&5f~x,t !,

^C8,tup̂~x!uC8,t&5p~x,t !, ~10!

^C8,tuf̂~x!f̂~y!uC8,t&5G~x,y,t !1f~x,t !f~y,t !,

^C8,tu i
d

dt
uC8,t&5E

x,y
S~x,y,t !Ġ~y,x,t !1E

x
p~x,t !ḟ~x,t !

1Nu̇~ t !1total time derivatives. ~11!

We may ignore the total time derivatives because they do
contribute to the equations of motion. If now we write th
action we will get

S5E dtS E
x
p~x,t !ḟ~x,t !1E

x,y
S~x,y,t !Ġ~y,x,t !

1Nu̇~ t !2HD , ~12!

where

H5^C8,tuĤuC8,t& ~13!

and

N5^C8,tuN̂uC8,t&. ~14!

From Eq. ~12! we see that (N,u), (p,f), and (S,G) are
canonical pairs. Because of the symmetryH has no depen-
dence onu and it follows thatṄ50 and u̇(t)5const[m.
We can now write the remaining Hamilton equations,

ḟ~x,t !5
d~H2mN!

dp~x,t !
,

ṗ~x,t !52
d~H2mN!

df~x,t !
,

~15!

Ġ~x,y,t !5
d~H2mN!

dS~x,y,t !
,

Ṡ~x,y,t !52
d~H2mN!

dG~x,y,t !
.

For convenience we introduce

c~x,t ![^ĉ~x!&5
f~x,t !1 ip~x,t !

A2
, ~16!

so that the equations forf andp become

ıċ~x,t !5
d~H2mN!

dc* ~x,t !
. ~17!

To obtainH2mN we have to compute

H2mN5E ~Df8!C* @f8,t#@Ĥ2mN̂#C@f8,t# .

~18!

Using Eqs.~3! and ~5! we have
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H2mN5E ~Df8!C* @f8,t#S f8~x!2
d

df8~x!
D h~x,y!S f8~y!1

d

df8~y!
D C@f8#1E

x,y
~Df8!C* @f8#S f8~x!2

d

df8~x!
D

3S f8~y!2
d

df8~y!
D V~x2y!S f8~x!1

d

df8~x!
D S f8~y!1

d

df8~y!
D C@f8#. ~19!

All the functional integrals can be easily computed using an additional source term~Appendix A! leading to

H2mN5E
x,y

H @h~x,y!2md~x2y!#r~x,y,t !1
1

2
V~x2y!uc~x,t !u2uc~y,t !u2J 1

1

2Ex,y
V~x2y!@R~y,x,t !R~x,y,t !

1R~x,x,t !R~y,y,t !1D* ~x,y,t !D~x,y,t !#1E
x,y

V~x2y!F1

2
c* ~x,t !c~y,t !R~x,y,t !1

1

2
c* ~y,t !c~x,t !R~y,x,t !

1uc~x,t !u2R~y,y,t !G2
1

2Ex,y
V~x2y!@c~x,t !c~y,t !D* ~x,y,t !1c* ~x,t !c* ~y,t !D~x,y,t !# ~20!

and

r~x,y,t !5^c†~x!c~y!&5c* ~x,t !c~y,t !1R~x,y,t !, ~21!

D~x,y,t !52^c~x!c~y!&52c~x,t !c~y,t !1D~x,y,t !,

with

R~x,y,t !5
1

2FG21~x,y,t !

4
1G~x,y,t !2d~x2y!G12E

w,z
S~x,w,t !G~w,z,t !S~z,y,t !

1 i E
z
@G~x,z,t !S~z,y,t !2S~x,z,t !G~z,y,t !#, ~22!

D~x,y,t !5
1

2FG21~x,y,t !

4
2G~x,y,t !G12E

w,z
S~x,w,t !G~w,z,t !S~z,y,t !2 i E

z
@S~x,z,t !G~z,y,t !1G~x,z,t !S~z,y,t !#,
rd
s

n
k

ro

s

f

e
i-

ny
-
as
because of Eq.~10!. It is easy to check that in terms ofR and
D the mean valueH2mN corresponds to the standa
mean-field factorization.9,12 We note that the density get
contributions from the condensate fieldc as well as from the
fluctuations (G,S). The contribution fromc* c is the con-
densate density. So that the term with fourc ’s can be inter-
preted as the condensate self-interaction. The interactio
particles not in the condensate with the condensate is ta
into account by the terms with twoc ’s. Finally the self-
interaction of the particles not in the condensate comes f
the terms with noc (RR andDD).

We introduce the generalized potentials

Ud~x,y,t !5d~x2y!E
z
r~z,z,t !V~x2z!,

Ue~x,y,t !5r~x,y,t !V~x2y![U e
r 1 iU e

i , ~23!

Up~x,y,t !5D~x,y,t !V~x2y![U p
r 1 iU p

i ,

where the notation emphasizes real and imaginary part
Up . We also define the matrices

A~x,y,t !5h~x,y!2m1U p
r ~x,y,t !1U e

r ~x,y,t !1Ud~x,y,t !,
of
en

m

of

B~x,y,t !5h~x,y!2m2U p
r ~x,y,t !1U e

r ~x,y,t !1Ud~x,y,t !,
~24!

C~x,y,t !5h~x,y!2m1Ue~x,y,t !1Ud~x,y,t !.

From Eqs.~15! and~17! we obtain an abstract matrix form o
the equations of motion

Ṡ5
1

8
G21AG2122SAS2

B

2
1$U p

i ,S%2@U e ,S#,

Ġ5$A,$G,S%%2$U p
i ,G%2@U e ,G#, ~25!

ıċ5Cc2Upc* ,

whereS,G,Ue,U p
i ,U p

i are now Hermitian matrices. Thes
equations~25! are the nonlinear field equations for an arb
trary interactionV between the particles and contain a
external potential throughh. As an example the matrix prod
uct G21AG21 can be written in coordinate representation

E
z,w

G21~x,z,t !A~z,w!G21~w,y,t !. ~26!
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14 736 56ARTHUR K. KERMAN AND PAOLO TOMMASINI
The static equations can be obtained by setting the cano
momenta to zero, that is, S(x,t,t)5p(x,t)50,
Ġ(x,y,t)5ḟ(x,t)50. From Eqs.~16! and~22! we then have

R~x,y,0![R~x,y!5
1

2FG21~x,y!

4
1G~x,y!2d~x2y!G ,

D~x,y,0![D~x,y!5
1

2FG21~x,y!

4
2G~x,y!G , ~27!

c~x,0![c~x!5
f~x!

A2
.

So that for the static case we have to self-consistently s

1

4Ez,w
G21~x,z!A~z,w!G21~w,y!2B~x,y!50,

~28!

E
z
@B~x,z!c~z!22c~x!c2~z!V~x2z!#50.

using Eqs.~21!–~24!. We note that if we constrainG51/2
for the static solution this leads toR5D50 andA5B so
that Eq.~44! is to the usual nonlinear equation for the sing
quantity c ~Ref. 6! obtained from a many-body produc
wave function~permanent! for bosons. However the time
dependent Eqs.~25! are more general, because our tr
Gaussian is actually a coherent state with an indefinite n
ber of particles.

III. CONTACT INTERACTION
IN THE ONE-DIMENSIONAL UNIFORM CASE

A. Gaussian approximation

We will specialize the results of the previous section
the one-dimensional case and for a contact interaction so

V~x2y!5ld~x2y!. ~29!

Because of the existence of exact numerical solutions
will treat the uniform case so that the momentum repres
tation is the natural choice where the quantitiesA, B, andG
can simultaneously be diagonalized andf(k)5fd(k). The
static equations~28! become @we use the notation
*k5(1/2p)*2`

` dk#,

1

4
G22~k!A~k!2B~k!50, ~30!

f@B~0!2lf2#50. ~31!

The static version ofA andB from Eq.~24! can be written as

A~k!5e~k!2m1Up12U1l
f2

2
,

~32!

B~k!5e~k!2m2Up12U1
3

2
lf2,

wheree(k)5\2k2/2m and the generalized potentials becom
al

e

l
-

r
at

e
n-

U[Ud5Ue5lE
k8

R~k8!,
~33!

Up5lE
k8

D~k8!.

So, we can write the solution for Eq.~30! as

G~k!5
1

2
AA~k!

B~k!
~34!

and for Eq.~31! we have

f50, ~35!

or

B~0!5lf2. ~36!

Using Eq. ~34! with Eq. ~27! we can expressD and R as
functions ofA,B

D~k!5
1

2FG21~k!

4
2G~k!G5

1

4

B~k!2A~k!

AA~k!B~k!
, ~37!

R~k!5
1

2FG21~k!

4
1G~k!21G5

1

2H B~k!1A~k!

2AA~k!B~k!
21J .

From Eqs.~32!, ~33!, and ~34! we see thatA(0) andB(0)
must be positive so that ifl,0, Eq. ~36! demands that
B(0),0 which is inconsistent with the previous stateme
So the only possible solution in this case isf50. Forl.0
the symmetry-breaking solutionfÞ0, using Eq.~36!, gives
us

m5lE
k8

@2R~k8!2D~k8!#1
l

2
f2. ~38!

Having solved form we can rewriteA andB in ~32! and~33!
as

A~k!5e~k!12lE
k8

Dk8[e~k!12la, ~39!

B~k!5e~k!1lf2[e~k!12lb.

On the other hand, using Eqs.~37! and ~39! we can write a
pair of nonlinear equations fora andb

a5
l

2Ek8

@b2a#

A@e~k8!12la#@e~k8!12lb#
,

~40!

b5r2
1

2Ek8
H e~k!1l@b1a#

A@e~k8!12la#@e~k8!12lb#
21J ,

where we have used the total density constraint

r5
f2

2
1E

k8
R~k8!, ~41!
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56 14 737GAUSSIAN TIME-DEPENDENT VARIATIONAL . . .
which actually becomes our scale. This nonlinear set
equations can be solved for a givenr, givena andb. Once
we have calculateda and b we can compute the chemica
potential through

m5l@2r2a2b#. ~42!

In the same fashion the ground-state energy den
(E/L5(H)/L) can be computed obtaining

E/L5
l

2
a22

l

2
b22lab1lr21K, ~43!

whereK, the contribution from the kinetic energy can also
computed in terms ofa andb as

K5
1

2Ek8
e~k8!H e~k8!1l@a1b#

A@e~k8!12la#@e~k8!12lb#
21J .

~44!

As an aside we remark that for a dilute system we c
approximate the self-consistent equations fora and b by
truncating them at a second iteration. A first iteration on E
~40! takes a'0, b'r which implies zero depletion an
Up50. This leads us to a nonpairing theory~Gross-Pitaevskii
equation6!. Then the next iteration leads to

a'
lr

2 E
k8

1

Ae~k8!212lre~k8!
,

~45!

b'r2
1

2Ek8
H e~k8!1lr

Ae~k8!212lre~k8!
21J .

Then we can calculateR and D truncating the self-
consistency and giving the same results as the Bogoliu
scheme. Physically this means neglecting the effect of
terms that take into account the self-intercation of the p
ticles not in the condensate (DD andRR). This approxima-
tion is usually valid for dilute systems where these terms
not important. With this truncation the ground-state ene
can be easily computed giving

E

N
5

l

2
rF12

4

3p
AgG , ~46!

where the dimensionless parameterg is

g5
lm

r\2
. ~47!

Returning to our discussion we determine the excitati
through the RPA equations which can be found by expa
ing all quantities around their equilibrium value.17 Thus we
write

G~k,k8,t !5G~k!d~k2k8!1dG~k,k8,t !,

S~k,k8,t !→dS~k,k8,t !,
~48!

f~k,t !5fd~k!1df~k,t !,

p~k,t !→dp~k,t !.
f

ty

n

.

v
e

r-

e
y

s
-

Thus we have writtenG andS in the basis where the equ
librium G is diagonal and kept terms up to first order
small quantities, of course the diagonal basis is plane wa

It will be useful to introduce new momentum coordinat
so that

P5k2k8, ~49!

q5
k1k8

2
, ~50!

and

dG~k,k8!→dG~P,q!. ~51!

We will see thatP and q can be interpreted as total an
relative momenta, respectively , of a pair of quasibosons.
can then write the RPA equations in a form whereP is
diagonal and can be considered as a dummy variable

dĠ~q,P,t !5sK~q,P!dS~q,P,t !1cK~q,P!dp~P,t !

1E
q8

SK~q,q8,P!dS~q8,P,t !,

2dṠ~q,P,t !5sM~q,P!dG~q,P,t !1cM~q,P!df~P,t !

1E
q8

SM~q,q8,P!dG~q8,P,t !, ~52!

dḟ~P,t !5dp~P,t !A~P!1E
q8

cK~q8,P!dS~q8,P,t !,

2dṗ~P,t !5df~P,t !B~P!1E
q8

cM~q8,P!dG~q8,P,t !.

We note that for a given value ofP the (p,f) degree of
freedom is coupled to the much more numerous degree
freedom (S,G) which are labeled byq. Different q values
among (S,G) are also coupled. Introducing the notatio
f (q81P/2)5 f 18 and f (q2P/2)5 f 2 , we find nondiagonal
matrices in (q,q8)

SK~q,q8,P!5l@G11G2#@G18 1G28 #1l@G12G2#

3@G18 2G28 #, ~53!

SM~q,q8,P!5
l

2
1

l

4F12
G1

21G2
21

4 GF12
G18

21G18
21

4 G
1FG1

21G2
21

4 GFG18
21G28

21

4 G ,
and diagonal elements

sK~q,P!52@A1G21A2G1#, ~54!

sM~q,P!5
G1

22G2
21A11G2

22G1
21A2

8
.

Finally we see the coupling elements between (p,f) and
(S,G)

cK~q,P!5lf@G11G2#, ~55!
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cM~q,P!5
l

2
fF32

G1
21G2

21

4 G ,
which vanish when the symmetry inf is conserved (f50).
As pointed out above the equations are diagonal inP so we
can interpret it as the total momentum of a pair of qua
bosons. BecausedG, dS, and df, dp are canonical vari-
ables we may invert the definitions of momentum and co
dinate. For convenience, we define column vectors

Q~q,P,t !5S dS~q,P,t !

dp~P,t ! D , P~q,P,t !52S dG~q,P,t !

df~P,t ! D .

~56!

Then we can write a coupled oscillator Hamiltonian that c
responds to the RPA equations of motion in a sugges
matrix element form

HRPA5
1

2
P̃M 21P1

1

2
Q̃KQ, ~57!

where the matricesM 21 and K are the generalizations o
oscillator mass and spring constant

K5S SK1sK cK

cK A D , M 215S SM1sM cM

cM B D . ~58!

We may separate the diagonal part ofHRPA so that

HRPA5H01H int , ~59!

where

H05
1

2
~dS* dp* !S sK 0

0 AD S dS

dp
D 1

1

2
~dG* df* !

3S sM 0

0 BD S dG

df D , ~60!

H int5
1

2
~dS* dp* !S SK cM

cM 0 D S dS

dp
D 1

1

2
~dG* df* !

3S SM cM

cM 0 D S dG

df D .

Introducing the trivial canonical transformation

dS→AsMdS, dG→
dG

AsM

,

~61!

dp→ABdp, df→
df

AB
,

we obtain a simpler form for the diagonal part

H05
1

2
~dS* dp* !S sMsK 0

0 ABD S dS

dp
D 1

1

2
~dG* df* !

3S 1 0

0 1D S dG

df D . ~62!

If we defineV1 andV2
i-

r-

-
e

V1~P!5AA~P!B~P!, ~63!

V2~q,P!5AsK~q,P!sM~q,P!, ~64!

and use the definitions ofsK andsM from Eq. ~54! we get,
after some algebra, the remarkable result

V2~q,P!5AA1B11AA2B25V1~k!1V1~k8!, ~65!

so thatV1(P) and V2(q,P) can be interpreted as the on
and two free quasiboson energies. We note t
V2(0,P)52V1(P/2), which means that at zero relative m
mentumV2(P,0) corresponds to two quasibosons with m
mentumP/2. Thus the oscillations of thedf, dp pair can be
interpreted as a quasiboson mode, while the oscillations
dG, dS can be interpreted as an interacting pair of the
same quasibosons. Whenf50, we getcK5cM50 and the
one and two quasibosons systems are calculated inde
dently. WhenfÞ0 we must rediagonalize so that our fin
modes will be mixtures of one and two quasibosons. T
variableq represents the internal motion of the quasibos
pair with interaction given by the quantitiesS. In general this
is a scattering problem and we must search for the scatte
amplitude at a given energy andP, where the asymptotic
conditions are determined by Eq.~64!. In addition the cou-
pling of one and two quasibosons will always lead to
bound state which is a particular mixture of the one qua
boson mode with a bound component of the two qua
bosons.

As we did for the static results it is straightforward to s
that the truncation that gives the Bogoliubov results impl
neglecting the coupling (H int50) and will lead to the usua
result

V1
b~P!5Ae2~P!12lre~P!. ~66!

We can see that the Bogoliubov excitations consider no
teraction between the quasibosons. Note that because the
goliubov does not take into account the self-interaction of
particles not in the condensate, we havek850 which means
P5k.

Returning to the dispersion relation for the bound mo
one can finally eliminate the two quasiboson components
see this we try oscillatory solutions for Eq.~52! such as

Q~ t !5QeiVt,
~67!

P~ t !5PeiVt,

and Eqs.~52! can be written in a compact form

M•X5Y, ~68!

that is,

S 2V 2sK 0 2lxf

sM V lvf 0

0 0 2V 2A

0 0 B V

D .S dG

dS

df

dp

D
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5S l~xX1rR!

2lyY22lzZ

lfX

2lf~Y12Z!

D , ~69!

where for simplicity we have used

r ~q,P!5G12G2 ,

x~q,P!5G11G2 ,

y~q,P!5
1

2F11
G1

21G2
21

4 G , ~70!

z~q,P!5
1

2F12
G1

21G2
21

4 G ,
v~q,P!5y~q,P!12z~q,P!,

and also

R~P!5E
q8

r ~q8,P!dS~q8,P!, ~71!

X~P!5E
q8

x~q8,P!dS~q8,P!,

Y~P!5E
q8

y~q8,P!dG~q8,P!,

Z~P!5E
q8

z~q8,P!dG~q8,P!.

Note that the condition detM50 from the homogeneou
equation (Y50) gives us backV1 andV2 discussed above

In the discussion which follows we look for the boun
state referred to above by holdingV,V1,V2 so that it is
not necessary here to include the usual scatteringi e in the
denominators. We can invertM obtaining

dG52
lVrR

~V22V2
2!

2F x

~V22V2
2!

1lf2
sKv1Bx

~V22V1
2!~V22V2

2!
GlVX

1l2f2
AsKv1xV2

~V22V1
2!~V22V2

2!
~Y12Z!

1lsK

yY12zZ

~V22V2
2!

,

dS5
lsKrR

~V22V2
2!

1F sMx

V22V2
2

1lf2
BsMx1vV2

~V22V1
2!~V22V2

2!
GlX
2l2f2V
Av1sMx

~V22V2
2!~V22V1

2!
~Y12Z!

2lV
yY12zZ

V22V2
2

,

~72!

df52lf
VX2A~Y12Z!

~V22V1
2!

,

dp52lf
V~Y12Z!2BX

~V22V1
2!

.

Now we substitute Eq.~72! in the definitions of the quanti-
ties R, X, Y, and Z, Eq. ~71!. Becauser (q,P) is an odd
function, i.e.,r (2q,P)52r (q,P) it is easy to check and
we end up with a linear and homogeneous system forX, Y,
andZ, that looks like

W~P,V!•F50, ~73!

where, omitting theP dependence we have

W5S W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3

D , F5S X

Y

Z
D . ~74!

The elements ofW are given in Appendix B. The system
~73! will have a nontrivial solution if

detW„P,V~P!…50, ~75!

so that we have for eachP the corresponding energyV(P).
Numerically the problem reduces to calculating determina
of a 333 matrix.

A very general property18 of the dispersion relationV(P)
can be proven for the particular case whereP50. In this
case the first line of the matrix~74! using Eqs.~40! and~64!
is

W1,1512l
A~0!2B~0!

A~0!
E

q

x2~q,0!

sK~q,0!
, W1,250, W1,350

~76!

and now using Eqs.~39!–~40! we have that

lE
q

x2~q,0!

sK~q,0!
5

l

2Eq

1

AA~q!B~q!
5

A~0!

A~0!2B~0!
. ~77!

So that the first line of the matrix is zero, making the det
minant vanish, showing that we will always have a gaple
dispersion relation independently of the value ofl,

V~0!50. ~78!

This zero mode of the RPA equations is the standard G
stone mode as its structure is associated with the symm
breaking ~indefinite particle number! by the trial wave
functional.18

We note that the dispersion relation that comes from
RPA depends on the total momentum defined in Eq.~49!
which means thatV is a function of (k2k8), so that it takes
into account that to obtain an excitation we remove a part
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with momentumk8 and create a particle with momentumk.
This result is very different from the Bogoliubov excitatio
wherek8 is taken to be zero. In other words the Gauss
approximation takes into account the effect of the deplet
on the excitations.

B. The exact solution

All the results summarized in this section were obtain
by Lieb and Lininger19,20 who calculated the exact ground
state energy and also the excitations in terms of indepen
particle and hole excitations. Our purpose is to make a c
nection with this work which showed that interacting boso
in one dimension can be analogous to a Fermi gas. We
show how our modes correspond to Lieb’s particle-hole
citations.

First of all whenl→` it is possible to recover the well
known result21 that for an infinite coupling constant interac
ing bosons behave like a system of free fermions, so that
ground-state energy can be easily computed by

E

N
5

1

r

1

2pE2K f

K f
e~k!dk, ~79!

whereK f is the Fermi momentum. In this case it is trivial
calculate

r5
1

2pE2K f

K f
dk, ~80!

which givesK f5pr. So, in this particular limit

E

N
5

\2

2m

p2r2

3
. ~81!

We can divide the particle-hole excitations of the fr
Fermi gas into two parts. The particular hole excitations t
correspond to removing a particle from an occupied stat
just above the Fermi level (K f)

eh~k8!5
\2p2r2

2m
2

\2k82

2m
, ~82!

where K f,k8,K f , and the particle excitations where w
remove a particle from the Fermi level to an unoccup
state

ep~k!5
\2k2

2m
2

\2p2r2

2m
, ~83!

wherek.K f or k,2K f . To produce a particle-hole excita
tion we must add these excitations giving us

ep~k,k8!5
\2k2

2m
2

\2k82

2m
. ~84!

Usingeh andep one can look atE(k8,k) as a function of the
total and relative momentumP5k2k8 and q5(k1k8)/2.
Because the hole excitations are limited to (2K,k8,K)
we need to separate two cases, forP.0 we have

if P,2K f→H k5K f

k85K f2P, ~85!
n
n

d

nt
n-
s
ill
-

he

t
to

d

if P.2K f→H k5P2K f

k852K f .

The first case means fixing the momentum of the particle
moving the momentum of the hole, while in the second o
we fix the momentum of the hole at it lowest possible va
and move the momentum of the particle. So that once
know eh and ep the threshold curve defined by the lowe
value ofE(k8,k) for a givenP will be given by

E~P!5H eh~K f2P!1ep~K f ! for P,2K f

eh~2K f !1ep~P2K f ! for P.2K f ,
~86!

which gives us

E~P!5H 2prP2P2 for P,2K f

P212prP for P.2K f .
~87!

Note that theE(P) curve contain two parts. Finite range pa
P,2K f where the contribution comes basically from th
hole excitations. Infinite range partP.2K f from the particle
excitations. The more dilute the system the less the fin
range part inE(P).

The generalization for bosons interacting with a finitel
was carried out by Lieb and Lininger.19,20 They showed the
ground state can be calculated as

E

N
5

1

rE2K

K

f ~k!e~k!dk, ~88!

where f (k) is the solution of

2grE
2K

K f ~p!

r2g21~p2k!2
dp52p f ~k!21 ~89!

with g given in Eq.~47!. The condition

E
2K

K

f ~k!dk5r ~90!

determinesK. For the excitations Lieb defined two differen
basic interactions which he called ‘‘particle’’ and ‘‘hole’
excitations. To determine these excitations

Lieb showed that it was sufficient to solve new integ
equations. For the particle energy

ep~k!5
\2k2

2m
2m1

\2

mE
2K

K

pJp~p!dp, ~91!

whereJp(p) could be obtained by solving

2pJp~p!52grE
2K

K Jp~r !

r2g21~p2r !2
dr2p12tan21Fk2p

gr G ,
~92!

and for the hole energyeh(P,l) he had

eh~k8!5m2
\2k82

2m
1

\2

mE
2K

K

pJh~p!dp, ~93!

whereJh(p) was obtained from
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2pJh~p!52grE
2K

K Jh~r !

r2g21~p2r !2
dr1p

22tan21Fk82p

gr G . ~94!

In the limit l→` we can see thatJ(p)→0 and
m→(\2K2)/(2m)5(\2p2r)/(2m) recovering the free fer-
mion results. Looking at the expressions for the ground-s
energy and the excitations for a givenl, Lieb interpreted
them as those of a quasi-Fermi gas whereK is an interaction-
dependent Fermi momentum and the distributions fac
f (k) and J(k) give a special weight for eachk. Using this
analogy is very reasonable, since it is correct in both
l50 andl5`. To obtain the threshold curveE(P) we can
use Eq.~86!. The difference is that nowep andeh will have
different curvatures depending on the interaction. Note t
in his original work Lieb compared the Bogoliubov schem
with particle and holes excitations separately and got v
good agreement with the particle excitations. This is intere
ing, as we pointed out earlier, and just tells us that the
goliubov scheme does not contain hole excitations. In g
eral asg increases the contribution of the holes for t
particle-hole excitation energy becomes more and more
portant and this effect is in part described by the Gauss
theory.

IV. NUMERICAL RESULTS AND CONCLUSIONS

For the numerical computations we follow Lieb and u
the dimensionless coupling constantg and scale all lengths
by r and all energies by (\2r2)/(2m). In these units we can
write the ground-state energy per particle as

E

N
5g~g!. ~95!

For the Gaussian static results we solve the nonlinear sys
~40!–~44! and determinea andb for 0,g,10. After com-
putingK defined in~44! one can getg(g) using~43!. In the
Bogoliubov scheme, Eq.~46! leads to

gB~g!5gF12
4

3p
AgG . ~96!

Finally the exact result forg(g) was obtained by Lieb solv
ing Eqs.~88!–~90!. The results as a function ofg can be seen
in Fig. 1, where one can basically see the very good ag
ment of both Gaussian and Bogoliubov for lowg (g<1)
with the difference that by construction the Gaussian resu
always an upper bound and the Bogoliubov energy is be
the exact result. For higher values ofg the Bogoliubov re-
sult, as expected, collapses (g;5) while the Gaussian
theory still gives a result. In the hard-core limit (g→`) the
Gaussian approximation fails to go to the finite free Fer
energy of the exact solution.

To obtain the ‘‘exact’’ excitation energies we used Lieb
results foreh and ep obtained by solving Eqs.~91!–~94!.
Using Eq. ~86! we obtain the excitation curvesE(P) as a
function of P as shown in Fig. 2 forg50, 0.787, 4.527, and
`. Note that forP,2 K the contribution from the hole ex
citations produce quite interesting dispersion curves.
te
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To illustrate the RPA results we plot in Fig. 3,V1, V2,
andV as a function ofP for g57.551. The relative momen
tum variableq will gives us a continuum that corresponds
a scattering region and one can see clearly howV1 gets
pushed down by the interaction producing the gaplessV. We
compare the bound-state dispersion relationV with the Bo-
goliubov one and with the exact results forg50.787~Fig. 4!
andg54.527~Fig. 5!. We note that the improvement of th
RPA compared to the Bogoliubov result increases withg.
When g goes to infinity both the RPA and the Bogoliubo
schemes fail.

The results of this paper can be summarized in th
points:

~1! We have seen that the Gaussian variational met
takes into account the self-interactions of the particles ou
the condensate. This fact starts improving the ground-s
energy results when compared with Bogoliubov theory on
g increases (g.2). It is very difficult however for the
Gaussian variational results to get close to exact for higg

FIG. 1. The ground-state energy per particle can be written
E/N5r2g(g). The curves giveg(g) as a function ofg for the
Gaussian, the Bogoliubov, and the exact result.

FIG. 2. The exact threshold curves for the particle-hole exc
tion as a function of the total particle-hole momentumP5k2k8 as
obtained using Eq.~86!.



t

l
a
c
t

ri
-
rm
ds

o
ed
ns
the
ne

rac-

od
ne-

ns

s.
e

No.
a-
o

ts

if

-
p

th

ol

ns

-

14 742 56ARTHUR K. KERMAN AND PAOLO TOMMASINI
values. In the one-dimensional case wheng→` the Gauss-
ian ground-state energy diverges while the exact goes to
finite Fermi energy.

~2! For the particle-hole excitations the Gaussian resu
take into account that when we remove a particle from
occupied state in order to make an excitation, this parti
can be out of the condensate which does not happen in
Bogoliubov scheme. Again this seems an improved desc
tion for intermediate values ofg. As g increases the deple
tion starts to grow and in this particular case goes to a Fe
sea whenl→`, which cannot be described by our metho
since they do not deal with very short-range correlations.

FIG. 3. The free quasiboson energyV1(P) given by Eq.~63!.
The two free quasiboson energiesV2(P,q) given by Eq.~64! and
the new gaplessV(P) mode energy obtained with the RPA calcu
lation by solving Eq.~75!. Note that, as expected, the gapless pro
erty of V(P) comes from the Goldstone mode associated with
symmetry breaking.

FIG. 4. Comparison between the three different particle-h
excitations curves: BogoliubovV1

b(P) given by Eq.~66!, the RPA
V(P) by solving Eq.~75! and the exact using Eq.~86!. These are
given as a function of the total particle-hole momentumP for
g50.787.
he

ts
n
le
he
p-

i

~3! Another important point that is somehow related t
item 2 is that to solve the RPA equation we had decoupl
harmonic oscillators which, in the quasiboson picture mea
that the RPA takes into account the interaction between
quasibosons generating modes that are mixtures of o
(df,dp) and two quasibosons (dG,dS). In the Bogoliubov
scheme we always have free quasibosons when their inte
tion starts to be relevant asg increases.

We can conclude that the Gaussian variational meth
can describe systems where the depletions cannot be
glected~when dilute theories break down! but because of the
absence of short-range correlation will require correctio
for highly depleted systems~like helium 4!.
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APPENDIX A

If we carefully examine expression~19! we see that the
functional integral that must be computed involves momen
of a Gaussian. Namely,

E ~Df8!C* @f8,t#f8~x1!•••f8~x4!C@f8,t#, ~A1!

whereC@f8# is our normalized trial wave functional given
by Eq.~7!. This functional integral can be computed easily

-
e

e

FIG. 5. Comparison between the three particle-hole excitatio
curves:V1

b(P) given by Eq.~66!, V(P) by solving Eq.~75! and the
exact using Eq.~86! as a function of the total particle-hole momen
tum P for g55.527.
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we include a source term22 in the normalization integral, i.e.

E ~Df8!C* @f8,t#e*xJ~x!df8~x!C@f8,t#. ~A2!

Using the expression forC@f8,t# we complete the square
in the exponential getting
,

n
s.

n

D.

e

E ~Df8!C* @f8,t#e*xJ~x!df8~x,t !C@f8,t#

5e~1/2!*xJ~x!G~x,y,t !J~y!. ~A3!

The source term allows us to compute the functional integ
of any moment of the Gaussian
E ~Df8!df8~x1!•••df8~xn!e2*x,ydf8~x,t ![G21~x,y,t !/2]df8~y,t !5
d

dJ~x1!
. . .

d

dJ~xn!
e~1/2!*xJ~x!G~x,y,t !J~y!U

J50

. ~A4!

For instance, we can calculate

E ~Df8!C* @f8,t#f8~x!f8~y!V~x2y!f8~x!f8~y!C@f8,t#54f~x,t !f~y,t !V~x2y!G~x,y,t !1f2~x,t !V~x2y!G~y,y,t !

1f2~y,t !V~x2y!G~x,x,t !2G~x,y,t !V~x2y!G~x,y,t !

1G~x,x,t !V~x2y!G~y,y,t !. ~A5!
Note that the last two terms of Eq.~A5! show, as expected
the mean-field factorization.

APPENDIX B

After some algebra one gets the elements of the matrixW
which appears in Eq.~75!. For calculating the dispersio
relation,V will be below the lowest pole appearing in Eq
~B1!–~B9!.

W1,1512lE
q

sMx2

~V22V2
2!

2l2f2E
q

BsMx21vxV2

~V22V1
2!~V22V2

2!
,

~B1!

W1,25l2Vf2E
q

Avx1sMx2

~V22V1
2!~V22V2

2!
1lVE

q

xy

~V22V1
2!

,

~B2!

W1,352l2f2VE
q

Avx1sMx2

~V22V1
2!~V22V2

2!

12lVE
q

xz

~V22V2
2!

, ~B3!
W2,15lVE
q

xy

~V22V2
2!

1l2f2VE
q

sKvy1Bxy

~V22V1
2!~V22V2

2!
,

~B4!

W2,2512l2f2E
q

AsKvy1xyV2

~V22V1
2!~V22V2

2!
2lE

q

sKy2

~V22V1
2!

,

~B5!

W2,3522l2f2E
q

AsKvy1xyV2

~V22V1
2!~V22V2

2!
22lE

q

sKyz

~V22V2
2!

,

~B6!

W3,15lVE
q

xz

~V22V2
2!

1l2f2VE
q

sKvz1Bxz

~V22V1
2!~V22V2

2!
,

~B7!

W3,252l2f2E
q

AsKvz1xzV2

~V22V1
2!~V22V2

2!
2lE

q

sKyz

~V22V2
2!

,

~B8!

W3,35122l2f2E
q

AsKvz1xzV2

~V22V1
2!~V22V2

2!

22lE
q

sKz2

~V22V2
2!

. ~B9!
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