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Gaussian time-dependent variational principle for bosons: Contact interaction in one dimension
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We investigate the Dirac time-dependent variational method using a Gaussian trial functional for an infinite
one-dimensional system of bosons interacting through a repulsive contact interaction. The method produces a
set of nonlinear time-dependent equations for the variational parameters. By solving the static equations we
have calculated the ground state energy per particle. We have also considered small oscillations about the
equilibrium and obtain mode equations which lead us to a gapless dispersion relation. The existence of an exact
numerical solution for the ground-state energy and excitations obtained by Lieb allow us to compare with the
Gaussian results. We can also, as the system becomes less dilute, see the improvement of the results as
compared with the Bogoliubov schenj&0163-182@07)04846-1

[. INTRODUCTION the static solution, so the zero gap is exactly the associated
Goldstone mode. This discussion can be seen as an alterna-
Recently Bose-Einstein condensation in atomic traps waive to the functional derivativé'* method in the
achieved=3in a dilute regime §3n<1). This is in contrast Girardeau-Arnowitt> approximation.
with the helium 4 regime where a much higher density leads The Bogoliubov scheme, for a dilute or weak interacting
to (a®n~1). For the high-density regime there is a largeSystem, can be obtained by a particular truncation of th_e
“depletion” (~90%) (Ref. 4 where as for the dilute regime Gaussian results. So, we can compare the Gaussian varia-
it is very small (=1%)5 t|ona_l results, the d_|Iute Bogoliubov sc.heme,. and the exact
Theoretically these experiments have been described vegplution for the particular case under discussion here.
successfully with mean-field theory without quantum fluc- _ The structure of this paper is as follows. Section Il re-
tuations using the Gross-Pitaevskii equationthe Bogoliu-  Views the time-dependent variational principle and the ca-
bov schemé. The Gaussian self-consistent approximation”on'ca| nature of_ th_e equations of motlon_ arising from it. In
presented here should be useful in the intermediate regim&€c- Il we specialize to the one-dimensional uniform case
Unfortunately due to three-body recombinations there seem@d €xamine the ground-state energy and the excitations for
to be a limif for increasing the number of particles in the Poth the approximate methods and the exact solution. Sec-
system. Recently it has been pointed®dbat using a strong tion IV contains our numerical solutions and conclusions
magnetic field it would be possible to make the system ef-
fectively less dilute by drastically changing the scattering
length. This makes the comparison between self-consistent Il. GENERAL FORMALISM
results and dilute theories very important. In this context the | this section we shall review some of the results of the
one-dimensionab function case can produce some insighttime-dependent variational principfe”*and show how it can
because a contact interaction can be used in the selhe implemented in the nonrelativistic case. First we define an

consistent theory in contrast with the three-dimensionakffective action functional for the time-dependent quantum
case?’® The existence of an exact solution for the ground-gystem

state energy and for particle and hole excitations makes the
comparison very interesting, provide that we understand how
the separated particle and hole excitations of the exact _ .
solutiorf® are connected to the particle-hole excitations given S= f L(ndt= f d(W,t|(ig,—H)[W,t), 1)
by the approximate methods.

The objective of this paper is to exhibit the most general R
way of obtaining time-dependent equations of motion in thewhere|¥ ,t) is the quantum state of the system athds the
Gaussian approximatioll. This will lead to the so-called Hamiltonian of the theory. For a system of nonrelativistic
generalized random-phase approximat{&PA), when one interacting bosons we hayere use the notationf,= [ d3x]
examines infinitesimal oscillations about the equilibrium.
The static solution in the uniform case can be obtained using
several other methotfs® leading to a gap in the quasiboson
energy. We show here that the time-dependent RPA equa-
tions lead to a gapless mode. In fact thisisthappen be- o
cause particle number conservation symmetry is broken in X h(X)h(y), 2

\ . S
H=j l//(X)Th(X,Y)l,D(y)ﬂL—f YY) () V(x-y)
X,y 2 X,y
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where the one-body Hamiltonidr(x,y) may include a one- R t|<}'>(x)|‘lf’ t)=p(x,t)
body external potential. The creation and destruction opera- ’ ’ e
tors 4" and ¢ can be written in the form (B 70| W B =m(x, 1), (10)
I(x) = %[&)(X)H%(x)], 3) (Pt () (Y)|[F' 1) =G(x.y,1) + d(x,1) p(y.1),
2

s _ .

1 <«1ﬂ,t|i5|\1n,t>:f E(x,y,t)G(y,x,t)+JW(X,t)¢(X,t)
&(X)T=E[€f>(x)—i%(x)], Xy .

+ N6(t) +total time derivatives.  (11)

where ¢(x) is the field operator andr(x) is the canonical \ye may ignore the total time derivatives because they do not

field momemtum. , o , contribute to the equations of motion. If now we write the
We can obtain the time-dependent Sclinger equation  5ction we will get

by requiring thatS is stationary, supplemented by appropri-

ate boundary conditions, under the most general variation of : .

|W,t). The variational scheme is implemented by chosing a S:f dt( fxw(x,t)¢(x,t)+ fx 2(xy,)G(y,x,1)
trial wave functional describing the system. Working in the Y

functional Shrdinger picture we replace the abstract state .
|, t) by a wave functional of the field’ (x) +NB(t)—H |, (12
|V, 1) =P’ 1] (4 where
The i’:\ction of the operators(x) and the canonical momen- HZ(‘I”J“:”‘I”@ (13)
tum 7(x) are realized, respectively, by
and
b(x)| Wt "(X)P[ o' ,1], 5 N
PV, )= (X)W ,t] 5 N= (0 R 1), (14
- 0 . From Eq.(12) we see that {/,0), (7, ¢), and &,G) are
w(x)l‘l’,t)—>—|5¢,(x) We' . canonical pairs. Because of the symmekfyhas no depen-

_ dence ond and it follows thatN=0 and 6(t)=const u.
The mean value of any operator is calculated by the funCye can now write the remaining Hamilton equations,
tional integral

poxp= TR
(‘I',t|(9|‘1"t>=f (D" )¥*[¢" 1OV ,t], (6) ' om(x,t) '
where ¥ is normalized to unity. The Gaussian approxima- - _ S(H—pN)
tion consists of taking a Gaussian trial wave functional in its m(x)=- Sop(x,t)
most general parametrization (15
_ . S(H—uN)
G H(xy,t GXy )= <o
\If[¢’,t]=|\|exp[—f 5¢’(x,t){# Y= S5 oy
X,y
S xyit)= — 2N
—iE(X,y,t)}&b’(y,t)-ﬁ-iJ 7T(X,t)5¢’(x,t)}, Y= SG(x,y,t) -’

For convenience we introduce

(7
with 8¢’ (x,t)= ¢’ (X) — #(x,t). Due to the fact that the o D Fim(xb)
Hamiltonian commutes with the number of particles PO =((x)) = 2 ' (16
R= 1 HT (0 Hx), ie.
L )9, ie. so that the equations fap and = become
[H.N]=0, 8
. . . : S(H—pN)
we can actually define a more general trial functional (X, 1) = W 17)
[P’ ty=e" N t), (9 To obtainH— uN we have to compute

where 6(t) is another variational parameter introduced be-
cause of this continuous symmetry. Thus our variational pa- H_MNZJ (’ng’)\lf*[d)”t][ﬂ—MN]\P[¢"t] .
rameters arep(x,t), m(x,t), 0(t), G(x,y,t), and2(x,y, t), (18

with G andZ being real symmetric matrices. These quanti-
ties are related to the following mean values: Using Egs.(3) and(5) we have
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)\Pw']ﬁxyuw')\lf*w']( ¢'<x>—5¢,(x))

H—,uj\/zf (D¢’)‘I’*[¢’,t](¢’(x)— )h(x,y)(¢’(y)+

)
o' (x) 8¢’ (y)

X(sb'(Y)— V(X—y)(¢'(x)+ )(d)'(yH )‘I’[¢’]- (19

o¢'(y) 8¢’ (X) 8¢’ (y)

All the functional integrals can be easily computed using an additional sourceAgpendix A leading to

1 1
H—uN= L y:[h(x,y)—M(X—y)]p(><,y.t)+ SV OGO lyly ]2 + Efx yV(x—y)[R(y,x.t)R(x,y.t)

1 1
+R(X,x,DR(y,y,t) +D* (x,y,t) D(x,y,t) ]+ JX yV(x—y)[z F* (XD Py, HRX,Y, 1)+ > U (Y, D) P HRY, X, 1)

1
+| w(x,t)lzR(y,y,t)} - EL yV(x—y)[w(x,t)t//(y,t)D*(x,y,t)+ o (XD (y,)D(X,y,1)] (20)
and
pOGY, D)= (T () P(y)) = * (X (Y, 1) + R(X YY), (21)
A(X, Yy, 1) == ((X)h(y)) = — (X1 h(y,1) + D(X,Y,1),
with
1[G Y(x,y,1)
R(x,y,t)= > T+G(x,y,t)—5(x—y) +2f S (x,w,t)G(w,z,t)2(zy,t)
+iJ'[G(x,z,t)E(z,y,t)—E(X,z,t)G(z,y,t)], (22
1[G Hxy.t) .
D(x,y,t)=§ T—G(x,y,t) +2f E(X,W,t)G(w,z,t)E(z,y,t)—|f[E(x,z,t)G(z,y,t)+G(x,z,t)2(z,y,t)],

because of Eq10). It is easy to check that in terms Bfand B(x,y,t)=h(x,y)— u—U ;J(X'y’t)“Lu LY, 1) +Ug(X,y,1),
D the mean valueH— uN corresponds to the standard (24)
mean-field factorizatiod!> We note that the density gets

contributions from the condensate fieldas well as from the C(%Y,t) =h(X,y) = m+Us(X,Y, 1) FUg(X,Y,1).
fluctuations G,%). The contribution fromy™* ¢ is the con-

densate density. So that the term with fakis can be inter- From Eqs(15) and(17) we obtain an abstract matrix form of
preted as the condensate self-interaction. The interaction dfie equations of motion

particles not in the condensate with the condensate is taken

into account by the terms with tw@’s. Finally the self- S B i

interaction of the particles not in the condensate comes from 2=gG "AG " —2XAX — o +{U ; 2} —[U ¢ 2],
the terms with nay (RRandDD).

We introduce the generalized potentials . i
G={A{GX}}—{U .G}~ [U.,C], (25

Ug(X,y, 1) = 6(x— j z,2,t)V(x—2z), :
d( y ) ( Y) ZP( ) ( ) |¢:C¢_u’)lﬂ*,
. i i e .
Uy D) = p(X Y. OV(X—y) =U "+ iUd ., 23 where >,,G, U, U pU p are now Hermitian matrices. These
XY =pXy.HDV(X=Y) © © 23 equations(25) are the nonlinear field equations for an arbi-
. Nt gy trary interactionV between the particles and contain any
Up(XY, ) =AY OVIX=Y)=U p+ild external potential through. As an example the matrix prod-
where the notation emphasizes real and imaginary parts ¢fctG~"AG™* can be written in coordinate representation as
U, . We also define the matrices

ACY.D=h0GY) — U KW D U LY D + Uy ,D), JZ,WG_1(X'Z’”A(Z’W)G_1(W’y'”' (29
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The static equations can be obtained by setting the canonical )
momenta to zero, that is, 3(x,t,t)=m(x,t)=0, UEUfue:)\fk,R(k )s
G(x,y,t)= ¢(x,t)=0. From Eqs(16) and(22) we then have (33
1[G Y(x,y) up=>\j D(k’).
R Y.0=R(Xy)= 5 ——7—— T Gxy)=dx=y) |, k'

So, we can write the solution for EQ30) as

1GH(x,y)
Dxy,0=D(xy)=5—F——=Gxy)|, (27 1 [AK)
GKk)=z\/g= (34)
2 VB(k)
_ $(x) d for Eq.(3D) we h
P(X,00=h(X)= ——. and for Eq.(31) we have
2
. , =0, (35
So that for the static case we have to self-consistently solve
L or
- -1 -1 _ -
2 JZVWG (X,2)A(z,W)G™*(w,y) - B(x,y)=0, 8 B(0) =\ ¢2. (36)
Using Eq.(34) with Eq. (27) we can expres® andR as
f [B(X,2)(2) = 2i4(X) $*(2)V(x—2)]=0. functions ofA,B
z
-1
using Eqs.(21)—(24). We note that if we constrai®=1/2 D(k)= E[G (k) —G(k)}zl B(k)—A(k) (37)
for the static solution this leads ®=D=0 andA=B so 2 4 4 JAK)B(K) '
that Eq.(44) is to the usual nonlinear equation for the single
quantity _(Ref. 6 obtained from a many-body peruct 1[G (k) 1{ B(k)+A(K)
wave function(permanent for bosons. However the time- R(k)= = +G(k)—1|=o ———=—1;.
dependent Egs(25) are more general, because our trial 2l 4 2 2VAK)B(K)

Gaussian is actually a coherent state with an indefinite nu

ber of particles. mIfrom Egs.(32), (33), and(34) we see thatA(0) andB(0)

must be positive so that ik<0, Eq. (36) demands that
B(0)<0 which is inconsistent with the previous statement.
So the only possible solution in this casefiss0. ForA>0

the symmetry-breaking solutioi# 0, using Eq.(36), gives

A. Gaussian approximation us

IIl. CONTACT INTERACTION
IN THE ONE-DIMENSIONAL UNIFORM CASE

We will specialize the results of the previous section for N
the one-dimensional case and for a contact interaction so that L=\ fk/[ZR(k,)_ D(k")] +§¢2. (38)

VX=y)=Aa(x=y). (29 Having solved forw we can rewritéA andB in (32) and(33)

Because of the existence of exact numerical solutions was
will treat the uniform case so that the momentum represen-

tation is the natural choice where the quantiteB, andG _ _
can simultaneously be diagonalized a#(k) = ¢ 5(k). The A(k)=e(k)+2x fk,Dk,=e(k)+2)\a, (39)
static equations(28) become [we use the notation
= (1/2m) [* . dK], B(k)=e(k)+ X ¢p?>=e(k)+2\b.

1 ., On the other hand, using Eg®87) and (39) we can write a

2C “(KWA(K)—~B(k)=0, (30 pair of nonlinear equations fa andb

N b—
$[B(0)—\g?]=0. (31) az [b—a] ,
_ _ _ 2)w\[e(k")+2ra][e(k’)+2\b]
The static version of andB from Eq.(24) can be written as (40)
$? b lf e(k)+A[b+a] 1

3 where we have used the total density constraint
B(k)=e(k) — u—U,+2U+ Ex(pz, ,

wheree(k) =#%2k?/2m and the generalized potentials become
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which actually becomes our scale. This nonlinear set ofThus we have writteiG and2, in the basis where the equi-
equations can be solved for a givengivena andb. Once  librium G is diagonal and kept terms up to first order in
we have calculated andb we can compute the chemical small quantities, of course the diagonal basis is plane waves.

potential through It will be useful to introduce new momentum coordinates
so that
m=\[2p—a—Dhb]. (42
In the same fashion the ground-state energy density P=k=k', (49
(E/L=(H)/L) can be computed obtaining K+ K’
=—, 50
E/L a2 )\bz Aab+Ap?+K (43 R °
=-a°"— sb°—\a ,
2 2 P and
whereK, the contribution from the kinetic energy can also be 5G(k,k")— 8G(P,q). (51)

computed in terms of andb as
We will see thatP and g can be interpreted as total and

K f (k )| e(k’")+\[a+b] relative momenta, respectively , of a pair of quasibosons. We
= — e(k’ — . . . .

2 ) 7 ] can then write the RPA equations in a form whéteis
“ Vle(k’) + 2xalle(k’) +2xb] diagonal and can be considered as a dummy variable

(44

As an aside we remark that for a dilute system we can 9G(a,P.t)=s¢(q,P)s%(q,P,t) +ck(q,P)6m(P.t)
approximate the self-consistent equations &owand b by
truncating them at a second iteration. A first iteration on Eq. +f Sk(q,q9’,P)82(q’,P,1),
(40) takesa=~0, b~p which implies zero depletion and a’
U,=0. This leads us to a nonpairing thedGross-Pitaevskii

equatiofi). Then the next iteration leads to —62(q,P,t)=su(q,P)6G(q,P,t) +cu(d,P) 6 (P,t)

e )\_pf 1 +fq,SM(q,q’,P)éG(q’,P,t), (52)
2 Ji\e(k")Z+2xnpe(k’)’

1 e(k")+\p

2 [ Ve(k')Z+2xpe(k’) ]
Then we can calculateR and D truncating the self-
consistency and giving the same results as the Bogoliubov )
scheme. Physically this means neglecting the effect of thd/€ note that for a given value @ the (w,¢) degree of
terms that take into account the self-intercation of the parireedom is coupled to the much more numerous degrees of
ticles not in the condensat®P andRR). This approxima- reedom &,G) which are labeled byj. Different q values
tion is usually valid for dilute systems where these terms arémong &,G) Jare also coupled. Infroducing the notation
not important. With this truncation the ground-state energyf (' +P/2)=f andf(q—P/2)=f_, we find nondiagonal
can be easily computed giving matrices in (1,q")

Sk(9,9",P)=A[G.+G_][GL +G ]+ A[G, ~G_]

(45) )
Sp(P,t)=6m(P,t)A(P)+ J' ,CK(q’,P)éﬁ(q’,P,t),
q

—6m(P,t)=38¢(P,1)B(P)+ fq’cM(q’,P)éG(q’,P,t).

E A 4

N-2° 13V (45 o
™ X[G,-G'], (53

where the dimensionless parameieis

, N A Gi'cT?t G, ')t
SM(Q:q !P):§+_ 1_ 1_

Am 4 4
Y= (47)
ph G;lG?HG’JlGL_T
Returning to our discussion we determine the excitations 4 4 '

through the RPA equations which can be found by expand

and diagonal elements
ing all quantities around their equilibrium valt&Thus we

write sk(d,P)=2[A,G_+A_G,], (54
G(k,k"t)=G(k)d(k—k")+ 6G(k,k',1), G;ZG:1A++G:2G11A_
su(q,P)= 8

S(k,k' t)—= 62 (k,k' 1),
(48) Finally we see the coupling elements between ) and
d(k,t)=po(k)+ sp(k,t), (2,G6)

7(K,t)— dm(k,t). Cck(0,P)=Ap[G+G_], (55)
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A et Q,(P)=VA(P)B(P), (63
cM(q,P>=§¢{3—T, 1 (P)B(
which vanish when the symmetry it is conserved ¢$=0). Q2(9,P) = Vsc(a,P)sm(a.P), (64)

As ppmted out abovr(]e the elquat|ons are d'fagon‘? Emfwe .and use the definitions @ andsy, from Eqg. (54) we get,
can interpret it as the total momentum of a pair of quasi-yar some algebra, the remarkable result

bosons. BecauséG, 8%, and 8¢, 6w are canonical vari-

ables we may invert the definitions of momentum and coor- _ _ ,
dinate. For convenience, we define column vectors Q5(q,P)= VA B +VA_B_=Q,(k)+Q4(k"), (65

53(q,P.t) 5G(q,P,t) so that(),(P) and Qz(q_,P) can be int_erpreted as the one
0(q,P,t)= , I(q,P,t)=— . and two free quasiboson energies. We note that
om(P,1) d¢(P.1) L 0,(0,P) =20,(P/2), which means that at zero relative mo-

mentum(},(P,0) corresponds to two quasibosons with mo-
Then we can write a coupled oscillator Hamiltonian that cor-mentumP/2. Thus the oscillations of thé¢, 5 pair can be
responds to the RPA equations of motion in a suggestivé;ntel'pl'eted as a quasiboson mode, while the oscillations of
matrix element form 8G, 82 can be interpreted as an interacting pair of these
same quasibosons. Whef=0, we getck=cy =0 and the
one and two quasibosons systems are calculated indepen-
dently. Wheng¢+#0 we must rediagonalize so that our final
) . o modes will be mixtures of one and two quasibosons. The
where the matricedd ™" and K are the generalizations of arigpleq represents the internal motion of the quasiboson
oscillator mass and spring constant pair with interaction given by the quantiti&s In general this
is a scattering problem and we must search for the scattering
Sk+sk Ck . X .
), -1 ) (59 ampl!t_ude at a given energy arfé, where thg asymptotic
Ck A conditions are determined by E4). In addition the cou-
pling of one and two quasibosons will always lead to a
bound state which is a particular mixture of the one quasi-

1_ 1.
HRPAZEHM71H+ E@K@, (57)

SvTSu Cm

cu B

We may separate the diagonal parttbfp, so that

Hrpa=Ho+Hint, (59) Egzggsmode with a bound component of the two quasi-

where As we did for the static results it is straightforward to see

1 s 0\[63| 1 that the truncation that gives the Bogoliubov results implies

— K neglecting the couplingH;,;=0) and will lead to the usual
Ho=5(62* o&7* + 5 (8G*  SP* int
0=3(5% 4 )(O A)(&T 5 ¢*) result
sy 0\(6G
x| M , (60) QY(P)=e*(P)+2xpe(P). (66)

0 B/\d¢p

We can see that the Bogoliubov excitations consider no in-

1 . . Sk cm\/o2) 1 . . teraction between the quasibosons. Note that because the Bo-
Hin=5(82% dm)| - || 5| T5(8C"  5¢%) goliubov does not take into account the self-interaction of the
M particles not in the condensate, we h&ve=0 which means
SM CM 5G P: k
X c 0/\6¢) Returning to the dispersion relation for the bound mode
M one can finally eliminate the two quasiboson components. To
Introducing the trivial canonical transformation see this we try oscillatory solutions for EG?2) such as
oG (t)=eiQt,
53 —\sy o3, 5G—>\/—_, (67)
S
M (61) H(t)=l'[e‘m,
o¢ . .
Sm—\Bém, (MHT' and Egs(52) can be written in a compact form
B
we obtain a simpler form for the diagonal part M-X=Y, (68)
1 . . SMSK 0 52 1 . . that |S,
Ha== +—
0=3 (02" 0™ g /| o T2(0CT 04T

-0 —-s¢ 0 —Ax¢ oG

1 0\(6G sy O g 0 53
X(o 1)(&:5)' (62 :

If we defineQ); and(, 0 0 B Q o
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AN(XX+TrR)
—AYyY—2\zZ
- N X ’ (69
—Ap(Y+22)

where for simplicity we have used
r(q,P):G+_G_,
X(q,P)=G,+G_,

1 G et
y(@,P)=5/1+—)—, (70)

1  G;'e?
2(4,P)=5/ 1~ ——5—|.

v(g,P)=y(q,P)+2z(q,P),
and also

R(P)= | r(a@'Praz(a’p) (71
X(P)= | xa'P)ox(@ P,

Y(P)=Jq,Y(Q’,P)5G(Q',P),

Z(P)=L,Z(Q’,P)5G(Q',P)-

Note that the condition datt=0 from the homogeneous
equation Y=0) gives us bacK), and(), discussed above.
In the discussion which follows we look for the bound

state referred to above by holdifg<<(),; <, so that it is
not necessary here to include the usual scattarénm the
denominators. We can inverf¢! obtaining

NOrR
(02-0Q3)

X

oG =
(Q%-0))

Skv +BXx

AOQX
(Q2-03)(02-03)

+ A\ ¢?

Ascv +xQ2
(Q2-0%H(0%2-03)

+\2¢? (Y+2Z)
yY+2zZ

Sk —— 5>
(Q°-0))

AskrR

Sy X
2 2 + -
(Q _Qz)

02-03

Bsyx+vQ?
2_02 2_02 AX
Q-0 (Q°=Q53)

+N¢?

14 739

Av + s X
(Q2-03)(0%-0%)

—\2420 (Y+22)
yY+2zZ

02-03°
(72)

QAX—A(Y+22)

Sp=—\
¢ (Q%-0%)

Q(Y+22)-BX
(Q2-0%)

Now we substitute E¢(72) in the definitions of the quanti-
ties R, X, Y, and Z, Eq. (71). Becauser(q,P) is an odd
function, i.e.,r(—q,P)=—r(q,P) it is easy to check and
we end up with a linear and homogeneous systenXfoy,
andZz, that looks like

om=—

W(P,Q)-F=0, (73
where, omitting the® dependence we have
Wl,l Wl,2 Wl,3 X
W=| Wp1 Wp, W3 F=|Y (74
Wz1 W3p Wi z

The elements ofV are given in Appendix B. The system
(73) will have a nontrivial solution if

dewW(P,Q(P))=0, (75

so that we have for eadh the corresponding enerdy(P).
Numerically the problem reduces to calculating determinants
of a 3X 3 matrix.

A very general property of the dispersion relatiof)(P)
can be proven for the particular case wh&e0. In this
case the first line of the matri¥4) using Eqs(40) and(64)
is

. _A0)-B(0) [ x¥(q,0 ~ ~
WMt TR0 ey M WO
(76)
and now using Eq939)—(40) we have that
J'xz(q,O) A 1 _ A0) -
¢5«(0,0 2Jq\A(q)B(q) A(0)—B(0)’

So that the first line of the matrix is zero, making the deter-
minant vanish, showing that we will always have a gapless
dispersion relation independently of the valuenof

Q(0)=0. (79)

This zero mode of the RPA equations is the standard Gold-
stone mode as its structure is associated with the symmetry
breaking (indefinite particle number by the trial wave
functional!®

We note that the dispersion relation that comes from the
RPA depends on the total momentum defined in &9)
which means thaf) is a function of k—k'), so that it takes
into account that to obtain an excitation we remove a particle
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with momentumk’ and create a particle with momentum k=P—K;
This result is very different from the Bogoliubov excitation if P>2K;— K= —K

wherek’ is taken to be zero. In other words the Gaussian B fr

approximation takes into account the effect of the depletionThe first case means fixing the momentum of the particle and

on the excitations. moving the momentum of the hole, while in the second one
we fix the momentum of the hole at it lowest possible value

B. The exact solution and move the momentum of the particle. So that once we

All the results summarized in this section were obtained(nlOW 6*}1 ar:(o/l T(P tfhe threshold C.lljlr\t/)e dgfineg by the lowest
by Lieb and Lininget*?° who calculated the exact ground- Valué ofE(k’.k) for a givenP will be given by
state energy and also the excitations in terms of independent B
particle and hole excitations. Our purpose is to make a con- E(P :l en(Ki=P)+ep(Ky)  for P<2K; (86
nection with this work which showed that interacting bosons en(—Kp)+€,(P—Ky) for P>2Kg,
in one dimension can be analogous to a Fermi gas. We will

show how our modes correspond to Lieb’s particle-hole exyvhICh gives us

citations. 2
. . . 2mpP—P< for P<2K
First of all when\ — it is possible to recover the well- E(P)= jp of f (87
known resuft! that for an infinite coupling constant interact- P°+2mpP for P>2K;.

ing bosons behave like a system of free fermions, so that th

ground-state energy can be easily computed by Rote that theE(P) curve contain two parts. Finite range part

P<2K; where the contribution comes basically from the
E 1 1 (K hole excitations. Infinite range paPt>2K; from the particle
N~ 52 e(k)dk, (79 excitations. The more dilute the system the less the finite
pem) K range part inE(P).
whereK; is the Fermi momentum. In this case it is trivial to ~ The generalization for bosons interacting with a finite
calculate was carried out by Lieb and Liningét?° They showed the
ground state can be calculated as
1 (K¢

=)

dk, (80) E 1K
N= ;j f(k)e(k)dk, (88
-K
which givesK;=mp. So, in this particular limit
wheref (k) is the solution of
E 72 m2p?

N 2m 3

1) t(p)

K
ZYPJ 2.2 2
We can divide the particle-hole excitations of the free “KpZy"+(p—k)
Fermi gas into two parts. The particular hole excitations thafyty  given in Eq.(47). The condition

correspond to removing a particle from an occupied state to
just above the Fermi leveK(;)

dp=2mf(k)—1 (89

K
j f(k)dk=p (90)
ﬁzwzpz ﬁ2k12 —-K

2m 2m

en(k’)= ; (82

determineX. For the excitations Lieb defined two different
basic interactions which he called “particle” and “hole”
xcitations. To determine these excitations

Lieb showed that it was sufficient to solve new integral
equations. For the particle energy

where K;<k'<K;, and the particle excitations where we
remove a particle from the Fermi level to an unoccupiede
state

ﬁ2k2 ﬁ2’7T2p2

k)=~ (83 e A [
2m  2m (k)= S~ it | PI(P)D, (91)
wherek>K; or k<—Ky. To produce a particle-hole excita- ) ]
tion we must add these excitations giving us whereJ,(p) could be obtained by solving
RAC K22 <IN k—p
ep(k.K')=—5—— . (84 27 =2 J' ——  dr—g+2tan’? —},
P 2m  2m mJp(P)=27p kp2y2t(p_r)2 " vp
(92

Using €,, ande, one can look aE(k’,k) as a function of the

total and relative momentur®=k—k" and q=(k+k’)/2.  and for the hole energy,(P,\) he had

Because the hole excitations are limited to K<k’<K)

we need to separate two cases, For0 we have h2k'2 A2 (K
en(kK')=pn— o Kth(p)dp, (93

k:Kf 2m

if P<2K;— ;
: k' =K,—P, (85)  whereJ,(p) was obtained from
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273, (p)=2 fK WOy "
= —_—_—mmmm r
i R T s

!

Gaussian Approx.

Yp

In the limt N—~ we can see thatJ(p)—0 and
u— (h2K?)/(2m)=(h2m?p)/(2m) recovering the free fer-
mion results. Looking at the expressions for the ground-stat¢
energy and the excitations for a given Lieb interpreted 20
them as those of a quasi-Fermi gas whers an interaction-
dependent Fermi momentum and the distributions factors

f(k) andJ(k) give a special weight for eadh Using this

analogy is very reasonable, since it is correct in both the ‘
A=0 and\=c. To obtain the threshold curv&(P) we can oo 25
use Eq.(86). The difference is that now, and e, will have

different curvatures depending on the interaction. Note that £ 1 The ground-state energy per particle can be written as
in his original work Lieb compared the Bogoliubov schemeg ;= 2g(5). The curves giveg(y) as a function ofy for the
with particle and holes excitations separately and got verysayssian, the Bogoliubov, and the exact resut.

good agreement with the particle excitations. This is interest-

ing, as we pointed out earlier, and just tells us that the Bo-

goliubov scheme does not contain hole excitations. In gen- To jllustrate the RPA results we plot in Fig. &;, Q,,

eral asy increases the contribution of the holes for theand() as a function of for y=7.551. The relative momen-
particle-hole excitation energy becomes more and more imym variableq will gives us a continuum that corresponds to
portant and this effect is in part described by the Gaussiag scattering region and one can see clearly How gets

—2tan ! (94)

4.0

n/3

Exact Result

E/(Np% = g(v)

50 75 10.0
y=(4n am)/(h°p)

theory. pushed down by the interaction producing the gaplésive
compare the bound-state dispersion relaibnvith the Bo-
IV. NUMERICAL RESULTS AND CONCLUSIONS goliubov one and with the exact results fg&0.787(Fig. 4)

and y=4.527(Fig. 5. We note that the improvement of the
RPA compared to the Bogoliubov result increases wjith
When y goes to infinity both the RPA and the Bogoliubov

For the numerical computations we follow Lieb and use
the dimensionless coupling constaptand scale all lengths
by p and all energies by#?p?)/(2m). In these units we can

; - schemes falil.
write the ground-state energy per particle as The results of this paper can be summarized in three
points:
NZQ( ). (99 (1) We have seen that the Gaussian variational method

takes into account the self-interactions of the particles out of
For the Gaussian static results we solve the nonlinear systethe condensate. This fact starts improving the ground-state
(40)—(44) and determinea andb for 0<y<10. After com-  energy results when compared with Bogoliubov theory once
putingK defined in(44) one can geg(y) using(43). Inthe vy increases ¥>2). It is very difficult however for the

Bogoliubov scheme, Ed46) leads to Gaussian variational results to get close to exact for high
0e(1) =7 1~ 27, (96)
B 37
Finally the exact result fog(y) was obtained by Lieb solv- =0

ing Egs.(88)—(90). The results as a function gfcan be seen
in Fig. 1, where one can basically see the very good agree |
ment of both Gaussian and Bogoliubov for low(y<1)

with the difference that by construction the Gaussian result is o
always an upper bound and the Bogoliubov energy is belov
the exact result. For higher values gfthe Bogoliubov re-

sult, as expected, collapsesy+5) while the Gaussian
theory still gives a result. In the hard-core limig-{«) the
Gaussian approximation fails to go to the finite free Fermi
energy of the exact solution.

To obtain the “exact” excitation energies we used Lieb’s 0.0 ‘ - ‘ ‘
results for e, and e, obtained by solving Eqs(91)—(94). e 20 o 50 100
Using Eq.(86) we obtain the excitation curveS(P) as a
function of P as shown in Fig. 2 foy=0, 0.787, 4.527, and FIG. 2. The exact threshold curves for the particle-hole excita-
. Note that forP<2 K the contribution from the hole ex- tion as a function of the total particle-hole moment®m k—k’ as
citations produce quite interesting dispersion curves. obtained using Eq(86).

¥=4.527

100 b y=Infinity
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y=4.527
50.0
— // pg/ 10.0 .
tteri egion
P /// - Q,0.P)
40.0 L o Bogoliubov
. RPA

300 | Interaction
o~ o~
U\C_"- DQ- 5.0 |

20.0 k

QP) Exact
10.0 |
%0 0 2.0 3.0 4.0 00,5 0 20
Plp P/p

FIG. 3. The free quasiboson ener@y(P) given by Eq.(63). FIG. 5. Comparison between the three particle-hole excitations
The two free quasiboson energi@s(P,q) given by Eq.(64) and  curves:Q%(P) given by Eq.(66), Q(P) by solving Eq.(75) and the
the new gaples§)(P) mode energy obtained with the RPA calcu- exact using Eq(86) as a function of the total particle-hole momen-
lation by solving Eq(75). Note that, as expected, the gapless prop-tum P for y=5.527.
erty of Q(P) comes from the Goldstone mode associated with the
symmetry breaking.

(3) Another important point that is somehow related to
values. In the one-dimensional case when = the Gauss- It€m 2 is that to solve the RPA equation we had decoupled
ian ground-state energy diverges while the exact goes to tHaarmonic OSCIllatOI’S.WhICh, in the qu§15|boso_n picture means
finite Fermi energy. that t_he RPA takes |n.to account the mteractlo_n between the

(2) For the particle-hole excitations the Gaussian result§lu@sibosons generating modes that are mixtures of one
take into account that when we remove a particle from arf9%,87) and two quasibosonssG, 5%). In the Bogoliubov
occupied state in order to make an excitation, this particle?fcheme we always have free quasibosons when their interac-
can be out of the condensate which does not happen in tHion starts to be relevant gsincreases. o
Bogoliubov scheme. Again this seems an improved descrip- We can conclude that the Gaussian variational method
tion for intermediate values of. As vy increases the deple- ¢an describe systems where the depletions cannot be ne-
tion starts to grow and in this particular case goes to a Fernfilected(when dilute theories break dowbut because of the
sea when\ — o, which cannot be described by our methodsabse.nce of short-range co'rrelatlo_n will require corrections
since they do not deal with very short-range correlations. oF highly depleted systemike helium 4.
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Bogoliubov

75

E/p”

RPA

25} 1 APPENDIX A

Exact If we carefully examine expressiofl9) we see that the
functional integral that must be computed involves moments
of a Gaussian. Namely,

0.0 -
0.0 1.0 20

P/p

FIG. 4. Comparison between the three different particle-hole
excitations curves: Bogoliubo@8(P) given by Eq.(66), the RPA
Q(P) by solving Eq.(75) and the exact using E@86). These are
given as a function of the total particle-hole moment@mfor
v=0.787.

f(D¢’)‘l’*[¢’,t]¢'(x1)"'¢>'(X4)‘1’[¢’,t], (A1)

whereW[ ¢'] is our normalized trial wave functional given
by Eq. (7). This functional integral can be computed easily if
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we include a source teffhin the normalization integral, i.e.,

J(D¢')‘P*[¢’.t]eij(x)‘s‘ﬁ/(x‘”‘l’[qﬁ’,t]

f (D¢’)\If*[qb’,t]efo(x)5¢'(X)\P[¢’,t]. (A2) = (121, d)G(xy,H)I(Y) (A3)
Using the expression fo¥[ ¢',t] we complete the squares The source term allows us to compute the functional integral
in the exponential getting of any moment of the Gaussian
|
f (D@ )Ep' (X1) - 8’ (X )e_fx,y‘s‘/”(th)[G_1(va~t)/2]5‘/5,(%t): o . i (12 [,d00)G(xy.)I(y) . (Ad)
! " 83(x1) "~ 83(%n)

J=0
For instance, we can calculate

f (DP)T*[$' 119" () d" (VV(X=Y)$' (X) ' (V) P[' t]=4¢(X,1) p(y,)V(X=Y)G(X,y,1) + X (X, V(X Y) G(Y,Y,1)

+ (Y, HV(X—Y)G(X,X,1) 2G(X,Y, 1) V(X—Y) G(X,Y,1)

+G(X,X,H)V(X—Y)G(y,y,t). (A5)
|
Note that the last twc_) terms of EGAS) show, as expected, Xy scuy +BXy
the mean-field factorization. W, = )\QJ —+)\2¢20f :
‘ a(Q*-Q)) a(Q*-0DH(Q*-0Q)
(B4)
APPENDIX B
+ 2 2
After some algebra one gets the elements of the myéfrix W, ,= 1_A2¢2j ASKUZ/ xyQd == f S|<—y2
which appears in Eq(75). For calculating the dispersion ' a(Q?- 09 (0%~ 03) a(Q*-07)
relation, ) will be below the lowest pole appearing in Egs. (BS)
(B1)—(BY). ,
W, 3:_2)\2¢2f Ascvy+xyQ —2>\f SkYZ
- B, x2+ X0 ’ Q-0 (Q*-0)) Q%= Q)
Wlflﬂfﬁ—w’zf 00200 (B6)
a(Q°—Q53) a(Q - QD (Q°—Q53)
(B1) W _)\QJ X +)\2¢ZQJ skvz+Bxz
T a0%-0)) a(02-03)(02-03)’
AvX+ Sy x> X (B7)
W1’2:)‘ZQ¢2J 2 - 2 Mz 2 +)‘QJ’%’
a(Q°=Q)(Q°=-Q%) a(Q°=Q7) ) Asvz+x202 Skyz
(B2) W3 ==\ ¢f 2_02v02—02) f 2_ 2,
a(Q _Ql)(Q _Qz) a(Q _Qz)
(B8)
AvX+ Sy x> 2
Wl3:2)\2¢2ﬂf 2 — - ) zf Ascvz+x2Q)
' — — W33=1—2\
(2 —QP(Q—Q9%) 33 ¢ q(QZ—Qi)(QZ—Qg)
+2)0 f Xz (B3) 2\ f S (B9)
a(Q?-Q))’ a(Q2-0Q))
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