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Coherence in the quasiparticle scattering by the vortex lattice in pure type-II superconductors
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The effect of quasiparticle~QP! scattering by the vortex lattice on the de Haas-van Alphen~dHvA! oscil-
lations in a pure type-II superconductor is investigated within a mean-field asymptotic perturbation theory.
Using a two-dimensional~2D! electron-gas model it is shown that, due to a strict phase coherence in the many
particle correlation functions, the scattering effect in the asymptotic limit (AEF /\vc@1) is much weaker than
what is predicted by the random vortex-lattice model proposed by Maki and Stephen, which destroys this
coherence. The coherent many particle configuration is a collinear array of many particle coordinates, localized
within a spatial region with size of the order of the magnetic length. The amplitude of the magnetization
oscillations is sharply damped just belowHc2 because of strong 180° out of phase magnetic oscillations in the
superconducting condensation energy, which tend to cancel the normal electron oscillations. Within the ideal
2D model used it is found, however, that because of the relative smallness of the quartic and higher order terms
in the expansion, the oscillations amplitude at lower fields does not really damp to zero, but only reverses sign
and remains virtually undamped well belowHc2 . This conclusion may be changed if disorder in the vortex
lattice, or vortex line motion is taken into account. The reduced QP scattering effect may be responsible for the
apparent crossover from a strong damping of the dHvA oscillations just belowHc2 to a weaker damping at
lower fields observed experimentally in several 3D superconductors.@S0163-1829~97!05045-5#
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I. INTRODUCTION

Magnetic quantum oscillations have been recently
served in several type-II superconductors belowHc2 .1–8 A
systematic study of this remarkable effect has been impai
however, by the lack of a complete quantitative theory of
de Haas-van Alphen~dHvA! effect in the vortex state, analo
gous to the Lifshitz-Kosevich~LK ! theory in normal metals.9

Such a theory would require a detailed analysis of the ef
of the superconducting order parameter on the magnetiza
oscillations in the vortex state, which turns out to be an
tremely subtle theoretical problem.

A common feature reported by all experimental groups
far, which is far from being well understood, has been
observation of an additional damping in the dHvA amplitu
below Hc2 . Several theoretical papers have attributed t
attenuation to the broadening of the Landau levels by
inhomogeneous pair potential, building up belowHc2 . There
is, however, a remarkable disagreement among the var
theoretical approaches to this problem concerning both
size of the attenuation factor and its detailed dependenc
the strength of the field belowHc2 .

The semiclassical approach, adopted originally by Mak10

elaborated later by Stephen,11 and reviewed very recently b
Wasserman and Springford,12 considered the correction t
the quasiparticles~QP! lifetime due to the scattering by th
vortex lattice.

For the first harmonic of the oscillatory part of the ma
netization belowHc2 they predicted

Mosc5Mn,oscexp@2l~D0 ,nF!#, ~1!
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l~D0 ,nF!5p3/2
D̃0

2

nF
1/2, ~2!

whereMn,osc is the corresponding normal electrons contrib
tion to the oscillatory magnetization,D̃0[D0 /\vc , D0 is
the magnitude of the superconducting~SC! order parameter,
vc is the cyclotron frequency, andnF5EF /\vc is the Lan-
dau level index corresponding to the extremal orbit on
Fermi surface.

An exponential damping with a different exponent, i.
l;D̃0 /nF

1/4, has been proposed by Normanet al.,13 who car-
ried out a full quantum mechanical calculation, based o
numerical solution of the Bogoliubov-de Gennes~BdG!
equations for the quasiparticles at low temperatures. The
merical computations carried out by these authors were
ited, however, to relatively small values ofAnF.

A similar approach, invoked by Dukan and Tesanovic14

has led to a qualitatively different behavior at very low tem
perature, that is a power law attenuation of the dHvA os
lations belowHc2

Mosc/Mn,osc;~kBT/D0!21O@~kBT/D0!4#. ~3!

This result was obtained by considering only the dom
nant contribution to the dHvA oscillations as originating
the gapless region of the QP spectrum around the Fermi
face. It looks similar to a low-temperature highD expansion,
emphasizing the opening of the SC gap well belowHc2.
14 693 © 1997 The American Physical Society
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In the Maki-Stephen~MS! theory it is assumed that th
vortex lattice acts as a random potential for the quasipa
cles, and so by averaging over the realizations of the vo
lattice, the QP self-energy acquires a large imaginary p
leading to a strong exponential damping of the dHvA amp
tude.

Strictly speaking, however, the scattering by the inhom
geneous pair potential is a highly coherent process, a
multiple Andreev reflection at the interfaces of a 2D perio
array of normal and SC phases.15

Thus, in the ideal, self-consistent vortex lattice model
QP self-energy has zero imaginary part. However, the bro
ening of the Landau levels into real energy bands by
inhomogeneous pair potential should lead to damping of
dHvA oscillations even for an infinite QP lifetime. The ter
scattering refers to this inhomogeneous broadening effec
the present paper.

The quadratic dependence ofl(D0 ,nF) on D0 in Eq. ~2!
reflects its origin in a perturbation expansion of the the
self-energy in the mean square order parameter, whic
strictly valid for a pure type-II superconductor only at suf
ciently high temperatures, when the Lifshitz-Kosevich9 ther-
mal smearing factorX[2p2kBT/\vc.1.

It is therefore very interesting to compare the result
pressed in Eq.~1! to that obtained by Manivet al.,16,17 who
considered Gorkov’s expansion of the SC free energy in
small vortex state order parameter nearHc2 .

Using a semiclassical approximation, valid forAnF@1,
these authors have found a quadratic term consistent
Eq. ~2!, but a quartic termMosc

(4)/Mn,osc;D̃0
4/nF

3/2, which is
smaller than the corresponding term, obtained in MS the
~i.e., Mosc

(4)/Mn,osc;l2;D̃0
4/nF!, by the factor 1/AnF!1.

Very recently, Bruunet al.18 developed an exact numer
cal scheme for calculating the coefficients of the Gorko
expansion within the same model used by Manivet al. and
found good agreement with the results obtained by Norm
et al. for small values ofnF . They have also made an es
mate of thenF dependence of the quartic term by using
approximation similar in spirit to the random lattice appro
mation, and found a result which essentially agrees with
of Maki and Stephen.

In the light of this controversy our purpose in the pres
paper is to carefully examine the high temperatureX>1,
small D0 , asymptotic (AnF@1) expansion, in order to elu
cidate the origin of the disputednF dependence. We find tha
incoherent scattering channels, which generate the domi
contribution in the random lattice approximation, are co
pletely cancelled in the self-consistent, periodic lattice cal
lation, due to the presence of a strict phase coherence in
four-particle correlation function. The remaining cohere
four-particle configuration is a collinear array of fou
electron coordinates, localized within a spatial region w
size of the order of the magnetic length.

As a result, the inhomogeneous broadening of the Lan
levels by the pair potential does not contribute significan
to the damping of the dHvA amplitude just belowHc2 , as is
the case in the MS theory. The dominant damping mec
nism in the asymptotic limit,nF

1/2@1 is found to arise from
the strong, 180° out of phase oscillations of the SC cond
i-
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sation energy with respect to the normal electrons osc
tions, as was first proposed in Ref. 17.

The organization of the paper is as follows. In Sec. II w
present the general framework of our approach, which
based on Gorkov’s expansion of the SC free energy n
Hc2 . In Sec. III we carefully examine the quartic term in th
asymptotic limitAnF@1 and justify the main approximation
used in our calculation. In Sec. IV we derive simple analy
cal expressions for the self-consistent order parameter
for the oscillatory magnetization, and verify the validity o
our claimednF dependence in the asymptotic limit. In Sec.
we discuss the connection of our theory to the other theo
ical approaches and compare our predictions to experim

II. SMALL ORDER PARAMETER EXPANSION

We consider the quadraticFs
(2) and the quarticFs

(4) terms
in the Gorkov-Ginsburg-Landau expansion of the SC f
energy in the SC order parameterD(rW).16 For the sake of
simplicity let us assume a 2D electron gas model and neg
the spin degrees of freedom. The former assumption ma
justified by noting that the main contribution to the dHv
effect in an isotropic 3D normal electron system comes fr
the extremal orbit, corresponding to the valuekz50 of the
electron momentum parallel to the field direction, and to
Landau leveln'nF[EF /\vc .

Note, however, that the pairing effect responsible for
Cooper instability in a 3D electron gas is dominated by
regionkz'kF[(2mEF /\2)1/2, n'0 near the Fermi surface
Since the focus in the present paper is on the effect of
scattering by the vortex lattice, we shall ignore, for the sa
of simplicity, this aspect of 3D systems in our calculatio
but will return to this problem later while discussing o
results in connection with experiment.

Thus

Fs
~2!5

1

V E d2r uD~rW !u22E d2r 1d2r 2K2~rW1 ,rW2!

3D~rW1!D!~rW2! ~4!

and

Fs
~4!5

1

2 E d2r 1d2r 2d2r 3d2r 4K4~$rW i%!D~rW1!

3D!~rW2!D~rW3!D!~rW4!, ~5!

whereV is a BCS interaction constant. The kernelsK2 and
K4 are expressed through the product of two- and fo
electron Green’s functionsG0@rW l ,rW l 11 ;(2) lvn#, l 51,2 with
rW3[rW1 , and l 51, . . . ,4 with rW5[rW1 , respectively, in mag-
netic field @in our caseHW 5(0,0,H)#. Here vn is the Mat-
zubara frequency. The magnetic field breaks translatio
symmetry of the BCS Hamiltonian and Green’s functio
However, owing to the gauge symmetry the Gree
function can be represented in a factorized for
G0(rW l ,rW l 11 ;vn)5g(rW l ,rW l 11)G̃0(r l ,vn),19 where the re-
duced Green’s function
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G̃0~r l ,vn!5
1

2paH
2 e2r l

2/4(
n

Ln~r l
2/2!

ivn2vc~n11/2!1m
~6!

depends only on relative coordinatesrW l5(rW l 112rW l)/aH ,
(rW l[0, aH5Ac\/eH. In this expressionLn is the Lagaurre
polynomial of ordern, andm is the chemical potential. The
noninvariant gauge factor in the symmetric gauge has
form g(rW l ,rW l 11)5exp@2i«ik(rl,i1rl11,i)r l ,k/4aH#, « lk52«kl
is antisymmetric tensor in 2D space. From now on we sh
express all spatial variables, except forrW i , in units of the
magnetic length.

In the quasiclassical limit (AnF@1) the Green’s function
G̃0(r l ,vn) has two different types of behavior. Near turnin
point r l.2r F ~r F5A2nF is the cyclotron radius! it is a
smooth function, and in the intermediate regionr l,2r F it is
a sharply oscillating function.

Using asymptotic for Lagaurre polynomialLn at n→`
~Ref. 20! and the Poisson summation formula for the su
over n in Eq. ~6! one can show thatG̃0(r l ,vn);1/nF

1/3 at
4r F

22r l
2<(16nF/3)1/3, and

G̃0~r l ,vn!52
i«vn

J~vn!

~2p!1/2aH
2 vc

3
exp$ i«vn

@nF~f1sinf!#2fuvnu/vc%

r l
1/2~r F

22r l
2!1/4 ,

~7!

where J21(vn)512exp(2pi«vn
nF22puvnu/vc), sinf5(rl /

rF)@12(rl/2r F)2#1/2, «vn
5sgn(vn), atr l,2r F . Note that this

expression is a generalization of the Green’s function
tained in Ref. 16 forr l /2r F!1. The similarity to the short
distance limit is apparent since the analytic continuation
the Lagaurre polynomial asymptotic in the complexn plane
gives rise to short distance approximation atunu→`.

Combining the gauge factors we obtain the dependenc
K2 andK4 on the two- and four-particle center of mass c
ordinatesrW5(( l 51

2rW l)/2aH and RW 5(( l 51
4 rW l)/4aH , respec-

tively,

K2~rW1 ,rW2!5exp~2 i« lkr lrk!
1

b (
n

K̃2,n~r!, ~8!

K4~$rW i%!5exp~24i« lkRlQk!
1

b (
n

K̃4,n~$r l%!, ~9!

whererW [rW 1 , QW 52(rW 12rW 21rW 32rW 4)/8 and

K̃2,n~r!5G̃0~r,2vn!G̃0~r,vn!, ~10!

K̃4,n~$r l%!5G̃0~r1 ,2vn!G̃0~r2 ,vn!G̃0~r3 ,2vn!

3G̃0~r4 ,vn!. ~11!

For the order parameter we use the Abrikosov form.
symmetric gauge
e

ll

-

f

of
-

n

D~rW !5D0exp~2y21 ixy! (
n52`

`

expF2~12 ig!S pn

ax
D 2

12i
pn

ax
~x1 iy !G . ~12!

The numbersg andax are arbitrary. It can be shown that th
quasiperiodical form results from gauge symmetry as a s
tion minimizing free energy.16,21The order parameter is nor
malized as

D0
25

A2/p

axaH
2 N

E d2r uD~rW !u2, ~13!

whereN is the number of vortices.
Using expression~12! for the order parameter in Eq.~4!

for the quadratic term we get after integrating over the tw
particle center of mass coordinaterW

Fs
~2!5S 1

V
2ADpaH

2 ND0
2, ~14!

whereA}(1/b)(n*d2re2r2/2K̃2,n(r). The Gaussian facto
restricts the effective integration region by the distanc
r;1. This important fact means the loss of coherence
electron pair propagation over distances much larger than
magnetic length.

The localization of the electron correlation function
within a region of a size of the order of the order of th
magnetic length can be shown to exist, in quasiclass
limit, also for many electron configurations. Here we discu
only four-particle correlations. Integration of Eq.~5! over RW
gives rise to the expression

Fs
~4!5E d2Qe24Q2E d2Sd2TD~SW ,TW !

1

b (
n

K̃4,n~$r l%!,

~15!

whereSW [ 1
4 (rW 32rW 1), TW [ 1

4 (rW 42rW 2). The functionD(SW ,TW )
includes the summation over vortices

D~SW ,TW !}Ne4i ~SxTy1SyTx!

3 (
m1 ,m2

e22igm1m214im1Tx14im2Sx

3exp@2~m112Sy!22~m212Ty!2#. ~16!

For convenience, we denotedm15p(n22n1)/ax ,
m25p(n32n1)/ax , whereni is the summation index corre
sponding to the order parameterD(rW i) in Eq. ~12!. Note that
only a 2D sum remains in Eq.~16! from the original 4D sum;
the free double sum is equal to the number of vorticesN,
while the summation in Eq.~16! is invariant under the vortex
number shift transformationni→ni1n0 . Note also that the
combination of gauge factors from the order parameters
Green’s function causes integral over center mass coordi
RW to vanish ifn12n21n32n4Þ0.

It is clear from Eq.~16! that the lattice sum inD(SW ,TW ) is
dominated by the lattice pointm1.22Sy , m2.22Ty .
Taking only this term in the sum into account we obtain th
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D~SW ,TW !}Ne24i ~2gSyTy1SyTx1SxTy!. ~17!

The lattice functionD(SW ,TW ) being multiplied by the kerne
K̃4,n($r l%) determines the free energy distribution in t
space of relative electron coordinates.

III. ASYMPTOTIC LOCAL APPROXIMATION

In this section we analyze in detail the relative importan
of all different spatial regions contributing to the multip
integral, Eq.~15!, which determines the quartic term in th
asymptotic limitAnF@1. Every four-electron configuration
in this integral is defined by the three vectors (QW ,SW ,TW ). Since
the kernelK̃4,n(QW ,SW ,TW ) is a bounded function atuQW u@1, we
may conclude from Eq.~15! that the main contribution to the
free energy comes from the the regionuQW u<1, and so as-
sume in what follows thatuQW u<1. To estimate the integral
over SW and TW we separate the entire domain of integratio
into three regions according to the behavior of the Gree
function @Eq. ~6!# and the functionD(SW ,TW ).

~1! The turning point regionr i.2r F , for which in
the asymptotic limitAnF@1,

r1,352uQW 6SW u.2S.2r F52A2nF@1,

r2,452uQW 7TW u.2T.2r F52A2nF@1. ~18!

The size of this region is of the orde
Dr i5DS5DT;1/r F

1/3. It is characterized by a smooth be
havior of all Green’s functionsG̃0(r i);G̃0(2r F);1/nF

1/3

and kernelK̃4,n;@G̃0(2r F)#4;1/nF
4/3.

~2! In the intermediate region 1!r i,2r F variablesS and
T are still large:S@1, T@1 but essentially less thanr F .
Here the Green’s function is approximated by the express
Eq. ~7!. To simplify the considerations we note that the o
cillating phase factor in Eq.~7! can be written as

nF~f1sin f!5A2nFj~r/2r F!r, ~19!

wherep/4<j(x)<1 at 0<x<1. For our purpose we ma
take j(x)51. Substitutingr1,3.2S, r2,4.2T, the kernel
K̃4,n in this region can be transformed to
s

t

e

s
’s

n
-

K̃4,n~QW ,SW ,TW !}
exp@ i4A2nF~S2T!#

ST~r F
22S2!1/2~r F

22T2!1/2. ~20!

~3! In the third region all variablesQW ,SW ,TW are of the order
of the magnetic length:Q,S,T;1. HereD(SW ,TW ) becomes a
smooth function and the strong oscillations of the integra
in Eq. ~15! arise only fromK̃4,n . Sincej(x)→1 atx→0 the
exact short distance asymptotic is

K̃4,n~$r i%!}
1

nF~r1r2r3r4!1/2

3exp@ iA2nF~r12r21r32r4!#. ~21!

Let us first consider the case when both variablesSW ,TW
belong to the first region@i.e., region ~1,1!#: Replacing
K̃4,n(QW ,SW ,TW ) by a constant of the order;1/nF

4/3 we can es-
timate the free energy, Eq.~15!, for a given Matsubara fre-
quency in polar coordinate systemSW [(S,as), TW 5(T,a t) as

Fs,n
~4!}

1

nF
4/3 E

r F2Dr

r F
SdSTdTE

0

2p

dasda te
24iSTf~as ,a t!,

~22!

where f(as ,a t)5g cos(as2at)1sin(as1at)2g cos(as
1at). After simple integration overas anda t by the station-
ary phase method, which is justified by the very large valu
of ST, Eq. ~22! transforms to

Fs,n
~4!}

1

nF
4/3 E

r F2Dr

r F
dSdTe24iSTfs

6

;
1

nF
7/3, ~23!

wherefs
65A11g26g are the values off(as ,a t) at the

stationary points.
Let us next consider the case when bothS andT belong to

the intermediate region@i.e., region~2,2!#: Here K̃4,n($r i%),
defined by Eq.~20! asD(SW ,TW ), is a sharply oscillating func-
tion with frequency of order ofAnF. Substituting Eqs.~20!,
~17! into Eq. ~15! we obtain for 1!S, T,r F
Fs,n
~4!}E d2Sd2T exp$4i @A2nF~S2T!22gSyTy2SyTx2SxTy#%

ST~r F
22S2!1/2~r F

22T2!1/2 . ~24!
ry

n:

e

The integrals over angle variables are identical to previou
considered ones and give a factor of the order 1/ST. Thus
free energy~24! reduces to

Fs,n
~4!}E „dSdTexp$4i @A2nF~S2T!

6STfs
6#%…/ST~r F

22S2!1/2~r F
22T2!1/2. ~25!

Taking for the smooth preexponential factor its value a
ly

a

point S;AnF, T;AnF and noting that there is no stationa
point for the integrals overS and T, we get the following
estimate for free energy in the intermediate regio
Fs,n

(4);1/nF
3 .

It is clear that if one of the variables, for example,S, is
from the turning point region and the otherT, from the in-
termediate region@i.e., region ~1,2!#, the free energyFs,n

(4)

will be proportional to a factor of the order;1/nF
8/3. This

result follows from the fact that the product of two of th
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Green’s functions is proportional to;1/nF
2/3, the product of

the other two is proportional to;1/nF, and the integration
over S andT yields the factor;1/nF . The integration over
the anglesas anda t produces the factor;1/ST which can-
cels the same factor in the numerator of the integrand~15!.

Let us consider now the four-electron configuration wh
one of the variablesS or T, e.g.,T, is of the order of the
magnetic lengthT;1 @i.e., region~3!#. In contrast to previ-
ous cases,S,T@1, where the oscillations withQW can be ne-
glected, in this case an additional small factor arises from
integration overQW . It is partially cancelled by the large fac
tor arising from the integration overSW if it is from the turning
point region. Assuming thatS;r F and T;1 @i.e., region
~1,3!#, the estimate of the free energy~15! is given by the
formula

Fs,n
~4!}

1

nF
7/6 E d2Qe24Q2E d2Sd2T

3expH 24i F1

2
A2nF~ uQW 2TW u1uQW 1TW u!

12gSyTy1SyTx1SxTyG J . ~26!

The integral overQW can be divided into two regions,Q<T
andQ>T. The main contribution comes fromQ<T, where
the above exponential factor does not depend on the com
nent Qi, parallel toTW . For the small transverse compone
Q' we get

uQW 2TW u1uQW 1TW u.2T1S 1

r2
1

1

r4
D ~Q'!2. ~27!

Thus the integral overQ' is proportional to;1/nF
1/4 and the

integral overQi gives*0
TdQi;T. Performing the integration

over anglesas anda t gives, as previously, 1/ST and taking
into account that integral overS from a smooth function can
be estimated by the area of the integration reg
SDS;r FDr;nF

1/3, we get forQ<T that

Fs,n
~4!;

1

nF
19/12 E TdT exp@24iAnFT~16fs

6!#;
1

nF
31/12.

~28!

In the second regionQ>T, the integral overQW leads to a
contribution smaller by the factornF

1/4 than Eq.~28!. This is
because the phase~27! does not depend onTi and we can
neglect the quadratic inT' term in comparison with the lin-
ear one in Eq.~26!.Thus the integral overQW can be estimated
here as;1/nF . If SW belongs to the intermediate region@i.e.,
considering the region~2,3!#, the contribution to the free
energy will be even smaller because of the Green’s func
oscillations and smaller preexponential factor.

Finally, in the short distance regionr i<1 the smooth
functionD(SW ,TW ) is of the order one and we should calcula
the integrals in Eq.~15! from the kernelK̃4,n($r i%) Eq. ~21!.
The phase factor ofK̃4,n which is proportional to
n

e

o-
t

n

n

F~QW ,SW ,TW !5r12r21r32r4

52$uQW 1SW u2uQW 2TW u1uQW 2SW u2uQW 1TW u%

~29!

at fixed Q has a set of stationary pointsS<Q, T<Q for
collinear vectorsQW ,SW ,TW . Going back torW i variables we con-
clude that this configuration is equivalent to the propagat
of odd particles in a single directionnW and even particles in
the opposite direction:

rW 15r1nW , rW 252r2nW , rW 35r3nW , rW 452r4nW ,
~30!

wherenW is an arbitrary unit vector. Note that the special ro
of the configuration~30! follows from the fact that for this
configuration(rW i5F(r i)nW [0 in the integration region.

It should be emphasized that in the resulting coher
configuration the correlation among all four particles is e
sential. The phase factor Eq.~29! and stationary point equa
tions cannot be factorized.

ExpandingF(QW ,SW ,TW ) in the coordinatesS' andT' per-
pendicular tonW , and noting that from the definition ofQW

follows nW 52QW /Q, we can reduce Eq.~29! to

F~QW ,SW ,TW !52F S 1

r1
1

1

r3
D ~S'!21S 1

r2
1

1

r4
D ~T'!2G ,

~31!

wherer11r35r21r454Q. Now performing the integra-
tion of the kernelK̃4,n($r i%), given in Eq.~21!, overS' and
T' we obtain a factor;(1/AnF)@(r1r2r3r4)1/2/Q#, which
gives rise to then dependent free energyFs,n

(4);1/nF
3/2.

This result completes our analysis: it implies that in t
asymptotic limitAnF@1 the dominant contributions to th
quartic term of the free energy originate in the short dista
region only. Thus, using the short distance approximation
K̃4,n , taking into account its dependence onvn , and restor-
ing the exact form ofD(SW ,TW ), Eq. ~16!, the quartic term of
the SC free energy can be written in the form

Fs
~4!}

1

nF
3/2 (

n
qn

2E dQe24Q224anQE
2Q

Q

dSdTdu

3exp@24~S21T2!sin2u14iST sin~2u!#

3 (
m1 ,m2

exp@2m1
22m2

222igm1m214i ~m1T1m2S!

3cosu2~m1S1m2T!sinu#, ~32!

where the angleu describes the direction of the unit vectornW ,
2qn5J(2vn)J(vn), and an52(2n11)aH /z, with
z5\vF /(pkBT).

This free energy is determined by collinear, essentia
four particles configurations with the size of the order
magnetic length. The resulting expression Eq.~32! agrees
with the quartic termFs

(4) derived previously by Maniv
et al.16 Our present considerations justify the used appro
mation and clarify the geometry of coherent configuration
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It should be emphasized that the random vortex-lat
approximation, used in Ref. 11, gives rise to a marke
different result, namely,Fs,n

(4);1/nF . The reason for the dis
agreement is due to the averaging over random vo
lattice11 which leads to factorization of the multiple produc
of pair potentials into products of pair correlation functio
only.

For example, the quartic term in this approximation b
comes

^D~rW1!D!~rW2!D~rW3!D!~rW4!&

}^D~rW1!D!~rW2!&^D~rW3!D!~rW4!&

}expF2
1

2
~r1

21r3
2!Gexp$2 i @z~2,1!1z~4,3!#%,

wherez(2,1)5(x21x1)(y22y1) is the~Landau! gauge fac-
tor of G0(rW1 ,rW2 ;vn), and^•••& stands for averaging over vor
tex distributions. The corresponding free energy is given

Fs,n
~4!}E ) d2r i K̃4,n~$r i%!expF2

1

2
~r1

21r3
2!G

3expF i

2
@~x42x2!~y32y1!2~x32x1!~y42y2!#G .

~33!

In the important region of integrationr1 ,r3<1, the con-
straint ( l 51

4 rW l50, implies thatrW 2'2rW 4 , or alternatively

rW1;rW2 andrW3;rW4 . Thus the imaginary exponent in Eq.~33!
is always of the order unity or smaller in the important r
gion of integrations, and so the total gauge factor is a smo
function. Consequently, only two distances in the kernelK̃4,n
are restricted to the size of the order of magnetic leng
allowing two others to be arbitrary. Thus, in contrast to o
result, where all long range configurations of electron pa
in the ordered vortex lattice interfere destructively~i.e., ap-
pear as incoherent scattering channels!, the smoothing of
rapidly oscillating gauge factors in the MS theory introduc
a huge incoherent contribution to the SC free energy.

Let us estimate now the quartic term within this appro
mation. Substituting for the Green’s functionsG̃0(r1 ,2vn)
and G̃0(r3 ,2vn) their approximants in the short distanc
region, and omitting the smooth gauge factor, we get for
free energyFs,n

(4) , after integrating over the center of ma
coordinates:

Fs,n
~4!}

1

nF
1/2 E ) d2r i

~r1r3!1/2dS (
l 51

4

rW l D G̃0~r2 ,vn!

3G̃0~r4 ,vn!exp„iA2nF~r11r3!…

3expF2
1

2
~r1

21r3
2!G . ~34!

The main contribution to Eq.~34! arises from the region
r2.2r F , r4.2r F . Allowing rW 2 , rW 4 to vary independently
within the turning point region,rW 1 , rW 3 are not independen
e
y

x

-

y

-
th

,
r
s

s

-

e

variables; takingrW 1 as the third independent variable of in
tegration, and noting thatrW 1.2rW 3 , we have

Fs,n
~4!;

1

nF
1/2 E d2r1

e2iA2nFr1

r1
F E d2rG̃0~r,vn!G2

.

~35!

Now, since *G̃0(r)d2r;1, and the integration overrW 1

yields the factor;1/A2nF, the resultingnF dependence is
1/nF , in agreement with Ref. 11.

IV. SELF-CONSISTENT ORDER PARAMETER

The local approximation, verified in the previous sectio
becomes very transparent if we rewrite the free energy
~32! as a functional of the order parameterD(rW). After some
straightforward, but combersome calculations one can sh
that Eq.~32! is equivalent to

Fs
~4!}

1

nF
3/2 E d2RE dudQ f~Q!e24Q2E

2Q

Q

dS

3E
2Q

Q

dTD@RW 1~S1T!nW #D!@RW 1~S2T!nW #

3D@RW 2~S1T!nW #D!@RW 2~S2T!nW #, ~36!

wheref (Q)5(nqn
2e24anQ, andD(RW ) is defined by Eq.~12!.

SinceuSu, uTu<Q<1, the expression~36! can be considered
as averaging of the four-order parameter product over a
gion with radius of the order of the magnetic length. T
additional averaging over the direction ofnW in Eq. ~32! leads
to a completely local expression plus a nonlocal correcti
i.e.,

Fs
~4!5BE d2RuD~RW !u41Fs,nloc

~4! , ~37!

where B}(1/nF
3/2)*dQ f(Q)e24Q2

*2Q
Q dS*2Q

Q dTe22(S21T2).
The nonlocal correctionFs,nloc

(4) is numerically small since it
arises from high~i.e, fourth and higher! order terms in the
cumulant expansion of the exponential in Eq.~32! ~see Ref.
16!.

This result is of fundamental importance since it sho
that the well known, fully local form of the Ginzburg
Landau free energy functional in the low field regime ne
Tc(H50) is basically valid also in the opposite, high ma
netic field regime nearHc2(T50). This locality is closely
related to the coherence effect discussed above. For exam
in the random lattice approximation, discussed in the pre
ous section, the dominant contribution toFs

(4) is extremely
nonlocal.

Neglecting the small nonlocal correction, the total SC fr
energy, up to fourth order inD0 , can be turned into the
following one-parameter variational form:16

f s[
Fs

NpaH
2 5D2DF2ãD0

21
B̃

~pkBTc!
2 D0

4G , ~38!

whereD2D5mc/2p\2 ~i.e., the 2D single electron density o
states!,
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ã52
aH

z (
n50

nD

Re~qn!gn21/g ~39!

with gn5*0
`dre2anr2(1/2)r2

, g5VD2D , and nD[(TD/2T
21), whereTD is the Debye temperature.

The coefficientB̃, of the quartic term can be readily ob
tained from Eq.~37! ~after replacingQ with r/2!:

B̃5bA

aH

z S aH

j0
D 2

(
n

nD

Re~qn
2!dn , ~40!

with dn[2p*0
`dre22anr2r2

erf2(r/&), j0[\vF /pkBTc ,
andbA is the geometrical factor of the Abrikosov lattice.16

The key parameters, which control the crossover from
low field to the high field regime areaH /z and
X52p2kBT/\vc ; they are connected by

X52p~2nF!1/2S aH

z D , ~41!

which means that in the asymptotic limit considered he
our high-temperature regime,X;1, of the quantum magneti
oscillations domain is still in the low-temperature regime
the SC-normal phase boundary, sinceaH /z;1/AnF!1.

In this caseqn'2 for all n, and the coefficient,ã,
of the quadratic term, can be calculated from Eq.~39!
by dividing the sum over the Matzubara frequenciesn
into two regions:~1! an!1, namely,n!nmax[(z/aH)/2&,
and ~2! n>nmax. The contribution from the first region
is Ap*0

1ex2
@12erf(x)#dx'1.147, while the sum in the

second region leads to the familiar logarithmic express
(n5nmax

nD 1/(n11/2)' ln@&(TD /T)(aH /z)#, provided that the

Debye cutoff temperatueTD[(2nD11)T is much larger
than (2nmax11)T. The last condition may be rewritten in
more transparent form, i.e., (kBTD /\vc)

2@nF/2p3.
Combining the contributions from the two regions we fi

ã' lnF aH

&j~0!
G , ~42!

wherej(0)[0.18\vF /kBTc'0.56j0 .
Now consider the coefficientB̃, of the quartic term.

Again, we divide the Matzubara sum into the same two
gions. In the first, wheren!nmax, each termdn is indepen-
dent ofn so that(n50

nmaxdn'4nmax*0
`dre2r2

r2dr'0.63(z/aH),
whereas the second region yields(n5nmax

` @1/2(2n

11)aH /z#3' 1
16z/aH . Combining these results we find th

the sum over Matzubara frequencies changes significa
the nF dependence of the quartic term with respect to
individual Fs,n

(4) terms, since(ndn'0.69(z/aH);nF
1/2.

We thus find thatB̃/(pkBTc)
2'1.38/EF\vc , so that

f s'
\vc

2paH
2 F2D̃0

2lnS aH

&j~0!
D 1

1.38

nF
D̃0

4G . ~43!

It should be emphasized, here again, that thenF dependence
of both the quartic and the quadratic terms inf s above differs
by the large factorAnF from the indevidual termsFs,n

(4) ,Fs,n
(2)

because of the sum over the Matzubara frequencies.
e

,

f

n

-

tly
e

Using expression~43!, the self-consistent mean field orde
parameter is given by

D̃0
250.36nFlnS aH

&j~0!
D . ~44!

This expression is identical to the well-known high fie
limit of the Gorkov-Ginzburg-Landau SC order parameter12

Indeed, at magnetic fieldsH near Hc2(0)5f0/2pj(0)2,
f05ch/2e, whereaH'&j(0), wehave

EF\vc'
~pkBTc!

2

2~aH /j0!2 '0.78~pkBTc!
2,

so that Eq.~44! reduces to the well-known result

D0'1.7kBTcF lnS aH

&j~0!
D G 1/2

'1.7kBTc@12H/Hc2~0!#1/2.

~45!

Interestingly, thenF dependence of the self-consistentD0
obtained in Eq.~44! for H'Hc2 determines a small param
eter

x[
D̃0

2

nF
'0.36@12H/Hc2~0!#,

which is seen to be the expansion parameter in the pertu
tion theory leading to Eq.~43!. This observation will be fur-
ther discussed in the next section.

Note that in deriving the above expressions for the s
consistent order parameter we have neglected the oscilla
compomemts of the SC free energy, which should add
oscillatory contribution to the order parameter.16,18 In the
high-temperature limit considered, this oscillatoray term
much smaller than the nonoscillatory one, except for a v
narrow region nearHc2

.27

Let us consider now the magnetization oscillations;
dominant contribution to the superconducting part can
obtained by differentiating the density of states factorsqn in
the free energy~38! with respect to magnetic field, namely

Ms,osc}2(
n

] f s

]qn

]qn

]H
. ~46!

Explicitly we have

Ms,osc'2D2D

aH

z
D0

2 (
n50

nD21 Fgn2S D0

pkBTc
D 2S aH

z D dnqnG ]qn

]H
.

~47!

For X>1, ]qn /]H'2(8pnF /H)sin(2pnF)e2(2n11)X, so
that the sum overn is limited by the thermal damping facto
to the first few terms only. This contrasts the nonoscillato
magnetization, which picks up contributions from ma
Matzubara frequencies.

Thus the first harmonic of the oscillatory magnetizatio
Mosc, just belowHc2 can be written as17
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M̃osc[
f0

EF
Mosc'M̃n,oscF12

p3/2D̃0
2

nF
1/2 1

&p3/2bAD̃0
4

nF
3/2 G ,

~48!

where bA'1.16 for a triangular lattice, and
M̃n,osc[ (X/eX)sin(2pnF) is the normal electrons oscillator
magnetization.25

In the expansion~48! there are two scales of order param
eterD0 . NearHc2 , whereD0

2<(\vc)
3/2EF

1/2
„i.e., D̃0

2<nF
1/2,

which means that ln@aH /&j(0)#;1/nF
1/2

…, the attenuation of
the magnetization oscillations amplitude occurs as the re
of the electron pairing. Here the contribution of the ma
electron coherent configurations is negligible. Far fromHc2 ,
where D0

2;\vcEF „i.e., D̃0
2;nF so that ln@aH /&j(0)#;1…

the quadratic and the quartic terms in the free energy~and
magnetization! are comparable. It can be shown22 that the
higher order terms in this expansion are determined by
parameterD0

2/\vcEF5D̃0
2/nF . In the region where this pa

rameter is of the order unity or larger the SC state is a hig
correlated many electron-pair configuration, which is qu
different from the condensate of electron pairs, dominat
the SC free energy just belowHc2 .

V. CONCLUSION

The results of the last two sections enable us now to c
cally discuss the various theoretical approaches to the p
lem of the intrinsic attenuation of the dHvA oscillations
the vortex state, and the relevance of our model to real
periments. It is, first of all, clear that the assumption of d
ordered vortex lattice, and the consequent averaging ove
random pair potential configurations, which greatly simp
fied the analysis in the MS theory,10,11 replaces the many
electron correlation function with a product of pair corre
tion functions, and so greatly overestimates the QP scatte
effect in the asymptotic limitnF

1/2@1. In fact, up to the sec
ond order inD̃0 , our result@Eq. ~48!# is identical to that
obtained by MS@Eq. ~1!#. The higher order terms, howeve
differ substantially; our quartic term is 1/nF

1/2!1 smaller than
that obtained by expanding the exponential in Eq.~1! up to
second order inl(D0 ,nF).

This result reflects a very interesting phenomenon: In
ground Landau level approximation for the condensate
Cooper pairs, the quadratic term in the free energy expan
is known16 to be completely independent of the vortex lin
distribution. Therefore, it has nothing to do with the broa
ening of the Landau levels by the inhomogeneous pair
tential in the vortex state. Indeed, in the standa
expression26 for the SC free energy in terms of the dress
electron Green’s function~or the QP Green’s function! the
entire series of self-energy corrections is multiplied by a s
ond order factor inD. Consequently, the quartic term is th
lowest order correction to the free energy, which contains
scattering effect. It may be, therefore, concluded that in
asymptotic limit of the 2D model used here, the scatter
effect is much weaker than what predicted by any the
consistent with the random vortex lattice approximation.11,10

The structure of our expression for the free energy
~43! as well as for the oscillatory magnetization Eq.~48!
lt
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suggests that the small expansion parameter in the theo
x[D̃0

2/nF rather thanD̃0
2/nF

1/2, as suggested by Eq.~1!. The
full expansion should therefore read

M̃osc'M̃n,osc@12p3/2AnFxQ~x!#, ~49!

where at x!1 the function Q(x) has an expansion
Q(x)'12&bAx.

Now the expression within the square brackets in Eq.~49!
vanishes atxQ(x)51/p3/2nF

1/2. Thus a sign inversion of the
magnetic oscillations amplitude takes place
x'1/p3/2nF

1/2!1, whereQ(x)'1, i.e., well within the range
of validity of our expansion.13,23

One therefore expects that in a 2D superconductor
dHvA amplitude will reverse sign due to pairing at a certa
field H inv below Hc2 , and remains virtually undamped we
below the point of inversion. This conclusion may b
changed if disorder in the vortex lattice, or vortex line m
tion is taken into account, as indicated by the MS res
However, the application of the MS model to real disorder
vortex lattices should be considered very cautiously since
effect of disorder has not been introduced self-consiste
there.

The crossover to the low-temperature power-law beh
ior, obtained by Dukanet al., is reflected in our theory by the
breakdown of perturbation theory at very low temperatu
At such low temperatures, the LK thermal smearing para
eterX!1, and our expansion does not exist for all magne
fields since the density of states parameterqn diverges as

qn5
2

$12exp@~2n11!X#%
;

2

~2n11!2X2 ~50!

when a Landau level crosses the Fermi energy with half
teger filling factornF .

Under this condition, and for sufficiently smallD0 , the
SC pairing is restricted to a single Landau level, and the
energies are close to the diagonal elements of the B
Hamiltonian in the Landau levels representation, i.e.,24,13

EkW ,n5A@\vc~n11/22nF!#21uDn,n~kW !u2 ~51!

which is not an analytical function ofD0
2 at the Fermi sur-

face. This also explains the linear dependence ofl(D0 ,nF)
on D0 , obtained by Normanet al.13 for small D̃0 at low
temperatures.

It is interesting to note that in our expansion the quadra
and the quartic terms for each Matzubara frequencyn are
proportional toqn andqn

2, respectively. Thus, the expansio
parameter is actuallyx;@D0

2/(\vc)
2nF#q0 .

In the high-temperature limitX>1, whereq0'2, it re-
duces to the temperature independent valuex;D̃0

2/nF used
above. In the very low-temperature limitX!1 it diverges
with (1/T)2, i.e., x;@D0 /pkBT#2/nF . The breakdown of
the smallD expansion, resulting from this divergence at su
ficiently low temperatures, seems to be related to the em
gence of an opposite, highD expansion in the small param
eter 1/x;(pkBT/D0)2, as obtained by Dukan an
Tesanovic14 @see Eq.~3!# in the low-temperature limit.

The application of the theory developed in the pres
paper to real experimental situations is not a straightforw
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matter; in addition to the influence of disorder in the vort
lattice and vortex line fluctuations on the QP scattering, d
cussed above, the 3D nature of the single electron b
structure could also play an important role. The importan
of the latter effect may be appreciated by noting that in c
trast to the 2D model studied here, in a 3D electron syst
e.g., with a spherical Fermi surface, Cooper pairs in l
Landau levels~i.e., for n,n8'0! and with large longitudinal
momenta~i.e., nearkz5kz85kF!, have the largest contribu
tion to the SC condensation energy. This region is far aw
from the extremal orbitkz50, n5nF , which dominates
dHvA oscillations.

As a result, in addition to the QP near the extremal or
their counterparts with small cyclotron orbits~i.e., for
n!nF! and large longitudinal momentakz , should also con-
tribute significantly to the SC free energy in this case. T
relatively strong sensitivty of QP with small cyclotron orbi
to scattering by the vortex lattice, as implied by the lar
damping parameterl found in Ref. 13, may indicate that th
QP scattering effect in 3D systems is stronger than in
equivalent 2D systems. An effective parameternF* <nF
may be therefore introduced to take into account such
increase in the QP scattering effect.

Most of the SC materials in which clear dHvA oscilla
tions were observed in the vortex state, such as V3Si, Nb3Sn,
YNi2B2C, and NbSe2, are essentially 3D systems with com
plex band structures and nonspherical Fermi surfaces.
therefore expects characteristic values ofnF* smaller thannF

in these materials.
Furthermore, the nonspherical Fermi surfaces, combi

with some unavoidable deviations from perfect crystaline
der, should lead to some finite distribution around ea
dHvA frequency. This should be compared to the effect
range of frequency modulation (DF) inv
5Hc2H inv/4(Hc22H inv), associated with the expressio
within the square brackets in Eq.~49!, which does not ex-
ceed 15 T.

Thus it is not surprising that the measured signal does
exhibit a fine structure like the sign inversion predicted
our ideal 2D electron gas model.

The organic superconductork2~ET!2Cu~NCS!2 seems at
first sight a good candidate for testing the predictions of
theory, due to the quasi-2D nature of its electron band st
ture. Unfortunately, the transition from the normal to the S
d
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state observed experimentally in this material is very broa8

extending far below the estimated value ofH inv , which is
found to be very close to the mean field value ofHc2 in this
material. This is not surprising since the low-dimension
nature of this compound and the low temperatures use
the dHvA experiments can lead to strong quantum fluc
tions in the phase of the order parameter28,29 and so to the
breakdown of the mean field approximation used in o
theory.

The relatively weak QP scattering, predicted in t
present paper, seems to be confirmed, however, by the
jority of the experiments performed so far: According to o
theory it should lead to a significant deviation of the expe
mentally measured amplitude from the Maki-Stephe
Wasserman fitting formula@see Eqs.~1!,~2!# in the region
where the leading SC effect exceeds the zeroth order~i.e.,
normal electron! term, i.e, forH>H inv . In this region the
above qualitative analysis indicates that the damping of
dHvA oscillations may be described by a parameterD̃0

2/nF*
smaller than the characteristic MS parameterl;D̃0

2/AnF.
Such a crossover from a relatively strong damping just be
Hc2 , described well by the MS fitting formula, to a weak
damping at lower fields, was indeed observed in almost
experiments carried out so far.4,5,7

Furthermore, from the available experimental da
two different characteristic slopes of the correspond
Dingle plot can be clearly distinguished. Our estimatio
show that the experimental crossover fieldHcross from
one slope to another is in a good agreement with
calculated inversion fieldH inv . In particular, we have ob-
tained for V3Si(F51570 T): Hcross;12.5 T, H inv;13.8 T;
for YNi2B2C(F5511 T): Hcross;4.5 T, H inv;6 T; and for
Nb3Sn(F5581 T): Hcross;11.4 T, H inv;13.7 T.
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