PHYSICAL REVIEW B VOLUME 56, NUMBER 22 1 DECEMBER 1997-II

Coherence in the quasiparticle scattering by the vortex lattice in pure type-ll superconductors
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The effect of quasiparticléQP) scattering by the vortex lattice on the de Haas-van AlpfuivA) oscil-
lations in a pure type-ll superconductor is investigated within a mean-field asymptotic perturbation theory.
Using a two-dimensiondRD) electron-gas model it is shown that, due to a strict phase coherence in the many
particle correlation functions, the scattering effect in the asymptotic Iidﬁ(/ﬁ w:>1) is much weaker than
what is predicted by the random vortex-lattice model proposed by Maki and Stephen, which destroys this
coherence. The coherent many particle configuration is a collinear array of many particle coordinates, localized
within a spatial region with size of the order of the magnetic length. The amplitude of the magnetization
oscillations is sharply damped just beld¥y, because of strong 180° out of phase magnetic oscillations in the
superconducting condensation energy, which tend to cancel the normal electron oscillations. Within the ideal
2D model used it is found, however, that because of the relative smallness of the quartic and higher order terms
in the expansion, the oscillations amplitude at lower fields does not really damp to zero, but only reverses sign
and remains virtually undamped well beldd,. This conclusion may be changed if disorder in the vortex
lattice, or vortex line motion is taken into account. The reduced QP scattering effect may be responsible for the
apparent crossover from a strong damping of the dHvA oscillations just hdlgwo a weaker damping at
lower fields observed experimentally in several 3D supercondu¢®@4.63-1827)05045-5

I. INTRODUCTION with
Magnetic quantum oscillations have been recently ob- NS
served in several type-Il superconductors beldy .18 A X(Ao,np)=773/2n—/z, 2
F

systematic study of this remarkable effect has been impaired,
however, by the lack of a complete quantitative theory of th%NhereM
de Haas-van AlphefdHvA) effect in the vortex state, analo-

gous to the Lifshitz-KosevichLK ) theory in normal metal$. ) s
Such a theory would require a detailed analysis of the eﬁect[he_magnltude of the superconductifE0) order. parameter,
offic is the cyclotron frequency, antk=E¢ /% w. is the Lan-

of the superconducting order parameter on the magnetizati ; : .
oscillations in the vortex state, which turns out to be an exJau level index corresponding to the extremal orbit on the

tremely subtle theoretical problem. Fermi surface.

A common feature reported by all experimental groups so A" exlp/)fnential damping with a different e;;ponent, e.,
, has been proposed by Normaial.,™ who car-

far, which is far from being well understood, has been the?\_NAo/nF : :

observation of an additional damping in the dHvA amplituderied out a full quantum mechanical calculation, based on a

below H,,. Several theoretical papers have attributed thigiumerical solution of the Bogoliubov-de Genné8dG)

attenuation to the broadening of the Landau levels by th&quations for the quasiparticles at low temperatures. The nu-

inhomogeneous pair potential, building up belblw, . There merical computations carried out by these authors were lim-

is, however, a remarkable disagreement among the variouted, however, to relatively small values ¢he.

theoretical approaches to this problem concerning both the A similar approach, invoked by Dukan and Tesandtic,

size of the attenuation factor and its detailed dependence d¥s led to a qualitatively different behavior at very low tem-

the strength of the field below,. perature, that is a power law attenuation of the dHvA oscil-
The semiclassical approach, adopted originally by M3ki, lations belowH,

elaborated later by Stephéhand reviewed very recently by

Wasserman and Springfot@,considered the correction to MOSC/MnYOSC~(kBT/A0)2+ O[(kgT/Ag)*]. 3

the quasiparticle$QP) lifetime due to the scattering by the

vortex lattice. This result was obtained by considering only the domi-
For the first harmonic of the oscillatory part of the mag- nant contribution to the dHvA oscillations as originating in

netization belowH, they predicted the gapless region of the QP spectrum around the Fermi sur-

face. It looks similar to a low-temperature highexpansion,
Mosc= Mp os€XA —N(Ag,NE) ], (1) emphasizing the opening of the SC gap well beldyy.

n,oscIS the corresponding normal electrons contribu-
tion to the oscillatory magnetizatiod\g=Ay/fiw,, Ag IS
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In the Maki-StepherfMS) theory it is assumed that the sation energy with respect to the normal electrons oscilla-
vortex lattice acts as a random potential for the quasipartitions, as was first proposed in Ref. 17.
cles, and so by averaging over the realizations of the vortex The organization of the paper is as follows. In Sec. Il we
lattice, the QP self-energy acquires a large imaginary parpresent the general framework of our approach, which is
leading to a strong exponential damping of the dHvA ampli-Pased on Gorkov's expansion of the SC free energy near
tude. H¢,. In Sec. Il we carefully examine the quartic term in the

Strictly speaking, however, the scattering by the inhomo-asymptotic limityng>1 and justify the main approximation
geneous pair potential is a highly coherent process, as iHsed in our'calculation. In Sec. IV we derive simple analyti-
multiple Andreev reflection at the interfaces of a 2D periodicC@l €xpressions for the self-consistent order parameter and
array of normal and SC phasks. for the_oscnlatory magnet|;at|0n, and vernfy t.he_ validity of

Thus, in the ideal, self-consistent vortex lattice model thePUr Claimedne dependence in the asymptotic limit. In Sec. V

QP self-energy has zero imaginary part. However, the broad"e discuss the connection of our theory to the other theoret-
ening of the Landau levels into real energy bands by thacal approaches and compare our predictions to experiment.

inhomogeneous pair potential should lead to damping of the
dHVA oscillations even for an infinite QP lifetime. The term Il. SMALL ORDER PARAMETER EXPANSION

scattering refers to this inhomogeneous broadening effect in , @) - (4)
the present paper. We consider the quadratfe,~’ and the quartid-;"~’ terms

The quadratic dependence XfAq,ng) on A, in Eq. (2) in the Gorkov-Ginsburg-Landau expansion of the SC free

. L . . H -\ 16
reflects its origin in a perturbation expansion of the the QPeNergy in the SC order paramet&(r).™ For the sake of
self-energy in the mean square order parameter, which i@imPplicity let us assume a 2D electron gas model and neglect
strictly valid for a pure type-Il superconductor only at suffi- ("€ Spin degrees of freedom. The former assumption may be

ciently high temperatures, when the Lifshitz-KoseVither- justified by noting that the main contribution to the dHVA

mal smearing factok =272k T/f w > 1 effect in an isotropic 3D normal electron system comes from
- B c . . .

It is therefore very interesting to compare the result ex—the extremal orbit, corresponding tq the _valq_e:O of the

pressed in Eq(1) to that obtained by Maniet al, 57 who electron momentum parallel to the field direction, and to the

. , : . Landau leven=ng=E;/fiw,.
considered Gorkov's expansion of the SC free energy in the Note, however, that the pairing effect responsible for the

small vortex state order parameter nép. Cooper instability in a 3D electron gas is dominated by the
Using a semiclassical apprOX|mat|_on, valid fdn__F>1, regionk,~ke=(2mE- /422 n~0 near the Fermi surface.

these authors have found a quadratic term consistent witBjnce the focus in the present paper is on the effect of QP

Eq. (2), but a quartic termM{Q/M, s~ Ag/nE?, which is  scattering by the vortex lattice, we shall ignore, for the sake

smaller than the corresponding term, obtained in MS theoryf simplicity, this aspect of 3D systems in our calculation,

(i.e., Mgi)c/MHVOSCN)\&Kg/nF), by the factor 1ng<1. but will return to this problem later while discussing our
Very recently, Bruuret al® developed an exact numeri- 'esults in connection with experiment.

cal scheme for calculating the coefficients of the Gorkov's Thus

expansion within the same model used by Maeial. and

found good agreement with the results obtained by Norman 1 - - s

et al. for small values ofg. They have also made an esti- F(SZ):V f d2r|A(r)|2—f CRECRELSICRE)

mate of theng dependence of the quartic term by using an . .

approximation similar in spirit to the random lattice approxi- XA(r)A*(rp) 4

mation, and found a result which essentially agrees with that

of Maki and Stephen. and
In the light of this controversy our purpose in the present

paper is to carefully examine the high temperatde 1, @ 1 o o o R R

small A,, asymptotic (/n>1) expansion, in order to elu- Fs ) f d%r1d%rod7r3dr Ky ({rih) A(ry)

cidate the origin of the disputat: dependence. We find that

incoherent scattering channels, which generate the dominant XA*(Fz)A(Fs)A*(F4), (5)

contribution in the random lattice approximation, are com-

pletely cancelled in the self-consistent, periodic lattice calcuwhereV is a BCS interaction constant. The kern&ls and

]Ication, dtL'JeI to the Fl)“te_senf]fe 01;_3 Stf_ilf:r': phase po_heren(;]e in tthﬁ are expressed through the product of two- and four-
our-particle correlation function. The remaining coherente,e on Green's functior[f, .\, 1:(~)'w,], 1= 1.2 with

four-particle configuration is a collinear array of four- =~ IR : X
electron coordinates, localized within a spatial region with’s="1, andl=1,... .4 with rs=r,, respectively, in mag-
size of the order of the magnetic length. netic field [in our caseH=(0,0H)]. Here v, is the Mat-

As a result, the inhomogeneous broadening of the Landagubara frequency. The magnetic field breaks translational
levels by the pair potential does not contribute significantlysymmetry of the BCS Hamiltonian and Green’s function.
to the damping of the dHVA amplitude just beld#y,, asis However, owing to the gauge symmetry the Green's
the case in the MS theory. The dominant damping mechafunction can be represented in a factorized form:
nism in the asymptotic limitn2%>1 is found to arise from  G(r|,F1+1;®,)=9(r,l141)Gol(p; . ®,),*° Where the re-
the strong, 180° out of phase oscillations of the SC condenduced Green’s function
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Ln(p{/2) - 2

~ 1 2 mn
= —pl4 r) = —v24i —(1—i —
Golpr )= 5 e M o T h A(F)=Agexp —y*+ixy) 2, ex;{ (1=in| o
(6)
- - - Wn H
depends only on relative coordinatgs=(r,,;—r,)/ay, +2i 2, (x+iy) . (12)

25|EO, ay=+/chl/eH. In this expressiofh, is the Lagaurre
polynomial of ordem, andw is the chemical potential. The
noninvariant gauge factor in the symmetric gauge has th

form g(ry .11+ 1) =ex —iew(r,i +1 1) o1 W/4au], &1c=— 2

The numbergy anda, are arbitrary. It can be shown that this
guasiperiodical form results from gauge symmetry as a solu-
fion minimizing free energy®?! The order parameter is nor-

) - . ; alized as

is antisymmetric tensor in 2D space. From now on we shal[n

express all spatial variables, except ﬁpr, in units of the ) 2l 5 12

magnetic length. Ao:—ra 2N fd rlA(n)?, (13
X“H

__In the quasiclassical limityng>1) the Green’s function
Go(p; ,,) has two different types of behavior. Near turning WhereN is the number of vortices.

point pj=2r (rg=+/2ng is the cyclotron radiusit is a Using expressiort12) for the order parameter in E¢4)
smooth function, and in the intermediate regjgr:2r¢ itis ~ for the quadratic term we get after integrating over the two-
a sharply oscillating function. particle center of mass coordinate

Using asymptotic for Lagaurre polynomial, at n—o
(Ref. 20 and the Poisson summation formula for the sum F<2)=(E—A
over n in Eq. (6) one can show thaGy(p, ,w,)~ 1/ at s T \v
4r2—p2<(16ng/3)*3, and

mafNA3, (14)

Whererc(l/,B)EVfdzpefpz’zk‘zlv(p). The Gaussian factor

ie, Jw,) restricts the effective integration region by the distances

Golpy,0,)=— ¥ p~1. This important fact means the loss of coherence in
olpP1, Wy 21252 . . .

(2m)"ajo. electron pair propagation over distances much larger than the

. . _ magnetic length.
explie,, [Ne($+sing)] - o, |/ o} The localization of the electron correlation functions
pA(rz2—pHt ' within a region of a size of the order of the order of the
- magnetic length can be shown to exist, in quasiclassical
(7) limit, also for many electron configurations. Here we discuss
where J™ Y w,) =1—exp(2rie, Nng—2mw,/lwy), sing=(p/  only four-particle correlations. Integration of E() overR
rO[1—(p/2r )22, swfsgn@y), atp,<2rr . Note that this  9ives rise to the expression
expression is a generalization of the Green’s function ob- , o1 _
tained in Ref. 16 forp,/2r<1. The similarity to the short F(S“):f d?Qe *Q f d?’SPTD(S,T) = X Ka({p)),
distance limit is apparent since the analytic continuation of B
the Lagaurre polynomial asymptotic in the compleyplane (15
gives rise to short distance approximation rgt— . here§=l( >N R_1.2 > ; & 3
- ) =7(p3—p1), T=7(pa—p,). The functionD(S,T)
Combining the gauge factors we qbtaln the dependence (\?/r{cludes the summation over vortices
K, andK, on the two- and four-particle center of mass co-
ordinatesr = (3,_,r|)/2ay and R=(Z}_,r|)/4a,, respec- D(E,T)x Nt (STy+ ST
tively,

X

% 2 @~ 2 ymymy-+4im; Ty +4im,S,

- . 1 ~
Ka(1ro)=exe—izuripn 5 2 Koulp),  (®) e
g xexf —(my+2S)%—(my+2T,)%]. (16
. ) 1 ~ For convenience, we denotedm;=m(n,—n,)/a,,
Ka({ri}) =exp(—4ieRQy) 3 2;‘ Ka,(dpih): (9 my=m(ng—ny)/a,, wheren; is the summation index corre-
sponding to the order paramett(r,) in Eq. (12). Note that

wherep=p,, O=—(p1— po+ps—p4)/8 and only a 2D sum remains in E¢16) from the original 4D sum,;
the free double sum is equal to the number of vortibes
’lzz (p)=ao(p —w )ao(P ®,) (10) while the summation in Eq16) is invariant under the vortex

number shift transformation;—n;+ny. Note also that the
~ I~ ~ ~ combination of gauge factors from the order parameters and
Ka,(111)=Golp1,~ @,)Go(p2,®,)Golps, — w,) Green’s function causes integral over center mass coordinate
X Golpa, @,). (11)  Rto vanish ifn;—n,+nz—n,#0.
It is clear from Eq.(16) that the lattice sum iD(S,T) is
For the order parameter we use the Abrikosov form. Indominated by the lattice pointn,=—2S,, m,=—2T,.
symmetric gauge Taking only this term in the sum into account we obtain that
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exi4y2ne(S-T)]
ST(rIZ:_SZ)lIZ(rIZ:_TZ)I/Z'

D(éyf)ocNe_4i(273yTy+SyTx+SxTy)_ (17)

The lattice functioer(é,f) being multiplied by the kernel
K4,({p/}) determines the free energy distribution in the
space of relative electron coordinates.

Ky (Q,8,T)x (20

(3) In the third region all variable®,S, T are of the order
of the magnetic length®,S, T~ 1. HereD(S,T) becomes a
smooth function and the strong oscillations of the integrand
n Eq. (15) arise only fromK, . Sinceé(x)—1 atx—O0 the
exact short distance asymptotic is

. ASYMPTOTIC LOCAL APPROXIMATION

In this section we analyze in detail the relative |mportanc
of all different spatial regions contributing to the multiple
integral, Eq.(15), which determines the quartic term in the
asymptotic limit\ng>1. Every four-electron configuration
in this integral is defined by the three vecto3,§,T). Since
the kernelK, ,(@,5,T) is a bounded function 46Q|>1, we
may conclude from Ed15) that the main contribution to the

free energy comes from the the regit@|<1, and so @s- Lt us first consider the case when both varialfic
sume in what follows thaQ|<1. To estimate the integrals belong to the first regiorfi.e., region (1,1)]: Replacing

over S and T we separate the entire domain of integrationsk 4, (Q,S,T) by a constant of the order 1/n¥* we can es-

into three regions according to the behavior of the Green'simate the free energy, Eq15), for a given Matsubara fre-
function[Eq. (6)] and the functiorD(S,T). guency in polar coordinate systefe= (S, ), T=(T,,) as
(1) The turning point regionp;=2rg, for which in

Ka,({pi) = o

P1P2P3P4

XexfdiV2ne(p1—potps—pa)l. (2D

the asymptotic limityng>1, 1 , |
o |:(4>OC_,§ f " SdSTAT  dadae4iSTéas ),

p13=2|QES|=28=2rg=2y2ng>1, N~ Jre-ap 0 (22

p2’4:2|QIT|22T:2rF:2 2ng> 1. (18 where d(ag,a) =y COSlas—ay) +sin(as+ ay) — y COS(as

The size of this region is of the order +a). After simple integration ovews anda; by the station-
Ap;i=AS=AT~ 1/r1’3 It is characterized by a smooth be- ary phase method, which is justified by the very large values
havior of all Green's functionsGo(p;) ~Go(2r¢) ~1m2  ©f ST, Eq.(22) transforms to
and kermekK 4 ,~[Go(2r )14~ 1in%°.
(2) In the intermediate region<p;<2r ¢ variablesS and
T are still large:S>1, T>1 but essentially less than: .
Here the Green’s function is approximated by the expression
Eq. (7). To simplify the considerations we note that the os-where ¢; = 1+ y?>+ v are the values ofb(as,a,) at the
cillating phase factor in Eq.7) can be written as stationary points.
. Let us next consider the case when b8tandT belong to
NE(¢+sin ¢) = V2ne&(pl2re)p, (19 the intermediate regiofi.e., region(2,2)]: Here Ka,({pi}),
where m/4< ¢(x)<1 at O<x=<1. For our purpose we may defined by Eq(20) asD(é,f), is a sharply oscillating func-

1
Fsb* —am (23

|
deTe_4IST¢S ~ 773
Ng n

re—Ap F

take §(x)=1. Substitutingp, 3=2S, p,4~2T, the kernel
K4, in this region can be transformed to

d?ST exp(4i[ V2ns(S—T)— 2«ysyTy STy SxTy]}

tion with frequency of order of/ng. Substituting Eqs(20),
(17) into Eq. (15) we obtain for kS, T<rg

|

ST(r

SZ) 1/2(

— 7212 (24)

The integrals over angle variables are identical to previouslypoint S~ \ng, T~ +/ng and noting that there is no stationary

considered ones and give a factor of the ord&Tl/Thus
free energy(24) reduces to

F;f‘gocf (dSdTexp{4i[ V2ne(S—T)

+ ST 1)IST(rz—S)YAr2-12)¥2. (25

point for the integrals oves and T, we get the following
estimate for free energy in the intermediate region:
F~1nd.

It is clear that if one of the variables, for examp&, is
from the turning point region and the oth&r from the in-
termediate regiori.e., region(1,2], the free energyF(")

will be proportional to a factor of the order 1/n&3. This

Taking for the smooth preexponential factor its value at aresult follows from the fact that the product of two of the
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Green'’s functions is proportional 1%6)1/n2’3 the product of q)((ié,f):pl—

the other two is proportional te- 1/ng, and the integration
over S andT yields the factor~1/ing . The integration over =2{|Q+S-|Q-T|+|Q-5/—-|Q+T|}
the anglesxg and a; produces the factor 1/ST which can- 29
cels the same factor in the numerator of the integrdril

Let us consider now the four-electron configuration whenat fixed Q has a set of stationary poin8<Q, T<Q for
one of the variable$ or T, e.g., T, is of the order of the  ¢qjlinear vector®d, S, T. Going back tap; variables we con-
magnetic lengtir~1 [i.e., region(3)]. In contrast to previ-  ¢|yde that this configuration is equivalent to the propagation

ous cases3, T>1, where the oscillations wittp can be ne-  f odd particles in a single directiam and even particles in
glected, in this case an additional small factor arises from thghe gpposite direction:

integration oveQ. ltis partially cancelled by the large fac-

p2tp3—ps

tor arising from the integration ov&if it is from the turning p1=piN, pr=—poN, pz=psN, ps=—paN,

point region. Assuming tha~rr and T~1 [i.e., region (30)
(1,3], the estimate of the free energy5) is given by the - i , i
formula wheren is an arbitrary unit vector. Note that the special role

of the configuratior(30) follows from the fact that for this
@ 1 2 ac? [ 2 configurationS p; = ®(p;)N=0 in the integration region.
Fs> 7 d“Qe d’SdfT It should be emphasized that in the resulting coherent
F configuration the correlation among all four particles is es-
sential. The phase factor E9) and stationary point equa-

1 - . . .
Xexp[ —4i[§ 2ne(|O—T|+[Q+T|) tions cannot be fiichE|zed.
Expanding®(Q,S,T) in the coordinate§t and T+ per-

pendicular ton, and noting that from the definition 40)
T2y§Ty+ ST+ STy |- (20 follows n=—0/Q, we can reduce Eq29) to
The integral ovelQ can be divided into two region<T N | T O DRI T R o R
andQ=T. The main contribution comes fro@=<T, where *(QST)=2 1 * p3 (S)°+ szr 4 ()
the above exponential factor does not depend on the compo- (31
nentQ', parallel toT. For the small transverse component

where p;+p3=p,+ps=4Q. Now performing the integra-
tion of the kerneK, ,({p;}), given in Eq.(21), overS* and
T we obtain a factor-(1/y/ng. )[(p1p2p3p4) 21Q7, which
(QhH2. (27)  gives rise to ther dependent free enerdyt")~ 1/n”.

This result completes our analysis: |t |mpI|es that in the
Thus the integral ove®" is proportional to~ 1/n,1:’4 and the asym.ptotic limit yng>1 the domi.n:_;mt cc_mtributions to the
integral overQ! givesfgd Q'~T. Performing the integration qudrtlc term of the frde energy orlgl'nate in the shqrt d|§tance
over anglesy, and a, gives, as previously, §T and taking region odly. Thus, using the short distance approximation for
into account that integral oveé from a smooth function can K4, taking into account its dependence p, and restor-
be estimated by the area of the integration regioring the exact form of(S,T), Eq.(16), the quartic term of

Q' we get

- = - = 1
|Q—T|+|Q+T|=2T+ p—+—
2

SAS~rrAp~n¥3, we get forQ=<T that the SC free energy can be written in the form
(4 1 . + 1 |:<4>oc—,-1 > q dQe*“QZ"‘“VQ ¢ dSdTd
Fsv~ oomz | TATexd —4iNneT(1= dg) ]~ —smm. s Tn2 4 9 —0
F F
(28)

X exf —4(S?+T?)sinf 0+ 4iST sin(26) ]

In the second regio®=T, the integral ove[j leads to a
contribution smaller by the factarY’* than Eq.(28). This is
because the phag@7) does not depend om' and we can
neglect the quadratic ii* term in comparison with the lin- X cosf— (M S+m,T)sind], (32
earonein Eq(26).1’hus the mtegral_ovef@ cad be est!rdated where the angl® describes the direction of the unit vector
here as~1/ng. If S belongs to the intermediate regifire., 20,=J(-w,)(w,), and a,=2(2v+1)ay/¢, with
considering the regiori2,3)], the contribution to the free ‘ thF/(rrkVBT) Y v
energy will be even smaller because of the Green's function s free energy is determined by collinear, essentially
oscillations and smaller preexponential factor. four particles configurations with the size of the order of

Finally, in the short distance regiop,<1 the smooth magnetic length. The resulting expression E8) agrees
function D(S, T) is of the order one and we should calculatewith the quartic termF{*) derived previously by Maniv

the integrals in Eq(15) from the kerneK,,({pi}) Eq.(21). et al® Our present considerations justify the used approxi-
The phase factor of 4, which is proportional to mation and clarify the geometry of coherent configurations.

X > exf —m2—m3—2i ymim,+4i(m;T+m,S)
my ,my
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It should be emphasized that the random vortex-latticariables; takingo; as the third independent variable of in-
approximation, used in Ref. 11, gives rise to a markedlytegration and noting thazt)l:_l;s we have

different result, namelyk{*)~ 1/n¢ . The reason for the dis-

agreement is due to the averaging over random vortex . 1 e2i\2Nepy - 2
lattice'! which leads to factorization of the multiple products F(S,Z~n—1/§ f d?p, U dZPGo(P,wV)} :
of pair potentials into products of pair correlation functions F (35)
only.

For example, the quartic term in this approximation be-Now, since [Gy(p)d?p~1, and the integration oveﬁl
comes yields the factor~1/\2ng, the resultingns dependence is

- - R - 1/ng, in agreement with Ref. 11.
(A(r)A*(r)A(rz)A*(rg))

. . R . IV. SELF-CONSISTENT ORDER PARAMETER
x(A(ry)A%(r2))(A(ra)A*(ry)) o L . .
The local approximation, verified in the previous section,

becomes very transparent if we rewrite the free energy Eq.
(32) as a functional of the order paramelb(r?). After some
straightforward, but combersome calculations one can show
that Eq.(32) is equivalent to

exp[—i[£(2,D)+{(4.3]}

1
«ex;{—§<pi+p§>

where(2,1)=(x,+Xx1)(y2—Y1) is the(Landay gauge fac-

tor of Go(r.r,;w,), and(---) stands for averaging over vor-

tex distributions. The corresponding free energy is given b 1 Q
Ponens FEIE pee f dzRf dade(Q)e*“sz as
F -Q

~ 1
Fele f II eriK4,y<{pi}>exp[—§(p§+p§> .
< [© aTALRH (S+TRIAR+ (ST
-Q

><ex;{%[(x4—xz)(y3—yl)—(x3—xl)(y4—y2)]}. - - - -
X A[R—(S+T)NJA*[R—(S—T)n], (36)

(33 wheref(Q)=3,q%e~**?, andA(R) is defined by Eq(12).
In the important region of integratiop;,p3=<1, the con-  Since|S|, |T|<Q=1, the expressiofB6) can be considered
straint E|4=15|=Q implies thatp,~—p,, or alternatively ~as averaging of the four-order parameter product over a re-
Fi~T, andrs~r,. Thus the imaginary exponent in E@3) gion with radius of the order of the nlagnetic length. The
is always of the order unity or smaller in the important re-additional averaging over the directionfn Eq. (32) leads
gion of integrations, and so the total gauge factor is a smootfp & completely local expression plus a nonlocal correction,
function. Consequently, only two distances in the ketg) '€+
are restricted to the size of the order of magnetic length,
allowing two others to be arbitrary. Thus, in contrast to our |:<S4>: Bf d’RIA(R)|*+FX,., (37)
result, where all long range configurations of electron pairs ’
in the ordered vortex lattice interfere destructivéle., ap- where B°<(1/n§/2)fdQf(Q)e“‘sz?QdSf?QdTe‘z(Sz”z)_

pear as incoherent scattering chanpetie smoothing of Th local HoR® i call Il si i
rapidly oscillating gauge factors in the MS theory introduces 1€ nonlocal COTECtiols pjoc IS NUMErICATl Small SInce 1
a huge incoherent contribution to the SC free energy. arises from high(i.e, fourth and higherorder terms in the

Let us estimate now the quartic term within this approxi—cumUIant expansion of the exponential in E82) (see Ref.

. - ) . 16).
mation. Substituting for the Green's functiofig(p1, — ,) This result is of fundamental importance since it shows

and Go(ps, — w,) their approximants in the short distance yhat the well known, fully local form of the Ginzburg-
region, and omitting the smooth gauge factor, we get for thg 4ngay free energy functional in the low field regime near
free e.nergngyy’, after integrating over the center of mass T.(H=0) is basically valid also in the opposite, high mag-
coordinates: netic field regime neaH.,(T=0). This locality is closely
related to the coherence effect discussed above. For example,

IT d% 4 in the random lattice approximation, discussed in the previ-
S|~ . . . . 4)
F@ o 5 G o, ous section, the dominant contribution Pt'é is extremely
sv"nl2 | (p1pa) ™ (|=1 p') o(p2,©,) nonlocal.
~ ) Neglecting the small nonlocal correction, the total SC free
X Go(pg,w,)expliv2ng(pi+p3)) energy, up to fourth order id,, can be turned into the
1 following one-parameter variational fortfi:
Xexp{ - E(p%-kp%) . (34) i =
fo=——5 =Dyp| —al2+ ———A%|, (39
The main contribution to Eq.34) arises from the region ° Nmay (mkgTe)

p2=2r¢, ps=2rg. Allowing p, p4 to vary independently - whereD,p=mg/27#? (i.e., the 2D single electron density of
within the turning point regionp,, p; are not independent state$,
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ay 2o Using expressiof43), the self-consistent mean field order
'&:2? E Req,)y,— 1/g (39 parameter is given by
v=0
2
with y,=[odpe™ @~ 2" g=VD,y, and vp=(Tp/2T ~ H
—1), whereTy, is the Debye temperature. A5=0.3@n V2£(0)) (44)
The coefficientB, of the quartic term can be readily ob-
tained from Eq(37) (after replacingQ with p/2): This expression is identical to the well-known high field
- limit of the Gorkov-Ginzburg-Landau SC order paraméfer.
= ay [ 8y 2 Indeed, at magnetic fieldsl near H,(0)= ¢o/27w&(0)?
B=Br— | — Re(q?)6,, 40 ’ c2 0 '
Pa £\ éo Ep &) 0 (40 ¢o=chi2e, whereay~v2£(0), we have
with 8,=2m[5dpe 2w ¢ erf(phv2), &=t /mkeTe, (ks To)?
and 3, is the geometrical factor of the Abrikosov lattit®. Erfiwc~ 2(an &) ~0.78 kg T,)?,
H'S0

The key parameters, which control the crossover from the
low f|(2=3|d to the high field regime areay/{ and  gq that Eq(44) reduces to the well-known result
X=2mkgT/hw.; they are connected by

1/2
~1.7kgT[1—H/H(0)]Y2

X=2w(2nF)1’2<a—H) 4)  Ao~17kgT, In( A )
¢ v2§(0)

which means that in the asymptotic limit considered here, (45
our high-temperature regim¥~ 1, of the quantum magnetic
oscillations domain is still in the low-temperature regime of
the SC-normal phase boundary, sirge/{~1/\/ng<1.

Interestingly, theng dependence of the self-consistént
obtained in Eq(44) for H~H, determines a small param-

In this caseq,~2 for all », and the coefficienta, eter
of the quadratic term, can be calculated from E89) 32
by dividing the sum over the Matzubara frequencies x=—~0.3§1—H/H(0)],
into two regions:(1) «a,<1, namely,v<vp,=(a,)/2v2, Ne

and (2) v=v,. The contribution from the first region L . .

. 132 . . which is seen to be the expansion parameter in the perturba-
is mfge [1—erf(x)]dx~1.147, .\.Nh'le th? sum in the_ tion theory leading to Eq43). This observation will be fur-
schond region leads to the familiar Iogarlt_hm|c expressionar discussed in the next section.

22, U+ 12)~In[vATp/T)(a4/d)], provided that the Note that in deriving the above expressions for the self-
Debye cutoff temperatudp=(2vp+1)T is much larger consistent order parameter we have neglected the oscillatory
than (2.t 1)T. The last condition may be rewritten in a compomemts of the SC free energy, which should add an
more transparent form, i.e k§Tp /% w.) 2> nel2ms. oscillatory contribution to the order paramet&t? In the

Combining the contributions from the two regions we find high-temperature limit considered, this oscillatoray term is
much smaller than the nonoscillatory one, except for a very

_ ay narrow region neaH.,.*’
a~In V2E(0)] (42) Let us consider now the magnetization oscillations; the
dominant contribution to the superconducting part can be
where§(0)=0.18ivg /kgT~0.565,. obtained by differentiating the density of states factpysn

Now consider the coefficienB, of the quartic term. the free energy38) with respect to magnetic field, namely;
Again, we divide the Matzubara sum into the same two re-
gions. In the first, where<<v,,,,, each term§, is indepen- afs 0q,

dent of v so thatEZTOX5ﬁ4vmaxf 3°dpe*"2p2dp~0.63(§/aH), Ms,0sc* _EV: dq, dH " (46
whereas the second region vyieldS’_ Vmax[1/2(2v

+1)ay /{3~ % ¢/ay, . Combining these results we find that ~ EXPlicitly we have
the sum over Matzubara frequencies changes significantly

vp—1
the np dependence of the quartic term with respect to theM ~2D a_HAQ DZ [ Ao ? ay 99,
individual F{!) terms, sinceS, 8,~0.69((/ay) ~n¢”. e S - R s N W A T
We thus find thaB/(wkgT.)?~1.38E(fiw., so that (47)
we |~ ay 1.38—, For X=1, dq,/dH~ — (8mng/H)sin(2mp)e” @YX so
fo~ 27raﬁ —Agln VIZE(0) n_F 0f* (43 that the sum over is limited by the thermal damping factor

to the first few terms only. This contrasts the nonoscillatory
It should be emphasized, here again, thatripelependence magnetization, which picks up contributions from many
of both the quartic and the quadratic termg jrabove differs  Matzubara frequencies.

by the large factor/ng from the indevidual term& (") ,F{?) Thus the first harmonic of the oscillatory magnetization,

because of the sum over the Matzubara frequencies. M ., just belowH,, can be written &<
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_ bo _ Trs/z’A'g ) Trs/z’BAzg suggests that the small e>/<pansion parameter in the theory is
M gs= E_FMOSC%MH,OS 1 T + 2 , x=A3/ng rather thanA3/nt?, as suggested by E@l). The

(48) full expansion should therefore read

M ose= M osd 1— 732YNex® (X1, (49)
where B,~1.16 for a triangular lattice, and o5~ Mnosd FXO(X)]

M os= (X/€%)sin(2ang) is the normal electrons oscillatory Where at x<1 the function ©(x) has an expansion

magnetizatiort? O()~1-v2Bax. _
In the expansiort48) there are two scales of order param-  Now the expression within the square brackets in(&8)
eterA,. NearH,, whereA2< (hwo)¥2EY? (i.e., AZ<nY?, ~ vanishes ak®(x)= Ua3n?. Thus a sign inversion of the

which means that [my /V2£0)]~1/n¥?), the attenuation of magne;};: 1/2050'"at'°n3 amplitude ~ takes  place  at

the magnetization oscillations amplitude occurs as the result™/7 Mg "<1, where@_(x)3~231, i.e., well within the range

of the electron pairing. Here the contribution of the many©f Vvalidity of our expansiort* _

electron coherent configurations is negligible. Far fidp, One therefore expects that in a 2D superconductor the
whereA§~ﬁwCEF Ge. Z§~np so that Ifiay V2£(0)]~1) dHvA amplitude will reverse sign due to pairing at a certain

the quadratic and the quartic terms in the free endemd Eelldvthrltvh belovivnljcz% ?rr]]\(/j rreim;a]unﬁ_r\]/ilrtua")r/l lfndiarﬁps,;d Wetl)l
magnetizatiop are comparable. It can be shoffrihat the €10 € point 0 ersion. S _conciusio ay be

higher order terms in this expansion are determined by th hanged i d|s_order in the vortex Iz_att|ce, or vortex line mo-
P ~, . . ion is taken into account, as indicated by the MS result.
parameteA g/ w Er=Ag/ne . In the region where this pa-

However, the application of the MS model to real disordered

rameter is of the order unity or larger the SC state is a highly,q o |attices should be considered very cautiously since the

correlated many electron-pair configuration, which is quitegsact of disorder has not been introduced self-consistently

different from the condensate of electron pairs, dominatingqre.

the SC free energy just beloic,. The crossover to the low-temperature power-law behav-

ior, obtained by Dukaet al,, is reflected in our theory by the

breakdown of perturbation theory at very low temperature.

At such low temperatures, the LK thermal smearing param-
The results of the last two sections enable us now to critieterX<1, and our expansion does not exist for all magnetic

cally discuss the various theoretical approaches to the probfields since the density of states parametgdiverges as

lem of the intrinsic attenuation of the dHVA oscillations in

the vortex state, and the relevance of our model to real ex- _ 2

periments. It is, first of all, clear that the assumption of dis- qv_{l—exq(zy+ DX} (2v+1)2X2

ordered vortex lattice, and the consequent averaging over the ] . )

random pair potential configurations, which greatly simpli-When a Landau level crosses the Fermi energy with half in-

fied the analysis in the MS theot{'}! replaces the many teger filling factorng . N

electron correlation function with a product of pair correla- Under this condition, and for sufficiently smally, the

tion functions, and so greatly overestimates the QP scatteringC pairing is restricted to a single Landau level, and the QP

effect in the asymptotic limin¥%>1. In fact, up to the sec- €nergies are close to the diagonal elements of t3he BdG

ond order inA,, our result[Eq. (48)] is identical to that Hamiltonian in the Landau levels representation, ¥'e3

obtained by MY Eq. (1)]. The higher order terms, however, i > >—
differ substantially; our quartic term isriy?<1 smaller than Ein= V[fioo(n+1/2=ng) 1+ |Ap n(K)] (51)

that obtained by expanding the exponential in B3.Up 10 hich is not an analytical function i3 at the Fermi sur-

second order in(Ao.Ng). . ] face. This also explains the linear dependence (&,,n)
This result reflects a very interesting phenomenon: In the . 13 ~
n Ay, obtained by Normaret al.> for small A, at low

ground Landau level approximation for the condensate of f

Cooper pairs, the quadratic term in the free energy expansiotﬁmp.er.a ures. . . .

is knowrt® to be completely independent of the vortex lines Itis interesting to note that in our expansion the quadratic
and the quartic terms for each Matzubara frequenare

distribution. Therefore, it has nothing to do with the broad- ; 2 _ :
ening of the Landau levels by the inhomogeneous pair poproportlonal toq, andq:, respectively. Thus, the expansion

tential in the vortex state. Indeed, in the standardP@rameter is actually~[Ag/(%iwc)?ne]do. _
expressioff for the SC free energy in terms of the dressed In the high-temperature limiX=1, whereqy~2, it re-
electron Green’s functiotor the QP Green’s functiorthe  duces to the temperature independent vadueAd/ng used
entire series of self-energy corrections is multiplied by a secabove. In the very low-temperature limit<1 it diverges
ond order factor im. Consequently, the quartic term is the with (1/T)2, i.e., x~[Ay/mkgT]?/ng. The breakdown of
lowest order correction to the free energy, which contains théhe smallA expansion, resulting from this divergence at suf-
scattering effect. It may be, therefore, concluded that in thdiciently low temperatures, seems to be related to the emer-
asymptotic limit of the 2D model used here, the scatteringgence of an opposite, high expansion in the small param-
effect is much weaker than what predicted by any theoneter 1k~ (wkgT/Ag)?, as obtained by Dukan and
consistent with the random vortex lattice approximatibi ~ Tesanovié* [see Eq(3)] in the low-temperature limit.

The structure of our expression for the free energy Eq. The application of the theory developed in the present
(43) as well as for the oscillatory magnetization E48) paper to real experimental situations is not a straightforward

V. CONCLUSION

(50
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matter; in addition to the influence of disorder in the vortexstate observed experimentally in this material is very bfbad,
lattice and vortex line fluctuations on the QP scattering, disextending far below the estimated value t8f,,, which is
cussed above, the 3D nature of the single electron banfbund to be very close to the mean field valueHyg, in this
structure could also play an important role. The importancenaterial. This is not surprising since the low-dimensional
of the latter effect may be appreciated by noting that in connature of this compound and the low temperatures used in
trast to the 2D model studied here, in a 3D electron systenthe dHvA experiments can lead to strong quantum flucua-
e.g., with a spherical Fermi surface, Cooper pairs in lowtions in the phase of the order param&éf and so to the
Landau levelgi.e., for n,n’~0) and with large longitudinal breakdown of the mean field approximation used in our
momenta(i.e., neark,=k,=kg), have the largest contribu- theory.
tion to the SC condensation energy. This region is far away The relatively weak QP scattering, predicted in the
from the extremal orbitk,=0, n=ng, which dominates present paper, seems to be confirmed, however, by the ma-
dHVA oscillations. jority of the experiments performed so far: According to our
As a result, in addition to the QP near the extremal orbittheory it should lead to a significant deviation of the experi-
their counterparts with small cyclotron orbité.e., for mentally measured amplitude from the Maki-Stephen-
n<ng) and large longitudinal momentg, should also con- Wasserman fitting formulgsee Eqgs(1),(2)] in the region
tribute significantly to the SC free energy in this case. Thewhere the leading SC effect exceeds the zeroth ofider,
relatively strong sensitivty of QP with small cyclotron orbits normal electrop term, i.e, forH=H;,,. In this region the
to scattering by the vortex lattice, as implied by the largeabove qualitative analysis indicates that the dam~ping of the
damping parametex found in Ref. 13, may indicate that the dHvA oscillations may be described by a parametging*
QP scattering effect in 3D systems is stronger than in th@maller than the characteristic MS parameter A2/\n.
equivalent 2D systems. An effective parametg*<ng  sych a crossover from a relatively strong damping just below
may be therefore introduced to take into account such apy , described well by the MS fitting formula, to a weaker

increase in the QP scattering effect. _ damping at lower fields, was indeed observed in almost all
tions were observed in the vortex state, such i Wb;Sn, Furthermore, from the available experimental data

YNi;B,C, and NbSg are essentially 3D systems with com- two different characteristic slopes of the corresponding

plex band structures and nonspherical Fermi surfaces. Ongingle plot can be clearly distinguished. Our estimations

therefore expects characteristic valuesipfsmaller thamg show that the experimental crossover fiettl, s from

in these materials. one slope to another is in a good agreement with the
Furthermore, the nonspherical Fermi surfaces, combinegalculated inversion fieldH,,,. In particular, we have ob-

with some unavoidable deviations from perfect crystaline ortained for LSi(F=1570 T): Heoss~12.5 T, Hi,~13.8 T;

der, should lead to some finite distribution around eachor YNi,B,C(F=511 T): Hess~4.5 T, Hi,~6 T; and for

dHVA frequency. This should be compared to the effective|\|b3gn0::581 T): Heoss~11.4 T,H;,~13.7 T.

range of frequency modulation AF)iny

=H,Hiw/4(Ho—Hi), associated with the expression ACKNOWLEDGMENTS
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