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We study fluxon tunneling both across one microshort-type barrier and resonant tunneling across two
barriers. We have derived an effective Hamilton{asing the inverse scattering transforta study the effect
of plasmons on the tunneling. Using a specially derived perturbation scheme, we found two éffects:
Emission of plasmons and, hence, suppression of quantum effects. Due to the gap in the plasmon spectrum,
this is an exponentially small effed®) Virtual processes involving plasmons’ emission and absorption cause
an enhancement of the tunneling probability. The magnitude of this enhancement is not exponentially small.
We conclude that macroscopic quantum tunneling of fluxons can be observed. We further predict that fluxons’
resonant tunneling across two barriers can also be observed. This phenomenon provides an ideal test for the
guantum behavior of the fluxongS0163-18297)02942-1

I. INTRODUCTION der etc) are quite similar to the ones occurring for an elec-
tron in a dephasing mediufnThe effect of Ohmic dissipa-
The fundamental question whether particlelike collectivetion on the fluxon’'s tunneling was recently considered in
excitations, like domain walls, vortices or fluxons, can ex-Ref. 7. At mK temperatures, where we expect to observe
hibit quantum behavior has attracted much attention in thguantum phenomena, the Ohmic dissipation is mostly due to
last years:? When the mass of an excitation becomes smalsubgap conductanéayhich results, for example, from para-
enough, quantum effects are, in principle, expected. Thesmagnetic impurities. Here we neglect this source of Ohmic
effects usually fall into two major classes—interference andlissipation, i.e., we assume high-quality junctions.
tunneling. Observations of the interference effdetsak lo- First, we consider a one-barrier situation. We derive an
calization, universal fluctuations, etare usually suppressed effective Hamiltonian using the inverse scattering transform
by various dephasing mechanisms, emerging from the coudST).® The advantage of this technique is that it produces an
pling of the collective excitation to some other degrees ofasymptotically free Hamiltoniarithe coupling between the
freedom. The effect of the latter on quantum tunneling isfluxon and the plasmons is nonzero only in the impurity’s
more involved. On one hand, the coupling can cause disskicinity). Next we develop a special perturbation scheme,
pation and, hence, reduction of the tunneling probabil®n  which enables us to take into account the tunneling process
the other hand, the coupling enlarges the variety of possiblan the zeroth order approximation. Our calculations show
zero-mode fluctuations, thus enabling the particle to find ahat although the fluxons are macroscopic objects with inter-
“better pass” in the classically forbidden regiohs. nal degrees of freedom they can exhibit measurable quantum
In this paper we consider the tunneling of a fluxontunneling.
throughs-function-like barriers in a long Josephson junction.  Experimentally it is hard to distinguish between quantum
By &function-like we mean that the width of the barrier is tunneling and effects of excess noise which lead to classical
much shorter than the Josephson penetration lengthTo  activation above the barrier. We propose the resonant tunnel-
create a potential barrier for the fluxon, a microshort has tang to be a better test of the quantum behavior. Classically
be included. Namely, the Josephson energy at the microshattte probability for activation above two closely located bar-
regime has to be larger than along the rest of the junctiorriers is the product of the activation probabilities across each
The phenomenon of soliton’s tunneling has been studied ibarrier separately. Hence it is extremely small. Quantum me-
charge-density-wave systemh#n the case of a weak impu- chanically the tunneling probability across two barriers can
rity (energy of the impurity barrier is smaller then the soli- be close to one provided the particle has an energy compat-
ton’s rest energythe soliton was treated as a free particleible with the energy level of a quantum state between the two
interacting only with a stiff localized potential barrier. Here barriers. It is also true if dephasing mechanisms do not de-
we take a different approach in which we take into accounstroy the quantum coherence of the motion between the bar-
the soliton’s shape deformations due to coupling to plasfiers. We have calculated the plasmons’ effect on resonant
mons. We neglect other dephasing mechanisms except founneling. Our findings show that fluxons can perform reso-
the coupling to plasmons. The latter is unique because theant tunneling in spite of coupling to plasmons. Hence we
plasmons are the excitations of the same field as the fluxopropose to look for resonant tunneling as a clear cut test of
itself. All other mechanismgquasiparticle tunneling, disor- fluxons’ quantum behavior.
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Il. THE MODEL M 8
mo B 5
An ideal long Josephson junction is described by the fol-
lowing Lagrangian® for small enough values ¢82. Inserting Eq.(1) into a path
L integral, one can s&¥that 2 effectively renormalizes the
_he [+ 1 .01, 1 Planck’s constanf. So the larger thg8?, the smaller the
LO_? _.12cZ "= 2 O~ A—ﬁ(l—cose) dx, (1) energy scale of the system, and, therefore, the more quantum

the system is. Th@? constant may also be interpreted in the
where ¢ is the gauge-invariant phase difference across théollowing way:

junction, c is the Swihart velocity, and the paramej@ris

defined as follows: Ec

2_ — 6
2 F=\E ®)
) e J(2n +d)d .
B E1671-% —w (20 whereE. andE, are the characteristic charging and induc-

tive energies of the junction, respectivéft® Now with the
Here\, is the London penetration deptti,is the thickness micro-fabrication technique one can build junctions with val-
of the insulating layer, antV is the width of the junction.  ues of 82 such that quantum phenomena are expected to be
This well-known sine-Gordon model exhibits two kinds observed.?®
of excitations. The first one is a topological soliton, called a We proceed to derive an effective Hamiltonian, which
fluxon, which may be thought of as a relativistic massivewill describe the fluxon as a massive particle scattered by the
particle!*? All other excitations are nontopological. They potential barrier created by the impurity. The fictitious par-
include linear electromagnetic wavéglasmong and their  ticle should be coupled to the plasmons i avicinity of
bound stategbreathers®'® The breathers can be equiva- the impurity and should be free outside this regime. To this
lently presented as fluxon-antifluxon bound states or aend, we develop a perturbation scheme based on the inverse
bound states of plasmons. This will not make a difference irscattering transfornfIST),? the only technique which pro-
our further considerations. Due to the complete integrabilityvides a completely decoupled Hamiltonian outside the impu-
of the sine-Gordon model, all excitations are decoupledrities’ region. Earlier such schemes were developed to study
Hence, we may consider the fluxon as a free particle. Thighe solitons’ classical dynami¢$*’~' Those schemes are
situation changes when interference phenomena areased on the smallness of the plasmons’ amplitude. We have
considered? The situation also changes when an impurity isdeveloped a different approach. First, the impurity contribu-
inserted into the junction. In this case one should add to Edfion to the Hamiltonian ¢ L;y,,) is expressed in terms of the

(1) the following term!? IST dynamical variables. Then, we expand the Hamiltonian
o in powers ofB. For smallB, we restrict the expansion to the
fic [+= ed(x—a) terms linear ing and derive the following Hamiltoniatsee
Limp=— 72 f_w A—J(l_COSB)dX' 3 Appendix A
Here a is the impurity’s position and is its strength. The H— P_2+ iv THe 4H 7
additional term corresponds to a sh@bmpared toA ;) re- T 2m g2 0 freel Tty @)
gion Ax, where the density of the Josephson enefgyis h
changed byAE;. Thus, in thed-function approximation, we where
estimatee as follows: too
e 4 iee= | onclidick ®
TNE @

€ too dkeika_ d: efika
Positive e corresponds to a microshort-type impurity, which Hint:T {ivlf — 2 dk
means that the Josephson energy at the impurity is larger B k

— oo

then in the rest of the junction. It is clear that this type of +oo dyelkat g e ika v

impurity will create a potential barrier for a fluxon, since the +V2f ———p—kdk+0O ——,ﬁz) } 9

interaction energy has a maximum when the fluxon’s center - @k ¢

coincides with the impurity* Moreover, the impurity will

cause a coupling between the excitations of the system. Par- Vo= 2 (10)

ticularly, the coupling between a fluxon and plasmons may O cosi(X—a)’

be easily understood if one notes that, while approaching the

impurity, the fluxon will be changing its shape, which is 4 tanif(X - a)

equivalent to excitation of plasmons. 1= coshiX—a) ' (1)
A very special role is played by the paramejer This

constant determines the overall coefficient in front of the 2 tan(X—a)

Lagrangian, thus it does not affect the equations of motion. me- (12

Nevertheless, it sets the energy scale in the particular system.
One can show that the ratio of the fluxon’s madd to the Here, X and P are the fluxon’s collective coordinate and
plasmon’s massn is given by momentum, whiled, and di are the plasmons’ conjugate
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variables(prototypes of the quantum creation and annihila-
tion operators The plasmon dispersion relation \'msi:l
+k2. We consider the nonrelativistic limismall fluxon ve-
locity): Hj includes only terms which are zero ordemwifc.

The Hamiltonian(7) can be viewed as the Hamiltonian of
a particle with mas#, moving in the presence of a potential
Vy, and coupled to a bath of free plasmons. Hhg term
describes the coupling between the fluxon and the plasmon
which vanishes at plus and minus infinity. The Hamiltonian
is expressed in the usual dimensionless units: the length
measured in units oA ;, the frequency is measured in units
of w;=c/A,, and the action is measured in unitsfofin
this notation the mass of the plasmon is one, the energy un
is the plasmons rest energyn;, and the mass of the fluxon
is 8/32.

The Hamiltonian(7) corresponds to a single-impurity
situation. To construct a many-impurity Hamiltonian one
should add the corresponding andH;,; terms for each of
the impurities, accounting for their positiorsg, and their
strengthse,, .

Next we quantize the Hamiltoniai@) using the canonical
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prescription. This quantization effectively means treating the i 1. The relative change of the tunneling probability as a

field # as a quantum one. As was shown by Wid8hthe
canonical commutation relations betweefx,t) andp(x,t)

« g(x,t) follow directly from the commutation relations be-
tween the operators of the electric fididand magnetic field

B. Thus our quantization procedure is nothing else but the

guantization of the electromagnetic field in the junction. A

function of the difference between the barrier’'s top energy and the
soliton’s energy.

[t(E)[*=[1+2 ReA)]|to|>~2Im(B)D, (15

further insight of the quantization procedure is presented b%md

Sch and Zaikin®

Ill. ONE-BARRIER TUNNELING

Ir(E)|?=[1+2 ReA)]|rq|2+2 Im(B)D. (16)

Tunneling is a nonperturbative phenomenon. Thus, we

should build a perturbation scheme including tunneling at th
zeroth order, and treating perturbatively only the fluxon
plasmon coupling term&). Following Dyson’s perturbation

%ne can distinguish two effects in Eq4.5) and (16). The

first one is the decrease due to inelastic processes of the total

theory?! we have developed a perturbation scheme in whictProbability of the elastic scattering, which is nopd

H, includes the first three terms of E() (See Appendix B

—
H —t —

32 V0+ Hfree-

13

+2 Re@)] instead of I note that Ref) should be negatile

The inelastic processes include at least one real plasmon
emitted. Thus the probability of such processes is exponen-
tially small due to the gap in the plasmon spectrum. The
matrix elemenfA contains a factor exp{w;7), wherer is the
Buttiker-Landauer tunneling tinfe.

Let us consider the tunne"ng through an |mpur|ty p|aced The second effect is a redistribution between the elastic

atx=0. We use EqgB5) and(B6) to determine the forward

forward and backward scattering probabilities. The redistri-

and backward elastic scattering probabilities. Due to théution term 2 ImB)D is not related to the real plasmons, but

symmetry of the potential barridry, the following relation
holds:

rotéz_rStOEiD, (14)
where D(E) is a real function of energy. As we will see
later, the sign oD is of a crucial importance. From E¢L4)
it follows thatD can change its sign only at the energies for
which to=0 or |t;|=1. For the one-barrier case, this may
happen only above the barrier, Bodoes not change sign for
energies below the barrier. One can check that in this Dase
is always negativéirrespective of the particular form &f;).
We calculate the matrix elemenss and B at the second
order of perturbation theor{See Appendix Bto obtain

to the virtual ones. For this reason the term is not exponen-
tially small. We have evaluated the redistribution term nu-
merically, using the exact zeroth-order fluxon wave func-
tions, and found that, at the energies lying deep below the
barrier, the tunneling probability is enhanced. The relative
increment(the ratio of the tunneling probability increment to
the total tunneling probabilifyincreases with decrease of the
fluxon’s energy. The tunneling probability is slightly reduced
in a very narrow interval of energies near the top of the
barrier (see Fig. 1L The change in the tunneling probability
due to the coupling with plasmons can be expressed as a
changeAVg,,, in the potential in the absence of plasmons.
Using the first-order Born approximatig@ppendix B we
obtain
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The situation here resembles the scanning-tunneling mi-
croscopy(STM) “image potential.” 24 Using the fact that for
€<1 the tunneling time is much longer than the maximum
plasmon period Z/w,, we apply the adiabatic approxima-
tion to Eq.(19) and we arrive at the following static potential
correction:

2

(x)

(22)

ic

: AV=— = IV2(x) + V2(X)]
0.0002 |- 32p%- "1 22

Vagnom

E which coincides with the first term of Eql7). We did not
i . calculate the dynamical corrections to E&2), which, ac-
o =17 AR 1 cording to Ref. 24, suppress the tunneling. Nevertheless, it is

4 2 0 2 4 quite clear that dynamical corrections may become important

(c) at the energies close to the barrier's top, since the static
corrections vanish there. Thus, we again obtain the result

FIG. 2. (a) The unperturbed potential barrigh) the narrowing  gpecified in the previous section: there is a static narrowing
(stat_ic) correction; (c) the dynamic correction, which makes the cgorrection to the potential barrier, accompanied by a small
barrier taller. dynamical correction, which effectively makes the barrier
taller.

Note that the static correctiof22) has a classical inter-
pretation. A fluxon forced externally to be located at a posi-
tion x will act on the plasmons to change their equilibrium
positions in order to minimize the energy corresponding to
the two last terms of the Hamiltonidi). The energy gain of
this relaxation is exactly equal to the static potential correc-

One can see that the first term of Efj7), which vanishes at tion (22). Moreover, we guess that every effective potential
x=0, narrows the total potential barrier, while the secongcorrection for the elastic processes has its classical analog.
term, which does not vanish &at=0, makes the barrier taller ndeed, the dynamical corrections may be understood as the
(see Fig. 2 Since the first term is much larger than the induced kinetic energy of the plasmons during the fluxon's
second onég is smal), the main effect is the barrier's nar- Passage through the barrier. Since this energy is finally re-
rowing and, therefore, enhancement of the tunneling. turned to t_he fluxon, it may be |_nterpreted as a correction to
This result means that not only fluxons’ quantum tunnel-the potential energy of the barrier.
ing can be observed in the presence of coupling with plas- Note that there are two main differences between' our sys-
mons but the effect can even be enhanced. This phenomen&M and that of Caldeira and Legget's one. First, the
results from the energy gap in the plasmons’ spectrum anf@ldeira-Legget thermal bath has no gap in the energy spec-
the fact that the coupling is limited to the vicinity of the trum. Therefore, the main process during tunneling is the real

potential barrier, as we show in the next section. emittance of radiation, i.e., dissipation of energy. In our sys-
tem the elastic processes are the most relevant ones due to

the plasmon’s energy gap. Second, the coupling between the
particle and the bath is homogeneous in the Caldeira-Legget
situation. Therefore, the static potential corrections just
renormalize the total energy by a constant. In our system the
é:oupling is nonzero at the barrier’s vicinity only, so the static
correction becomes dominant.

0.0001 F

62

AVgorm=— 3522 [ Vi) +V3(x)]

2

* 2567

4 12 2 12
§Vl (X)+ §V2 (X) . (17)

IV. PATH-INTEGRAL APPROACH

To go beyond the perturbation theory we apply a
Caldeira-Legget-type approatfi* We integrate out the plas-
mon degrees of freedom in the complex time to obtain th
usual addition to the effective action in the path integral:

AS=AS,;+AS,, V. RESONANT TUNNELING

(18
As we have mentioned in the introduction a possible ob-
servation of resonant tunneling of fluxons would be the most
persuasive evidence of their quantum behavior. For this rea-
son we study here whether the resonant tunneling phenom-
enon survives in the presence of coupling to plasmons.
We insert two identical-like impurities (e,=e,=¢€) at
the pointsx=a and x=—a, thus producing a symmetric

where

2
38= - gy | [ 90l hvion

X Vi (X(7")), (19
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parts: left and right leads and the potential well itéehe
- 1 2r E coupling between the parts is through the tunneling hibrid-
15 _ _ ization (one-barrier tunneling It is easy to see that every
. ] quasilevel,n, in the well has the following contribution to
5 1fF E the well’'s Hamiltonian:
05 | 3 _—
r h Hn:f dkan(de—dy)cpc,
L [¢ 38 ey IR NI VRS NI AP B
4 2 0 2 4 4 2 0 2 4

sin ka coska

@ ® =6—|C$Cnf dk(Ml —ap T My —ak
(47B) "ok "ok

2 [T AT X (d—df), (24)
15 f ~ where
E 1 —:
: " Mio= [ oo alv,ol @9
05 - =
F ] andcx is an operator creating a fluxon at this level. Then
ob bl T b Lo the total well Hamiltonian may be exactly diagonalized by a
4 2 0 2 4 canonical transformatioft. In the case of many levels in the
© well, the diagonalization is valid only for one-particle prob-

FIG. 3. Double impurity potentiaka) at a cosh *(y372): (b) lems. The result is that every level acquires a polaron shift:

ata=cosh (v3); (c) ata=3.0. |
AEn=f dk———. (26)

g

setup. Neglecting in the zeroth approximation the fluxon-
plasmons coupling, we obtain the following potential actingBesides this, the replica resonances may appéar every

on a fluxon: particular level. For the few-levels case, the replica do not
. belong to the well’s interval of energies. Thus we conclude

U(X) = —5[Vo(X—a)+ V(X +a)]. (23) that, at Ieagt for a situation _W|th a few levels, the only plas-

B mon effect is the polaron shift of the levels. The plasmons do

ar%ot destroy the fluxon’s coherency, and, therefore, the obser-
vation of the resonant tunneling of fluxons is, in principle,
h possible.

We see that three very different physical regimes emerge
we vary the distance between the impuritisge Fig. 3.
First, for smalla, the total potential is a simple barrier wit
only one maximum. Then, abova=cosh(y/3/2), the
double-barrier structure appears with a shallow potential well
in the center. This well may be characterized by the curva- | this paper we studied the effect of internal degrees of
ture at it's bottom ¥=0), which determines the frequency freedom on tunneling of fluxons through pointlike mi-
of the quasilevels in the wel)?= 2U"(0)/M. We find that  croshorts. We derived the effective coupling Hamiltonian us-
Q increases from zero a=cosh(y/3/2) up to its maxi- ing the IST technique. Then we investigated the problem
mum valueQ .= \/e/3 ata=cosh }(v3). Above this value using a perturbation scheme and found that at the energies
of a () decreases again as the two barriers become separatéging deep enough below the barrier's top the tunneling
Thus we find that the largest level separation takes place girobability is actually enhanced. We interpret these results
a=cosh 1(v3). The number of levels in the welN, is ap- by introducing a correction to the effective potential which
proximately+/e/ 82. For typical junctions’ parametef$ can  an impurity exerts on a fluxon. This correction may be ob-
be much larger then one. Nevertheless, we expect that wittained within the WKB approximation as a static plasmonic
the modern technology one can construct a junction fopotential (analogous to the static “image” potential in the
which there are only a few levels in the well. STM). The suppression of the tunneling near the top is due
We examine now the effect of plasmons on the resonarto dynamic correction&! which become important when the
tunneling ata=cosh (v3). First we note that the coupling static correction vanishes.
between the fluxon and plasmons at the outer slopes of the Our results differ from the “Lorentz expansion” picture
combined potential barrier has the same effect as in the cagwoposed in Ref. 4, since the soliton feels a narrower poten-
of single impurity. It slightly reduces the total width of the tial barrier then its spatial form implies. We think that the
barrier, thus, slightly increasing the totalbonresonantirans-  Lorentz expansion is valid for potential barriers which are
mission probability and, simultaneously, slightly widening much wider then a soliton. In the opposite situatftike our)
the quasilevels in the well. A much stronger coupling ap-the relaxation of the internal degrees of freedom makes the
pears inside the welht the inner slopes of the humpdue to  soliton effectively narrower.
the large values of the fluxon wave functions there. This kind Finally, we have considered the possibility of resonant
of problem is usually efficiently treated by the tunnel- tunneling of solitons through double impurity barriers. For
Hamiltonian method, i.e., by dividing the system into threethe case of a few levels in the well, the only effect of plas-

VI. CONCLUSIONS
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APPENDIX A: EFFECTIVE HAMILTONIAN DERIVATION

The derivation is based on the fact that one can represent
the total Hamiltonian of our system as a sum of the pure
sine-Gordon Hamiltonian and impurities’ terms:

€n
H:HSG+; E[1—cos®(an)]. (A1)

FIG. 4. Experimental setup for fluxons’ scattering. The gray . ) .
area corresponds to a superconductor. The black line is an insulal-n€ sine-Gordon Hamiltonian may be expressed, by means
ing layer(a long Josephson junctiin of the IST technique, in terms of new canonical variables, in
which the Hamiltonian is decouplédThus our aim is to
. . transform the impurities’ terms using the same variables. The
mons is the polaron shift of the levels. essence of the IST is in a mapping of the original sine-

The experimental observation of the macroscopic quangordon problem into an auxiliary scattering problem, where
tum tunneling(MQT) of fluxons may be based on the same ¢ field @ (x) plays the role of a generalized scattering po-

idea as the experiment by Voss and WébbApplying an  tential. The wave functions of the auxiliary problem are

external current on a circular long Josephson junction with &aled the Jost functions and in this particular case they are
microshort, one creates a potential well on one side of th?wo—com onent s inorslf(x)=(q'(l)(x)) The scatterina data
microshort. The fluxon will be trapped by the well. When the P P @9/ 9

external current increases the well becomes shallower an8f this auxiliary problentthe forward and backward scatter-

eventually, disappears. Therefore one can measure the av r;}_g amplitudes at different values of the spectral parameter

. ecome the new dynamical variables of the system.
age value of the current at which the fluxon escapes from the : : .
. . ) We use the equations of the inverse scattering transform
well. If this value is smaller than the classical escape one

. as they appear in Ref. 9. The two basic equations determin-
and the temperature is small enough to cause the therm

L g the relation between the Jost functions and the scattering
activation escape, the MQT of fluxons should beyais are

observed®’

One can also think of measuring the \del characteristic
of a very long circular Josephson junction with a microshort. N
By very long we mean that in between the tunneling events (O) S ChW(Np X

q,()\ X)ei/2i<x—1/4>\)x

)eif2 (A= Uy

the fluxon moves with the steady-state velocity given by the 1) & A=\

balance between the driving forcécurreny and the i

dissipationt! Every backward scattering event creates the 1 r(p)W(p,x)e!2mtaux

time delay and, thus, decreases the fluxon's mean velocity + 2 f w—A+i0 du,
(the voltage. For the steady-state kinetic energy larger than A2)

the barrier's top energy, some finite voltage should be ob-
served. In the opposite case the voltage is classically zero.
Observing a smearing of this step in th&/ curve will serve

as evidence of the MQT of fluxons.

Finally, we propose a setup for real scattering experi-
ments with fluxons. Take two thick superconducting rings
connected by a long Josephson junction with impuritiese
Fig. 4). Insert the Aharonov-Bohm solenoids into the rings.

{i}()\m ,X)eiIZ(x;—ll%;)x

“l1

c \If()\ 'X)ei/Z()\n—lM}\n)x
+ 2 n n

n=1 )\E_)\n

1 F()W (e, x)€!/2n=14x

Then, applying an external magnetic flux in one of the sole- 2 m=AR e
noids, one creates the screening superconducting current in (A3)
the corresponding ring, so that the total flux is zero. After

some critical value of the external flux, a fluxon will be shut where\ffz(\;?{i)*).

into the junction. If the fluxon tunnels through the impurity,
it will be inductively observed in the second ring by the

The equation for the backward relation ©f{x) in terms

) : .~ of the Jost functions is
solenoid. This approach can be used to measure both single

barrier tunneling as well as resonant tunneling. f(x) N .
cos——=(— 1)@<+“>/2”{ 1-> =w?
2 n=1 n
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X(M'X)ei/Z(M—lM,u)de ) (A4)

In Eqgs. (A2)—(A4), the scattering data representing the
solitons and the breathers are thenumbersc,, and \,,,
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while the continuous spectrum scattering da{gy) pertain
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We now substitute EqgA9)—(A13) into Eq. (A4) and we

to the plasmons. Here we consider the situation of one soliebtain

ton interacting with plasmons. Thus we rewrite E@2)—

(A4) keeping only a single term in the surtwith the soli-
tonic scattering data which we denote@sand\) and the
plasmonic(integra) terms. The scattering data, A5, and

r(u) are described by the following formula:

As=in, Im(n)=0, (A5)
b
r(u)Z%, (AB)
In(1—|b M%)
(M)_ F{me m— T u—N+i0
s
= ol (A7)
Cs:m=—27l|bs|+0(|b2(,u)|)- (A8)

The functionsa(ux) andb(w) are the elements of the tran-

sition (monodromy matrix (see Ref. 9 Sinceb(u) is pro-
portional to B (see Ref. 9 and below in this sectjprwe

neglect all the terms containirlp(w)| in the power higher

than first.
We solve Egs(A2) and (A3) perturbatively in|b(u)|:

VT=V¥,+W¥,+---. In the zeroth ordefa pure soliton we
obtain
" eksX/2
Vo (s, X)= |bS|Ze—RSx+eRSX! (A9)
ilble™ kex/2
T (Ng,X)=— by (A10)

THT2a =KX kX s
|bg|%e™ KX+ ghs*

27 |bs|ze—[2ks—ik(,u)/2]x

(u+in)(|bg2e™ "+ k)’
(A11)

PO (1, x) = 12K

27| b|elik(w12)x
ptin)([b?e™ s+’
Here we introduced the notatioR(u)=(u— 1/4u) andkg
=Kk(\g)/i.

Looking at Eq.(A4), we see that, to calculate ce&f) at

Ve ()= ¢ (A12)

0(x) -1 2z(z°-1) inf f(w)
ST T 7 ) My
z 1 f(p) w2—n
‘m;fdMTW’ (AL4)

wherez=|bge % and f(u)=b(u)e*(#X,

Using the identity (}cos#)=2—2 cogd/l2 we obtain
from Eq.(A14) the impurity contribution to the Hamiltonian
(Al). Finally, we change the integration variallento k(w)
and transform all the expressions to the new dynamical vari-
ables:

- gl
P——[? " a5 (A15)
_In|by
= (nt 1dp) (A16)
de=Vpi €%, dif =/pe %, (A17)
where
_ 4 2
Pk—m|b(k)| :
gx=argb(k)),
b(k)=b(u(k)),
o =V1+K. (A18)

In the nonrelativistic approximationz(+ 1/4np~1) we ob-
tain the Hamiltonian7).

APPENDIX B: PERTURBATION SCHEME
AND SCATTERING MATRIX ELEMENTS

First we develop a perturbation scheme which treats flux-
ons’ tunneling across potential barriég in zeroth approxi-
mation. TheS matrix emerging in such a scheme is slightly
unusual, since it connects not the free fluxon and free plas-
mon states, but the fluxon states distorted by the potevial
and the free plasmon states. Let us denotellpy, (Ve _)
the scattering fluxon state with the enefgy corresponding
to an incident wave arriving from the leftight). We nor-

the first order inlb(«)|, we need to know only the expres- malize these states such that

sion for ¥{?)(\4,x) [the integral term of Eq(A4) contains

already one power db(u)|]. Using Eq.(A3) we get

1 |bgle*s"
ekSX/2+ |bS|Ze— 3kgx/2 2m

b( ) ei/2k(wx
Xf dML\I’(Z (M X)—

u—in i
b*
o

\P(12)()\s X) =

)e (kX
W (%) |

(A13)

putin

(Ve, Ve, )=8(E1—Ep) s (B1)
Then theS matrix is determined by the following set of the
matrix elements:

(B2)

(N Nigyy - - - Ve, | |S|nql,nq2, -

'q,EZ,r>'
wheren, andn, are the plasmon numbers in the “in” and
“out” states, respectively. The onlg function which should
appear in Eq.B2) is one accounting for conservation of
energy. The total momentum is not conserved since scatter-
ing is on a stiff potential barrier. The wave functiows: .
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andW _ are known exactly for the one-barrier c&8ep we 1 i 128

can construct an exact fluxon Green funct®g(X,,X,,E), s=—s+-\/—4 1. (B10)
: ; ; . : 2 2 B

which will appear in the perturbation theory expansion as a

fluxon’s propagator. Then the fluxon propagator is given by

In this paper we are mostly interested in the elastic pro-
gy 4 4 Ve g(x)We, (%)

cesses at zero temperature, i.e., the processes with zero en- Go(Xy Xp, @) = E (B11)
ergy transfer to the plasmons. Thus, we should calculate only 0172 v w—Et+ié
two matrix elements of. These are . .
Finally, the matrix element8 andB are
A(E)=(¥g [S—1|Ve ), (B3) €
AE)=—gm 2 2 (Ve lVi[¥e, o

and 8B [S12E,d-= s

B(E)=(We . |S|¥e _). (B4) X(We_ dlVi|Pe ) (E-Es), (B12)
To construct the new elastic-scattering state, one should add €2
to the unperturbed stat®¢ , the outgoing waves corre- B(E):_W > 2 (Vel|Vi|Ye o)
sponding to¥ ¢ , with the amplitudeA(E) and the outgoing J=12Esd==
waves corresponding t&g _ with the amplitudeB(E). X(We 4lVi|We M (E—Ey), (B13)
Then, ifty(E) andry(E) are the transmission and reflection sC R
amplitudes without fluxon-plasmons coupling, the renormalwhere
ized elastic-scattering amplitudes are given by 1

I,(E-Eg)= | dk —, (Bl19)
t ! s S E—Es—wytid
t(E)=(1+A)t0—Brgt—f, (B5) Oi(E-Esmayt19)
0 2
I,(E—E¢y)= | dk —. B15
r(E)=(1+A)ry+Btp. (B6) 2 ) wy(E—Es— wy+id) (B19

We evaluate the matrix elemer(®3) and (B4) using the 1 he integralyB14) and(B15) can be calculated exactly. So,

diagrammatic technique. First, we calculate the zeroth-ordef® Only problem is to evaluate the matrix elements in Egs.

(free) propagators. The plasmon propagator is the standard12 and(B13). One can see that the expression for the real
part of A(E) includes only the imaginary parts df(E

one:
—E,), which are zero aE—E¢<1 (the plasmon gap For
i o t 1 E—E >1, the matrix elements are exponentially small, so
D(k,w)=—i | dte"*(T(dy(t)dy(0)))= prepm——y Re() is exponentially small too.

(B7) To approximate the expression for the Be(ve assume
. that the absolute values of the matrix elements in (B4.3)
We construct the fluxon propagator, using the exact wavelecrease quickly with the increase|&— E|. Then we ex-

functions:Wg . andWg _, given in Ref. 22: pand the functiond; and |, up to the first degree off
—E¢) around the poinE—E =0, and we insert the expres-
N 1 t(s,k)e” E| s+1.—s1—ik 1+tanfx sions E—E,) into the matrix elements using the standard
& 2o r 2 : way:
B8 (E-E)(We IVl We, o= (Ve [Ho Vil Ve, o),
where v is the fluxon’s classical velocity = kgB%/8 and (B16)

F(...) denotes the hypergeometric function. whereH, is given by Eq.(13) (without the plasmon terin

I(—s—ik)T(1+s—ik) Using the completeness relation we, finally, arrive at the first

t(s,k)= - - B - i ion-li i
(s,k) FA=IOT(=ik) (B9)  Born-approximation-like expression
is a transmission amplitude for a soliton having the wave Re(B(E))=2m(Ve,+[AVeor| Ve, -), (B17)
numberk, I'() stands for the gamma function, and whereAVg,, is given by Eq.(17).
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