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Tunneling and resonant tunneling of fluxons in a long Josephson junction
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We study fluxon tunneling both across one microshort-type barrier and resonant tunneling across two
barriers. We have derived an effective Hamiltonian~using the inverse scattering transform! to study the effect
of plasmons on the tunneling. Using a specially derived perturbation scheme, we found two effects:~1!
Emission of plasmons and, hence, suppression of quantum effects. Due to the gap in the plasmon spectrum,
this is an exponentially small effect.~2! Virtual processes involving plasmons’ emission and absorption cause
an enhancement of the tunneling probability. The magnitude of this enhancement is not exponentially small.
We conclude that macroscopic quantum tunneling of fluxons can be observed. We further predict that fluxons’
resonant tunneling across two barriers can also be observed. This phenomenon provides an ideal test for the
quantum behavior of the fluxons.@S0163-1829~97!02942-1#
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I. INTRODUCTION

The fundamental question whether particlelike collect
excitations, like domain walls, vortices or fluxons, can e
hibit quantum behavior has attracted much attention in
last years.1,2 When the mass of an excitation becomes sm
enough, quantum effects are, in principle, expected. Th
effects usually fall into two major classes—interference a
tunneling. Observations of the interference effects~weak lo-
calization, universal fluctuations, etc.! are usually suppresse
by various dephasing mechanisms, emerging from the c
pling of the collective excitation to some other degrees
freedom. The effect of the latter on quantum tunneling
more involved. On one hand, the coupling can cause d
pation and, hence, reduction of the tunneling probability.3 On
the other hand, the coupling enlarges the variety of poss
zero-mode fluctuations, thus enabling the particle to fin
‘‘better pass’’ in the classically forbidden regions.4

In this paper we consider the tunneling of a flux
throughd-function-like barriers in a long Josephson junctio
By d-function-like we mean that the width of the barrier
much shorter than the Josephson penetration lengthlJ . To
create a potential barrier for the fluxon, a microshort has
be included. Namely, the Josephson energy at the micros
regime has to be larger than along the rest of the junct
The phenomenon of soliton’s tunneling has been studie
charge-density-wave systems.5 In the case of a weak impu
rity ~energy of the impurity barrier is smaller then the so
ton’s rest energy! the soliton was treated as a free partic
interacting only with a stiff localized potential barrier. He
we take a different approach in which we take into acco
the soliton’s shape deformations due to coupling to pl
mons. We neglect other dephasing mechanisms excep
the coupling to plasmons. The latter is unique because
plasmons are the excitations of the same field as the flu
itself. All other mechanisms~quasiparticle tunneling, disor
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der etc.! are quite similar to the ones occurring for an ele
tron in a dephasing medium.6 The effect of Ohmic dissipa-
tion on the fluxon’s tunneling was recently considered
Ref. 7. At mK temperatures, where we expect to obse
quantum phenomena, the Ohmic dissipation is mostly du
subgap conductance,8 which results, for example, from para
magnetic impurities. Here we neglect this source of Ohm
dissipation, i.e., we assume high-quality junctions.

First, we consider a one-barrier situation. We derive
effective Hamiltonian using the inverse scattering transfo
~IST!.9 The advantage of this technique is that it produces
asymptotically free Hamiltonian~the coupling between the
fluxon and the plasmons is nonzero only in the impurity
vicinity!. Next we develop a special perturbation schem
which enables us to take into account the tunneling proc
in the zeroth order approximation. Our calculations sh
that although the fluxons are macroscopic objects with in
nal degrees of freedom they can exhibit measurable quan
tunneling.

Experimentally it is hard to distinguish between quantu
tunneling and effects of excess noise which lead to class
activation above the barrier. We propose the resonant tun
ing to be a better test of the quantum behavior. Classic
the probability for activation above two closely located ba
riers is the product of the activation probabilities across e
barrier separately. Hence it is extremely small. Quantum m
chanically the tunneling probability across two barriers c
be close to one provided the particle has an energy com
ible with the energy level of a quantum state between the
barriers. It is also true if dephasing mechanisms do not
stroy the quantum coherence of the motion between the
riers. We have calculated the plasmons’ effect on reson
tunneling. Our findings show that fluxons can perform re
nant tunneling in spite of coupling to plasmons. Hence
propose to look for resonant tunneling as a clear cut tes
fluxons’ quantum behavior.
14 677 © 1997 The American Physical Society
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II. THE MODEL

An ideal long Josephson junction is described by the
lowing Lagrangian:10,11

L05
\ c̄

b2 E
2`

1`F 1

2c̄2 u̇22
1

2
ux

22
1

LJ
2 ~12cosu!Gdx, ~1!

where u is the gauge-invariant phase difference across
junction, c̄ is the Swihart velocity, and the parameterb is
defined as follows:

b2[16p
e2

\c

A~2lL1d!d

W
. ~2!

HerelL is the London penetration depth,d is the thickness
of the insulating layer, andW is the width of the junction.

This well-known sine-Gordon model exhibits two kind
of excitations. The first one is a topological soliton, called
fluxon, which may be thought of as a relativistic mass
particle.11,12 All other excitations are nontopological. The
include linear electromagnetic waves~plasmons! and their
bound states~breathers!.9,13 The breathers can be equiv
lently presented as fluxon-antifluxon bound states or
bound states of plasmons. This will not make a difference
our further considerations. Due to the complete integrabi
of the sine-Gordon model, all excitations are decoupl
Hence, we may consider the fluxon as a free particle. T
situation changes when interference phenomena
considered.14 The situation also changes when an impurity
inserted into the junction. In this case one should add to
~1! the following term:11

L imp52
\ c̄

b2 E
2`

1` ed~x2a!

LJ
~12cosu!dx. ~3!

Here a is the impurity’s position ande is its strength. The
additional term corresponds to a short~compared toLJ! re-
gion Dx, where the density of the Josephson energyEJ is
changed byDEJ . Thus, in thed-function approximation, we
estimatee as follows:

e5
Dx

LJ

DEJ

EJ
. ~4!

Positivee corresponds to a microshort-type impurity, whic
means that the Josephson energy at the impurity is la
then in the rest of the junction. It is clear that this type
impurity will create a potential barrier for a fluxon, since th
interaction energy has a maximum when the fluxon’s cen
coincides with the impurity.11 Moreover, the impurity will
cause a coupling between the excitations of the system.
ticularly, the coupling between a fluxon and plasmons m
be easily understood if one notes that, while approaching
impurity, the fluxon will be changing its shape, which
equivalent to excitation of plasmons.

A very special role is played by the parameterb. This
constant determines the overall coefficient in front of t
Lagrangian, thus it does not affect the equations of mot
Nevertheless, it sets the energy scale in the particular sys
One can show15 that the ratio of the fluxon’s massM to the
plasmon’s massm is given by
l-
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8

b2 , ~5!

for small enough values ofb2. Inserting Eq.~1! into a path
integral, one can see10 that b2 effectively renormalizes the
Planck’s constant\. So the larger theb2, the smaller the
energy scale of the system, and, therefore, the more quan
the system is. Theb2 constant may also be interpreted in th
following way:

b25AEC

EL
, ~6!

whereEC andEL are the characteristic charging and indu
tive energies of the junction, respectively.10,16 Now with the
micro-fabrication technique one can build junctions with v
ues ofb2 such that quantum phenomena are expected to
observed.27,28

We proceed to derive an effective Hamiltonian, whi
will describe the fluxon as a massive particle scattered by
potential barrier created by the impurity. The fictitious pa
ticle should be coupled to the plasmons in alJ vicinity of
the impurity and should be free outside this regime. To t
end, we develop a perturbation scheme based on the inv
scattering transform~IST!,9 the only technique which pro
vides a completely decoupled Hamiltonian outside the im
rities’ region. Earlier such schemes were developed to st
the solitons’ classical dynamics.11,17–19 Those schemes ar
based on the smallness of the plasmons’ amplitude. We h
developed a different approach. First, the impurity contrib
tion to the Hamiltonian (2L imp) is expressed in terms of th
IST dynamical variables. Then, we expand the Hamilton
in powers ofb. For smallb, we restrict the expansion to th
terms linear inb and derive the following Hamiltonian~see
Appendix A!:

H5
P2

2M
1

e

b2 V01H free1H int , ~7!

where

H free5E
2`

1`

vkdk* dkdk, ~8!

H int5
e

4Apb
F iV1E

2`

1` dke
ika2dk* e2 ika

vk
3/2 dk

1V2E
2`

1` dke
ika1dk* e2 ika

vk
3/2 kdk1OS v

c̄
,b2D G , ~9!

V05
2

cosh2~X2a!
, ~10!

V15
4 tanh2~X2a!

cosh~X2a!
, ~11!

V25
2 tanh~X2a!

cosh~X2a!
. ~12!

Here, X and P are the fluxon’s collective coordinate an
momentum, whiledk and dk* are the plasmons’ conjugat
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56 14 679TUNNELING AND RESONANT TUNNELING OF FLUXONS . . .
variables~prototypes of the quantum creation and annihi
tion operators!. The plasmon dispersion relation iswk

251
1k2. We consider the nonrelativistic limit~small fluxon ve-
locity!: H int includes only terms which are zero order inv/ c̄.

The Hamiltonian~7! can be viewed as the Hamiltonian o
a particle with massM , moving in the presence of a potenti
V0 , and coupled to a bath of free plasmons. TheH int term
describes the coupling between the fluxon and the plasm
which vanishes at plus and minus infinity. The Hamiltoni
is expressed in the usual dimensionless units: the leng
measured in units ofLJ , the frequency is measured in uni
of vJ[ c̄/LJ , and the action is measured in units of\. In
this notation the mass of the plasmon is one, the energy
is the plasmons rest energy\vJ , and the mass of the fluxo
is 8/b2.

The Hamiltonian ~7! corresponds to a single-impurit
situation. To construct a many-impurity Hamiltonian o
should add the correspondingV0 andH int terms for each of
the impurities, accounting for their positionsan and their
strengthsen .

Next we quantize the Hamiltonian~7! using the canonica
prescription. This quantization effectively means treating
field u as a quantum one. As was shown by Widom,20 the
canonical commutation relations betweenu(x,t) andr(x,t)
}u̇(x,t) follow directly from the commutation relations be
tween the operators of the electric fieldE and magnetic field
B. Thus our quantization procedure is nothing else but
quantization of the electromagnetic field in the junction.
further insight of the quantization procedure is presented
Schön and Zaikin.8

III. ONE-BARRIER TUNNELING

Tunneling is a nonperturbative phenomenon. Thus,
should build a perturbation scheme including tunneling at
zeroth order, and treating perturbatively only the fluxo
plasmon coupling terms~9!. Following Dyson’s perturbation
theory21 we have developed a perturbation scheme in wh
H0 includes the first three terms of Eq.~7! ~See Appendix B
for details!:

H05
P2

2M
1

e

b2 V01H free. ~13!

Let us consider the tunneling through an impurity plac
at x50. We use Eqs.~B5! and~B6! to determine the forward
and backward elastic scattering probabilities. Due to
symmetry of the potential barrierV0 , the following relation
holds:

r 0t0* 52r 0* t0[ iD , ~14!

where D(E) is a real function of energy. As we will se
later, the sign ofD is of a crucial importance. From Eq.~14!
it follows thatD can change its sign only at the energies
which t050 or ut0u51. For the one-barrier case, this ma
happen only above the barrier, soD does not change sign fo
energies below the barrier. One can check that in this casD
is always negative~irrespective of the particular form ofV0!.
We calculate the matrix elementsA and B at the second
order of perturbation theory~See Appendix B! to obtain
-
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ut~E!u25@112 Re~A!#ut0u222 Im~B!D, ~15!

and

ur ~E!u25@112 Re~A!#ur 0u212 Im~B!D. ~16!

One can distinguish two effects in Eqs.~15! and ~16!. The
first one is the decrease due to inelastic processes of the
probability of the elastic scattering, which is now@1
12 Re(A)# instead of 1@note that Re(A) should be negative#.
The inelastic processes include at least one real plas
emitted. Thus the probability of such processes is expon
tially small due to the gap in the plasmon spectrum. T
matrix elementA contains a factor exp(2vjt), wheret is the
Buttiker-Landauer tunneling time.23

The second effect is a redistribution between the ela
forward and backward scattering probabilities. The redis
bution term 2 Im(B)D is not related to the real plasmons, b
to the virtual ones. For this reason the term is not expon
tially small. We have evaluated the redistribution term n
merically, using the exact zeroth-order fluxon wave fun
tions, and found that, at the energies lying deep below
barrier, the tunneling probability is enhanced. The relat
increment~the ratio of the tunneling probability increment t
the total tunneling probability! increases with decrease of th
fluxon’s energy. The tunneling probability is slightly reduce
in a very narrow interval of energies near the top of t
barrier ~see Fig. 1!. The change in the tunneling probabilit
due to the coupling with plasmons can be expressed a
changeDVBorn in the potential in the absence of plasmon
Using the first-order Born approximation~Appendix B! we
obtain

FIG. 1. The relative change of the tunneling probability as
function of the difference between the barrier’s top energy and
soliton’s energy.
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14 680 56SHNIRMAN, BEN-JACOB, AND MALOMED
DVBorn52
e2

32b2 @V1
2~x!1V2

2~x!#

1
e2

256p S 4

3
V18

2~x!1
2

3
V28

2~x! D . ~17!

One can see that the first term of Eq.~17!, which vanishes at
x50, narrows the total potential barrier, while the seco
term, which does not vanish atx50, makes the barrier talle
~see Fig. 2!. Since the first term is much larger than th
second one~b is small!, the main effect is the barrier’s nar
rowing and, therefore, enhancement of the tunneling.

This result means that not only fluxons’ quantum tunn
ing can be observed in the presence of coupling with p
mons but the effect can even be enhanced. This phenom
results from the energy gap in the plasmons’ spectrum
the fact that the coupling is limited to the vicinity of th
potential barrier, as we show in the next section.

IV. PATH-INTEGRAL APPROACH

To go beyond the perturbation theory we apply
Caldeira-Legget-type approach.3,24 We integrate out the plas
mon degrees of freedom in the complex time to obtain
usual addition to the effective action in the path integral:

DS5DS11DS2 , ~18!

where

DSi52
e2

32pb2 E E dtdt8Gi~ ut2t8u!Vi„X~t!…

3Vi„X~t8!…, ~19!

FIG. 2. ~a! The unperturbed potential barrier;~b! the narrowing
~static! correction; ~c! the dynamic correction, which makes th
barrier taller.
d

-
s-
on
d

e

G15E dk
1

vk
3 e2vkut2t8u, ~20!

G25E dk
k2

vk
3 e2vkut2t8u. ~21!

The situation here resembles the scanning-tunneling
croscopy~STM! ‘‘image potential.’’ 24 Using the fact that for
e,1 the tunneling time is much longer than the maximu
plasmon period 2p/v0 , we apply the adiabatic approxima
tion to Eq.~19! and we arrive at the following static potentia
correction:

DV52
e2

32b2 @V1
2~x!1V2

2~x!#, ~22!

which coincides with the first term of Eq.~17!. We did not
calculate the dynamical corrections to Eq.~22!, which, ac-
cording to Ref. 24, suppress the tunneling. Nevertheless,
quite clear that dynamical corrections may become impor
at the energies close to the barrier’s top, since the st
corrections vanish there. Thus, we again obtain the re
specified in the previous section: there is a static narrow
correction to the potential barrier, accompanied by a sm
dynamical correction, which effectively makes the barr
taller.

Note that the static correction~22! has a classical inter
pretation. A fluxon forced externally to be located at a po
tion x will act on the plasmons to change their equilibriu
positions in order to minimize the energy corresponding
the two last terms of the Hamiltonian~7!. The energy gain of
this relaxation is exactly equal to the static potential corr
tion ~22!. Moreover, we guess that every effective potent
correction for the elastic processes has its classical ana
Indeed, the dynamical corrections may be understood as
induced kinetic energy of the plasmons during the fluxo
passage through the barrier. Since this energy is finally
turned to the fluxon, it may be interpreted as a correction
the potential energy of the barrier.

Note that there are two main differences between our s
tem and that of Caldeira and Legget’s one. First,
Caldeira-Legget thermal bath has no gap in the energy s
trum. Therefore, the main process during tunneling is the
emittance of radiation, i.e., dissipation of energy. In our s
tem the elastic processes are the most relevant ones d
the plasmon’s energy gap. Second, the coupling between
particle and the bath is homogeneous in the Caldeira-Leg
situation. Therefore, the static potential corrections j
renormalize the total energy by a constant. In our system
coupling is nonzero at the barrier’s vicinity only, so the sta
correction becomes dominant.

V. RESONANT TUNNELING

As we have mentioned in the introduction a possible o
servation of resonant tunneling of fluxons would be the m
persuasive evidence of their quantum behavior. For this
son we study here whether the resonant tunneling phen
enon survives in the presence of coupling to plasmons.

We insert two identicald-like impurities (e15e2[e) at
the pointsx5a and x52a, thus producing a symmetric
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setup. Neglecting in the zeroth approximation the fluxo
plasmons coupling, we obtain the following potential acti
on a fluxon:

U~X!5
e

b2 @V0~X2a!1V0~X1a!#. ~23!

We see that three very different physical regimes emerg
we vary the distance between the impurities~see Fig. 3!.
First, for smalla, the total potential is a simple barrier wit
only one maximum. Then, abovea5cosh21(A3/2), the
double-barrier structure appears with a shallow potential w
in the center. This well may be characterized by the cur
ture at it’s bottom (x50), which determines the frequenc
of the quasilevels in the well,V25 2U9(0)/M . We find that
V increases from zero ata5cosh21(A3/2) up to its maxi-
mum valueVmax5Ae/3 at a5cosh21()). Above this value
of a V decreases again as the two barriers become separ
Thus we find that the largest level separation takes plac
a5cosh21()). The number of levels in the well,N, is ap-
proximatelyAe/b2. For typical junctions’ parametersN can
be much larger then one. Nevertheless, we expect that
the modern technology one can construct a junction
which there are only a few levels in the well.

We examine now the effect of plasmons on the reson
tunneling ata5cosh21()). First we note that the coupling
between the fluxon and plasmons at the outer slopes of
combined potential barrier has the same effect as in the
of single impurity. It slightly reduces the total width of th
barrier, thus, slightly increasing the total~nonresonant! trans-
mission probability and, simultaneously, slightly widenin
the quasilevels in the well. A much stronger coupling a
pears inside the well~at the inner slopes of the humps! due to
the large values of the fluxon wave functions there. This k
of problem is usually efficiently treated by the tunne
Hamiltonian method, i.e., by dividing the system into thr

FIG. 3. Double impurity potential:~a! at a5cosh21(A3/2); ~b!
at a5cosh21()); ~c! at a53.0.
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parts: left and right leads and the potential well itself.25 The
coupling between the parts is through the tunneling hibr
ization ~one-barrier tunneling!. It is easy to see that ever
quasilevel,n, in the well has the following contribution to
the well’s Hamiltonian:

Hn5E dkank~dk2dk
†!cn

†cn

5
e i

~4Apb!
cn

†cnE dkS M1n

sin ka

vk
3/2 1M2n

coska

vk
3/2 kD

3~dk2dk
†!, ~24!

where

M1,2n
[E dxV1,2~x2a!uCn~x!u2, ~25!

andcn
† is an operator creating a fluxon at then’s level. Then

the total well Hamiltonian may be exactly diagonalized by
canonical transformation.21 In the case of many levels in th
well, the diagonalization is valid only for one-particle pro
lems. The result is that every level acquires a polaron sh

DEn5E dk
uanku2

vk
. ~26!

Besides this, the replica resonances may appear25 for every
particular level. For the few-levels case, the replica do
belong to the well’s interval of energies. Thus we conclu
that, at least for a situation with a few levels, the only pla
mon effect is the polaron shift of the levels. The plasmons
not destroy the fluxon’s coherency, and, therefore, the ob
vation of the resonant tunneling of fluxons is, in princip
possible.

VI. CONCLUSIONS

In this paper we studied the effect of internal degrees
freedom on tunneling of fluxons through pointlike m
croshorts. We derived the effective coupling Hamiltonian u
ing the IST technique. Then we investigated the probl
using a perturbation scheme and found that at the ener
lying deep enough below the barrier’s top the tunneli
probability is actually enhanced. We interpret these res
by introducing a correction to the effective potential whi
an impurity exerts on a fluxon. This correction may be o
tained within the WKB approximation as a static plasmon
potential ~analogous to the static ‘‘image’’ potential in th
STM!. The suppression of the tunneling near the top is d
to dynamic corrections,24 which become important when th
static correction vanishes.

Our results differ from the ‘‘Lorentz expansion’’ pictur
proposed in Ref. 4, since the soliton feels a narrower po
tial barrier then its spatial form implies. We think that th
Lorentz expansion is valid for potential barriers which a
much wider then a soliton. In the opposite situation~like our!
the relaxation of the internal degrees of freedom makes
soliton effectively narrower.

Finally, we have considered the possibility of resona
tunneling of solitons through double impurity barriers. F
the case of a few levels in the well, the only effect of pla
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14 682 56SHNIRMAN, BEN-JACOB, AND MALOMED
mons is the polaron shift of the levels.
The experimental observation of the macroscopic qu

tum tunneling~MQT! of fluxons may be based on the sam
idea as the experiment by Voss and Webb.26,7 Applying an
external current on a circular long Josephson junction wit
microshort, one creates a potential well on one side of
microshort. The fluxon will be trapped by the well. When t
external current increases the well becomes shallower
eventually, disappears. Therefore one can measure the
age value of the current at which the fluxon escapes from
well. If this value is smaller than the classical escape o
and the temperature is small enough to cause the the
activation escape, the MQT of fluxons should
observed.26,7

One can also think of measuring the dcV-I characteristic
of a very long circular Josephson junction with a microsho
By very long we mean that in between the tunneling eve
the fluxon moves with the steady-state velocity given by
balance between the driving force~current! and the
dissipation.11 Every backward scattering event creates
time delay and, thus, decreases the fluxon’s mean velo
~the voltage!. For the steady-state kinetic energy larger th
the barrier’s top energy, some finite voltage should be
served. In the opposite case the voltage is classically z
Observing a smearing of this step in theI -V curve will serve
as evidence of the MQT of fluxons.

Finally, we propose a setup for real scattering expe
ments with fluxons. Take two thick superconducting rin
connected by a long Josephson junction with impurities~See
Fig. 4!. Insert the Aharonov-Bohm solenoids into the ring
Then, applying an external magnetic flux in one of the so
noids, one creates the screening superconducting curre
the corresponding ring, so that the total flux is zero. Af
some critical value of the external flux, a fluxon will be sh
into the junction. If the fluxon tunnels through the impurit
it will be inductively observed in the second ring by th
solenoid. This approach can be used to measure both s
barrier tunneling as well as resonant tunneling.
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FIG. 4. Experimental setup for fluxons’ scattering. The gr
area corresponds to a superconductor. The black line is an ins
ing layer ~a long Josephson junction!.
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APPENDIX A: EFFECTIVE HAMILTONIAN DERIVATION

The derivation is based on the fact that one can repre
the total Hamiltonian of our system as a sum of the p
sine-Gordon Hamiltonian and impurities’ terms:

H5HSG1(
n

en

b2 @12cosQ~an!#. ~A1!

The sine-Gordon Hamiltonian may be expressed, by me
of the IST technique, in terms of new canonical variables
which the Hamiltonian is decoupled.9 Thus our aim is to
transform the impurities’ terms using the same variables. T
essence of the IST is in a mapping of the original sin
Gordon problem into an auxiliary scattering problem, whe
the fieldQ(x) plays the role of a generalized scattering p
tential. The wave functions of the auxiliary problem a
called the Jost functions and in this particular case they

two-component spinors,C(x)[(C(2)(x)
C(1)(x)). The scattering data

of this auxiliary problem~the forward and backward scatte
ing amplitudes at different values of the spectral parame!
become the new dynamical variables of the system.

We use the equations of the inverse scattering transf
as they appear in Ref. 9. The two basic equations determ
ing the relation between the Jost functions and the scatte
data are

C̃~l,x!ei /2i ~l21/4l!x

5S 0
1D1 (

n51

N
cnC~ln ,x!ei /2 ~ln2 1/4ln!x

l2ln

1
1

2p i E r ~m!C~m,x!ei /2~m21/4m!x

m2l1 i0
dm,

~A2!

C̃~lm ,x!ei /2~lm* 21/4lm* !x

5S 0
1D1 (

n51

N
cnC~ln ,x!ei /2~ln21/4ln!x

lm* 2ln

2
1

2p i E r ~m!C~m,x!ei /2~m21/4!x

m2lm*
dm,

~A3!

whereC̃[(C(1)*
2C(2)* ).

The equation for the backward relation ofQ(x) in terms
of the Jost functions is

cos
u~x!

2
5~21!Q~1`!/2pF12 (

n51

N
cn

ln
C~2!

3~ln ,x!ei /2~ln21/4ln!x2E r ~m!

m
C~2!

3~m,x!ei /2~m21/4m!xdmG . ~A4!

In Eqs. ~A2!–~A4!, the scattering data representing t
solitons and the breathers are thec numberscn and ln ,

at-



o

-

-

ari-

ux-

ly
las-
l

e

d

f
tter-

56 14 683TUNNELING AND RESONANT TUNNELING OF FLUXONS . . .
while the continuous spectrum scattering data,r (m) pertain
to the plasmons. Here we consider the situation of one s
ton interacting with plasmons. Thus we rewrite Eqs.~A2!–
~A4! keeping only a single term in the sums~with the soli-
tonic scattering data which we denote ascs andls! and the
plasmonic~integral! terms. The scattering datacs , ls , and
r (m) are described by the following formula:

ls5 ih, Im~h!50, ~A5!

r ~m!5
b~m!

a~m!
, ~A6!

a~m!5
m2ls

m2ls*
expS 1

2p i E dl
ln„12ub~l!u2

…

m2l1 i0 D
5

m2ls

m2ls*
1O„ub2~m!u…, ~A7!

cs5
bs

a8~ls!
522hubsu1O„ub2~m!u…. ~A8!

The functionsa(m) and b(m) are the elements of the tran
sition ~monodromy! matrix ~see Ref. 9!. Sinceb(m) is pro-
portional to b ~see Ref. 9 and below in this section!, we
neglect all the terms containingub(m)u in the power higher
than first.

We solve Eqs.~A2! and ~A3! perturbatively inub(m)u:
C5C01C11•••. In the zeroth order~a pure soliton!, we
obtain

C0
~1!~ls ,x!5

eksx/2

ubsu2e2ksx1eksx
, ~A9!

C0
~2!~ls ,x!52

i ubsue2 ksx/2

ubsu2e2ksx1eksx
, ~A10!

C0
~1!~m,x!5e~ i /2!k~m!x2

2h i ubsu2e2@2ks2 ik~m!/2#x

~m1 ih!~ ubsu2e2ksx1eksx!
,

~A11!

C0
~2!~m,x!5

2hubsue@ ik~m!/2#x

~m1 ih!~ ubsu2e2ksx1eksx!
. ~A12!

Here we introduced the notation:k(m)[(m2 1/4m) andks
[ k(ls)/ i .

Looking at Eq.~A4!, we see that, to calculate cos(u/2) at
the first order inub(m)u, we need to know only the expres
sion for C1

(2)(ls ,x) @the integral term of Eq.~A4! contains
already one power ofub(m)u#. Using Eq.~A3! we get

C1
~2!~ls ,x!5

1

eksx/21ubsu2e2 3ksx/2 S ubsue2ksx

2p

3E dm
b~m!ei /2k~m!x

m2 ih
C0

~2!~m,x!2
1

2p i

3E dm
b* ~m!e2~ i /2!k~m!x

m1 ih
C0

~1!* ~m,x! D .

~A13!
li-
We now substitute Eqs.~A9!–~A13! into Eq. ~A4! and we
obtain

cos
u~x!

2
5

z221

z211
1

2z~z221!

~z211!2

ih

p E dm
f ~m!

m21h2

2
z

z211

1

p E dm
f ~m!

m

m22h2

m21h2 , ~A14!

wherez[ubsue2ksx and f (m)[b(m)eik(m)x.
Using the identity (12cosu)5222 cos2u/2 we obtain

from Eq.~A14! the impurity contribution to the Hamiltonian
~A1!. Finally, we change the integration variablem into k(m)
and transform all the expressions to the new dynamical v
ables:

P52
8

b2 S h2
1

4h D , ~A15!

X5
lnubsu

~h11/4h!
~A16!

dk5Apke
iqk, dk* 5Apke

2 iqk, ~A17!

where

pk5
4

b2pvk
ub~k!u2,

qk5arg„b~k!…,

b~k![b„m~k!…,

vk[A11k2. ~A18!

In the nonrelativistic approximation (h1 1/4h'1) we ob-
tain the Hamiltonian~7!.

APPENDIX B: PERTURBATION SCHEME
AND SCATTERING MATRIX ELEMENTS

First we develop a perturbation scheme which treats fl
ons’ tunneling across potential barrierV0 in zeroth approxi-
mation. TheS matrix emerging in such a scheme is slight
unusual, since it connects not the free fluxon and free p
mon states, but the fluxon states distorted by the potentiaV0
and the free plasmon states. Let us denote byCE,1(CE,2)
the scattering fluxon state with the energyE, corresponding
to an incident wave arriving from the left~right!. We nor-
malize these states such that

^CE1 ,duCE2 , f&5d~E12E2!dd, f . ~B1!

Then theS matrix is determined by the following set of th
matrix elements:

^nk1
,nk2

, . . . ,CE1,1
uSunq1

,nq2
, . . . ,CE2 ,6

&, ~B2!

wherenk andnq are the plasmon numbers in the ‘‘in’’ an
‘‘out’’ states, respectively. The onlyd function which should
appear in Eq.~B2! is one accounting for conservation o
energy. The total momentum is not conserved since sca
ing is on a stiff potential barrier. The wave functionsCE,1
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andCE,2 are known exactly for the one-barrier case,22 so we
can construct an exact fluxon Green functionG0(X1 ,X2 ,E),
which will appear in the perturbation theory expansion a
fluxon’s propagator.

In this paper we are mostly interested in the elastic p
cesses at zero temperature, i.e., the processes with zer
ergy transfer to the plasmons. Thus, we should calculate
two matrix elements ofS. These are

A~E!5^CE,1uS21uCE,1&, ~B3!

and

B~E!5^CE,1uSuCE,2&. ~B4!

To construct the new elastic-scattering state, one should
to the unperturbed stateCE,1 the outgoing waves corre
sponding toCE,1 with the amplitudeA(E) and the outgoing
waves corresponding toCE,2 with the amplitudeB(E).
Then, if t0(E) andr 0(E) are the transmission and reflectio
amplitudes without fluxon-plasmons coupling, the renorm
ized elastic-scattering amplitudes are given by

t~E!5~11A!t02Br0*
t0

t0*
, ~B5!

r ~E!5~11A!r 01Bt0 . ~B6!

We evaluate the matrix elements~B3! and~B4! using the
diagrammatic technique. First, we calculate the zeroth-o
~free! propagators. The plasmon propagator is the stand
one:

D~k,v![2 i E dteitv^T„dk~ t !dk
†~0!…&5

1

v2vk1 id
.

~B7!

We construct the fluxon propagator, using the exact w
functions:CE,1 andCE,2 , given in Ref. 22:

CE,65
1

A2pv
t~s,k!e6 ikxFS s11,2s,12 ik,

16tanhx

2 D ,

~B8!

where v is the fluxon’s classical velocityv5 kb2/8 and
F( . . .) denotes the hypergeometric function.

t~s,k!5
G~2s2 ik !G~11s2 ik !

G~12 ik !G~2 ik !
, ~B9!

is a transmission amplitude for a soliton having the wa
numberk, G~ ! stands for the gamma function, and
a

-
en-
ly

dd

l-

er
rd

e

e

s52
1

2
1

i

2
A128e

b4 21. ~B10!

Then the fluxon propagator is given by

G0~x1 ,x2 ,v!5 (
Es ,d56

CEs ,d~x1!CEs ,d~x2!

v2Es1 id
. ~B11!

Finally, the matrix elementsA andB are

A~E!52
e2i

8b2 (
j 51,2

(
Es ,d56

^CE,1uVj uCEs ,d&

3^CEs ,duVj uCE,1&I j~E2Es!, ~B12!

B~E!52
e2i

8b2 (
j 51,2

(
Es ,d56

^CE,1uVj uCEs ,d&

3^CEs ,duVj uCE,2&I j~E2Es!, ~B13!

where

I 1~E2Es!5E dk
1

vk
3~E2Es2vk1 id!

, ~B14!

I 2~E2Es!5E dk
k2

vk
3~E2Es2vk1 id!

. ~B15!

The integrals~B14! and~B15! can be calculated exactly. So
the only problem is to evaluate the matrix elements in E
~B12! and~B13!. One can see that the expression for the r
part of A(E) includes only the imaginary parts ofI j (E
2Es), which are zero atE2Es,1 ~the plasmon gap!. For
E2Es.1, the matrix elements are exponentially small,
Re(A) is exponentially small too.

To approximate the expression for the Re(B) we assume
that the absolute values of the matrix elements in Eq.~B13!
decrease quickly with the increase ofuE2Esu. Then we ex-
pand the functionsI 1 and I 2 up to the first degree of (E
2Es) around the pointE2Es50, and we insert the expres
sions (E2Es) into the matrix elements using the standa
way:

~E2Es!^CE,1uVj uCEs ,d&5^CE,1u@H0 ,Vj #uCEs ,d&,
~B16!

whereH0 is given by Eq.~13! ~without the plasmon term!.
Using the completeness relation we, finally, arrive at the fi
Born-approximation-like expression

Re„B~E!…52p^CE,1uDVBornuCE,2&, ~B17!

whereDVBorn is given by Eq.~17!.
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