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Current-voltage characteristics of diluted Josephson-junction arrays:
Scaling behavior at current and percolation threshold
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Dynamical simulations and scaling arguments are used to study the current-vokeyeliaracteristics of
a two-dimensional model of resistively shunted Josephson-junction arrays in presence of percolative disorder,
at zero external field. Two different limits of the Josephson-coupling concentiatoe considered, where,
is the percolation threshold. Fpr>p. and zero temperature, theV curves show power-law behavior above
a disorder-dependent critical current. The power-law behavior and critical exponents are consistent with a
simple scaling analysis. Ap. and finite temperaturd, the results show the scaling behavior offa&0
superconducting transition. The resistance is linear but vanishes for decréasittgan apparent exponential
behavior. Crossover to nonlinearity appears at currents proportioal'ts, with a thermal-correlation length
exponent vy consistent with the corresponding value for the dilutedY model at p..
[S0163-182697)08445-3

[. INTRODUCTION T>0 in this limit since the correlation length is finite. In
fact, one expects the increasing correlation length-a to

There has recently been an interest, both experimfental have important consequences at finftefor the nonlinear
and theoretical;™* in the resistive behavior of diluted behavior of thel-V curvesi*'® The linear resistance is ex-
Josephson-junction array8JA’s). These systems provide a pected to be finite for an§>0 but crossover to nonlinearity
useful model for several universal transport properties otan appear for increasing currents due to the finite correla-
granular high¥, material$? and can also be physically real- tion length with a universal behavior determined by the
ized as superconducting arraysor wire network$® with =0 transition. It is important to understand this behavior in
accurately controlled parameters using microfabricatiordetail because, in two dimensions and in the presence of an
techniques. Although most investigations have consideredxternal magnetic field, an addition@l=0 (vortex-glass-
the combined effects of disorder and magnetic fields whichike) transition is expectethearp, which should also have a
leads to the vortex glass stafethere are also interesting similar effect but it could be difficult to separate these two
questions even in the absence of an external field as a res@ffects experimentally. Also, in principle, the universal be-
of disorder. The effects of percolative disorder on the resishavior atp, may be useful to identify the proximity to the
tive transition and nonlinear current-voltage ) relation,  percolation threshold in systems whergis uncertain as in
at finite temperatures, have been studied in artificial twogranular materials modeled as diluted JJA.
dimensional arraysand also in the context of the highs There are also other interesting effects of disorder on the
oxides!® For an ordered two-dimensional JJA, which is iso- current-voltage relation which appear in a different limit and
morphic to theX'Y model, it is well known that the resistive are not well understood. Above the percolation threshrld
transition is in the Kosterlitz-ThouleséKT) universality  and zero temperature, theV characteristics shows a power-
class where the low-temperature phase has a nonlin&ar |aw behavior,V~(J—J.)?, above a critical current density
relation, V13, due to current-induced vortex-pair un- J.. For example, an exponeat-3 was obtained from nu-
binding. The temperature-dependent expona(T) de-  merical simulations by Xia and Ledtin d=2. Clearly, this
creases with increasing temperature and reaatiEg =3 at  behavior aff=0 and finite current density; is unrelated to
the transitiont® In the presence of percolative disorder butthe conditiord(T.)= 3 at the KT transition mentioned above
well above the percolation threshold, this behavior still per-and requires different considerations. In a linearized model
sists with a broadened resistive transition and disorder renonf the critical current as a phase-coherence breakdown
malized critical temperatur@(p) and exponen&(T,p), phenomenofiit has been argued that the critical current of a
wherep is the fraction of superconducting graih®ight at  diluted array vanishes in the thermodynamic limit. In this
the percolation thresholg., however, as for theXY  case, the apparent finite and the exponerd, presumably
model?’ the transition temperature is expected to vanish butiniversal, are in fact an artifact of finite system sizes. How-
a divergent correlation length~T~ "7 and thermal critical ever, it is possible that nonlinearities in the array problem
exponenty; can still be defined fof >0. A natural question could lead to a finite value even in the large system Ifrfiit.
arises as to what should be the behavior oflthécurves for  In the latter scenarid, is finite but is expected to vanish at
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the percolation threshold ek~ (p—p.)” with an exponent model has been applied to the study of transport properties of
v=v,(d—1), wherew, is the percolation exponent andis  high-T oxides® and, in its site-dilution version, to compos-
the dimensionality of the system. Unlike the behavior at fi-ite superconductors. For proximity coupled artificial
nite temperatures, little is known however about the precisarrays:? this model is also a reasonable approximation
value ofa and the universality class of the current-inducedsince, as pointed out in Ref. 2, the underlying normal-
transition leading to the power-law behavior for-p., un-  conducting layer over which the superconducting grains are
der the assumption that there is in fact a well defided  deposited provides a roughly constd®y. Dilution of the
Nevertheless, it is important to understand these features junctions is introduced by taking critical current%;lo
detail in order to be able to separate these effects, which arisgith probability p or |?M:o with probability 1—p and con-
only from disorder, from others induced by a combination ofstant shunt resistanck, = R,. After combining Eq(1) with
disorder and strong magnetic fields as in the case of theyrrent conservation at each nodleﬂ~lﬂ(r)=le><‘(r), the
vortex glass which also leads to values afof the same dynamical equation of motion fofi(r,t) becomes

ordef® at T=0. Indeed, in experimental systems, these ef-

fects can appear simultaneously and it is possible that some. et 0o . ,

of the power-law behavior observed in the/ characteris-  0(r,1)= _2 G(r,r ) {1 ) = A, [17,sin(A,0(r" 1))

tics of granular highfF. materials that tend to be regarded as '

a manifestation of vortex-glass behavior is actually a result +7,(r", 01}, 3
of intrinsic geometrical disorder and would persist even in ) ) _ _
the absence of the external field. with G(r,r’) thed=2 lattice Green function. Dimensionless

In this paper, we present dynamical simulations ofithe ~ quantities are used with time in units of=7%/2eRyl,, cur-
characteristics of diluted two-dimensional JJA, at zero exterfents in units ofl,, voltages in units oRylo, and tempera-
nal field, in the two different limits discussed above whichtures in units offilo/2eks. We choose periodic boundary
allow for a scaling analysis in terms of a single length scaleconditions along thex direction and open boundary condi-
(i) At T=0 andp>p,, we study the power-law behavior in tions along they direction. The array has XL bonds, cor-
the |-V curves abovel, as resulting from a current-driven responding toL X (L+1) nodes. The total curreitis in-
dynamical transition. We discuss scaling arguments for thigected uniformly along they direction with i®Y(m,n)
behavior which leads ta=v,(z+1), wherey, is a correla-  =J(6p,1— pL+1) WhereJ is the current density=I/L.
tion length exponent and is a dynamical exponent, and Equation(3) is solved with the second-order Runge-Kutta-
compare with numerical resultgii) At the percolation Helfand-Greenside algorithm for stochastic differential
thresholdp = p, and finiteT we study the scaling of theV  equation&® with a time step ofAt=0.1r;. Temporal aver-
curves as resulting from =0 superconducting transition. ages are taken over a time of 2@Q@fter a transient time of
The results are consistent with a linear resistance at finite00r;. The matrix multiplication byG(r,r’) is performed
temperatures and nonlinear behavior appearing at currey means of a fast-Fourier transform and cyclic reduction
densities proportional ta**T, where v1 is the thermal- algorithm as used in Refs. 19 and 20. The voltage drop along
correlation length exponent for the diluté model atp,.  they direction is given by

L

1 . .
Il. MODEL AND SIMULATION V= - 2 (0(m,n=L+1)— 0(m,n:1)> 4)
m=1

We consider a model of resistively shunted JJA’s consist-
ing of coupled superconducting islands located at the nodes, gimensionless units, whete . .) is a time average, and
of a square network with Josephson and normal currentg,o average electric field is given &= V/L.
flowing between them. The nodes are locatedramx
+ny with unit lattice constant. The curremt,(r) flowing

betweenr andr+ /x, is modeled F19.20 IIl. RESULTS AND DISCUSSION

Figure 1 shows some of tHeV characteristics obtained
h_dA,o(r.y) +,(r,t) numerically atT=0. Our averaging time is a factor of 2
2eR, dt pe larger than the one used in Ref. 8 to study a site-dilution

(D) version of the same model ih= 3. As a test of the numerical

HereA ,6(r,t) is a discrete gradient of the superconductingMethod we included in Fig. 1 the calculation for-1 where

phasesd(r,t), 12, is the critical current of the junctions, and the array behaves as a single junction with a critical current
- LR : " whitedensityJ.= 1. Above the percolation threshojg= 3, there

R, is a shunt resistance between the islands. The white- W= 1. P L N

noise random variabley,(r,t) represents thermal Johnson is an infinite cluster of superconducting junctions through the

fluctuations in the current with covariance, system and an apparent finite critical current dengjtye-
low which the voltage is very small. Fgy<p., only iso-

2 lated finite clusters occur and the resistance is Ohmic for
(u(r D7, (F' )= 12— 86y, 8(t=t"). () small currents.
" Figure 2a) shows the behavior of the critical current den-
We assume that disorder affects only the Josephson cosity J. and linear resistand®_=lim;_,, E/J as a function of
pling. In the absence of the couplingf,ﬂ=0, and so only p at zero temperature, for the largest system size used in the
normal current flows between the neighboring grains. Disorsimulations,L=64. J. decreases witlp and presumably
der effects inR,, are assumed to be less important. Thisvanishes at the percolation threshpld while R is nonzero

L(r)=17,sin(A,,6(r 1))+
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FIG. 1. Current-voltage characteristics fok & 64 array, at zero

I/L

system behaves as a single junction amd 3} exactly!
which agrees with the numerical simulation. In presence of
disorder for decreasing, this exponent jumps to a roughly
constant valuea~2.5(2), for thelargest system sizé
=64. For the smaller system size fisdependence is more
significant but we consider this as an effect of small system
sizes where the true asymptotic limit has not been reached.
The value ofa for L=32 is in fair agreement with other
simulation§ at a fixed value op=0.9 for comparable sys-
tem sizes even though the model used differs from ours in
that dilution affects both the Josephson coupling and the as-
sociated shunt resistance simultaneously. We believe that the
difference between the models should not affect the behavior
of a far abovep. where there is an infinite cluster of super-
conducting junctions and only finite clusters of nonsupercon-
ducting junctions. A more accurate estimateaofvould re-
quire a precise determination df,, many averages over
disorder and long simulations due to the divergent relaxation
time nearJ; as discussed below. Despite the uncertainties in

temperature, as a function of the Josephson-coupling concentratidthe estimate of, the behavior in Fig. @) for the largest

p.

only for p<p. and also appears to vanish @t. Unfortu-

system size suggests thatcould be a universal critical ex-
ponent independent of the degree of disorder parametrized
by p as long ap.<p<1.

nately, closer tg. our data is not accurate enough to test the At or sufficiently close top., where the percolation cor-

expected power-law behavidt for the critical current
Jo(p)=c(p—py)?, with v= vp(d—1)=§, and similar be-
havior for the linear resistand®, ~ (p.— p)°®, with s~1.3.
The exponenta obtained from a power-law fit to the
current-voltage characteristics just abayig E~(J—J.)%,
as a function ofp is indicated in Fig. t). At p=1 the

FIG. 2. (a) Critical currentJ; and linear resistanc® as a
function of p for L=64. (b) Exponenta of the power-law behavior

1.0 -

05 r

0.0 : :
0. .

5.0 T T T T T T

40 - o— L =64

3.0 r

0.0 0.5 1.0
p

E~(J—J.)%

(a)

relation length is the dominant length scale, one expects a
different behavior. In fact, by matching the scaling of the
I-V curves below and abovg,, it has been shown tHaat

p. the power-law exponerd=1+s/[ v(d—1)] with J.=0
which givesa~1.98 in d=2. We find a=2.1(2) for L
=64[not indicated in Fig. &)] which is consistent with this
value.

Some insight into the possible universal behavior ffor
>p. can be obtained by regarding the onset of resistive be-
havior forJ>J. as a dynamical critical phenomenon driven
by the external current, where power-law behavior appears
naturally as a result of scaling. The required scaling assump-
tions are similar to those proposed by Fistetrall? in a
different context. Above the critical current, the supercon-
ducting coherence lengthis finite, leading to resistive be-
havior. We assume that it diverges as a power Bw(J
—J.) " nearJ, wherey, is a critical exponent character-
izing the current-driven transition. From the definition of the
electric field we havee= —9,A, whereA is the vector po-
tential which enters the Hamiltonian of the JJA in the dimen-

sionless formf['A- dr. The typical time scale is given by the
relaxation time which diverges nedy ast~ &%, wherez is a
dynamic critical exponent. From dimensional analysis we
then expect the scaling~ 1/(é7)~ ¢ 1% and a power-law
behavior of the current-voltage curve

E~(J-J0)3 a=(z+1)y, (5)

above J.. Sufficiently close to the percolation threshold,
there is another characteristic length scal§,~(p
—pc) ', the percolation correlation length, and one expects
a crossover to another critical behavidtve have only con-
sidered the case of a single relevant length scale and focus in
the regimep>p..

The exact values of the critical exponem{sandz are not
known but the following qualitative estimate of these expo-
nents appears consistent with the numerical results. We ex-
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10° : critical phenomena near threshtlanay provide an interest-
ing approach and eventually identify the relevant universality
oL=16 . class.
10" | oL=32 1 It is interesting to note that if we assume=1 in Eq.(5),
e the resulta=z+1 is similar to the one inferred by Prester

based on an analogy between the onset of dissipation at the
critical current and the resistance of a random resistor net-
work which leads toa=t+1, wheret is the conductivity
exponent of a mixture of resistors and insulators. This would
suggesiz=t. In two dimensions, whetét~1.3, this gives
z=1.3 anda=2.3 which is in fact consistent with our nu-
10 | ° , | merical estimates.
We now turn to finite-temperature effects. We have only
studied the behavior at percolation threshold where the su-
10° L5 . perconducting transition is known to octliat T=0. Again,
10 (J_J;)Lml 10 this is the simplest case where there is a single dominant
° length scale in the system which at finite temperature is the
FIG. 3. Finite-size scaling plot of the power-law behavier thermal correlation lengtté;. This correlation length di-

~(J—-J.)? for p=0.7 at zero temperature, usin=0.19, », verges for decreasing temperatureéas 1/T"7 Wherg v is
—09 anda=25. the thermal correlation length exponent of the dilubed

model which is isomorphic to the JJA at zero current. One
pect that at a characteristic current densityJ,, phase co- €a" anticipate that the increasing correlation length will have
herence can change significantly in a correlation volume ofPortant eﬁ;i’%s in the nonlinear resistance for decreasing
order&?. In this volume, the typical variation of the phase is lEMperatures.= At any T>0, the linear resistanceR,
~ 2. By comparing the coupling term of the external cur- .=I|mJH0E/\_J, is nonzero since the superconducting cprrela-
rent to the phase gradiefitJ—J.)V ¢ which appears in the tion length is finite and is expected to be thermally activated.

C . - .

continuous version of the JJA Hamiltonian and the quadrati¢!oWever, in the presence of a finite current densifyan

approximation to the Josephson energy tethf(V 6)2 additional length scald.,«kT/J is set by the external
where K* is an effective stiffness. one finds thaHJc), current® due to temperature fluctuations. This can be ob-

should scale asJc J,)~1/¢ and sov,=1. Thus, the only ta_ined by comparing the extra energy arising from the cou-
remaining parameter is the dynamical exporenif we ne- pling to the e>§ternal currenﬂ,l._lA.a within a length scale

glect nonlinearities and assume relaxation dynamics as iAnd for @ typical phase variatiod 6~2, to the thermal
time-dependent Ginzburg-Landau models, we expec®, energykT. For &;<L,, which holds for sufficiently small

and thereforea=(z+1)»,=3. On the other hand, recent at any finiteT, the linear resistance is basically unchanged
work?? suggests that for the dynamics described t;y(Biq. since the smaller length scalg dominates the activation
where there is current conservation at each lattice site, th€N€r9y- However, for current densities larger thap
dynamical exponent iz~0.9 and s@=1.9. The datain Fig. *1 '» nonlinear behavior sets in &$/¢r in this case. So,

2(b) for the largest system size=64 is intermediate be- the range inJ whereE/J is roughly a constant should de-
tween these two values. Since in B§) a depends both on Créase with temperature and the characteristic current density
v, andz, we need additional results to test this analysis. J. where it crosses over to nonlinear behavior decreases as a

1+ v : H H i
We have performed afinite-size scaling analysis at a fixed@@Wer lawT=""T with a universal exponent. Associated with
value ofp=0.7 to verify the scaling behavior of E¢5) and thg d|yergent corrquuon length; one also defines a re[qx—
extract an independent numerical estimatevaf In a finite ation time 7 that, owing to the zero-temperature transition,

z
system, the correlation length is limited by the system kize 90€s not follow the usual forme £ and can have an expo-
and finite-size scaling leads to nential temperature dependence. Since the electric field

scales aE~1/(¢7), the current density ad~kT/¢, and

EL™

EL¥"= f((‘]—\]c)Ll/Vl), (6) using £=1/T*T the nonlinear resistance behave$*as
wheref is a scaling function. From Ed6), all data in the
scaling plotEL¥"1x (J—J.)L¥ should collapse on to the E_1 g(—J ) @
same curve ifv anda are chosen correctly as shown in Fig. J AT I\ T
3 for system sizes ranging froin= 16 to 64. We find that a
reasonable scaling behavior is obtained Jpr-0.192), v, in two dimensions, wherg is a scaling function. If the linear

~1.1(3), anda~2.4(2) where the error estimates are ob-resjstancer, is finite for anyT>0 theng(0) is a constant
tained by averaging various estimateslpf v, anda which  which can be set to unityg(0)=1. When the nonlinear re-
give equally acceptable scaling plots. Using the relation irsistanceE/J is normalized by its linear valug, at the same
Eq. (5), we findz=1.2(6). Thevalue of», is in agreement temperature one can then write

within the errors with the one predicted above kus not

accurate enough to allow any comparison. Improved esti-

mates and further analytical work are necessary for a detailed E _ ( J ) ®)
study of the critical behavior. The close analogy to other JR. 9\ )
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FIG. 4. Nonlinear resistancgé/J as a function of temperature O
for L=64 atp=0.5. Continuous lines are a guide to the eyes. Jy 107 | /Q 1 ()
It is clear from Eq(8) that the characteristic current at which /
nonlinear behavior is expected to set in variesTa$"T as » o’ 1
mentioned before.
The nonlinear resistandé/J obtained numerically ap 1072 e
=p. for the largest system side=64 is shown in Fig. 4. 107 10°
The curves shows the expected behavior. For small current T

densities], there is a linear contribution wheEJ tends to
a finite value which depends on the temperature. This is FIG. 5. (a) Arrhenius plot for the temperature dependence of the
more clear for the highest temperatufe=0.7 where the linear resistanc®,_, estimated af=0.02, forL=64 atp=0.5. (b)
range ofJ in which E/J is roughly a constant is more pro- Crossover current densifly where nonlinear behavior appears as a
nounced. For increasing current densities it crosses over tofanction of temperature. The slope gives an estimate ofvi
nonlinear behavior. As temperature decreases nonlinearity 2.2(2).
appears at smaller currents and the linear behavior is less
clear. For the lowest temperatufe= 0.3 the linear behavior Voltage characteristics at very low temperatures and currents
presumably occurs at current densities smaller tha9.02 ~ may be inaccessible by direct simulation.
but numerical calculations in this range require very long In Fig. 5b), we show the temperature dependencd,pf
equilibration times which prevent us from confirming this for the data in Fig. 4 in a log-log plot. It is consistent with
behavior. In fact, as discussed below, the relaxation time the power-law behaviad,«T***T and provides a direct es-
increases very rapidi§possibly exponentiallywith decreas- timate of the thermal exponemt;=1.2(2). ToestimateJ,
ing temperatures. we defined the crossover to nonlinear behavior as the value
The temperature dependence of the linear resistance es@f J whereE/JR, starts to deviate from a fixed value equal
mated at the lowest current is indicated in Fi¢p)51t seems to 1.2. The slope in the plot of Fig.(#3 should not depend
to be consistent with an activated behavior with an energyn this value as long as it is not too large compared to unity
barrier E,~0.91(3). Ourdata are not accurate enough andand we checked that other choices give the same results
the temperature range is too limited to exclude more compliwithin the error estimates. In Fig. 6, we show the scaling plot
cated behavior as a temperature-depeng(T). The links-  of the data in Fig. 4 according to the scaling behavior of Eq.
nodes picture of the percolation clustemight suggest a (8). The scaling plot is obtained by adjusting a single param-
single-junction behavior which in fact gives an Arrhenius eter vy that gives the best data collapse. This is consistent
behavior at sufficiently higher temperaturebut this would ~ with the scaling behavior discussed above and gives an in-
give a much larger barrier dE,=2 and requires that the dependent estimate aft~1.4(2). From these results we
Josephson coupling of the effective single junction is notobtain a final estimate of the thermal critical exponent
renormalized. In addition, the scaling form in E8§) which ~ =1.3(3). This value of v; is in fact consistent with the
is found in our case as discussed below, does not hold for thdaermal correlation exponent of the dilut¥d model at per-
single junction as can be verified from the closed-form solu<olation threshold! »=0.98—1.03.
tion of the current-voltage relatici.It is unclear at the mo- Our analysis for the temperature effects on the nonlinear
ment what is the appropriate model to describe the temperaesistance is strictly valid gi., where the percolation cor-
ture dependence of thR . In any case, if the apparent relation length¢, is infinite but the thermal correlation
exponential behavior d®, holds down to very low tempera- length &t is finite. In order to compare to the available ex-
tures it implies, from Eq(7), that the relaxation time di- perimental data of Harriet al® on artificial arrays forp
verges exponentiallyz~expE,/T)/T and so the current- close to percolation threshold, which is in fact consistent
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10' zero external field, by numerical simulations and scaling ar-
guments. AfT=0, thel-V curves show power-law behavior
above a critical current density which decreases with dilu-
tion. The power-law behavior follows from a simple scaling
analysis which leads ta=(z+1)v,, wherez is the dynami-
cal exponent ana, is the superconducting correlation length
exponent. Numerically we find, = 1.1(3), consistent with a
scaling argument which gives,=1, anda=2.4(2). The
value ofa is in agreement with the relaticm=t+1, in two
dimensions, which has been propodd relation to granu-
lar high-T, materials in zero field. At the percolation thresh-
old and finiteT, the results are consistent with the scaling
behavior of aT =0 superconducting transition. Crossover to
nonlinear behavior appears at currents proportion@fto'’r,
3 wherewv+ is a correlation length exponent for the dilutéd
T model at percolation threshold. The behavior at percolation
threshold is analogous to the zero-temperature vortex glass
FIG. 6. Scaling plot of the data in Fig. 4 fof=1.4. of disordered superconductors in a magnetic field, except for
the value ofvy. For experiments in arrays and granular
with a vanishing transition temperature, we must take intchigh-T, materials, this behavior clearly demonstrates the im-
account the competing effects §f and§, which is a more  portance of carefully comparing the expected power-law be-
complicated problem. However, sufficiently closefpthe  havior of |-V characteristics resulting from field-induced ef-
analysis should still be valid at high temperatures wien fects to the zero-field case.
<¢,. Unfortunately, the scattering of the data at small cur-
rents and the limited range of temperatures where linear re-
sistive behavior is apparent prevent us from performing the
same scaling analysis as described above. ACKNOWLEDGMENTS
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In summary, we have studied theV characteristics in a national Center for Theoretical Physics, where part of the
model of resistively shunted two-dimensional diluted JJA, awork was done.
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