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Current-voltage characteristics of diluted Josephson-junction arrays:
Scaling behavior at current and percolation threshold
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Dynamical simulations and scaling arguments are used to study the current-voltage (I -V) characteristics of
a two-dimensional model of resistively shunted Josephson-junction arrays in presence of percolative disorder,
at zero external field. Two different limits of the Josephson-coupling concentrationp are considered, wherepc

is the percolation threshold. Forp.pc and zero temperature, theI -V curves show power-law behavior above
a disorder-dependent critical current. The power-law behavior and critical exponents are consistent with a
simple scaling analysis. Atpc and finite temperatureT, the results show the scaling behavior of aT50
superconducting transition. The resistance is linear but vanishes for decreasingT with an apparent exponential
behavior. Crossover to nonlinearity appears at currents proportional toT11nT, with a thermal-correlation length
exponent nT consistent with the corresponding value for the dilutedXY model at pc .
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I. INTRODUCTION

There has recently been an interest, both experiment1,2

and theoretical,3–11 in the resistive behavior of diluted
Josephson-junction arrays~JJA’s!. These systems provide
useful model for several universal transport properties
granular high-Tc materials12 and can also be physically rea
ized as superconducting arrays1,2 or wire networks13 with
accurately controlled parameters using microfabricat
techniques. Although most investigations have conside
the combined effects of disorder and magnetic fields wh
leads to the vortex glass state,14 there are also interestin
questions even in the absence of an external field as a r
of disorder. The effects of percolative disorder on the re
tive transition and nonlinear current-voltage (I -V) relation,
at finite temperatures, have been studied in artificial tw
dimensional arrays1 and also in the context of the high-Tc

oxides.15 For an ordered two-dimensional JJA, which is is
morphic to theXY model, it is well known that the resistiv
transition is in the Kosterlitz-Thouless~KT! universality
class where the low-temperature phase has a nonlinearI -V
relation, V}I ã(T), due to current-induced vortex-pair un
binding. The temperature-dependent exponentã(T) de-
creases with increasing temperature and reachesã(Tc)53 at
the transition.16 In the presence of percolative disorder b
well above the percolation threshold, this behavior still p
sists with a broadened resistive transition and disorder re
malized critical temperatureTc(p) and exponentã(T,p),
wherep is the fraction of superconducting grains.1 Right at
the percolation thresholdpc , however, as for theXY
model,17 the transition temperature is expected to vanish
a divergent correlation lengthj;T2nT and thermal critical
exponentnT can still be defined forT.0. A natural question
arises as to what should be the behavior of theI -V curves for
560163-1829/97/56~22!/14671~6!/$10.00
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T.0 in this limit since the correlation length is finite. I
fact, one expects the increasing correlation length asT→0 to
have important consequences at finiteT for the nonlinear
behavior of theI -V curves.14,18 The linear resistance is ex
pected to be finite for anyT.0 but crossover to nonlinearity
can appear for increasing currents due to the finite corr
tion length with a universal behavior determined by theT
50 transition. It is important to understand this behavior
detail because, in two dimensions and in the presence o
external magnetic field, an additionalT50 ~vortex-glass-
like! transition is expected3 nearpc which should also have a
similar effect but it could be difficult to separate these tw
effects experimentally. Also, in principle, the universal b
havior atpc may be useful to identify the proximity to th
percolation threshold in systems wherepc is uncertain as in
granular materials modeled as diluted JJA.

There are also other interesting effects of disorder on
current-voltage relation which appear in a different limit a
are not well understood. Above the percolation thresholdpc
and zero temperature, theI -V characteristics shows a powe
law behavior,V;(J2Jc)

a, above a critical current densit
Jc . For example, an exponenta;3 was obtained from nu-
merical simulations by Xia and Leath6 in d52. Clearly, this
behavior atT50 and finite current densityJc is unrelated to
the conditionã(Tc)53 at the KT transition mentioned abov
and requires different considerations. In a linearized mo
of the critical current as a phase-coherence breakdo
phenomenon,6 it has been argued that the critical current o
diluted array vanishes in the thermodynamic limit. In th
case, the apparent finiteJc and the exponenta, presumably
universal, are in fact an artifact of finite system sizes. Ho
ever, it is possible that nonlinearities in the array proble
could lead to a finite value even in the large system limit7,8

In the latter scenarioJc is finite but is expected to vanish a
14 671 © 1997 The American Physical Society
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14 672 56ENZO GRANATO AND DANIEL DOMÍNGUEZ
the percolation threshold asJc;(p2pc)
v with an exponent

v5np(d21), wherenp is the percolation exponent andd is
the dimensionality of the system. Unlike the behavior at
nite temperatures, little is known however about the prec
value of a and the universality class of the current-induc
transition leading to the power-law behavior forp.pc , un-
der the assumption that there is in fact a well definedJc .
Nevertheless, it is important to understand these feature
detail in order to be able to separate these effects, which a
only from disorder, from others induced by a combination
disorder and strong magnetic fields as in the case of
vortex glass which also leads to values ofa of the same
order19 at T50. Indeed, in experimental systems, these
fects can appear simultaneously and it is possible that s
of the power-law behavior observed in theI -V characteris-
tics of granular high-Tc materials that tend to be regarded
a manifestation of vortex-glass behavior is actually a re
of intrinsic geometrical disorder and would persist even
the absence of the external field.

In this paper, we present dynamical simulations of theI -V
characteristics of diluted two-dimensional JJA, at zero ex
nal field, in the two different limits discussed above whi
allow for a scaling analysis in terms of a single length sca
~i! At T50 andp.pc , we study the power-law behavior i
the I -V curves aboveJc as resulting from a current-drive
dynamical transition. We discuss scaling arguments for
behavior which leads toa5n I(z11), wheren I is a correla-
tion length exponent andz is a dynamical exponent, an
compare with numerical results.~ii ! At the percolation
thresholdp5pc and finiteT we study the scaling of theI -V
curves as resulting from aT50 superconducting transition
The results are consistent with a linear resistance at fi
temperatures and nonlinear behavior appearing at cur
densities proportional toT11nT, where nT is the thermal-
correlation length exponent for the dilutedXY model atpc .

II. MODEL AND SIMULATION

We consider a model of resistively shunted JJA’s cons
ing of coupled superconducting islands located at the no
of a square network with Josephson and normal curre
flowing between them. The nodes are located atr5mx̂
1nŷ with unit lattice constant. The currentI m(r ) flowing
betweenr and r1m̂, is modeled as6,19,20

I m~r !5I rm
0 sin„Dmu~r ,t !…1

\

2eRrm

dDmu~r ,t !

dt
1hm~r ,t !.

~1!

HereDmu(r ,t) is a discrete gradient of the superconducti
phasesu(r ,t), I rm

0 is the critical current of the junctions, an
Rrm is a shunt resistance between the islands. The wh
noise random variablehm(r ,t) represents thermal Johnso
fluctuations in the current with covariance,

^hm~r ,t !hm8~r 8,t8!&5
2kT

Rm
d r ,r8dm,m8d~ t2t8!. ~2!

We assume that disorder affects only the Josephson
pling. In the absence of the coupling,I rm

0 50, and so only
normal current flows between the neighboring grains. Dis
der effects inRrm are assumed to be less important. Th
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model has been applied to the study of transport propertie
high-Tc oxides15 and, in its site-dilution version, to compos
ite superconductors.8 For proximity coupled artificial
arrays,1,2 this model is also a reasonable approximati
since, as pointed out in Ref. 2, the underlying norm
conducting layer over which the superconducting grains
deposited provides a roughly constantRm . Dilution of the
junctions is introduced by taking critical currentsI rm

0 5I 0

with probability p or I rm
0 50 with probability 12p and con-

stant shunt resistance,Rm5R0 . After combining Eq.~1! with
current conservation at each node,Dm•I m(r )5I ext(r ), the
dynamical equation of motion foru(r ,t) becomes

u̇~r ,t !52(
r8

G~r ,r 8!$I ext~r 8!2Dm•@ I r8m
0 sin„Dmu~r 8,t !…

1hm~r 8,t !#%, ~3!

with G(r ,r 8) thed52 lattice Green function. Dimensionles
quantities are used with time in units oftJ5\/2eR0I 0 , cur-
rents in units ofI 0 , voltages in units ofR0I 0 , and tempera-
tures in units of\I 0/2ekB . We choose periodic boundar
conditions along thex direction and open boundary cond
tions along they direction. The array hasL3L bonds, cor-
responding toL3(L11) nodes. The total currentI is in-
jected uniformly along they direction with i ext(m,n)
5J(dn,12dn,L11) where J is the current densityJ5I /L.
Equation~3! is solved with the second-order Runge-Kutt
Helfand-Greenside algorithm for stochastic different
equations20 with a time step ofDt50.1tJ . Temporal aver-
ages are taken over a time of 2000tJ after a transient time of
500tJ . The matrix multiplication byG(r ,r 8) is performed
by means of a fast-Fourier transform and cyclic reduct
algorithm as used in Refs. 19 and 20. The voltage drop al
the y direction is given by

V5
1

L (
m51

L

^u̇~m,n5L11!2 u̇~m,n51!& ~4!

in dimensionless units, wherê. . . & is a time average, and
the average electric field is given byE5V/L.

III. RESULTS AND DISCUSSION

Figure 1 shows some of theI -V characteristics obtained
numerically atT50. Our averaging time is a factor of
larger than the one used in Ref. 8 to study a site-dilut
version of the same model ind53. As a test of the numerica
method we included in Fig. 1 the calculation forp51 where
the array behaves as a single junction with a critical curr
densityJc51. Above the percolation thresholdpc5 1

2 , there
is an infinite cluster of superconducting junctions through
system and an apparent finite critical current densityJc be-
low which the voltage is very small. Forp,pc , only iso-
lated finite clusters occur and the resistance is Ohmic
small currents.

Figure 2~a! shows the behavior of the critical current de
sity Jc and linear resistanceRL5 limJ→0 E/J as a function of
p at zero temperature, for the largest system size used in
simulations,L564. Jc decreases withp and presumably
vanishes at the percolation thresholdpc , while RL is nonzero
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56 14 673CURRENT-VOLTAGE CHARACTERISTICS OF DILUTED . . .
only for p,pc and also appears to vanish atpc . Unfortu-
nately, closer topc our data is not accurate enough to test
expected power-law behavior7,8 for the critical current
Jc(p)5c(p2pc)

y, with y5np(d21)5 4
3 , and similar be-

havior for the linear resistanceRL;(pc2p)s, with s;1.3.
The exponenta obtained from a power-law fit to the

current-voltage characteristics just aboveJc , E;(J2Jc)
a,

as a function ofp is indicated in Fig. 2~b!. At p51 the

FIG. 1. Current-voltage characteristics for aL564 array, at zero
temperature, as a function of the Josephson-coupling concentr
p.

FIG. 2. ~a! Critical current Jc and linear resistanceRL as a
function of p for L564. ~b! Exponenta of the power-law behavior
E;(J2Jc)

a.
e

system behaves as a single junction anda5 1
2 exactly21

which agrees with the numerical simulation. In presence
disorder for decreasingp, this exponent jumps to a roughl
constant value,a;2.5(2), for the largest system sizeL
564. For the smaller system size itsp dependence is more
significant but we consider this as an effect of small syst
sizes where the true asymptotic limit has not been reach
The value ofa for L532 is in fair agreement with othe
simulations6 at a fixed value ofp50.9 for comparable sys
tem sizes even though the model used differs from ours
that dilution affects both the Josephson coupling and the
sociated shunt resistance simultaneously. We believe tha
difference between the models should not affect the beha
of a far abovepc where there is an infinite cluster of supe
conducting junctions and only finite clusters of nonsuperc
ducting junctions. A more accurate estimate ofa would re-
quire a precise determination ofJc , many averages ove
disorder and long simulations due to the divergent relaxa
time nearJc as discussed below. Despite the uncertainties
the estimate ofa, the behavior in Fig. 2~b! for the largest
system size suggests thata could be a universal critical ex
ponent independent of the degree of disorder parametr
by p as long aspc,p,1.

At or sufficiently close topc , where the percolation cor
relation length is the dominant length scale, one expec
different behavior. In fact, by matching the scaling of t
I -V curves below and abovepc , it has been shown that8 at
pc the power-law exponenta511s/@n(d21)# with Jc50
which gives a;1.98 in d52. We find a52.1(2) for L
564 @not indicated in Fig. 2~b!# which is consistent with this
value.

Some insight into the possible universal behavior forp
.pc can be obtained by regarding the onset of resistive
havior for J.Jc as a dynamical critical phenomenon drive
by the external current, where power-law behavior appe
naturally as a result of scaling. The required scaling assu
tions are similar to those proposed by Fisheret al.14 in a
different context. Above the critical current, the superco
ducting coherence lengthj is finite, leading to resistive be
havior. We assume that it diverges as a power lawj;(J
2Jc)

2n I nearJc, wheren I is a critical exponent character
izing the current-driven transition. From the definition of th
electric field we haveE52] tA, whereA is the vector po-
tential which enters the Hamiltonian of the JJA in the dime

sionless form* r
r 8A•dr. The typical time scale is given by th

relaxation time which diverges nearJc ast;jz, wherez is a
dynamic critical exponent. From dimensional analysis
then expect the scalingE;1/(jt);j212z and a power-law
behavior of the current-voltage curve

E;~J2Jc!
a, a5~z11!n I , ~5!

above Jc . Sufficiently close to the percolation threshol
there is another characteristic length scale,jp;(p
2pc)

2np, the percolation correlation length, and one expe
a crossover to another critical behavior.8 We have only con-
sidered the case of a single relevant length scale and focu
the regimep.pc .

The exact values of the critical exponentsn I andz are not
known but the following qualitative estimate of these exp
nents appears consistent with the numerical results. We

ion
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14 674 56ENZO GRANATO AND DANIEL DOMÍNGUEZ
pect that at a characteristic current densityJ.Jc , phase co-
herence can change significantly in a correlation volume
orderjd. In this volume, the typical variation of the phase
;2p. By comparing the coupling term of the external cu
rent to the phase gradient*(J2Jc)¹u which appears in the
continuous version of the JJA Hamiltonian and the quadr
approximation to the Josephson energy termK* *(,u)2,
where K* is an effective stiffness, one finds that (J2Jc)
should scale as (J2Jc);1/j and son I51. Thus, the only
remaining parameter is the dynamical exponentz. If we ne-
glect nonlinearities and assume relaxation dynamics a
time-dependent Ginzburg-Landau models, we expectz52,
and thereforea5(z11)n I53. On the other hand, recen
work22 suggests that for the dynamics described by Eq.~3!,
where there is current conservation at each lattice site,
dynamical exponent isz;0.9 and soa51.9. The data in Fig.
2~b! for the largest system sizeL564 is intermediate be
tween these two values. Since in Eq.~5! a depends both on
n I andz, we need additional results to test this analysis.

We have performed afinite-size scaling analysis at a fi
value ofp50.7 to verify the scaling behavior of Eq.~5! and
extract an independent numerical estimate ofn I . In a finite
system, the correlation length is limited by the system sizL
and finite-size scaling leads to

ELa/n I5 f „~J2Jc!L
1/n I

…, ~6!

where f is a scaling function. From Eq.~6!, all data in the
scaling plotELa/n I3(J2Jc)L

1/n I should collapse on to the
same curve ifn anda are chosen correctly as shown in Fi
3 for system sizes ranging fromL516 to 64. We find that a
reasonable scaling behavior is obtained forJc;0.19(2), n I
;1.1(3), anda;2.4(2) where the error estimates are o
tained by averaging various estimates ofJc , n I , anda which
give equally acceptable scaling plots. Using the relation
Eq. ~5!, we find z51.2(6). Thevalue ofn I is in agreement
within the errors with the one predicted above butz is not
accurate enough to allow any comparison. Improved e
mates and further analytical work are necessary for a deta
study of the critical behavior. The close analogy to oth

FIG. 3. Finite-size scaling plot of the power-law behaviorE
;(J2Jc)

a for p50.7 at zero temperature, usingJc50.19, n I

50.9, anda52.5.
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critical phenomena near threshold23 may provide an interest
ing approach and eventually identify the relevant universa
class.

It is interesting to note that if we assumen I51 in Eq.~5!,
the resulta5z11 is similar to the one inferred by Prester12

based on an analogy between the onset of dissipation a
critical current and the resistance of a random resistor
work which leads toa5t11, where t is the conductivity
exponent of a mixture of resistors and insulators. This wo
suggestz5t. In two dimensions, where17 t;1.3, this gives
z51.3 anda52.3 which is in fact consistent with our nu
merical estimates.

We now turn to finite-temperature effects. We have on
studied the behavior at percolation threshold where the
perconducting transition is known to occur17 at T50. Again,
this is the simplest case where there is a single domin
length scale in the system which at finite temperature is
thermal correlation lengthjT . This correlation length di-
verges for decreasing temperature asjT}1/TnT wheren I is
the thermal correlation length exponent of the dilutedXY
model which is isomorphic to the JJA at zero current. O
can anticipate that the increasing correlation length will ha
important effects in the nonlinear resistance for decreas
temperatures.14,18 At any T.0, the linear resistance,RL
5 limJ→0E/J, is nonzero since the superconducting corre
tion length is finite and is expected to be thermally activat
However, in the presence of a finite current densityJ, an
additional length scaleLI}kT/J is set by the externa
current14 due to temperature fluctuations. This can be o
tained by comparing the extra energy arising from the c
pling to the external current,JLIDu within a length scaleLI
and for a typical phase variationDu;2p, to the thermal
energykT. For jT,LI , which holds for sufficiently smallJ
at any finiteT, the linear resistance is basically unchang
since the smaller length scalejT dominates the activation
energy. However, for current densities larger thanJnl
}T11nT, nonlinear behavior sets in asLI /jT in this case. So,
the range inJ whereE/J is roughly a constant should de
crease with temperature and the characteristic current de
Jnl where it crosses over to nonlinear behavior decreases
power lawT11nT with a universal exponent. Associated wi
the divergent correlation lengthjT one also defines a relax
ation timet that, owing to the zero-temperature transitio
does not follow the usual formt}jz and can have an expo
nential temperature dependence. Since the electric fi
scales asE;1/(jt), the current density asJ;kT/j, and
usingj51/TnT the nonlinear resistance behaves as14

E

J
5

1

tT
gS J

T11nTD ~7!

in two dimensions, whereg is a scaling function. If the linear
resistanceRL is finite for anyT.0 theng(0) is a constant
which can be set to unity,g(0)51. When the nonlinear re
sistanceE/J is normalized by its linear valueRL at the same
temperature one can then write

E

JRL
5gS J

TnT11D . ~8!
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56 14 675CURRENT-VOLTAGE CHARACTERISTICS OF DILUTED . . .
It is clear from Eq.~8! that the characteristic current at whic
nonlinear behavior is expected to set in varies asT11nT as
mentioned before.

The nonlinear resistanceE/J obtained numerically atp
5pc for the largest system sizeL564 is shown in Fig. 4.
The curves shows the expected behavior. For small cur
densitiesJ, there is a linear contribution whereE/J tends to
a finite value which depends on the temperature. This
more clear for the highest temperatureT50.7 where the
range ofJ in which E/J is roughly a constant is more pro
nounced. For increasing current densities it crosses over
nonlinear behavior. As temperature decreases nonline
appears at smaller currents and the linear behavior is
clear. For the lowest temperatureT50.3 the linear behavior
presumably occurs at current densities smaller thanJ50.02
but numerical calculations in this range require very lo
equilibration times which prevent us from confirming th
behavior. In fact, as discussed below, the relaxation timt
increases very rapidly~possibly exponentially! with decreas-
ing temperatures.

The temperature dependence of the linear resistance
mated at the lowest current is indicated in Fig. 5~a!. It seems
to be consistent with an activated behavior with an ene
barrier Eb;0.91(3). Our data are not accurate enough a
the temperature range is too limited to exclude more com
cated behavior as a temperature-dependentEb(T). The links-
nodes picture of the percolation cluster17 might suggest a
single-junction behavior which in fact gives an Arrheni
behavior at sufficiently higher temperatures21 but this would
give a much larger barrier ofEb52 and requires that the
Josephson coupling of the effective single junction is
renormalized. In addition, the scaling form in Eq.~8! which
is found in our case as discussed below, does not hold fo
single junction as can be verified from the closed-form so
tion of the current-voltage relation.21 It is unclear at the mo-
ment what is the appropriate model to describe the temp
ture dependence of theRL . In any case, if the apparen
exponential behavior ofRL holds down to very low tempera
tures it implies, from Eq.~7!, that the relaxation time di-
verges exponentially,t;exp(Eb /T)/T and so the current

FIG. 4. Nonlinear resistanceE/J as a function of temperatur
for L564 atp50.5. Continuous lines are a guide to the eyes.
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voltage characteristics at very low temperatures and curr
may be inaccessible by direct simulation.

In Fig. 5~b!, we show the temperature dependence ofJnl
for the data in Fig. 4 in a log-log plot. It is consistent wi
the power-law behaviorJnl}T11nT and provides a direct es
timate of the thermal exponentnT51.2(2). ToestimateJnl
we defined the crossover to nonlinear behavior as the v
of J whereE/JRL starts to deviate from a fixed value equ
to 1.2. The slope in the plot of Fig. 5~b! should not depend
on this value as long as it is not too large compared to un
and we checked that other choices give the same res
within the error estimates. In Fig. 6, we show the scaling p
of the data in Fig. 4 according to the scaling behavior of E
~8!. The scaling plot is obtained by adjusting a single para
eter nT that gives the best data collapse. This is consist
with the scaling behavior discussed above and gives an
dependent estimate ofnT;1.4(2). From these results we
obtain a final estimate of the thermal critical exponentnT
51.3(3). This value of nT is in fact consistent with the
thermal correlation exponent of the dilutedXY model at per-
colation threshold,17 n50.98– 1.03.

Our analysis for the temperature effects on the nonlin
resistance is strictly valid atpc , where the percolation cor
relation length jp is infinite but the thermal correlation
length jT is finite. In order to compare to the available e
perimental data of Harriset al.1 on artificial arrays forp
close to percolation threshold, which is in fact consiste

FIG. 5. ~a! Arrhenius plot for the temperature dependence of
linear resistanceRL , estimated atJ50.02, forL564 atp50.5. ~b!
Crossover current densityJnl where nonlinear behavior appears as
function of temperature. The slope gives an estimate of 11nT

52.2(2).
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14 676 56ENZO GRANATO AND DANIEL DOMÍNGUEZ
with a vanishing transition temperature, we must take i
account the competing effects ofjT andjp which is a more
complicated problem. However, sufficiently close topc the
analysis should still be valid at high temperatures whenjT
!jp . Unfortunately, the scattering of the data at small c
rents and the limited range of temperatures where linear
sistive behavior is apparent prevent us from performing
same scaling analysis as described above.

IV. CONCLUSION

In summary, we have studied theI -V characteristics in a
model of resistively shunted two-dimensional diluted JJA

FIG. 6. Scaling plot of the data in Fig. 4 fornT51.4.
y

ys
o

-
e-
e

t

zero external field, by numerical simulations and scaling
guments. AtT50, theI -V curves show power-law behavio
above a critical current density which decreases with d
tion. The power-law behavior follows from a simple scalin
analysis which leads toa5(z11)n I , wherez is the dynami-
cal exponent andn I is the superconducting correlation leng
exponent. Numerically we findn I51.1(3), consistent with a
scaling argument which givesn I51, and a52.4(2). The
value ofa is in agreement with the relationa5t11, in two
dimensions, which has been proposed12 in relation to granu-
lar high-Tc materials in zero field. At the percolation thres
old and finiteT, the results are consistent with the scali
behavior of aT50 superconducting transition. Crossover
nonlinear behavior appears at currents proportional toT11nT,
wherenT is a correlation length exponent for the dilutedXY
model at percolation threshold. The behavior at percolat
threshold is analogous to the zero-temperature vortex g
of disordered superconductors in a magnetic field, except
the value ofnT . For experiments in arrays and granul
high-Tc materials, this behavior clearly demonstrates the
portance of carefully comparing the expected power-law
havior of I -V characteristics resulting from field-induced e
fects to the zero-field case.
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José, Phys. Rev. Lett.78, 519 ~1997!.
23O. Narayan and D. S. Fisher, Phys. Rev. B49, 9469 ~1994!; D.

Cule and T. Hwa, Phys. Rev. Lett.77, 278 ~1996!.


