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The three-leg ladder has one odd-parity and two even-parity channels. At low doping these behave quite
differently. Numerical calculations for &J model show that the initial phase upon hole doping has two
components—a conducting Luttinger liquid in the odd-parity channel, coexisting with an insu(agng
undoped spin-liquid phase in the even-parity channels. This phase has a partially truncated Fermi surface and
violates the Luttinger theorem. This coexistence of conducting fermionic and insulating paired bosonic degrees
of freedom is similar to the recent proposal of Geshkenbein, loffe, and LErkips. Rev. B65, 3173(1997]
for the underdoped spin-gap normal phase of the cuprates. A mean-field approximation is derived which has
many similarities to the numerical results. One difference however is an induced hole pairing in the odd-parity
channel at arbitrary small dopings, similar to that proposed by Geshkenbein, loffe, and Larkin for the two-
dimensional case. At higher dopings, we propose that a quantum phase transition will occur as holes enter the
even-parity channels, resulting in a Luther-Emery liquid with hole pairing with esserdialigve character. In
the mean-field approximation a crossover occurs which we interpret as a reflection of this quantum phase
transition deduced from the numerical resul80163-182807)06845-9

[. INTRODUCTION shall discuss further below, this leads to a region where the
Fermi surface is truncated in two channels, but remains in
The properties of electrons confined to ladders with vari-one channel—a behavior which clearly violates the Luttinger
ous numbers of legs have been investigated by many groupgeorem. We shall argue that this presence of transverse
in the past few yearsThe reason for this interest lies both in channels which behave quite differently helps us to make
the unusual properties of the ladder systems and the posdpferences for the limit of the two-dimensional plane which
bility to realize ladder structures in the cuprates, and also if course can be represented as the limit of very many chan-
the insight these systems give to the full two-dimensionahels or patches on the Fermi surface. The lightly doped limit
problem of a square lattice. Two different approaches havef the three-leg ladder can serve as a simpler analog for the
been taken. One is based on the weak-coupling limit anginderdoped spin-gap region of the cuprates, which has at-
uses renormalization-group methods to analyze the multile§facted so much attention, if one assumes that the patches or
ladders>™” A very complete analysis of this type foi-leg ~ channels nearX ,0) and (0= ) are truncated and show a
ladders in the Hubbard model has recently been given bgpin gap, while those near-(w/2,+ 7/2) are gaples$:

Lin, Balents, and Fishéer. Thet-J three-leg ladder Hamiltonian is given by
A second approach is more numerical and examines the 3

strong-coupling limit described mostly by tire] model. Re- H= _tZ z P(cl Cii1,,+H.C)P

cent progress on the loop algorithm for Monte Carlo calcu- To =1 Lot

lations has allowed large undoped systems described by a )

Heisenberg model to be investigated down to very low tem- , +

peratures. However, when doped holes are introduced, the -t ]EU Zl P(C},Cj+10TH.CIP

fermion sign problem prevents one from using this method,

and other methods must be employed, e.g., using Lanczos 1

techniques to diagonalize relatively small syst&her the +JZ Zl (Sj,v'sjﬂ,v_ Z”i,v' nj+1,v)

new density matrix renormalization-group meth@MRG) .

to obtain the ground state of large systefhs. 2 1
In this paper we examine the case of the lightly doped +J'§j: 21 (Sj,u‘sj,v+l_ an,v'nj,v+1)r 1)

J three-leg ladder. This case is especially interesting because
in a certain sense it combines the contrasting properties of wherej runs over. rungs,s(=1,]), andv are spin and leg
single chaif'*? and a two-leg laddét.These behave quite indices. Thet-J three-leg ladder is sketched in Fig. 1. The
differently, both when undoped or when lightly doped, so itfirst two terms are the kinetic energf (is a projection op-
is of great interest to follow the evolution of the three-leg erator which prohibits double occupancynd the last two
ladder in this regime. In particular, the evolution of the exchange couplingd (J') act along the legérungs. Peri-
Fermi surface as the Mott insulating state is approached isdic or antiperiodic boundary conditiof®BC, APBQ are
very different in the different transverse channels. As weused along the legs.
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FIG. 1. Thet-J ladder with three legs and rungs. The cou- - :
plings along the legs areandJ, and those along the rungs and § 1.5
7. = 1.0
3
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The paper is organized as follows. In the next section we 0.0

recapitulate briefly the known results in the undoped limit O'50-0 0.1 02 03 04 05
described by a Heisenberg Hamiltonian. Then in Sec. Il we 1L

discuss the case of a single doped hole, using the results of «

Lanczqs d|agonal|zat|9n and also the earlier DMR.G results fig o (a) and (b) Spinon excitation spectra for the isotropic
by White and Scalapint. The low-energy properties are (3. 7). and (3<8)-site Heisenberg ladders. The circles correspond
described by a single Luttinger-liquid channel in contacty, the even-parity and the squares to the odd-parity channels, re-
with an insulating spin liquid(ISL). Next in Sec. IV we  gpectively.(a) Single spinon excitation spectrun$1/2) in a (3
consider states with two and more holes. In the presence of 27) cluster.(b) Two-spinon excitation spectrunSE1) in a (3
finite hole density, there are two possibilities—either all thex 8) cluster.(c) Spinon-velocityp, in (3% L)-Heisenberg ladders.
holes repel each other and enter the single Luttinger-liquid extrapolates with high accuracy to the value I.8diamond,
channel, or at some density, the other channels are alsihtained by QMC calculation&Ref. 14.

populated with holes. Since doping a resonating valence

bond(RVB) spin liquid leads to a Luther-Emery liquithis  unfrustrated effective interactions which act to enhance the
will cause a qualitative change in the physical propertiesAF correlations.

There will be a critical hole densitg . which controls the The key point however is the fact that the low-energy
transition between the low-density phase with only a Lut-Hilbert subspace is greatly reduced so that not three chains
tinger liquid, in contact with a spin liquid, to the case with but only a single chain model is active at low energies, or in
both Luttinger and Luther-Emery liquids. In Sec. V we de- other words only a singl&=1/2 degree of freedom per rung
velop a mean-field approach to the) three-leg ladder. In of three spins remains in the low-energy region. The remain-
this mean-field approximation, as we shall see, the criticaing spin degrees of freedom are gapped in the same way as
density, § ., is not finite but arbitrarily small, whereas the the spin liquid of a two-leg ladder.

numerical results give a finité, for values ofJ/t~0.5. In This behavior is clearly observed in the numerical Lanc-
the final section we draw some conclusions and discuss thgos diagonalization of (8 7) and (3x 8) clusters, shown in
relationship to the planar two-dimensional case. Fig. 2. As Bareset all? emphasized in their study of the

exactly solvable supersymmetrieJ model in one dimen-
sion, the spinon and holon dispersions can be directly ob-
tained in the limit of vanishing hole density by examining
the ground state of an appropriately chosen finite chain. Thus
In this section we recapitulate briefly the known resultsif one takes the case of one undoped chain with an odd
for three-leg ladders in the Heisenberg model. In this cas@umber of sites and PBC, then the ground state for each total
the fermion sign problem does not occur, and very accurateave vector along the chain gives the dispersion of a single
guantum Monte Carlo calculations have been carried out bgpinon. This ground-state manifold has a total spin quantum
Frischmuthet al,** and by Greveret al® The low-energy numberS=1/2. For the present case of a three-leg ladder we
properties can be mapped onto an effective sirfggel/2  show the dispersion for a ¢87) sample with PBC in Fig.
antiferromagnetic(AF) Heisenberg chain model, although 2(a). The single spinon witts=1/2 has odd parity with re-
the starting model has three spins per set of ladder rungspect to reflection about the center leg and disperses with a
This arises because the additional spin degrees of freedohandwidth~ (7/2)J and minima att 7/2. The correspond-
have a spin gap, and enter with an excitation energl/. ing one-spinon excitation spectrum of a 7-site single Heisen-
The spinon velocity of the effective model in fact is hardly berg chain is shown in Fig.(8). To estimate finite-size ef-
changed from the value of the nearest-neighbor Heisenbeffgcts, the calculation was repeated for a 19-site Heisenberg
chain with exchange constadt However the energy scale chain[Fig. 3(c)]. We observe that the qualitative features,
parameter which controls the spinon-spinon interactions ante., the positions of extrema and the overall bandwidth, are
the size of logarithmic corrections to the uniform spin sus-already present in the smaller cluster. This is important since
ceptibility at finite temperatures is greatly changed.in the exact diagonalization study of Xd.) ladders, we are
Frischmuthet al* interpret this result in terms of a Heisen- restricted to relatively smalll(<8) systems.
berg model for the effective chain with longer range and For the (3<7)-ladder single spinon dispersion shown in

1. UNDOPED CASE: THE HEISENBERG THREE-LEG
LADDER
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FIG. 3. Spinon excitation spectra for 7- and 8-site Heisenberg

chains.(a) Single spinon excitation spectrun$ 1/2) in a 7-site  While the odd-parity bantr nonbonding banchas the form

chain. (b) Two-spinon excitation spectrumSE 1) in an 8-site

chain.(c) Same aga), but for a 19-site chain(d) Same agb), but €np(K) = — 2t cok. ©)

for a 20-site chain.
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At half-filling, the chemical potential ige=0, and all three
. . . bands are partially filled. The Fermi surface consists of three
Fig. 2@), there appears an additional even-parity band, cor- airs of Fermi points £ kg, ,\=ab.nb,b), arising from
responding to the gapped spin degrees of freedom. It is sepg—alch bandor channel Pk e
ra_ted from the odd-parity band by a gap), and its band- We consider the case of a single hole and we start with a
width is much smaller than that of the low-energy band. For(3x7) sample. The ground state is now a total sing®t (
:2? tﬁaesgazfeaonf e\élkeg ?utrt?g?(r)vc\)/fl rliJnr{gZ Sizoe\;,;gi;gtizlgé Qr?())w =0) and nondegenerate. The wave-vector dependence deter-
.( .) ’ ying Spir mines the single holon dispersion, again in a single chain
have even parity with respect to reflection about the Centeéffective model. In Fig. &), the results are shown for a
leg, and involve pairs of spinons with=1 a_nq grqund-state parameter valué]/tzo.é. Tf]e holon energy has absolute
wave vectork= * 7/2+ 7/2=0,% 1r. The finite-size gap at minima atk= = 7 and a local minimum ak= 0. This latter
k== 7 vanishes in the thermodynamic limit. Again, a com- a '

parison of the low-energy two-spinon band with that of the

corresponding 8-site single Heisenberg chéifig. 3(c)] 1.0 1.0 '

shows qualitativelalmost quantitativeagreement, support- 0.8 08 | (©) |
ing our conclusion that the low-energy degrees of freedomo & g4 o6l 7\ N
the (3XL) ladders can be mapped onto effective single :“eT 04 o4l N ]

chains.
Finally, we analyze the finite-size scaling behavior of the ~ 02|
spinon velocityp = dw/ JK| -, for the three-leg Heisenberg 006

0.2t N
0.0 !

laddergFig. 2(c)]. In the finite systems, we approximate the o ° kn 1
derivative byv ~[ w(27/L)— w(0)]/27/L (L even. Using 10 (d)
L=2, 4, 6, and 8, we obtain with the approximate scaling 08

form, v(L)=v4*)+aL 2+bL ™4 a bulk value ofv (=) 0.6 ¢ p
=1.813, which is in excellent agreement-(1%) with that 04| & //

obtained by recent quantum Monte CafiQMC) calcula-
tions on clusters with up to 600 spifs.

[ll. SINGLE HOLE IN A THREE-LEG LADDER

We start the study of the effects of doping by recalling the FIG. 5. Hole excitation spectra for the isotropicX3)- and
single electron noninteracting band structure. This takes th€3*8)-sitet-J ladders, and for 7- and 8-siteJ chains. In(a) and
form of three overlapping bandén the isotropic case (b), the circles correspond to the even-parity and the squares to the
=t’). These can be classified according to their parity undePdg)'p?r‘]r'Z igi”?”)elil' ri’:p?g"’gf)l es'ﬂg:g Zot)'?at'i: U 2elc;ts .
the reflection operationR) about the center le(see Fig. 4 ) ! cluster. Ing excitation spectru
The two even-garity l:’}r)]ds we denote as b%;ndibgg&nd (6= 1/24,S=1/2) in a (3x8) cluster.(c) Filled circles: single

- . . . . holon excitation spectrum &= 1/21, S=0) in a 7-site chain.
antibonding @b), and they have the dispersion refation Dashed line: same in a 19-site chaid) Filled circles: single hole

excitation spectrum{ = 1/24,S=1/2) in an 8-site chain. Dashed
€p an(K)=7F V2t — 2t co, (2)  line: same in a 20-site chain.
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FIG. 6. Spin-charge correlations for one holg®x L) isotropic ]
t-J clusters withL=4, 6, 8, andl/t=0.5. The holon is fixed at the

site indicated by the circle. FIG. 7. Spin-charge correlations for one hole i(3x 6)-site

behavior is consistent with a finite-size effect. For exampldsotropic t-J cluster with J/t=0.5. The holon is fixed at the site
in Fig. 5() we show the holon dispersion calculated in aindicated by the circle.
7-site single chairt-J model where a similar behavior is
obtained. This in turn reflects the doubling of the period inthe spin is distributed over the whole cluster, and agree
the single Heisenberg chain dispersion, when the chainicely with those of White and Scalapin®This behavior is
length goes to infinity. fully consistent with a single Luttinger-liquid interpretation.
The three-leg ladder has reflection symmetry with respect The Lanczos method allows one to examine also the low-
to the center leg. The eigenvalues of the corresponding ofying excited states. This in turn raises the question of the
erator,R, are =1, i.e., even(odd parity under reflection. energy gap between the Luttinger liquid with odd parity and
The ground state for the undoped ladder with<(3) legs (L the next channel with even parity. This latter channel should
odd has parity—1. The ground-state manifold of the same correspond to placing the hole in the spin liquid. From the
ladders with one hole has parityl. Therefore we associate experience with the two-leg ladder one expects that doping
parities+1 and—1 with a single holon and spinon, respec- the spin liquid will lead to a Luther-Emery liquid with a
tively. It follows that the parity of a single hole which is the bound spin-charge distribution for a single hole. Therefore if
product of those parities is-1, i.e., the hole goes into the our expectation is correct, we should expect the lowest-lying
band with odd parity with respect t8. This is the middle excited states with even parity to show a very different spin-
nonbonding band with odd parity. The interpretation is clearcharge distribution. In Fig. 7, we show the corresponding
the two bands with even parity in thel model combine to distributions for the lowest eigenstates with even and odd
form a spin liquid which is insulatingISL), and the initial ~ parities of clusters with.=6. The eigenvalues are given in
doped holes go into the odd-parity bafmt channel, and  Table I. The difference is clear. In the odd-parity channel the
form a single Luttinger liquid(LL). So the noninteracting energy dispersion is large, the minimum energy liek-at
band-structure Fermi surface is truncated from three sets af 7/2, corresponding to a half-filled Luttinger liquid. In the
Fermi points to a single Luttinger liquid in the odd channel.even-parity channel, the energy dispersion is much less, and
Note that this Fermi-surface truncation implies a form ofthe minimum lies at valuels= +5#/6 which we interpret as
spin pairing and a reduction of the low-energy spin degreea hole entering the antibonding even-parity band. As can be
of freedom, but it does not imply the formation of Cooper seen from Fig. 7, the instantaneous spin-charge distribution
pairs. Note also that this Fermi surface truncation is not duéor this minimum energy even-parity state is quite different,
to a breaking of translational symmetry along the ladderand shows a clear binding of the spin and charge. This be-
since the spin-spin correlations in the ISL are purely shorhavior is fully consistent with that of a single hole in a
ranged. Luther-Emery liquid and with the interpretation of a spin
White and Scalapino have performed DMRG calculationdiquid in the even-parity channels. Also shown in Fig. 7 are
on large samples (816) with open boundary conditiod8.  the instantaneous spin-charge distributions for the set of low-
They find upon doping a single hole that the spin and chargest excited states with fixed wave vector and parity. These
densities are well separated, indicating the decay of a singlehow intermediate behavior which we interpret as arising
hole into a separated spinon and holon as expected for faom (attractive interactions between a spinon and a holon at
Luttinger liquid. The Lanczos results for smaller clusterswave vectors away from the Fermi surface.
show similar results. In Fig. 6, the results for the spin-charge An important quantity is the single hole energy gap be-
correlation are shown. If we add one hole to &(13) cluster  tween the odd- and even-parity channels. The value we ob-
with L even, then the ground state has total spinl/2, and tain in the (3X6) cluster is=~0.1% (or 0.3Q)—a value
odd parity. Therefore if we take the state wih= +1/2, we  which is smaller than that of the spin gap in the ISk J).
can calculate the local value &F at each site for configura- To summarize, the results for a single hole show that the
tions with the holon fixed at the origin. In Fig. 6, we show minimum energy is in the nonbonding channel, and this
these results fob =4, 6, and 8. The results show clearly that channel forms a single Luttinger liquid. The even channels
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TABLE I. Energies(in units oft) of the (3x6)-site isotropict-J ladder with antiperiodic boundary
conditions and)/t=0.5.

0 holes 1 hole 2 holes

k R Energy k R Energy k R Energy

0 +1 -9.017603 76 +1 -10.24582 0 +1 -11.80680
/3 +1 -8.393170 /2 +1 -10.25131 /3 +1 -11.42219
27/3 +1 -8.409188 5716 +1 -10.25673 /3 +1 -11.49704
T +1 -9.243230 T +1 -11.69586
0 -1 -8.450508 /6 -1 -90.987594 0 -1 -11.59084
/3 -1 -8.211651 /2 -1 -10.40757 I3 -1 -11.57428
27/3 -1 -8.224553 /6 -1 -10.18534 /3 -1 -11.53402
T -1 -8.403831 T -1 -11.54535

are gapped, forming an insulating spin liqléL), and the function for various two-hole states of(&8x 6) cluster with
minimum energy for a single hole in these channels liesAPBC (J/t=0.5). These boundary conditions were chosen

higher in energy. since they give a nondegenerdie., closed shellground
state for noninteracting electrohs.The ground state has
IV. TWO AND MORE HOLES even parity and a total wave vector b&0. The instanta-

o _ ~ neous hole-hole correlation functidirig. 8@] shows the
We begin with the case of two holes. White and Scalapin@naximum weight at the largest rung-rung separation possible
have performed DMRG calculations for ¥3.) samples in this small cluster, but with both holes preferentially on the
with a value ofJ/t=0.51° They find that the holes do not same edge. This behavior is similar to that found by White
bind and in fact repel each other, so that the most likelyand Scalapino, and leads us to interpret this as a ground state

configuration has the two holons as widely separated as pogjith LL + ISL character. Note that the hole density here
sible, consistent with the open boundary conditions used in

their study. This behavior can be immediately interpreted a 0.20 : , : :

that of two holes doped in a single Luttinger liquitL), 1%leg 2"™eg 3“leg|1%leg 2™leg 3"leg

while the remaining transverse channels form an ISL, con i

sistent with the discussion given above. In view of the finite- 0.15 ¢ T

energy gap between the even- and the odd-parity states, the <nh1nh.> i @ ()

will be a finite density range within which this L& ISL :

phase remains stable. We then conclude that the hole dens 010y T

in the White-Scalapino calculationss € 1/24) lies within

this density range. 0.05 | 1 |
The next issue is to determine the critical hole densjty

that limits the stability of this LL+ ISL phase. At first sight w H M H HWH HHH m H

it would seem straightforward to use the single hole energ; 0.00 - 5 |;| . 121'1 18 YT n"ﬂw

gap between odd and even parities to determine the critic: i J

value for the hole chemical potentigt., and thuss;: u.

=p(8c). However, we expect the even-parity channels 10 G, 8. Instantaneous hole-hole correlations for two holes in a
evolve into a Luther-Emery liquidLE) when doped, in anal-  (3x )-site isotropict-J cluster withd/t=0.5. The first hole is fixed
ogy to the doped two-leg ladder. As a resylt; will be  at the origin {=1), not shown in the figure(a) ground statek
determined by the energy of the two-hole bound state of the-0. (b) excited statek= . The sites on the firstoutep leg are
LE rather than the single-hole energy gap. labeled 1< j < 6, on the secon¢centey leg 7< j < 12, and on

In Fig. 8, we show the instantaneous hole-hole correlationhe third (oute leg 13< j < 18.
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TABLE Il. Average hole densities on the central and the outer 4.0 . : .
legs in the (3 6)-site isotropict-J ladder with two holes and/t v
=0.5. 30 f
k R (nh>out <nh>central 20 ¢
1.0 |
0 +1 1.050053 0.899894
0.0
/3 +1 0.791384 1.417232 10|
-2.0 s : : :
27/3 +1 0.809848 1.380304 00 g§o02 0.4 0.6 0.8 1.0
c 8 .
T +1 0.794342 1.411316

FIG. 9. Energy per site(circles and chemical potential
(squares for a (3% 6)-site isotropict-J ladder withJ/t=0.5. The
0 1 1.170123 0.659754 critical hole densitys . beyond which the holes enter the LE phase
is indicated by a dashed line.

/3 1 0.995565 1.00887 spin quantum number remains unchanged; i.g(3)

=3[Eg(Np+1)—Eg(N,—1)]. The result is shown in Fig.

213 1 0.978532 1.042936 9. The curve ofu (&) rises initially with §, consistent with
a repulsive interaction between holes in the £USL phase.
Our previous estimate of the excitation energy of the LE
™ -1 0.884392 1.231216 state withN,,=2 allows us to determine the chemical poten-
tial rise needed for holes to enter the LE phase at @.055
From Fig. 9 we estimate then for the critical hole density a
(6=1/9), is larger than that considered by White and Scalavalue of 5,==0.13. Note that this value is calculated using a
pino. relatively small cluster size, and it is not possible to estimate

There should however be an excited state of the clustethe finite-size corrections. Therefore this value &fis an
also with even parity an&=0, which has the two holes in estimate whose accuracy is hard to predict.
the LE. This state should have a total wave vectoksfr, We conclude that the Lt ISL phase remains stable over
i.e., the same value as the undoped systém.fact, such a  a finite hole density range,<05< 8., and in this range there
state appears in the cluster with an excitation energy ofs no hole pairing although a large fraction of the spin de-
0.111 above the ground state. The instantaneous hole-holgrees of freedom are gapped in the ISL. Beyond this density
correlations in this excited stafdig. 8b)] are also quite range,s> ., there is a LE channel in contact with the LL
different from the ground state, with a maximum for the channel. The presence of holes in a LE channel leads to hole
next-nearest-neighbor separation, indicating that the twgairing and dominant superconducting or charge-density
holes are bound in this state. Therefore we identify this statevave correlations as in the case of the lightly doped two-leg
as that with two holes in a LE formed from the even-parityladder. This transition with increasing hole doping is similar
transverse channeld.e., bonding and antibonding bands to that discussed recently by Emeeyall® in a different
This identification is confirmed if we look at the average context. They examined a LL allowing pair exchange to an
hole density on the central vs the outer legs. The resultenvironment, and found a pairing transition as the environ-
quoted in Table Il show a marked increase in the hole denmental gap was lowered through a critical value.
sity on the central leg in the LE state. In order to further explore the low-density LK ISL

The binding energy of the two holes in the LE state can bephase, we calculated the single-particle spectral function,
estimated from the energy difference to add the two holeg\, (k,w)=— (1/7)Im[G, (K, w—i7)], in the ground state of
togetherin the LE state E5F) andseparatelyin the LE state  the (3x 6) cluster with two holes. Here, labels the linear
(ESF). This difference is an estimate of the binding energy,combinations ofc operators, corresponding to the noninter-
E,=2EF—E5F=—2.028 +2.453=0.42%. Note however acting shell structure shown in Fig. &, ,=3[Cj 1,
that this value may well be a considerable overestimate be+ \/Ecj,2ﬂ+ Cizol, cj,nb,gzll\/i[cj,m— Cisolr  Cjabe
cause of finite-size effecisee below. =%[cj,1yg— 2Cj 2,1 Cj3,]- The results are displayed in

We now turn to the estimate of the chemical potential,Fig. 10 for (3 6) ladders with APBC and PBC. The energy
©(9). In view of the small size of the clustetse., mostly 3  region below the chemical potential corresponds to a transi-
X 6 siteg we need to take care about finite-size correctionstion to three-hole states. In a small cluster, such ag3keb)
In particular, in small clusters there is generally a large enunder study here, the finite-size effects are large. Thus to
ergy gain for total singlet states, and if one calculates interpret the spectrum, one should keep in mind the nonin-
through single hole additions one ends up subtracting théeracting shell structure. We begin with the case of APBC.
energies of states with total spB=0 andS=1/2. In order The two-hole LL + ISL state has then 16 electrons which
to avoid this, we use two-hole additions since then the totain a noninteracting state would occupy the stdtés /6,
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mentum=27/3, with the four electrons in thab channel
occupying k=0 (two electrony and k==«/3 (two
A electron$.?’ The values oh, (k) for PBC in the LL + ISL
L anti- state are also included in Fig. 11, and also confirm the inter-
bonding pretation of a partial filling of all three bands.

However, at a true Fermi surface in a bulk system one

S

i
|
' AT must be ableo add as well as to remove electrons at the
LA N
o4 non- chemical potentialor Fermi energy The strong correlation
SR o Ponding condition clearly influences this part of the spectrum much
E more strongly, since as we pass to the undoped Mott insula-
| . tor electron addition is totally forbiddefor allowed only on
. "
A ! ~ = bonding paying the Mott correlation energy gapvhereas in photo-
Y , emission electrons can always be removed. With this in mind
° Con we examine the electron addition part of the spectrum which

corresponds to a transition to a one-hole state. From Fig. 10
we see that the main weight at low energy is in the
with two holes andJ/t=0.5. The poles have been given a finite nb(+ w/2) channel. Clearly this corresponds to a transition
width of »=0.02, and the chemical potential is indicated by the from the two-hole LL+ ISL 9“?“”0' state to the one-hole .LL
dashed line. APBGPBO) were used in the leftright) panel. + ISL ground state, and confirms that we have a Fermi sur-
face in the odd-parity LL channel. Next we look at the even-
+ x/2), ab(=* w/6), andnb( = 7/6). Through the strong cor- parity channels which form an ISL in the ground state.
relation interaction the state with electron pairs in the Therefore we should expect that then electron addition in
(=5m7/6) state will be admixed. In this way we can interpret these channels at low energy will be forbidden. In fact, if we
the electron removdbr photoemissionpart of the spectrum look at theb channel, then this behavior is clear, and there is
with the strong peaks to inserting holes into the+ w/2, no Fermi surface in this channel. On the other hand, in the
+5/6) andab(= 7/6) even-parity channels. The state with other even-parity channeh=ab, we find two relatively
an added hole ab(+ #/6) is far removed from the Fermi strong peaks at= + #/2. These values actually correspond
level, and so it is strongly broadened. Turning to thie  to a transition not to the minimum energy state of one hole in
channel, we see that the main weight is at+/6) as ex-  this channel but to an excited state. We interpret these peaks
pected, but this is again broadened due to many-body effectgs sidebands, involving the creation ofSs=1 odd-parity
The resulting photoemission spectrum then shows signs of @agnon withk=0 or 7 in addition. Clearly it is too strong a
Fermi surface in all three channels, and with values in  statement to say that all processes which add an electron to a
line with our expectations. LL + ISL state with even parity are forbidden, since side-
Clearly all three bandsh( ab, andnb) are partially oc-  bands in which an electron is added in the odd-parity LL
cupied. This is illustrated by calculating the momentum dis-channel and simultaneously odd-parf8=1 magnons are
tribution function, ny (k) = [“dwA,(k,w). The results for created can have a total parity which is even and a total spin
ny(k) are shown in Fig. 11. These show dropskdscreases of S=1/2. We interpret the weight in treeb channels then in
which one can interpret as giving estimateskpl, , butina  terms of such processes which in turn may be enhanced by
small system one cannot draw conclusions about the actughe finite-size effects associated with these small clusters.
behavior fork~kg , . The case of PBC has a different shell The behavior of the PBC case is analogous. Here the main
structure. The LL+ ISL state is now a state with total mo- weight at low energy is thenb(k==/3) channel, corre-
sponding also to a transition to the one-hole £LISL state.
0.7 : : : : However, again there is weight in the antibonding channel
which we interpret also as a higher energy sideband and a
transition to a one-hole LE state. This is strongly admixed
due to the enhanced stability of this state which has a filled
shell character in theb channel as we discussed earlier.
In conclusion, the single-particle spectra in the £LISL
state show a strong asymmetry between removing and add-
ing electrons, and it is the latter process, which unfortunately
is not easy to detect experimentally, where the effects of the
Fermi-surface truncation on approaching the Mott insulating
state are most evident. The above discussion has close par-
0.0 : ; : : allels with the interpretation put forward by Eder, Ohta, and
0.0 0.2 0.4 W 0.6 08 10 Shimozatd' for the photoemission spectra upon removing
T and also the inverse spectra upon adding electrons, calcu-
lated for two-dimensional clusters of tihel model. In par-
FIG. 11. Momentum distribution function for @x 6)-site iso- ticular, they point out that it is only near ti&,1) direction
tropic t-J ladder with two holes and/t=0.5. Results with APBC that an electron may be added without creating extra spin
and PBC were combined. excitations.

FIG. 10. Spectral functions for @X 6)-site isotropict-J ladder

@---@ bonding
=— non-bonding
0.1 | |¢——¢anti-bonding

02
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V. ANALYSIS BY MEAN-FIELD THEORY

1
=_ A o =13,
In this section we analyze the properties of the three-leg X1 22 { jmatitly, )y

ladder using the mean-field description in the same spirit as

previously done for the two-leg ladd&For this purpose we 1 T

introduce spinon and holon operatofsandb, respectively, XZ:E; <fi,2,ofj+1,2v>’

by replacing the electron creation and annihilation operators

in the following way?® 1 ,
gt XSZEE,,: (flo6fine)  »=13. (6)

i,v,o  liv,o

c b, and ¢ ,,=bl fi,,, (4)

L A N The same convention is applied to the mean fiéldandA.
= 1. The Hamiltonian can be reformulated in these operators! "€ Parity with respect to the reflection operaioallows us
and can then be decoupled by introducing mean fields. Thi® Separate the mean-field Hamiltonian into the evenr}
constraint is included by adding a term with Lagrange mul-and odd- €) parity channels,

tipliers. Since this treatment is quite standard we do not go 3
into detail here. The system is not translationally invariant H .= H® +H® + HO+ HO 41| g+ = (2x2+ x2+2A2

which lead to the local constrairﬁi(,ffr f

along the rung, so that the mean fields depend on the position 2
of the bonds, resulting in ten independent mean fields: six
hopping and three pairing mean fields, defined on nearest- +A§)+J’(X§+A§)+2t(81)(l+ Boxo)+4t'Bays|.
neighbor bondsj(v;j’,v'),
1 ()
Xivij' v = 52 (f;v,,,fjl,yr,,), We define the corresponding combinations for the operators,
7 operator combinations,
Bj,v;j’,v’:<bj,vb}.' y’>’ 1 .
fki,(r: Z; (fj,l,(rifj,f:’,o’)elkrj:

AJ',V;]-',V/=<fj,Vlfj/,V'T>’ (5)
and a uniform Lagrange multiplie. We denote the mean 1 e
fields along the outer two legs and the middle leg with the by = ZEJ: (bj1=Dbj 5)€™] ®)

indexes 1 and 2, respectively, while the rung mean fields

have the index 3. In order to avoid ambiguities we have towith the momentunk along the legs of the ladder. Then we
define the direction of the bond mean fields. We give herecan write the four terms of the Hamiltonigim Nambu space
the convention using the example pf for the spinonsas

H® = (—4ty,cok—u)b_b,_,

—4ty,c0K—u —2\/§t’x by
H®'=(b]. bi.) S,
’ —2\2t'ys  —4txcok—pu |\ byo
3 3
—| 2tB1+ zJx1|cOK— — =JA cok
f 2 2 fr o
H(*)ZE (fl*,(r’f*k*,*d) 3 3 fT ’
7 —EJAlcosk <2tBl+§Jxl)cod<+,u ke
fk+T
%k Ak fk,Z,T
HO=(fl,  fl o f o fo - . : (9)
vy flag foe o) e s
12,
where&, andA, are 2x2 matrices of the form
3 3v2
- ztBl+§JX1>COg(_M _Zﬁt’Bg_%_J,)(g

&= ,
k 33

3
—2\2t'B;— 5 Vxs —| 2Byt 5x; [cok—p
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3 342
~ 50k — %_J'Ag
A= . (10)

3\2

3
_TJ’AE} _E\]Azcod(

Note that we have neglected the terms witim;n;/4 in the  energy of the holon has to be minimized which yields a
exchange term, because in the mean-field calculation thegonstraint on the hopping mean fielgs. Three holon bands
tend to artificially enhance the tendency towards pairing anéppear, two even-parity bands and one odd-parity band, with

favor a flux phase close to half-filling. energies given by
We can now solve the single-particle problemHy;; and
determine the mean fields self-consistently. For the ground s = — 2t(x1+ x2)COK— u
state we obtain the self-consistent equations by minimizing
the ground-state energy bf, in Eq. (4) with respect to all + \JA4t2(x1— x2)?coSk+8t%x3,

mean fields. In this description the holons are Bose con-
densed so thak,,_; , b/ ,b; ,)=35 where s is the doping

concentration. In the following, we will use the same param-
eters as used in the numerical simulationst’=2J=2J".

€= —4Aty,C0K— . 12

Obviously the lowest holon state can be found in the lower
N of the two even-parity bands. Thus, the single hole ground
A. Half-filling state can be obtained by removing a spinon at the Fermi level

For half-filling, §=0, there are no holons and the Hamil- ©f the odd-parity band and by inserting a holon at bottom of
tonian of the spinons is invariant under the following (@  the lower even-parity holon band. This results in a change of

transformation: the parity of the ground state compared with that of the half-
filled case, in agreement with the numerical regséie Fig.
£l ' fr1 13).
( e )_>U< e :( S (11) The single-particle spectrum is incoherent, because the
fiv-o fiv-0o fiv o excitations are composed of the annihilation of a spinon and

which reflects the constraint at half-filling. The absence of arihe creation of a holon. We define the single hole Green's
: . - Tunction as a matrix

up-spin corresponds to the presence of a down-spin and vice

versa?* Note that due to the S3) invariance of the Hamil-

tonian the self-consistent solution of the mean field is not G,,V,(k,w)=—J dte—iwt<T(Cl’V‘U(t)Ck’V,’U(O)»’

unique, butU corresponds to a rotation in the mean-field
space{x;,3,A1,3 Which leaves the ground state and the
excitation spectrum unchanged.

In this formulation various properties of the three-leg lad-
der can be interpreted at least on a qualitative level. The
Hamiltonian yields six distinct bands in Nambu space for the 0.2
spinons(Fig. 12. For the symmetric channel the spinons
have a gapped spectrum where the lower two bands are com-
pletely filled. On the other hand, the antisymmetric channel
has gapless excitations which give a spectrum analogous to
that of a single chain. It is now easy to compare the spin-
excitation spectrum of the mean field and the exact diagonal-
ization. For the mean-field case the excitation corresponds to
a particle-hole excitation of the spinon gas. The gapless
spectrum is that of a single Heisenberg chain and is exactly
what we obtain for the same type of mean-field treatment of -0.2
a single chain. The other bands are gapped and describe a
spin-liquid state coexisting with the gapless system. The . .
agreement with the numerical simulation is qualitatively very 0.0 0.5 1.0 1.5 2.0
good. k/'

(13

0.0

gt

5

FIG. 12. Spinon bands at half filling obtained by the mean-field
theory. All states below the chemical potenti@cated ate

We now insert a single hole into the half-filled system, = 0) are occupied by a spin-up and a spin-down spinon. The
i.e., we remove one spinon and add one holon. This immegapped bands correspond to the even-parity states, while the gapless
diately breaks the S(@) symmetry, because the ground-statebands in the center are in the odd-parity channel.

B. A single hole
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2 , , , analogous to the numerical results in Fig. 5. The spectrum
changing the parity with respect to the ground state of the
half-filled system has gapless excitations at momentum
=0 and . This corresponds to the LL component of the
1r T three-leg ladder. The states which keep the parity of the
ground state, however, are gapped with minim&-ab and
7. In our mean-field calculation the latter excitations lie
above the LL spectrum, in contrast to the numerical result.
The reason is that in the mean-field treatment these excita-
tions are almost exclusively carried by the spinon part, i.e.,
we remove a spinon in the lower even-parity spinon bands,
-1Ff ] while the holon remains in the lowest even-parity band. In
the numerical calculation this spectrum lies clearly lower and
cannot be identified directly with spinon excitations which
. . . are higher in energy. Therefore, we conclude that our mean-
0.0 05 1.0 15 20 field calculation overestimates the splitting of the holon
kit bands. Nevertheless, we can interpret both types of excita-
tions consistently with the numerical calculations. In particu-
FIG. 13. Holon bands for a single hole obtained by the meanlar, we emphasize that the gapless spinons are in both treat-
field theory. The outer bands are the even-parity baosding ~ ments in the odd-parity channel giving a consistent picture of
and antibondingand the center band has odd pafitpnbonding. ~ the symmetries of the ground state and the low-lying excita-
tions.
where the indices andv’ denote the three legs of the ladder
(T is the time-ordering operatprDecomposing the opera-
tors into spinon and holon parts we obtain the convolution

-2

C. Finite doping

The analysis of our numerical data led us to the conclu-
1 . b ) sion that there would be a finite range of doping close to
Gyur(k,w)= [% do’G,, (k+g,0+0")G,,(q,0") half-filing where the LL state would coexist with the ISL.
Beyond a critical dopingy, the ISL would be doped and the
(14 .
whole system would turn into a LE where all channels open

with a spin gap. We might hope to describe this behavior within
our mean-field picture. However, in this treatment the mean-

Gf (K,w)= _J dte*iwt<T(fl oD 5(0)), field LL state is immediately unstable against the formation

" v o of a LE state, and there is no obvious transition between two

different phases.
GP (K, )= _f dte YT (by (t)bT ,(0))). (15 As soon as we introduce a finite concentration of holes in
vy Tk the system, the holons are described by a Bose condensate in

the mean-field ground state. Consequently, the single-

The spgctrum is obtained by d_lagonahzmg th? Green Sparticle Green’s function consists of a coherent and an inco-
function with respect to the leg indices. We show in Fig. 14) crent part due to the presence of the condensate
the lowest one-hole states for given momenta and parity '

G,u(k,®)=C,, /G, (ko) +Gis (kw), (1)

whereC,,, is a constant proportional to the doping concen-

02 b AN /”\\ | tration 8. Thus, we find conventional Fermi-liquid quasipar-
// \\ / \ ticles in the single-particle spectrum. This has implications
/ \ / \ on the pairing in the doped ladder. The exchange term in the
L/ N . t-J model allows us to scatter spin-singlet pairs of electrons

between the even-parity and odd-parity channel. The rel-
evant terms are derived from the exchange terms along the
01| . two outer 1egsJ=1(S ;- S+11+ S 3-S+19, and become in
electron operator formulation,

Et

— t t
Hy_= 2 2 Uk,k’,q[ck+q+,ack'+'—g—ck—,—ack’+q—,o
kk',qgo=T.l

0.0

00 05 1.0 15 20 +CE+q—,gle7,7O—Ck+,fo-ck’+q+,o']i (17)
k/n
with vy v q= —J[cogy+3 cosk—K')]. The even-parity chan-
FIG. 14. Low-energy spectrum for a single hole obtained by thenel corresponds to the ISL phase which is not populated by
mean-field theory. holes at small doping. However, via virtual scattering of hole
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pairs into the even-parity channel an effective pairing inter- 5
action for the holes in the odd-parity channel is generated, in
lowest order given by 1
Vk’er_ZiE dka’kn’k+kqu++(k",w) .< 0
k/l
xG' (—K',— o) -1
++ ) Kk’ k" k" +K"
J? 4
== > | dw(9 cok cok’cogk”
k/l
+sink sink’sirtk”) G , (K", 0)G', . (=K', — o), 8
(19 <
whereG', | (k, ) is the spinon Green’s function in the even-
parity channel corresponding t6" , =2(G!,+Gl,+Gf;

+G1y from Eq.(15). In weak-coupling theory this leads to
the instability equation(ladder approximationin the odd-
parity channel,

1=—keTX ViiG- - (Kwn)G__(—k,~w,) (19
k,n
for finite temperatureG_ _ =G;,— G13— G3;+ G3a3, andw,

are the fermionic Matsubara frequengieSince the Green’s

function has a standard quasiparticle pole as shown above
Eq. (16), we find a usual Cooper instability and a nonvanish-

ing transition temperature for any finite coupling and densit
8 (note thatG is proportional tod). Thus, holes in the odd-
parity channel would be paired in the ground state. This is i

strength exists below which the LL remains stabl&hus,
this instability of the LL for any nonzero concentration of
holes is a deficiency of the mean-field description. On th

relation of the ISL provides a pool of “preformed pairs”
which triggers the instability of the LL towards the I°E.
Although there is no obviougonzer9 critical concentra-

0 L L
0.00 0.05 0.10 0.15
o

FIG. 15. The superconducting mean fields for finite doping. The
solid lines correspond to the mean-field calculation. The dashed
lines are fits of the crossover assuming an underlyjidg- &, de-
pendence oA’ with §.~0.034. In the lower figure a linear fit is
possible forA’2.

lss below. We expect that the same tendency is at work in
the real system where, in the very small doping regime, the

Yeffective interaction is sufficiently reduced to avoid pairing

in the LL. Only with increased doping both the enhanced

. - S Nhttractive interaction and the density of states at the Fermi
contrast to the expectation for a LL where a critical couplmgI

evel drive the system into the paired state.
Finally we would like to characterize this crossover by
considering the symmetry of the gap function in momentum

&pace. Thus, we introduce transverse moméntalong the
other hand, it clearly indicates the trend towards pairing dugp ’ - g

to the coupling of the LL to the insulating or doped spin
liquid which occupies a part of the spectrum. The RVB cor-

ung. The bonding, antibonding, and nonbonding states as
given in Egs.(2) and (3) can be related to momenta by
using the following form for the dispersion:

ekvkl=—2t(cosk+coski), (21

tion where the character of the ground state changes withiresulting from fixed boundary conditions along the rung.
the mean-field treatment, we observe an interesting crossov&vith Egs. (2) and (3) we find the correspondencb—Kk;

between two regimes in the BCS mean field for the holes,

The behavior ofA” andA’2 as a function ofs is shown in
Fig. 15. The crossover indicates a critical concentratign
~0.034(for t=2J) found by extrapolation of the square-root
dependence oA’ (o8- 6.). For 0<6< 6., A’ is rather
small as can be understood from E@$5 and (16). For
small doping the dominant contribution ¥, . originates

(20

from k"~ * 7r/2, the momenta for the spin gap in the even-

==+ /4, nb—k, =*x/2, andab— *3x/4. Then we ob-
tain for the momentum-dependent gap function,

A((,kL=<Ck,ki¢C—k,—kiT>
=—[2A]sirP(k, )+ Ajsir?(2k, )]
X cok— Ajsin(2k, )[sin(k, ) +sin(3k,)].

(22)
We can use this form now to show the phase of the gap

parity channel, and the Fermi points for the odd-parity holedunction in the first Brillouin zongBZ). We observe that the

are close ta+ 77/2 as well. Therefore the cosine term\ip ./

gap function is basically positive along thHe direction

contributes only little. This changes with increased doping(|k. |<) and negative along the transverse momentum di-
where both the Fermi points and the lowest even-parityection k; (|k|< ). This is essentially the structure of a
spinon energies are located at momenta gradually shifting dxz—y2-wave” pairing function. This is also reflected in
away from= /2. This leads to an effective enhancement ofreal space where the gap function along the legs is positive
the pairing interaction as an effect of doping, which yields(A1,A5) and along the rungs is negativA{) as shown in

the pronounced crossover whose symmetry aspects we diBig. 15. It is interesting to compare the position of the nodes
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odd-parity channel which behaves like a single chain, and
two even-parity channels which behave similar to the two-
leg ladder. This result is already foreshadowed in the un-
g K,f doped limit where the low-energy degrees of freedom can be
nb mapped onto a single HeisenbeBg- 1/2 chain with longer
b range interactions, and the remaining transverse spin degrees
+— of freedom have a substantial energy gap. In this work, we
show that the initially doped holes enter only this odd-parity
= 5 channel and form a Luttinger liquid, so that the system has
nb two distinct components—the conducting Luttinger liquid in
the odd-parity channel, and the insulating spin liquid in the
",’L’/ - - even-parity channel. This phase we denoted asH_ISL,
and the numerical evidence from the Lanczos diagonaliza-
- i 0 } T tion of small clusters reported here and the DMRG calcula-
—1t/2 /2 tions of White and Scalapint,that such a phase exists up to
k a critical hole densitys ., is we believe quite clear. In ad-
dition, we introduced a mean-field approximation scheme
FIG. 16. Nodelines for the BCS gap, E@2), in the first Bril- which gave similar but not identical rgsult; Initially, holes
louin zone. The dashed line connecting the empty circles shows thgNter only the odd-parity channel which is gapless in the
nodelines fors=0.01. The dotted-dashed line connecting the ~Undoped system. However in the mean-field approximation,
marks gives the nodelines fai=0.06. We define the transverse @ small gap develops in the odd-parity channel upon doping.

g
#

momentak, by b— =+ 7/4, nb— = 7/2, andab— = 3/4. This, as we discussed, reflects the inadequacy of the mean-
field description of the Luttinger liquid.
in the two regimes separated IBy. For 0< <6, we find The LL + ISL phase has unusual properties. First of all,

that the gap functions have practically the same magnitudee note that the different parity channels of the original
on all bonds. With this property Eq22) leads to nodes Fermi surface behave quite differently, so that only in the
which correspond exactly to thg 10] direction in the BZ  odd-parity channel is there a Fermi surface. The truncation of
and we might consider this state as “purelyf;>_,.-wave-  the Fermi surface in the partially occupied even-parity chan-
like (see Fig. 1% On the other hand, for the regim#> &, nels is not a consequence of a breaking of translational sym-
the gap functions have the relatia,<Aj=—A% which ~ metry since the spin order here is purely short range. Rather
yields nodes clearly shifted away from the10] direction. it is @ consequence of the proximity to the Mott insulating
We may consider this as an admixture of @xtended phase which in this channel is ISL. This truncation of some
s-wave-like component to thé-wave gap, although, strictly partially occupied.bands is a clear violation_ of Luttinger.’s
speaking, the underlying symmetries are not present in thileorem. Usually if one approaches a Mott insulator which
ladder system to justify the distinction betwesa and has AF order, then one may proceed through incommensu-
d-wave pairing. rately ordered phases which progressively truncate the Fermi
The difference between the two regimes may therefore burface, but do not violate Luttinger’s theorem. However this
interpreted in the following way. The mean-field supercon-OpPtion is not available if one approaches an RVB Mott insu-
ducting state in the small doping regime is mainly carried by/@tor which is an ISL. However the example of the three-leg
the even-parity channel and the odd-parity channel particiladder shows us that here also a partial truncation of the
pates weakly through proximity. Contrary to the exact nu-Fermi surface is possible, but now it violates the Luttinger
merical diagonalization, in the mean-field treatment we cantheorem. _ _ _
not avoid the population of the ISL by holes strictly even at ~ This LL + ISL phase has certain features in common with
very small doping concentrations. The three-leg structure i§ recent proposal by Geshkenbein, loffe, and LakitlL)
apparently wide enough to create a LE state with a gap strudor the underdoped spin-gap normal phase of the cuprates.
ture which is approximativelg-wave-like. In the larger dop- They argue that the spin pairing l.mplled by the spin gap did
ing regime, however, the LL of the odd-parity channel ac-Not cause immediately hole pairing. Instead they broke up
quires its own hole pairing so that an additional symmetrythe Fermi surface into two distinct parts—a fermionic part
lowering occurs reflecting the one-dimensional nature of théd & paired bosonic part. The latter they argued should have
LL and generates as-wave-like additional component as infinite mass to prevent conductivity from these bpsons, and
seen in the shift of the nodelingsig. 16). Since there is no  they associated this with the van Hove singularity. In our
real symmetry distinguishing andd waves from each other SPecific example, the spin pairs are also insulating, but the
this transition appears only as a crossover when the intera@¥igin lies in the proximity to the Mott insulating phase. In
tion among holes become strong enough in (ed-parity both models, the coexistence of fermionic and bosonlc_dg-
LL. This behavior is again in qualitative agreement with thegrees of freedom leads to processes whereby a fermionic

interpretation obtained from our numerical calculation. Cooper pair can scatter in and out of the bosonic channels,
which however lie at higher energy. In a LL, there is no

Cooper instability for an infinitesimal attraction, and a finite

attraction is required for pairing. For this reason we believe a
The three-leg ladder is especially interesting because in BL + ISL phase is possible in the three-leg ladder. By con-

certain sense it combines two quite different elements—atrast, as we discussed above, the mean-field description of

VI. CONCLUSIONS
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the odd-parity channel has a true Cooper instability due tghase occurs. This phase will show hole pairing and power-
the holons being Bose condensed, and as a result hole pairitgw correlations in the charge-density wave and singlet su-
occurs at arbitrarily small hole densities. In the case of twoperconductivity channels. As the mean-field approximation
dimensions, where the Fermi-surface channels or [I)c’:l'[Ch@u)WS7 the pairing is in an essentiadlywave channel. In the
near to the saddle pointsit(7,0) and (O ), first become  mean field theory, the quantum phase transitiof.appears

paired and insulating, it is clearly crucial whether the re-as a crossover where the hole pairing increases rapidly as the
maining fermionic part of the Fermi surface has a Coopehole density increases.

instability (as assumed by GlLor not. A Cooper pairing Since this paper was completed, a new DMRG study of
instability leads to hole pairing in the ground state as in oUkhe three-leg ladders by White and Scalapirtas appeared.
mean-field description. This method allows them to treat much larger systems, and

The experimental examination of the Fermi-surface evotheir results are nicely consistent with ours. Note that their

lution has been made by angle-resolved-photoemission spegajue of 5,=0.06, which should be more reliable, is smaller
troscopy. However, as we have seen, the inverse processan ours.

would be more illuminating, but it is much more difficult to

realize experimentally. In the electron addition process, as
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