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Lightly doped t-J three-leg ladders: An analog for the underdoped cuprates
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The three-leg ladder has one odd-parity and two even-parity channels. At low doping these behave quite
differently. Numerical calculations for at-J model show that the initial phase upon hole doping has two
components—a conducting Luttinger liquid in the odd-parity channel, coexisting with an insulating~i.e.,
undoped! spin-liquid phase in the even-parity channels. This phase has a partially truncated Fermi surface and
violates the Luttinger theorem. This coexistence of conducting fermionic and insulating paired bosonic degrees
of freedom is similar to the recent proposal of Geshkenbein, Ioffe, and Larkin@Phys. Rev. B55, 3173~1997!#
for the underdoped spin-gap normal phase of the cuprates. A mean-field approximation is derived which has
many similarities to the numerical results. One difference however is an induced hole pairing in the odd-parity
channel at arbitrary small dopings, similar to that proposed by Geshkenbein, Ioffe, and Larkin for the two-
dimensional case. At higher dopings, we propose that a quantum phase transition will occur as holes enter the
even-parity channels, resulting in a Luther-Emery liquid with hole pairing with essentiallyd-wave character. In
the mean-field approximation a crossover occurs which we interpret as a reflection of this quantum phase
transition deduced from the numerical results.@S0163-1829~97!06845-8#
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I. INTRODUCTION

The properties of electrons confined to ladders with va
ous numbers of legs have been investigated by many gro
in the past few years.1 The reason for this interest lies both
the unusual properties of the ladder systems and the p
bility to realize ladder structures in the cuprates, and also
the insight these systems give to the full two-dimensio
problem of a square lattice. Two different approaches h
been taken. One is based on the weak-coupling limit
uses renormalization-group methods to analyze the mult
ladders.2–7 A very complete analysis of this type forN-leg
ladders in the Hubbard model has recently been given
Lin, Balents, and Fisher.7

A second approach is more numerical and examines
strong-coupling limit described mostly by thet-J model. Re-
cent progress on the loop algorithm for Monte Carlo cal
lations has allowed large undoped systems described
Heisenberg model to be investigated down to very low te
peratures. However, when doped holes are introduced,
fermion sign problem prevents one from using this meth
and other methods must be employed, e.g., using Lan
techniques to diagonalize relatively small systems8,9 or the
new density matrix renormalization-group method~DMRG!
to obtain the ground state of large systems.10

In this paper we examine the case of the lightly dopedt-
J three-leg ladder. This case is especially interesting beca
in a certain sense it combines the contrasting properties
single chain11,12 and a two-leg ladder.8 These behave quite
differently, both when undoped or when lightly doped, so
is of great interest to follow the evolution of the three-l
ladder in this regime. In particular, the evolution of th
Fermi surface as the Mott insulating state is approache
very different in the different transverse channels. As
560163-1829/97/56~22!/14655~13!/$10.00
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shall discuss further below, this leads to a region where
Fermi surface is truncated in two channels, but remains
one channel—a behavior which clearly violates the Lutting
theorem. We shall argue that this presence of transv
channels which behave quite differently helps us to ma
inferences for the limit of the two-dimensional plane whi
of course can be represented as the limit of very many ch
nels or patches on the Fermi surface. The lightly doped li
of the three-leg ladder can serve as a simpler analog for
underdoped spin-gap region of the cuprates, which has
tracted so much attention, if one assumes that the patche
channels near (6p,0) and (0,6p) are truncated and show
spin gap, while those near (6p/2,6p/2) are gapless.13

The t-J three-leg ladder Hamiltonian is given by

H52t(
j ,s
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n51

3

P~cj ,n,s
† cj 11,n,s1H.c.!P

2t8(
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wherej runs overL rungs,s(5↑,↓), andn are spin and leg
indices. Thet-J three-leg ladder is sketched in Fig. 1. Th
first two terms are the kinetic energy (P is a projection op-
erator which prohibits double occupancy!, and the last two
exchange couplingsJ (J8) act along the legs~rungs!. Peri-
odic or antiperiodic boundary conditions~PBC, APBC! are
used along the legs.
14 655 © 1997 The American Physical Society
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14 656 56RICE, HAAS, SIGRIST, AND ZHANG
The paper is organized as follows. In the next section
recapitulate briefly the known results in the undoped lim
described by a Heisenberg Hamiltonian. Then in Sec. III
discuss the case of a single doped hole, using the results
Lanczos diagonalization and also the earlier DMRG res
by White and Scalapino.10 The low-energy properties ar
described by a single Luttinger-liquid channel in conta
with an insulating spin liquid~ISL!. Next in Sec. IV we
consider states with two and more holes. In the presence
finite hole density, there are two possibilities—either all t
holes repel each other and enter the single Luttinger-liq
channel, or at some density, the other channels are
populated with holes. Since doping a resonating vale
bond~RVB! spin liquid leads to a Luther-Emery liquid,8 this
will cause a qualitative change in the physical properti
There will be a critical hole densityd c which controls the
transition between the low-density phase with only a L
tinger liquid, in contact with a spin liquid, to the case wi
both Luttinger and Luther-Emery liquids. In Sec. V we d
velop a mean-field approach to thet-J three-leg ladder. In
this mean-field approximation, as we shall see, the crit
density,d c , is not finite but arbitrarily small, whereas th
numerical results give a finitedc for values ofJ/t;0.5. In
the final section we draw some conclusions and discuss
relationship to the planar two-dimensional case.

II. UNDOPED CASE: THE HEISENBERG THREE-LEG
LADDER

In this section we recapitulate briefly the known resu
for three-leg ladders in the Heisenberg model. In this c
the fermion sign problem does not occur, and very accu
quantum Monte Carlo calculations have been carried ou
Frischmuthet al.,14 and by Grevenet al.15 The low-energy
properties can be mapped onto an effective singleS51/2
antiferromagnetic~AF! Heisenberg chain model, althoug
the starting model has three spins per set of ladder ru
This arises because the additional spin degrees of free
have a spin gap, and enter with an excitation energy;J8.
The spinon velocity of the effective model in fact is hard
changed from the value of the nearest-neighbor Heisen
chain with exchange constantJ. However the energy scal
parameter which controls the spinon-spinon interactions
the size of logarithmic corrections to the uniform spin su
ceptibility at finite temperatures is greatly change
Frischmuthet al.14 interpret this result in terms of a Heisen
berg model for the effective chain with longer range a

FIG. 1. Thet-J ladder with three legs andL rungs. The cou-
plings along the legs aret andJ, and those along the rungst8 and
J8.
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unfrustrated effective interactions which act to enhance th
AF correlations.

The key point however is the fact that the low-energy
Hilbert subspace is greatly reduced so that not three chai
but only a single chain model is active at low energies, or i
other words only a singleS51/2 degree of freedom per rung
of three spins remains in the low-energy region. The remai
ing spin degrees of freedom are gapped in the same way
the spin liquid of a two-leg ladder.

This behavior is clearly observed in the numerical Lanc
zos diagonalization of (337) and (338) clusters, shown in
Fig. 2. As Bareset al.12 emphasized in their study of the
exactly solvable supersymmetrict-J model in one dimen-
sion, the spinon and holon dispersions can be directly o
tained in the limit of vanishing hole density by examining
the ground state of an appropriately chosen finite chain. Th
if one takes the case of one undoped chain with an od
number of sites and PBC, then the ground state for each to
wave vector along the chain gives the dispersion of a sing
spinon. This ground-state manifold has a total spin quantu
numberS51/2. For the present case of a three-leg ladder w
show the dispersion for a (337) sample with PBC in Fig.
2~a!. The single spinon withS51/2 has odd parity with re-
spect to reflection about the center leg and disperses with
bandwidth;(p/2)J and minima at6p/2. The correspond-
ing one-spinon excitation spectrum of a 7-site single Heise
berg chain is shown in Fig. 3~a!. To estimate finite-size ef-
fects, the calculation was repeated for a 19-site Heisenbe
chain @Fig. 3~c!#. We observe that the qualitative features
i.e., the positions of extrema and the overall bandwidth, a
already present in the smaller cluster. This is important sinc
in the exact diagonalization study of (33L) ladders, we are
restricted to relatively small (L<8) systems.

For the (337)-ladder single spinon dispersion shown in

FIG. 2. ~a! and ~b! Spinon excitation spectra for the isotropic
(337)- and (338)-site Heisenberg ladders. The circles correspon
to the even-parity and the squares to the odd-parity channels,
spectively.~a! Single spinon excitation spectrum (S51/2) in a (3
37) cluster.~b! Two-spinon excitation spectrum (S51) in a (3
38) cluster.~c! Spinon-velocity,vs, in ~33L)-Heisenberg ladders.
vs extrapolates with high accuracy to the value 1.81J ~diamond!,
obtained by QMC calculations~Ref. 14!.
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56 14 657LIGHTLY DOPED t-J THREE-LEG LADDERS: AN . . .
Fig. 2~a!, there appears an additional even-parity band, co
responding to the gapped spin degrees of freedom. It is se
rated from the odd-parity band by a gap;J, and its band-
width is much smaller than that of the low-energy band. Fo
the case of an even number of rungs@as shown in Fig. 2~b!
for the case of (338)#, the low-lying spin excitations now
have even parity with respect to reflection about the cent
leg, and involve pairs of spinons withS51 and ground-state
wave vectorsk56p/26p/250,6p. The finite-size gap at
k56p vanishes in the thermodynamic limit. Again, a com
parison of the low-energy two-spinon band with that of th
corresponding 8-site single Heisenberg chain@Fig. 3~c!#
shows qualitative~almost quantitative! agreement, support-
ing our conclusion that the low-energy degrees of freedom
the (33L) ladders can be mapped onto effective singl
chains.

Finally, we analyze the finite-size scaling behavior of th
spinon velocity,vs5]v/]kuk50, for the three-leg Heisenberg
ladders@Fig. 2~c!#. In the finite systems, we approximate the
derivative byvs'@v(2p/L)2v(0)#/2p/L (L even!. Using
L52, 4, 6, and 8, we obtain with the approximate scalin
form, vs(L)5vs(`)1aL221bL24, a bulk value ofvs(`)
.1.81J, which is in excellent agreement (;1%! with that
obtained by recent quantum Monte Carlo~QMC! calcula-
tions on clusters with up to 600 spins.16

III. SINGLE HOLE IN A THREE-LEG LADDER

We start the study of the effects of doping by recalling th
single electron noninteracting band structure. This takes t
form of three overlapping bands~in the isotropic caset
5t8). These can be classified according to their parity und
the reflection operation (R) about the center leg~see Fig. 4!.
The two even-parity bands we denote as bonding (b) and
antibonding (ab), and they have the dispersion relation

eb,ab~k!57A2t822t cosk, ~2!

FIG. 3. Spinon excitation spectra for 7- and 8-site Heisenbe
chains.~a! Single spinon excitation spectrum (S51/2) in a 7-site
chain. ~b! Two-spinon excitation spectrum (S51) in an 8-site
chain.~c! Same as~a!, but for a 19-site chain.~d! Same as~b!, but
for a 20-site chain.
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while the odd-parity band~or nonbonding band! has the form

enb~k!522t cosk. ~3!

At half-filling, the chemical potential ism50, and all three
bands are partially filled. The Fermi surface consists of thre
pairs of Fermi points (6kF,l ,l5ab,nb,b), arising from
each band~or channel!.

We consider the case of a single hole and we start with
(337) sample. The ground state is now a total singlet (S
50) and nondegenerate. The wave-vector dependence de
mines the single holon dispersion, again in a single cha
effective model. In Fig. 5~a!, the results are shown for a
parameter valueJ/t50.5. The holon energy has absolute
minima atk56p and a local minimum atk50. This latter

g

FIG. 4. Schematic plot of the noninteracting one-electron ban
structure of a (33L) ladder. The parities of the bands with respec
to reflection about the center leg are indicated by (6). The splitting
between the bands isA2t8.

FIG. 5. Hole excitation spectra for the isotropic (337)- and
(338)-site t-J ladders, and for 7- and 8-sitet-J chains. In~a! and
~b!, the circles correspond to the even-parity and the squares to
odd-parity channels, respectively.~a! Single holon (d 5 1/21, S
50) in a (337) cluster. ~b! Single hole excitation spectrum
(d 5 1/24, S51/2) in a (338) cluster.~c! Filled circles: single
holon excitation spectrum (d 5 1/21, S50) in a 7-site chain.
Dashed line: same in a 19-site chain.~d! Filled circles: single hole
excitation spectrum (d 5 1/24, S51/2) in an 8-site chain. Dashed
line: same in a 20-site chain.
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14 658 56RICE, HAAS, SIGRIST, AND ZHANG
behavior is consistent with a finite-size effect. For exam
in Fig. 5~c! we show the holon dispersion calculated in
7-site single chaint-J model where a similar behavior i
obtained. This in turn reflects the doubling of the period
the single Heisenberg chain dispersion, when the ch
length goes to infinity.

The three-leg ladder has reflection symmetry with resp
to the center leg. The eigenvalues of the corresponding
erator,R, are 61, i.e., even~odd! parity under reflection.
The ground state for the undoped ladder with (33L) legs (L
odd! has parity21. The ground-state manifold of the sam
ladders with one hole has parity11. Therefore we associat
parities11 and21 with a single holon and spinon, respe
tively. It follows that the parity of a single hole which is th
product of those parities is21, i.e., the hole goes into th
band with odd parity with respect toR. This is the middle
nonbonding band with odd parity. The interpretation is cle
the two bands with even parity in thet-J model combine to
form a spin liquid which is insulating~ISL!, and the initial
doped holes go into the odd-parity band~or channel!, and
form a single Luttinger liquid~LL !. So the noninteracting
band-structure Fermi surface is truncated from three set
Fermi points to a single Luttinger liquid in the odd chann
Note that this Fermi-surface truncation implies a form
spin pairing and a reduction of the low-energy spin degr
of freedom, but it does not imply the formation of Coop
pairs. Note also that this Fermi surface truncation is not
to a breaking of translational symmetry along the lad
since the spin-spin correlations in the ISL are purely sh
ranged.

White and Scalapino have performed DMRG calculatio
on large samples (3316) with open boundary conditions.10

They find upon doping a single hole that the spin and cha
densities are well separated, indicating the decay of a si
hole into a separated spinon and holon as expected f
Luttinger liquid. The Lanczos results for smaller cluste
show similar results. In Fig. 6, the results for the spin-cha
correlation are shown. If we add one hole to a (33L) cluster
with L even, then the ground state has total spinS51/2, and
odd parity. Therefore if we take the state withSz511/2, we
can calculate the local value ofSz at each site for configura
tions with the holon fixed at the origin. In Fig. 6, we sho
these results forL54, 6, and 8. The results show clearly th

FIG. 6. Spin-charge correlations for one hole in~33L! isotropic
t-J clusters withL54, 6, 8, andJ/t50.5. The holon is fixed at the
site indicated by the circle.
e

in

ct
p-

r:

of
.
f
s

e
r
rt

s

e
le
a

e

the spin is distributed over the whole cluster, and agr
nicely with those of White and Scalapino.10 This behavior is
fully consistent with a single Luttinger-liquid interpretation

The Lanczos method allows one to examine also the lo
lying excited states. This in turn raises the question of t
energy gap between the Luttinger liquid with odd parity an
the next channel with even parity. This latter channel shou
correspond to placing the hole in the spin liquid. From th
experience with the two-leg ladder one expects that dopi
the spin liquid will lead to a Luther-Emery liquid with a
bound spin-charge distribution for a single hole. Therefore
our expectation is correct, we should expect the lowest-lyi
excited states with even parity to show a very different spi
charge distribution. In Fig. 7, we show the correspondin
distributions for the lowest eigenstates with even and o
parities of clusters withL56. The eigenvalues are given in
Table I. The difference is clear. In the odd-parity channel th
energy dispersion is large, the minimum energy lies atk5
6p/2, corresponding to a half-filled Luttinger liquid. In the
even-parity channel, the energy dispersion is much less, a
the minimum lies at valuesk565p/6 which we interpret as
a hole entering the antibonding even-parity band. As can
seen from Fig. 7, the instantaneous spin-charge distribut
for this minimum energy even-parity state is quite differen
and shows a clear binding of the spin and charge. This b
havior is fully consistent with that of a single hole in a
Luther-Emery liquid and with the interpretation of a spi
liquid in the even-parity channels. Also shown in Fig. 7 ar
the instantaneous spin-charge distributions for the set of lo
est excited states with fixed wave vector and parity. The
show intermediate behavior which we interpret as arisin
from ~attractive! interactions between a spinon and a holon
wave vectors away from the Fermi surface.

An important quantity is the single hole energy gap b
tween the odd- and even-parity channels. The value we o
tain in the ~336! cluster is '0.15t ~or 0.30J)—a value
which is smaller than that of the spin gap in the ISL ('J).

To summarize, the results for a single hole show that t
minimum energy is in the nonbonding channel, and th
channel forms a single Luttinger liquid. The even channe

FIG. 7. Spin-charge correlations for one hole in a~336!-site
isotropic t-J cluster with J/t50.5. The holon is fixed at the site
indicated by the circle.
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TABLE I. Energies~in units of t) of the (336)-site isotropict-J ladder with antiperiodic boundary
conditions andJ/t50.5.

0 holes 1 hole 2 holes

k R Energy k R Energy k R Energy

0 11 -9.017603 p/6 11 -10.24582 0 11 -11.80680

p/3 11 -8.393170 p/2 11 -10.25131 p/3 11 -11.42219

2p/3 11 -8.409188 5p/6 11 -10.25673 2p/3 11 -11.49704

p 11 -9.243230 p 11 -11.69586

0 -1 -8.450508 p/6 -1 -9.987594 0 -1 -11.59084

p/3 -1 -8.211651 p/2 -1 -10.40757 p/3 -1 -11.57428

2p/3 -1 -8.224553 5p/6 -1 -10.18534 2p/3 -1 -11.53402

p -1 -8.403831 p -1 -11.54535
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are gapped, forming an insulating spin liquid~ISL!, and the
minimum energy for a single hole in these channels
higher in energy.

IV. TWO AND MORE HOLES

We begin with the case of two holes. White and Scalap
have performed DMRG calculations for (33L) samples
with a value ofJ/t50.5.10 They find that the holes do no
bind and in fact repel each other, so that the most lik
configuration has the two holons as widely separated as
sible, consistent with the open boundary conditions use
their study. This behavior can be immediately interpreted
that of two holes doped in a single Luttinger liquid~LL !,
while the remaining transverse channels form an ISL, c
sistent with the discussion given above. In view of the fini
energy gap between the even- and the odd-parity states,
will be a finite density range within which this LL1 ISL
phase remains stable. We then conclude that the hole de
in the White-Scalapino calculations (d 5 1/24) lies within
this density range.

The next issue is to determine the critical hole densitydc
that limits the stability of this LL1 ISL phase. At first sight
it would seem straightforward to use the single hole ene
gap between odd and even parities to determine the cri
value for the hole chemical potential,mc , and thusdc : mc
5m(dc). However, we expect the even-parity channels
evolve into a Luther-Emery liquid~LE! when doped, in anal-
ogy to the doped two-leg ladder. As a result,mc will be
determined by the energy of the two-hole bound state of
LE rather than the single-hole energy gap.

In Fig. 8, we show the instantaneous hole-hole correla
s
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function for various two-hole states of a~336! cluster with
APBC (J/t50.5!. These boundary conditions were chos
since they give a nondegenerate~i.e., closed shell! ground
state for noninteracting electrons.17 The ground state ha
even parity and a total wave vector ofk50. The instanta-
neous hole-hole correlation function@Fig. 8~a!# shows the
maximum weight at the largest rung-rung separation poss
in this small cluster, but with both holes preferentially on t
same edge. This behavior is similar to that found by Wh
and Scalapino, and leads us to interpret this as a ground
with LL 1 ISL character. Note that the hole density he

FIG. 8. Instantaneous hole-hole correlations for two holes i
~336!-site isotropict-J cluster withJ/t50.5. The first hole is fixed
at the origin (j 51), not shown in the figure.~a! ground state,k
50. ~b! excited state,k5p. The sites on the first~outer! leg are
labeled 1< j < 6, on the second~center! leg 7< j < 12, and on
the third ~outer! leg 13< j < 18.
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14 660 56RICE, HAAS, SIGRIST, AND ZHANG
(d 51/9), is larger than that considered by White and Sca
pino.

There should however be an excited state of the clus
also with even parity andS50, which has the two holes in
the LE. This state should have a total wave vector ofk5p,
i.e., the same value as the undoped system.18 In fact, such a
state appears in the cluster with an excitation energy
0.111t above the ground state. The instantaneous hole-
correlations in this excited state@Fig. 8~b!# are also quite
different from the ground state, with a maximum for th
next-nearest-neighbor separation, indicating that the
holes are bound in this state. Therefore we identify this s
as that with two holes in a LE formed from the even-par
transverse channels~i.e., bonding and antibonding bands!.
This identification is confirmed if we look at the avera
hole density on the central vs the outer legs. The res
quoted in Table II show a marked increase in the hole d
sity on the central leg in the LE state.

The binding energy of the two holes in the LE state can
estimated from the energy difference to add the two ho
togetherin the LE state (E2

LE) andseparatelyin the LE state
(E1

LE). This difference is an estimate of the binding ener
Eb52E1

LE2E2
LE522.028t12.453t50.425t. Note however

that this value may well be a considerable overestimate
cause of finite-size effects~see below!.

We now turn to the estimate of the chemical potent
m(d). In view of the small size of the clusters~i.e., mostly 3
36 sites! we need to take care about finite-size correctio
In particular, in small clusters there is generally a large
ergy gain for total singlet states, and if one calculatesm
through single hole additions one ends up subtracting
energies of states with total spinS50 andS51/2. In order
to avoid this, we use two-hole additions since then the to

TABLE II. Average hole densities on the central and the ou
legs in the (336)-site isotropict-J ladder with two holes andJ/t
50.5.

k R ^nh&out ^nh&central

0 11 1.050053 0.899894

p/3 11 0.791384 1.417232

2p/3 11 0.809848 1.380304

p 11 0.794342 1.411316

0 -1 1.170123 0.659754

p/3 -1 0.995565 1.00887

2p/3 -1 0.978532 1.042936

p -1 0.884392 1.231216
-

r,

of
le

o
te

ts
-

e
s

,

e-

l,

.
-

e

al

spin quantum number remains unchanged; i.e.,m(d)
5 1

2 @EG(Nh11)2EG(Nh21)#. The result is shown in Fig
9. The curve ofm (d ) rises initially with d , consistent with
a repulsive interaction between holes in the LL1 ISL phase.
Our previous estimate of the excitation energy of the
state withNh52 allows us to determine the chemical pote
tial rise needed for holes to enter the LE phase at 0.05t.
From Fig. 9 we estimate then for the critical hole density
value ofdc.0.13. Note that this value is calculated using
relatively small cluster size, and it is not possible to estim
the finite-size corrections. Therefore this value ofdc is an
estimate whose accuracy is hard to predict.

We conclude that the LL1 ISL phase remains stable ove
a finite hole density range, 0,d,dc , and in this range there
is no hole pairing although a large fraction of the spin d
grees of freedom are gapped in the ISL. Beyond this den
range,d.dc , there is a LE channel in contact with the L
channel. The presence of holes in a LE channel leads to
pairing and dominant superconducting or charge-den
wave correlations as in the case of the lightly doped two-
ladder. This transition with increasing hole doping is simi
to that discussed recently by Emeryet al.19 in a different
context. They examined a LL allowing pair exchange to
environment, and found a pairing transition as the envir
mental gap was lowered through a critical value.

In order to further explore the low-density LL1 ISL
phase, we calculated the single-particle spectral funct
Al(k,v)52(1/p)Im@Gl(k,v2 ih)#, in the ground state of
the ~336! cluster with two holes. Here,l labels the linear
combinations ofc operators, corresponding to the noninte
acting shell structure shown in Fig. 5:cj ,b,s5 1

2 @cj ,1,s

1A2cj ,2,s1cj ,3,s#, cj ,nb,s51/A2@cj ,1,s2cj ,3,s#, cj ,ab,s

5 1
2 @cj ,1,s2A2cj ,2,s1cj ,3,s#. The results are displayed i

Fig. 10 for ~336! ladders with APBC and PBC. The energ
region below the chemical potential corresponds to a tra
tion to three-hole states. In a small cluster, such as the~336!
under study here, the finite-size effects are large. Thus
interpret the spectrum, one should keep in mind the non
teracting shell structure. We begin with the case of APB
The two-hole LL1 ISL state has then 16 electrons whic
in a noninteracting state would occupy the statesb(6p/6,

FIG. 9. Energy per site~circles! and chemical potentia
~squares! for a ~336!-site isotropict-J ladder withJ/t50.5. The
critical hole densityd c beyond which the holes enter the LE pha
is indicated by a dashed line.
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6p/2), ab(6p/6), andnb(6p/6). Through the strong cor-
relation interaction the state with electron pairs in theb
(65p/6) state will be admixed. In this way we can interpr
the electron removal~or photoemission! part of the spectrum
with the strong peaks to inserting holes into theb(6p/2,
65p/6) andab(6p/6) even-parity channels. The state wit
an added hole atb(6p/6) is far removed from the Ferm
level, and so it is strongly broadened. Turning to thenb
channel, we see that the main weight is at (6p/6) as ex-
pected, but this is again broadened due to many-body effe
The resulting photoemission spectrum then shows signs
Fermi surface in all three channels, and withkF values in
line with our expectations.

Clearly all three bands (b, ab, andnb) are partially oc-
cupied. This is illustrated by calculating the momentum d
tribution function, nl(k)5*mdvAl(k,v). The results for
nl(k) are shown in Fig. 11. These show drops ask increases
which one can interpret as giving estimates forkF,l , but in a
small system one cannot draw conclusions about the ac
behavior fork;kF,l . The case of PBC has a different she
structure. The LL1 ISL state is now a state with total mo

FIG. 10. Spectral functions for a~336!-site isotropict-J ladder
with two holes andJ/t50.5. The poles have been given a finit
width of h50.02t, and the chemical potential is indicated by th
dashed line. APBC~PBC! were used in the left~right! panel.

FIG. 11. Momentum distribution function for a~336!-site iso-
tropic t-J ladder with two holes andJ/t50.5. Results with APBC
and PBC were combined.
t

ts.
f a

-

al

mentum62p/3, with the four electrons in thenb channel
occupying k50 ~two electrons! and k56p/3 ~two
electrons!.20 The values ofnl(k) for PBC in the LL1 ISL
state are also included in Fig. 11, and also confirm the in
pretation of a partial filling of all three bands.

However, at a true Fermi surface in a bulk system o
must be ableto add as well as to remove electrons at th
chemical potential~or Fermi energy!. The strong correlation
condition clearly influences this part of the spectrum mu
more strongly, since as we pass to the undoped Mott ins
tor electron addition is totally forbidden~or allowed only on
paying the Mott correlation energy gap!, whereas in photo-
emission electrons can always be removed. With this in m
we examine the electron addition part of the spectrum wh
corresponds to a transition to a one-hole state. From Fig
we see that the main weight at low energy is in t
nb(6p/2) channel. Clearly this corresponds to a transiti
from the two-hole LL1 ISL ground state to the one-hole L
1 ISL ground state, and confirms that we have a Fermi s
face in the odd-parity LL channel. Next we look at the eve
parity channels which form an ISL in the ground sta
Therefore we should expect that then electron addition
these channels at low energy will be forbidden. In fact, if w
look at theb channel, then this behavior is clear, and there
no Fermi surface in this channel. On the other hand, in
other even-parity channel,l5ab, we find two relatively
strong peaks atk56p/2. These values actually correspon
to a transition not to the minimum energy state of one hole
this channel but to an excited state. We interpret these pe
as sidebands, involving the creation of aS51 odd-parity
magnon withk50 or p in addition. Clearly it is too strong a
statement to say that all processes which add an electron
LL 1 ISL state with even parity are forbidden, since sid
bands in which an electron is added in the odd-parity
channel and simultaneously odd-parityS51 magnons are
created can have a total parity which is even and a total s
of S51/2. We interpret the weight in theab channels then in
terms of such processes which in turn may be enhanced
the finite-size effects associated with these small clust
The behavior of the PBC case is analogous. Here the m
weight at low energy is thenb(k5p/3) channel, corre-
sponding also to a transition to the one-hole LL1 ISL state.
However, again there is weight in the antibonding chan
which we interpret also as a higher energy sideband an
transition to a one-hole LE state. This is strongly admix
due to the enhanced stability of this state which has a fi
shell character in thenb channel as we discussed earlier.

In conclusion, the single-particle spectra in the LL1 ISL
state show a strong asymmetry between removing and
ing electrons, and it is the latter process, which unfortuna
is not easy to detect experimentally, where the effects of
Fermi-surface truncation on approaching the Mott insulat
state are most evident. The above discussion has close
allels with the interpretation put forward by Eder, Ohta, a
Shimozato21 for the photoemission spectra upon removi
and also the inverse spectra upon adding electrons, ca
lated for two-dimensional clusters of thet-J model. In par-
ticular, they point out that it is only near the~1,1! direction
that an electron may be added without creating extra s
excitations.
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V. ANALYSIS BY MEAN-FIELD THEORY

In this section we analyze the properties of the three-
ladder using the mean-field description in the same spiri
previously done for the two-leg ladder.22 For this purpose we
introduce spinon and holon operators,f andb, respectively,
by replacing the electron creation and annihilation opera
in the following way:23

ci ,n,s
† 5 f i ,n,s

† bi ,n and ci ,n,s5bi ,n
† f i ,n,s , ~4!

which lead to the local constraint(s f i ,n,s
† f i ,n,s1bi ,n

† bi ,n

51. The Hamiltonian can be reformulated in these operat
and can then be decoupled by introducing mean fields.
constraint is included by adding a term with Lagrange m
tipliers. Since this treatment is quite standard we do not
into detail here. The system is not translationally invaria
along the rung, so that the mean fields depend on the pos
of the bonds, resulting in ten independent mean fields:
hopping and three pairing mean fields, defined on near
neighbor bonds (j ,n; j 8,n8),

x j ,n; j 8,n85
1

2(s ^ f j ,n,s
† f j 8,n8,s&,

Bj ,n; j 8,n85^bj ,nbj 8,n8
† &,

D j ,n; j 8,n85^ f j ,n↓ f j 8,n8↑&, ~5!

and a uniform Lagrange multiplierm. We denote the mean
fields along the outer two legs and the middle leg with
indexes 1 and 2, respectively, while the rung mean fie
have the index 3. In order to avoid ambiguities we have
define the direction of the bond mean fields. We give h
the convention using the example ofx,
g
s

rs

s,
e

-
o
t
on
ix
st-

e
s
o
e

x15
1

2(s ^ f j ,n,s
† f j 11,n,s& n51,3,

x25
1

2(s ^ f j ,2,s
† f j 11,2,s&,

x35
1

2(s ^ f j ,2,s
† f j ,n,s& n51,3. ~6!

The same convention is applied to the mean fieldsB andD.
The parity with respect to the reflection operatorR allows us
to separate the mean-field Hamiltonian into the even-~1!
and odd- (2) parity channels,

Hmf5H1
~b!1H2

~b!1H1
~ f !1H2

~ f !1LFm1
J

2
~2x1

21x2
212D1

2

1D2
2!1J8~x3

21D3
2!12t~B1x11B2x2!14t8B3x3G .

~7!

We define the corresponding combinations for the operat
operator combinations,

f k6,s5A 1

2L(
j

~ f j ,1,s6 f j ,3,s!eikr j ,

bk65A 1

2L(
j

~bj ,16bj ,3!e
ikr j ~8!

with the momentumk along the legs of the ladder. Then w
can write the four terms of the Hamiltonian~in Nambu space
for the spinons! as
H2
~b!5~24tx1cosk2m!bk2

† bk2 ,

H1
~b!5~bk1

† ,bk,2
† !F24tx1cosk2m 22A2t8x3

22A2t8x3 24tx2cosk2m
G S bk1

bk,2
D ,

H2
~ f !5(

s
~ f k2,s

† , f 2k2,2s!F 2S 2tB11
3

2
Jx1D cosk2m 2

3

2
JD1cosk

2
3

2
JD1cosk S 2tB11

3

2
Jx1D cosk1m

G S f k2,s

f 2k2,2s
† D ,

H1
~ f !5~ f k1↑

† , f k,2,↑
† , f 2k1↓ , f 2k,2,↓!F ĵk D̂k

D̂k 2 ĵ2k
G S f k1↑

f k,2,↑

f 2k1↓
†

f 2k,2,↓
†

D , ~9!

whereĵk and D̂k are 232 matrices of the form

ĵk5F 2S 2tB11
3

2
Jx1D cosk2m 22A2t8B32

3A2

4
J8x3

22A2t8B32
3A2

4
J8x3 2S 2tB21

3

2
Jx2D cosk2m

G ,
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D̂k5F 2
3

2
JD1cosk 2

3A2

4
J8D3

2
3A2

4
J8D3 2

3

2
JD2cosk

G . ~10!
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Note that we have neglected the terms with2ninj /4 in the
exchange term, because in the mean-field calculation
tend to artificially enhance the tendency towards pairing
favor a flux phase close to half-filling.

We can now solve the single-particle problem ofHmf and
determine the mean fields self-consistently. For the gro
state we obtain the self-consistent equations by minimiz
the ground-state energy ofHmf in Eq. ~4! with respect to all
mean fields. In this description the holons are Bose c
densed so that(n51,2,3̂ bj ,n

† bj ,n&53d whered is the doping
concentration. In the following, we will use the same para
eters as used in the numerical simulations,t5t852J52J8.

A. Half-filling

For half-filling, d50, there are no holons and the Ham
tonian of the spinons is invariant under the following SU~2!
transformation:

S f j ,n,s
†

f j ,n,2s
D→ÛS f j ,n,s

†

f j ,n,2s
D 5S f 8 j ,n,s

†

f j ,n,2s8
D , ~11!

which reflects the constraint at half-filling. The absence of
up-spin corresponds to the presence of a down-spin and
versa.24 Note that due to the SU~2! invariance of the Hamil-
tonian the self-consistent solution of the mean field is
unique, butÛ corresponds to a rotation in the mean-fie
space$x1,2,3,D1,2,3% which leaves the ground state and t
excitation spectrum unchanged.

In this formulation various properties of the three-leg la
der can be interpreted at least on a qualitative level. T
Hamiltonian yields six distinct bands in Nambu space for
spinons~Fig. 12!. For the symmetric channel the spino
have a gapped spectrum where the lower two bands are c
pletely filled. On the other hand, the antisymmetric chan
has gapless excitations which give a spectrum analogou
that of a single chain. It is now easy to compare the sp
excitation spectrum of the mean field and the exact diago
ization. For the mean-field case the excitation correspond
a particle-hole excitation of the spinon gas. The gapl
spectrum is that of a single Heisenberg chain and is exa
what we obtain for the same type of mean-field treatmen
a single chain. The other bands are gapped and descr
spin-liquid state coexisting with the gapless system. T
agreement with the numerical simulation is qualitatively ve
good.

B. A single hole

We now insert a single hole into the half-filled syste
i.e., we remove one spinon and add one holon. This im
diately breaks the SU~2! symmetry, because the ground-sta
ey
d

d
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-
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to
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energy of the holon has to be minimized which yields
constraint on the hopping mean fieldsx i . Three holon bands
appear, two even-parity bands and one odd-parity band,
energies given by

ek1522t~x11x2!cosk2m

6A4t2~x12x2!2cos2k18t2x3
2,

ek2524tx1cosk2m. ~12!

Obviously the lowest holon state can be found in the low
of the two even-parity bands. Thus, the single hole grou
state can be obtained by removing a spinon at the Fermi l
of the odd-parity band and by inserting a holon at bottom
the lower even-parity holon band. This results in a change
the parity of the ground state compared with that of the h
filled case, in agreement with the numerical result~see Fig.
13!.

The single-particle spectrum is incoherent, because
excitations are composed of the annihilation of a spinon
the creation of a holon. We define the single hole Gree
function as a matrix

Gnn8~k,v!52E dte2 ivt^T„ck,n,s
† ~ t !ck,n8,s~0!…&,

~13!

FIG. 12. Spinon bands at half filling obtained by the mean-fi
theory. All states below the chemical potential~located ate k

5 0) are occupied by a spin-up and a spin-down spinon. T
gapped bands correspond to the even-parity states, while the ga
bands in the center are in the odd-parity channel.
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14 664 56RICE, HAAS, SIGRIST, AND ZHANG
where the indicesn andn8 denote the three legs of the ladd
(T is the time-ordering operator!. Decomposing thec opera-
tors into spinon and holon parts we obtain the convolutio

Gnn8~k,v!5
1

L(
q
E dv8Gnn8

f
~k1q,v1v8!Gnn8

b
~q,v8!

~14!

with

Gnn8
f

~k,v!52E dte2 ivt^T„f k,n,s
† ~ t ! f k,n8,s~0!…&,

Gnn8
b

~k,v!52E dte2 ivt^T„bk,n~ t !bk,n8
†

~0!…&. ~15!

The spectrum is obtained by diagonalizing the Gree
function with respect to the leg indices. We show in Fig.
the lowest one-hole states for given momenta and pa

FIG. 13. Holon bands for a single hole obtained by the me
field theory. The outer bands are the even-parity bands~bonding
and antibonding! and the center band has odd parity~nonbonding!.

FIG. 14. Low-energy spectrum for a single hole obtained by
mean-field theory.
s

ty

analogous to the numerical results in Fig. 5. The spectr
changing the parity with respect to the ground state of
half-filled system has gapless excitations at momentumk
50 and p. This corresponds to the LL component of th
three-leg ladder. The states which keep the parity of
ground state, however, are gapped with minima atk50 and
p. In our mean-field calculation the latter excitations
above the LL spectrum, in contrast to the numerical res
The reason is that in the mean-field treatment these ex
tions are almost exclusively carried by the spinon part, i
we remove a spinon in the lower even-parity spinon ban
while the holon remains in the lowest even-parity band.
the numerical calculation this spectrum lies clearly lower a
cannot be identified directly with spinon excitations whi
are higher in energy. Therefore, we conclude that our me
field calculation overestimates the splitting of the hol
bands. Nevertheless, we can interpret both types of exc
tions consistently with the numerical calculations. In partic
lar, we emphasize that the gapless spinons are in both t
ments in the odd-parity channel giving a consistent picture
the symmetries of the ground state and the low-lying exc
tions.

C. Finite doping

The analysis of our numerical data led us to the conc
sion that there would be a finite range of doping close
half-filling where the LL state would coexist with the ISL
Beyond a critical dopingdc the ISL would be doped and th
whole system would turn into a LE where all channels op
a spin gap. We might hope to describe this behavior wit
our mean-field picture. However, in this treatment the me
field LL state is immediately unstable against the format
of a LE state, and there is no obvious transition between
different phases.

As soon as we introduce a finite concentration of holes
the system, the holons are described by a Bose condensa
the mean-field ground state. Consequently, the sin
particle Green’s function consists of a coherent and an in
herent part due to the presence of the condensate,

Gnn8~k,v!5Cnn8Gnn8
f

~k,v!1Gnn8
inc

~k,v!, ~16!

whereCnn8 is a constant proportional to the doping conce
tration d. Thus, we find conventional Fermi-liquid quasipa
ticles in the single-particle spectrum. This has implicatio
on the pairing in the doped ladder. The exchange term in
t-J model allows us to scatter spin-singlet pairs of electro
between the even-parity and odd-parity channel. The
evant terms are derived from the exchange terms along
two outer legs,J(1(Si ,1•Si 11,11Si ,3•Si 11,3), and become in
electron operator formulation,

H125 (
k,k8,q

(
s5↑,↓

vk,k8,q@ck1q1,s
† ck81,2s

† ck2,2sck81q2,s

1ck1q2,s
† ck82,2s

† ck1,2sck81q1,s#, ~17!

with vk,k8,q52J@cosq11
2 cos(k2k8)#. The even-parity chan-

nel corresponds to the ISL phase which is not populated
holes at small doping. However, via virtual scattering of ho

-

e
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pairs into the even-parity channel an effective pairing int
action for the holes in the odd-parity channel is generated
lowest order given by

Vk,k8522i(
k9

E dvvk,k9,k1k9G11
f ~k9,v!

3G11
f ~2k9,2v!vk8,k9,k81k9

52
J2

2
i(

k9
E dv~9 cosk cosk8cos2k9

1sink sink8sin2k9!G11
f ~k9,v!G11

f ~2k9,2v!,

~18!

whereG11
f (k,v) is the spinon Green’s function in the eve

parity channel corresponding toG11
f 5 1

2 (G11
f 1G13

f 1G31
f

1G33
f ) from Eq. ~15!. In weak-coupling theory this leads t

the instability equation~ladder approximation! in the odd-
parity channel,

152kBT(
k,n

Vk,kG22~k,vn!G22~2k,2vn! ~19!

for finite temperature (G225G112G132G311G33, andvn
are the fermionic Matsubara frequencies!. Since the Green’s
function has a standard quasiparticle pole as shown abov
Eq. ~16!, we find a usual Cooper instability and a nonvanis
ing transition temperature for any finite coupling and dens
d ~note thatG is proportional tod). Thus, holes in the odd
parity channel would be paired in the ground state. This is
contrast to the expectation for a LL where a critical coupli
strength exists below which the LL remains stable.25 Thus,
this instability of the LL for any nonzero concentration
holes is a deficiency of the mean-field description. On
other hand, it clearly indicates the trend towards pairing d
to the coupling of the LL to the insulating or doped sp
liquid which occupies a part of the spectrum. The RVB c
relation of the ISL provides a pool of ‘‘preformed pairs
which triggers the instability of the LL towards the LE.26

Although there is no obvious~nonzero! critical concentra-
tion where the character of the ground state changes w
the mean-field treatment, we observe an interesting cross
between two regimes in the BCS mean field for the hole

D i j8 5^ci↑cj↓&5^bi
†bj

†&^ f i↑ f j↓&5Bi j D i j . ~20!

The behavior ofD8 andD82 as a function ofd is shown in
Fig. 15. The crossover indicates a critical concentrationdc
'0.034~for t52J) found by extrapolation of the square-ro
dependence ofD8 (}Ad2dc). For 0,d!dc , D8 is rather
small as can be understood from Eqs.~15! and ~16!. For
small doping the dominant contribution toVk,k8 originates
from k9'6p/2, the momenta for the spin gap in the eve
parity channel, and the Fermi points for the odd-parity ho
are close to6p/2 as well. Therefore the cosine term inVk,k8
contributes only little. This changes with increased dop
where both the Fermi points and the lowest even-pa
spinon energies are located at momenta gradually shif
away from6p/2. This leads to an effective enhancement
the pairing interaction as an effect of doping, which yiel
the pronounced crossover whose symmetry aspects we
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cuss below. We expect that the same tendency is at wor
the real system where, in the very small doping regime,
effective interaction is sufficiently reduced to avoid pairin
in the LL. Only with increased doping both the enhanc
attractive interaction and the density of states at the Fe
level drive the system into the paired state.

Finally we would like to characterize this crossover
considering the symmetry of the gap function in moment
space. Thus, we introduce transverse momentak' along the
rung. The bonding, antibonding, and nonbonding states
given in Eqs.~2! and ~3! can be related to momentak' by
using the following form for the dispersion:

ek,k'
522t~cosk1cosk'!, ~21!

resulting from fixed boundary conditions along the run
With Eqs. ~2! and ~3! we find the correspondence:b→k'

56p/4, nb→k'56p/2, andab→63p/4. Then we ob-
tain for the momentum-dependent gap function,

Dk,k'
8 5^ck,k'↓c2k,2k'↑&

52@2D18sin2~k'!1D28sin2~2k'!#

3cosk2D38sin~2k'!@sin~k'!1sin~3k'!#.

~22!

We can use this form now to show the phase of the g
function in the first Brillouin zone~BZ!. We observe that the
gap function is basically positive along thek direction
(uk'u!p) and negative along the transverse momentum
rection k' (uku!p). This is essentially the structure of
‘‘ dx22y2-wave’’ pairing function. This is also reflected i
real space where the gap function along the legs is pos
(D18 ,D28) and along the rungs is negative (D38) as shown in
Fig. 15. It is interesting to compare the position of the nod

FIG. 15. The superconducting mean fields for finite doping. T
solid lines correspond to the mean-field calculation. The das
lines are fits of the crossover assuming an underlyingAd2dc de-
pendence ofD8 with dc'0.034. In the lower figure a linear fit is
possible forD82.
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14 666 56RICE, HAAS, SIGRIST, AND ZHANG
in the two regimes separated bydc . For 0,d!dc we find
that the gap functions have practically the same magnit
on all bonds. With this property Eq.~22! leads to nodes
which correspond exactly to the@110# direction in the BZ
and we might consider this state as ‘‘purely’’dx22y2-wave-
like ~see Fig. 16!. On the other hand, for the regimed.dc

the gap functions have the relationD18,D2852D38 which
yields nodes clearly shifted away from the@110# direction.
We may consider this as an admixture of an~extended!
s-wave-like component to thed-wave gap, although, strictly
speaking, the underlying symmetries are not present in
ladder system to justify the distinction betweens- and
d-wave pairing.

The difference between the two regimes may therefore
interpreted in the following way. The mean-field superco
ducting state in the small doping regime is mainly carried
the even-parity channel and the odd-parity channel par
pates weakly through proximity. Contrary to the exact n
merical diagonalization, in the mean-field treatment we c
not avoid the population of the ISL by holes strictly even
very small doping concentrations. The three-leg structur
apparently wide enough to create a LE state with a gap st
ture which is approximativelyd-wave-like. In the larger dop-
ing regime, however, the LL of the odd-parity channel a
quires its own hole pairing so that an additional symme
lowering occurs reflecting the one-dimensional nature of
LL and generates ans-wave-like additional component a
seen in the shift of the nodelines~Fig. 16!. Since there is no
real symmetry distinguishings andd waves from each othe
this transition appears only as a crossover when the inte
tion among holes become strong enough in the~odd-parity!
LL. This behavior is again in qualitative agreement with t
interpretation obtained from our numerical calculation.

VI. CONCLUSIONS

The three-leg ladder is especially interesting because
certain sense it combines two quite different elements—

FIG. 16. Nodelines for the BCS gap, Eq.~22!, in the first Bril-
louin zone. The dashed line connecting the empty circles shows
nodelines ford50.01. The dotted-dashed line connecting the3
marks gives the nodelines ford50.06. We define the transvers
momentak' by b→6p/4, nb→6p/2, andab→63p/4.
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odd-parity channel which behaves like a single chain, a
two even-parity channels which behave similar to the tw
leg ladder. This result is already foreshadowed in the
doped limit where the low-energy degrees of freedom can
mapped onto a single HeisenbergS51/2 chain with longer
range interactions, and the remaining transverse spin deg
of freedom have a substantial energy gap. In this work,
show that the initially doped holes enter only this odd-par
channel and form a Luttinger liquid, so that the system h
two distinct components—the conducting Luttinger liquid
the odd-parity channel, and the insulating spin liquid in t
even-parity channel. This phase we denoted as LL1 ISL,
and the numerical evidence from the Lanczos diagonal
tion of small clusters reported here and the DMRG calcu
tions of White and Scalapino,10 that such a phase exists up
a critical hole densityd c , is we believe quite clear. In ad
dition, we introduced a mean-field approximation sche
which gave similar but not identical results. Initially, hole
enter only the odd-parity channel which is gapless in
undoped system. However in the mean-field approximat
a small gap develops in the odd-parity channel upon dop
This, as we discussed, reflects the inadequacy of the m
field description of the Luttinger liquid.

The LL 1 ISL phase has unusual properties. First of a
we note that the different parity channels of the origin
Fermi surface behave quite differently, so that only in t
odd-parity channel is there a Fermi surface. The truncatio
the Fermi surface in the partially occupied even-parity ch
nels is not a consequence of a breaking of translational s
metry since the spin order here is purely short range. Ra
it is a consequence of the proximity to the Mott insulati
phase which in this channel is ISL. This truncation of som
partially occupied bands is a clear violation of Luttinger
theorem. Usually if one approaches a Mott insulator wh
has AF order, then one may proceed through incommen
rately ordered phases which progressively truncate the Fe
surface, but do not violate Luttinger’s theorem. However t
option is not available if one approaches an RVB Mott ins
lator which is an ISL. However the example of the three-l
ladder shows us that here also a partial truncation of
Fermi surface is possible, but now it violates the Lutting
theorem.

This LL 1 ISL phase has certain features in common w
a recent proposal by Geshkenbein, Ioffe, and Larkin~GIL!
for the underdoped spin-gap normal phase of the cupra
They argue that the spin pairing implied by the spin gap
not cause immediately hole pairing. Instead they broke
the Fermi surface into two distinct parts—a fermionic p
and a paired bosonic part. The latter they argued should h
infinite mass to prevent conductivity from these bosons, a
they associated this with the van Hove singularity. In o
specific example, the spin pairs are also insulating, but
origin lies in the proximity to the Mott insulating phase. I
both models, the coexistence of fermionic and bosonic
grees of freedom leads to processes whereby a fermi
Cooper pair can scatter in and out of the bosonic chann
which however lie at higher energy. In a LL, there is n
Cooper instability for an infinitesimal attraction, and a fini
attraction is required for pairing. For this reason we believ
LL 1 ISL phase is possible in the three-leg ladder. By co
trast, as we discussed above, the mean-field descriptio
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the odd-parity channel has a true Cooper instability due
the holons being Bose condensed, and as a result hole pa
occurs at arbitrarily small hole densities. In the case of t
dimensions, where the Fermi-surface channels or patc
near to the saddle points, (6p,0) and (0,6p), first become
paired and insulating, it is clearly crucial whether the r
maining fermionic part of the Fermi surface has a Coop
instability ~as assumed by GIL! or not. A Cooper pairing
instability leads to hole pairing in the ground state as in o
mean-field description.

The experimental examination of the Fermi-surface e
lution has been made by angle-resolved-photoemission s
troscopy. However, as we have seen, the inverse pro
would be more illuminating, but it is much more difficult t
realize experimentally. In the electron addition process,
we have shown, the Fermi-surface truncation is very evide
although sidebands do allow an electron addition on
even-parity channel which is in the ISL state. Nonethel
the total weight at low energies will vanish as the hole do
ing vanishes, and will be concentrated mainly in the ferm
onic part of the Fermi surface.

In the three-leg ladder at dopings beyondd c , the ISL is
converted into a doped Luther-Emery liquid, and a LL1 LE
to
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o-
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as
nt,
he
ss
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phase occurs. This phase will show hole pairing and pow
law correlations in the charge-density wave and singlet
perconductivity channels. As the mean-field approximat
shows, the pairing is in an essentiallyd-wave channel. In the
mean field theory, the quantum phase transition atdc appears
as a crossover where the hole pairing increases rapidly as
hole density increases.

Since this paper was completed, a new DMRG study
the three-leg ladders by White and Scalapino27 has appeared.
This method allows them to treat much larger systems, a
their results are nicely consistent with ours. Note that th
value ofdc*0.06,which should be more reliable, is smalle
than ours.
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