
s

PHYSICAL REVIEW B 1 DECEMBER 1997-IIVOLUME 56, NUMBER 22
Collective modes in supersolid4He
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~Received 30 May 1997!

We derive the hydrodynamic equations of motion of solid and supersolid4He, that describe the collective
modes of these phases. In particular, the usual hydrodynamics is modified in such a way that it leads to the
presence of a propagating instead of a diffusive defect mode. The former is appropriate for a quantum crystal
and observed in recent experiments. Furthermore, we find that in supersolid helium there are two additional
modes associated with the superfluid degrees of freedom. The observation of these additional modes is a clear
experimental signature of the supersolid phase.@S0163-1829~97!04341-5#
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I. INTRODUCTION

The low-temperature behavior of the strongly interact
quantum liquid4He has been a subject of experimental a
theoretical research for decades. In 1908 helium was
liquified by Kamerlingh Onnes and in 1911 he discovere
sharp maximum in the density at what is now commo
called thel point.1 After that, a number of macroscopi
quantum phenomena such as superfluid flow, second so
the fountain effect, and quantized vortices were observ
Phenomenological theories were developed and justi
from a microscopic point of view.2–4 Also, the famous
Kosterlitz-Thouless transition was first observed in thin
perfluid helium films.5

In the solid phase of4He, which is reached only at low
temperature and high pressure~see Fig. 1!, one also expects
to observe macroscopic quantum phenomena because o
large zero point vibration of the atoms about their equil
rium position.6 Because of this, solid helium has been term
a quantum solid.

In such a solid, the interstitials and vacancies are eff
tively delocalized due to their ability to tunnel through th
potential barriers. At low temperatures these point defe
then form a weakly interacting Bose gas. Furthermore,
large zero point motion results in an unusually rapid e
change rate of nearest-neighbor atoms, which may lea
large ring exchanges between the helium atoms.3 Bose-
Einsein condensation of the defects or exchange process
the lattice atoms may then open two routes to a new phas
matter at low temperature in which long-range crystall
and superfluid order coexist. This is called the supers
phase.7

Theoretically the existence of such a phase has since
been anticipated.8–10 However, it was only recently claime
to have been observed experimentally that three-dimensi
solid 4He is a spatially ordered superfluid, or supersolid,
sufficiently low temperatures and densities. The experime
leading to this claim were performed by Lengua and Go
kind, who measured the attenuation and velocity of soun
solid 4He for relatively high purities and low atomic dens
ties of the quantum crystal.11 The temperature dependence
the attenuation revealed a coupling to thermally activa
excitations, consistent with the existence of a propaga
mode in the gas of point defects that is expected to
560163-1829/97/56~22!/14631~14!/$10.00
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present in a quantum crystal.8,12 Furthermore, assuming th
speed of sound of the defect mode to depend on the den
of defects in the same way as in a dilute Bose gas, they fo
a relation between the temperature dependence of the p
velocity and that of the defect density. To consistently int
pret their data they then had to assume a macroscopic p
lation of the zero momentum state of the point defects, i.e
Bose-Einstein condensation of the point defects. Thus
phase diagram of4He in three dimensions would be qualita
tively given by Fig. 1. Following a certain trajectory in th
phase diagram,4He may undergo a transition from the no
mal phase to the superfluid phase at some temperaturTl

and subsequently from the superfluid to the supersolid ph
at a temperatureTc . As mentioned above, the possibility o
superfluid flow in a solid has since long been anticipa
theoretically. Andreev and Lifschitz were the first to attem
to derive the hydrodynamics of a supersolid by including
effect of Bose-Einstein condensation of the defects on
hydrodynamics of an ideal crystal.8 In addition to this pio-
neering work, Liu has more recently presented a thorou
discussion of the Andreev and Lifschitz hydrodynamics.13

However, it was pointed out by Martinet al. that the con-
ventional treatment of the hydrodynamic equations for
classical crystal, which does not include defects, is necce
ily incomplete since it yields the wrong number of modes14

They identified the missing mode as a mode in the de
density. This implies that the hydrodynamics of Andreev a
Lifshits is also incomplete, because it does not include

FIG. 1. Tentative sketch of the phase diagram of4He.
14 631 © 1997 The American Physical Society
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noncondensed defects and as a result does not lead t
required defect mode in the normal state of the crystal
addition, Martinet al. assume diffusive dynamics for the
defect mode. This seems to be appropriate for a classica
not for a quantum crystal, where the defect mode is expe
to be a propagating mode, as is confirmed by the experim
of Lengua and Goodkind.

Recently Stoofet al., in respons to experiments with sub
monolayer superfluid helium film,15 derived the hydrody-
namic equations for an isotropic supersolid in two dime
sions which did include propagating behavior of the cruc
defect mode.12 Moreover, the longitudinal part of the soli
hydrodynamics derived by these authors turns out to be id
tical to the system of two coupled wave equations that L
gua and Goodkind used to accurately model their data. H
ever, to apply these promising results to the experime
with solid helium, we have to extend them in two ways. Fi
of all we have to consider a three-dimensional system,
second of all we have to take into account the anisotropy
solid 4He, which is a hexagonally closed packed~hcp! crys-
tal. Thus we hope to justify from a microscopic point of vie
the phenomenological equations that succesfully explai
the propagation of sound in solid4He and led to the first
claim of a supersolid phase in this system.

The paper is organized as follows. In Sec. II the hydro
namic equations describing a normal solid with point defe
will be derived. This is achieved by deriving an action d
scribing a solid with dislocations, using methods develop
by Kleinert.16 From this action we obtain the interaction b
tween phonons and a point defect, by seeing the point de
as a limiting case of a dislocation. Also, a more microsco
point of view is presented and dissipation is included. In S
III we then add a superfluid degree of freedom to our hyd
dynamic equations in the usual way and in Sec. IV we d
cuss the experiment by Lengua and Goodkind in the ligh
our results. It should be noted that in order to understand
experiment it is not neccessary to include temperature flu
ations into our considerations and we will neglect them
the rest of this article. We conclude with a discussion a
outlook in Sec. V.

II. HYDRODYNAMICS OF SOLIDS
WITH POINT DEFECTS

In this section we derive the hydrodynamics of a so
with point defects. This will be done by first considering t
action describing phonons and their interaction with dislo
tion loops. We then obtain the interaction of phonons w
vacancies and interstitials by shrinking a dislocation loop
zero radius and using a dipolelike approximation. Next,
add the dynamics of the point defects. The structure of
resulting theory is much like that of an electron interacti
with electromagnetic fields. An intuitive microscopic pictu
of point defects is also presented which leads to an alte
tive derivation of the action descibing a solid with poi
defects. Finally, the hydrodynamic equations are derived

A. Gauge theory of phonons and dislocations

We start with deriving a gauge theory that describes
solid phase at long wavelengths. To describe point def
we only have to include dislocations into our theory. The
the
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fore we can ignore higher gradient elasticity, which would
needed if we also wanted to describe disclinations. This s
tion is closely related to previous work done by Kleinert16,17

but differs from it in the following aspects. First, we do n
include higher gradient elasticity. Second, we consider
more general case of anisotropic solids and third, we exp
itly remove the unphysical gauge degrees of freedom in
resulting theory of ‘‘quantum defect dynamics.’’

The Euclidian action for a solid with dislocations of arb
trary crystaline symmetry is given by16,17

S@ui #5E
0

\b

dtE dxH r

2
~]tui2b i !

2

1
1

2 S ui j 2
b i j 1b j i

2 D ci jkl S ukl2
bkl1b lk

2 D J , ~1!

where ui j 5
1
2 (] iuj1] jui) is the strain tensor,ci jkl is the

elasticity tensor whose structure is determined by the spe
symmetry of the crystal under consideration, andr is the
average mass density. This is the most general quadratic
tion compatibel with the symmetries of the crystal and t
requirement that the Hamiltonian of the system transfor
under a Gallilean transformation (u,t)→(u1vt,t) as
H→H1p•v1Mv2, with p the total momentum of the crys
tal and M it’s total mass. The latter determines the form
the kinetic energy.

The dislocations mentioned above are topological defe
which exist because the displacement field is multivalued
much the same way, vortices in a superfluid are a con
quence of the multivaluedness of the phase field.16 The mul-
tivaluedness of a displacement field describing a disloca
becomes apparent when writing down what can be see
the definition of a dislocation, namely,

R
C
dui5bi . ~2!

Here,C is a contour enclosing a dislocation lineL andb is
the so-called Burgers vector measuring the strength of
dislocation. This equation can be written in a different
form as

« i jk] j]kul5bid l~x,L![a i l , ~3!

wherea i l is called the dislocation density. It is analogous
Ampére’s law « i jk] jBk5Ji and states that the displaceme
field is nonintegrable along the lineL because here the dis
location gives ad function contribution. If the lineL is pa-
rametrized byx(s), thed function alongL is defined by

d i~x,L!5E ds
]xi~s!

]s
d@x2x~s!#. ~4!

If we would use in our calculations these multivalued d
placement fields, the action would be given by Eq.~1! with
b i5b i j 50. However, to perform a path integral over theui
it is much more convenient to use a singlevalued displa
ment field which takes values on the real axis. The unph
cal singular contributions to the derivatives of a sing
valued displacement field which describes dislocations i
solid are compensated by substracting the quantitiesb i j and
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56 14 633COLLECTIVE MODES IN SUPERSOLID4He
b i . The relation between these quantities and the disloca
line L is conveniently visualized by the Volterra constru
tion, which we now briefly explain. Given a solid withou
imperfections, a dislocation can be created by removing fr
this solid a volumeV and drawing the boundary of the vo
ume together, thus forming a surfaceS with boundaryL, and
restoring the crystaline symmetry everywhere except at
boundaryL.

The single-valued displacement field which describe
dislocation created by this construction is discontinuo
across the surfaceS with a jump in the displacement fiel
that is equal to the Burgers vectorb. This discontinuity gives
a d function contribution to the gradient of the displaceme
field which is called the plastic distortion and is given by

b i j 5bjd i~x,S!5bjE
S
dSid@x2x~u,v !#. ~5!

The integral measure is defined bydSi5« i jk]uxj]vxkdudv
if the surfaceS is parametrized byx(u,v). Furthermore, if
the dislocation lineL is moving with a speedv, the time
derivative of the displacement field gives ad function con-
tribution of b i5v jb j i . If we are not on a dislocation line
the physical values of the spatial and time derivatives of
displacement field should be continuous and are there
given by

~] iuj !
phys5] iuj2b i j ,

~]tuj !
phys5]tuj2b j . ~6!

The value of these physical quantities equals what one wo
get by using the multivalued version of the displacem
field to calculate the spatial and time derivatives.18 We thus
see that the action introduced at the beginning of this sec
is indeed just the classical action for a perfect crys
straightforwardly generalized to include dislocations.19,20

To be able to actually calculate the interaction betwe
the phonons and the defects we write the action in a can
cal form. We do this by introducing two new fields by mea
of a Hubbard-Stratonovich transformation.21 Physically these
field are the stress tensors i j and momentum densitypi

which are canonical toui j
phys[(] iuj )

phys2(] jui)
phys and

(]tui)
phys, respectively. It amounts to adding to the Lagran

ian density in Eq.~1! the quadratic terms

1

2r
@pi2 ir~]tui !

phys#2

and

1

2
~s i j 1 iugh

physcghi j!ci jkl
21 ~skl1 icklmnumn

phys!.

Furthermore, to obtain the path integral representation of
partition functionZ we have to add functional integrals ov
the momentum densitypi and the stress tensors i j . Note that
the action containes only the symmetric part of the str
tensor, and we should therefore only perform the path in
gral over the symmetric part ofs i j . Note also thatci jkl

21 is
symmetric under the exchangesi↔ j and k↔ l , and is de-
fined by
n

m
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ci jkl cklmn
21 [

1

2
~d imd jn1d ind jm!. ~7!

The action we find after these transformations reads

S@pi ,s i j ,ui #5E
0

\b

dtE dxH pi
2

2r
1s i j ci jkl

21 skl

2 ipi~]tui !
phys1 is i j ui j

physJ . ~8!

We now integrate out the displacement field, which lea
to the constraints

]tpj5] is i j . ~9!

This is Newton’s law. In order to automatically satisfy the
constraints we rewrite the fieldspi ands i j in terms of new
fields Ai j andFi j by

s i j 5]tFi j 1« ikl]kAl j ,

pj5] iFi j . ~10!

Substituting these in the interaction, i.e., the last two term
the right-hand side of Eq.~8!, and performing some partia
integrations, we find that this part of the action can be w
ten in terms of the dislocation densitya i j and dislocation
current densityJml j[vma l j , as

Sint@Ai j ,Fi j #5E
0

\b

dtE dx$2 iAi j a i j 2 iF i j « imlJml j%.

~11!

In the process of rewriting the action we have ended
with to many degrees of freedom. These unphysical deg
of freedom manifest themselves in the fact that the n
fields Ai j and Fi j are gauge fields. Indeed, the expressio
for s i j andpi are invariant under the gauge transformatio

Fi j→Fi j 1« ikl]kL l j ,

Al j→Al j 1~]tL l j 2] lLt j !. ~12!

At first sight one might therefore think that the gauge fre
dom removes 12 degrees of freedom. However, we note
these gauge transformations are themselves invariant un
gauge transformation, which reduces the number of ga
degrees of freedom. Indeed, the gauge transformations
invariant under

L l j→L l j 1] ll j ,

Lt j→Lt j1]tl j . ~13!

As a result the gauge freedom in Eq.~12! only removes
122359 degrees of freedom in the expressions forpi and
s i j . Therefore we are left with 182959 degrees of free-
dom in the fieldsAi j and Fi j , which is exactly what we
expect because there are 3 degrees of freedom present ipi ,
9 in s i j , and the constraints in Eq.~9! remove 3 of these.
Note that we should also demands i j to be symmetric, which
will remove another 3 degrees of freedom. This means
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14 634 56M. J. BIJLSMA AND H. T. C. STOOF
we end up with 6 physical degrees of freedom, correspo
ing to the usual 6 phonon modes.

In order to extract physically relevant information we w
have to remove the gauge-degrees of freedom, i.e., fix
gauge. Before we embark on this problem, however, we
prove the following equalities which we will need later o
when deriving the hydrodynamic equations of motion fo
solid with point defects. They are

^ui j
phys&5 ic i jkl

21 ^skl&,

^~]tui !
phys&52

i ^pi&
r

. ~14!

The proof is given by adding to the action in Eq.~1! source
terms proportional to the currentsKi j andKi :

E
0

\b

dtE dx$Ki j ui j
phys1Ki~]tui !

phys%.

Expectation values off @ui j
phys,(]tui)

phys# are now easily cal-
culated as

^ f @ui j
phys,~]tui !

phys#&5 f S ]

]Ki j
,

]

]Ki
D ln Z~Ki j ,Ki !uKi j 5Ki50 ,

~15!

whereZ(Ki j ,Ki) denotes the partition function with nonva
nishing source terms. Again performing a Hubba
Stratonovich transformation we get

S@ui #5E
0

\b

dtE dxH pi
2

2r
1

1

2
s i j ci jkl

21 skl2 ipi

3S ~]tui !
phys1

Ki

r D1 is i j ~ui j
phys1ci jkl

21 Kkl!

2
Ki

2

2r
2Ki j ci jkl

21 KklJ . ~16!

Equation~14! now follows by differentiation.
After this digression, we return to the elimination of th

nonphysical degrees of freedom present in the ac
S5S01Sint and reexamine Eq.~12!. As mentioned, this
gauge transformation is invariant under the transformati
in Eq. ~13!. We use the latter invariance to choose a gaug
which Lt j50, which is always possible by lettingl j satisfy

l j52E
0

t

Lt j~t8!dt8. ~17!

In this gauge our original gauge transformation reduces

Fi j→Fi j 1« ikl]kL l j ,

Al j→Al j 2]tL l j . ~18!

In order fors i j to be symmetric, we use part of this residu
gauge freedom to chooseFi j symmetric. In addition, we in-
troduce the fieldsx i j by means of

Al j 5« jmn]mx ln . ~19!
d-

e
ll

-

n

s
in

l

If we now takex ln to be symmetric,s i j will also be sym-
metric. In terms of these fields the free actionS0 becomes

S0@Fi j ,x i j #5E
0

\b

dtE dxH ~] iFi j !
2

2r
1

1

2
~]tFi j

1« ikl« jmn]k]mx ln!ci jkl
21

3~]tFkl1«kpq« j rs]p] rxqs!J . ~20!

At this point Fi j andx i j both contain 6 degrees of freedom
We are thus left with 122656 nonphysical degrees of free
dom which somehow correspond to 6 degrees of freedom
L i j .

To eliminate the remaining unphysical degrees of fre
dom, we expand the Fourier transform of the fieldsFi j and
x i j in the helicity basis$ei j

(s,h)%.16 If we take a direct product
of momentum spaceP with itself, i.e., P^P, the helicity
basis is defined as the irreducible representations of the
tation group in this space. From group theory we know t
they form a complete set.22 Hence we can develop a give
tensor field in this basis leading to

x i j ~k!5(
s,h

ei j
~s,h!~ k̂!x~s,h!~k!,

Fi j ~k!5(
s,h

ei j
~s,h!~ k̂!F ~s,h!~k!. ~21!

Because of the symmetry ofx i j and Fi j the six nonzero
components are (s,h)5$(0,0),(2,0),(2,61),(2,62)%. To
identify the surviving physical helicity components, we no
that the expression« ikl« jmn]k]mx ln is symmetric, traceless
and invariant under the transformation

x ln→x ln1] ljn1]nj l . ~22!

If we choose as a basis in Fourier space$k̂n ,en
(1,1)( k̂),

en
(1,21)( k̂)% and developjn in terms of this basis, this trans

formation reads up to a factork

k̂ljn1 k̂nj l52k̂l k̂nj~0!1~ k̂len
~1,1!1 k̂nel

~1,1!!j~1!1~ k̂len
~1,21!

1 k̂nel
~1,21!!j~21!

5
2

)
~&eln

~2,0!1eln
~0,0!!j~0!

1&eln
~2,1!j~1!1&eln

~2,21!j~21!. ~23!

From this expression we see that if we choose a new bas
which to developx ln given by

$eln
~2,2! ,eln

~2,22! ,eln
~2,1! ,eln

~2,21! ,eln
L ,eln

L8%, ~24!

where

eln
L 5

1

)
~2eln

~2,0!1&eln
~0,0!!5

1

&
~d ln2 k̂l k̂n!,
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eln
L85

1

)
~&eln

~2,0!1eln
~0,0!!5 k̂l k̂n , ~25!

the components ofx ln corresponding to$(2,1),(2,21),L8%
are unphysical and disappear from the action because
correspond to a gauge transformation. The coordinate tr
formation from the old to the new basis is unitary and hen
the new basis is also orthonormal and complete in the sp
of symmetric second rank tensors. In addition the eleme
$(2,2),(2,22),L% satisfy

kleln
~L !5kleln

~2,2!5kleln
~2,22!50. ~26!

This means there are only 3 dynamical degrees of freed
left in ] iFi j corresponding to the helicity componen
$(2,1),(2,21),L8%.

We now Fourier transform the action and expand
fields Fi j andx i j in terms of the basis in Eq.~24!. We get

S0@Fi j ,x i j #5E
0

\b

dtE dk

~2p!3 H 1

2r
u ik i~ei j

~2,1!F ~2,1!

1ei j
~2,21!F ~2,21!1ei j

L8FL8!u2

1
1

2 F(
s,h

ei j
~s,h!]tF

~s,h!1k2~ei j
~2,2!x~2,2!

1ei j
~2,22!x~2,22!2ei j

L xL!G* ci jkl
21 @ i j↔kl#J ,

~27!

where @ i j↔kl# denotes the part between brackets with
indicated interchange of indices. Up to now we have
moved all but three unphysical degrees of freedom. By
troducingx i j and choosing a gauge in whichFi j andx i j are
both symmetric, the stress tensor was made symme
Hence we were left with 12 degrees of freedom. Then
identified 3 unphysical gauge degrees of freedom inx i j cor-
responding to the helicity components$(2,1),(2,21),L8%,
which reduced the remaining number degrees of freedom
9. Hence we expect a residual gauge freedom to be prese
the above action corresponding to three unphysical deg
of freedom. As is apparent in the expression forS0 , this is
indeed the case and the remaining gauge freedom co
sponds to

F ~s,h!→F ~s,h!1k2L~s,h!,

x~s,h!→x~s,h!2]tL
~s,h!, ~28!

for (s,h)5$(2,2),(2,22),L%. We will see below that this
gauge freedom is also present inSint . To remove this re-
maining freedom we introduce three new, invariant, field

x8~2,2!5x~2,2!1
]tF

~2,2!

k2 ,

x8~2,22!5x~2,22!1
]tF

~2,22!

k2 ,
ey
s-
e
ce
ts

m

e

e
-
-

ic.
e

to
t in
es

re-

x8L5xL2
]tF

L

k2 . ~29!

If we furthermore realize that

kiei j
~2,1!5

k

&
ej

~1,1! ,

kiei j
~2,21!5

k

&
ej

~1,21! ,

kiei j
L85kk̂j , ~30!

we obtain the final expression forS0 which contains pre-
cisely 6 dynamical degrees of freedom.

Before explicitly writing downS0 we introduce a new
compact notation which also simplifies the algebraic mani
lations involved in the remainder of this article. We defi
the quantities

FW 5S F ~2,1!

F ~2,21!

FL8
D ; xW 85S x8~2,2!

x8~2,22!

2x8L
D ;

eW i j
~1!5S ei j

~2,1!

ei j
~2,21!

ei j
L8

D ; eW i j
~2!5S ei j

~2,2!

ei j
~2,22!

ei j
L

D ~31!

and

Amn5~eW i j
~1!!mci jkl

21 ~eW kl
~1!!n

Bmn5~eW i j
~1!!mci jkl

21 ~eW kl
~2!!n

Cmn5~eW i j
~2!!mci jkl

21 ~eW kl
~2!!n

; A85S 1 0 0

0 1 0

0 0 2
D . ~32!

Indices refering to the abstract vector space introdu
above, are denoted by Greek symbols to distinguish th
from their real space counterparts. This allows us to writeS0
as

S0@FW ,xW 8#5
1

2 E
0

\b

dtE dk

~2p!3

3S FW

xW 8
D *

•S A8k2

2r
2A]t

2 2k2B†]t

k2B]t k4C
D •S FW

xW 8
D .

~33!

Note the minus signs, which arise from partial integration
Next, we also have to write the interaction in terms of t

physical fieldsFW andxW 8. The interaction in terms ofFi j and
x i j is given by

Sint@x i j ,Fi j #5E dtE dx$2 i« jmn]mx ina i j 2 iF i j « imlJml j%.

~34!

It is not immediately obvious from this equation that th
interaction can be rewritten in terms ofFW andxW 8. Therefore
we will show this explicitly. After partially integrating the
first part of Eq. ~34!, the field x i j interacts with
« jmn]ma i j 5« jmn]m« ikl]kb l j which is symmetric and trace
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less and therefore has only the helicity compone
$(2,2),(2,22),L8%. Next we rewrite the second term ter
2 iF i j « imlJml j as

2 iF i j « imlJml j52 iF i j F S d i l 2
] i] l

]2 D S dk j2
]k] j

]2 D « lmnJmnk

1
] i] l

]2 « lmnJmn j1S d i l 2
] i] l

]2 D
3

]k] j

]2 « lmnJmnkG . ~35!

The second and third term on the right-hand side of
above equation will give an interaction withF (2,1), F (2,21),
and F (L8) as is obvious from the fact that the contractio
] iFi j and ] jFi j annihilate the component
$(2,2),(2,22),L%. The first term together with the interac
tion term involvingx i j will reduce to an interaction with the
new fields introduced in Eq.~29!, i.e.,xW 8. To see this we use

]2d i j 2] i] j5« iml]m« lk j]k , ~36!

and substite this in the first term on the right-hand side of
~35!. We obtain

2 i E dx
Fi j

]4 ~« ipq]p«qrl] r !~«kst]s« tv j]v!« lmnJmnk

5 i E dxS «qpi]p« tv j]v

Fi j

]4 D «kst]s«qrl] r« lmnJmnk

52 i E dxS «qpi]p« tv j]v

Fi j

]4 D «kst]s]taqk

5 i E dxS «qpi]p« tv j]v

]tFi j

]4 D «kst]saqk , ~37!

where we have used

«qrl] r« lmnJmkl5] r~dqmd rn2dqnd rm!vmank5]taqk .
~38!

We see that there is indeed only an interaction with the~2,2!,
(2,22), andL components ofFi j . Together with the expan
sion for 2 i« jmn]mx ina i j these precisely form the field
x8(s,h). Inserting all this intoSint , the interaction between th
dislocations and the physical fields describing the pho
modes finally becomes

Sint@FW ,xW 8#5 i E dtE dk

~2p!3 $~eln
~2,2!x8~2,2!1eln

~2,22!x8~2,22!

1eln
L x8L!« jmn@ ikma l j #* 2~ei j

~2,1!F ~2,1!

1ei j
~2,21!F ~2,21!2ei j

~L8!F ~L8!!k̂i k̂l« lmnJmn j*

1~ei j
~2,1!F ~2,1!1ei j

~2,21!F ~2,21!

2ei j
~L8!F ~L8!!« ipqk̂pk̂kk̂j k̂mJmqk* %. ~39!

From this interaction between phonons and a disloca
loop we now want to derive the interaction between phon
and a point defect. To do so, we consider a point defect to
s

e

.

n

n
s
e

a dislocation loop that shrinks to zero radius. The Volte
construction shows that one creates a dislocation by rem
ing a volumeV from the crystal. When shrinking the dislo
cation loop, this volume finally ends up being the volume
a single atom. In this way one can thus remove or add
volume of a single atom, which results in creating a vacan
or an interstitial. Alternatively, one can take the long wav
length limit, in which the dislocation will effectively look
similar to a point defect. However, naively applying th
above procedure yields zero interaction between the p
defects and the phonons because a point defect has no
gers vector. Indeed, assuming that the wavelength of
fluctuations of the phonon fields are much larger than
radius of a dislocation allows for the action to be coa
grained. The physical fieldsFW andxW then interact with some-
thing proportional to

E
V
dxa i j .

However, the above quantity is zero and therefore there is
interaction with the phonon fields in a first approximatio
We thus conclude that in order to find an interaction we ne
to have a gradient of the fieldsFW andxW over the radius of a
dislocation loop. This is analogous to the well-known mul
pole expansion in electrodynamics, where a dipole has
netto charge but interacts with the gradient of the elec
magnetic potentials. Assuming the physical fields to
slowly varying over the region of nonzero dislocation de
sity we can perform a gradient expansion that leads to
interaction of the form

Sint5 i E
0

\b

dtE dk

~2p!2 $k2aW •xW 8ND* 1kFW •M•JW* %,

~40!

containing an extra factor ofk. The defect density is denote
by ND , JW5(J(0),J(1),J(21)) are the helicity components o
the defect current densityJ, andMmn is a matrix. If we have
n defects located at$x(n)%, the defect densityND and defect
current densityJi are given by

ND~x!5(
n

q~n!d~x2x~n!!,

Ji~x!5(
n

i ]tx
~n!q~n!d~x2x~n!!. ~41!

In general there can be both vacancies and interstit
present, and the chargeq distinguishes between vacancie
(q521) and interstitials (q51). Thus, the netto defec
densityND is in fact the difference between the interstiti
density and the vacancy densityND

int2ND
def, which is con-

served because defects and interstitials can locally only
created in pairs. The defect density and defect current den
therefore satisfy a continuity equation

]tND5 i ] iJi . ~42!

Up to this point, no specific crystaline symmetry has be
assumed. However, the explicit form of the interaction
determined by the symmetry of the crystal under consid
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56 14 637COLLECTIVE MODES IN SUPERSOLID4He
ation. This symmetry constrains the coefficientsaW and the
matrix M . In principle it should be possible to expicitly tak
the limit of a dislocation loop shrinking to zero in the inte
action given by Eq.~39!. The symmetry of the crystal is the
contained ina i j and Ji jk , because the Burgers vector ca
only be a lattice vector. There are however subtilities
volved in doing this, and the vectoraW and matrixM will
therefore be determined from symmetry considerations.
cause we are especially interested in the behavior of s
4He, we consider from this point on the special case o
hexagonally close packed~hcp! crystal structure. The asso
ciated symmetry group isC6h , which contains rotations
about thec axis and reflections in theab plane. The elastic-
ity tensorci jkl for this symmetry containes five constants, t
analogs of the Lame´ constantsl andm in the isotropic case

In what follows we need the field equations forFW andxW 8
which follow from the complete actionS01Sint and are
given by

]t
2FW 5

k2

2r
P•S A8•FW 1 i

2r

k
M•JW D2 iQ†

•aW ]tND ,

]txW 85
1

2r
Q•S A8•FW 1 i

2r

k
M•JW D2

i

k2 R•aW ]tND , ~43!

where

S P Q†

Q R D •S A B†

B C D 5S 1 0

0 1D . ~44!

To determine the form of the interaction between t
phonons and the defects we calculate the stress tensos i j
resulting from a single point defect. We then note that fro
the symmetry of the crystal and the fact that a single po
defect has no orientation it follows thats i j has to be invari-
ant under the symmetry operations ofC6h , i.e., rotations
around thec axis and reflections in theab plane. Denoting a
particular symmetry operation byS, we get

SikSjl skl~S21x!5s i j ~x!, ~45!

which in Fourier language reads

SikSjl skl~S21k!5s i j ~k!. ~46!

In the case of a static defect we can solve fors i j , using the
field equations forxW 8. These can be derived from Eq.~43!
and read

xW 852
i

k2 C21
•aW ND . ~47!

With the notation introduced beforexm and an are vectors,
andCmn is a matrix given by Eq.~32!. Inserting this into the
equation fors i j with FW 50, i.e., considering a static defec
we get

s i j 5k2eW i j
~2!

•xW 852 ieW i j
~2!

•C21
•aW ND . ~48!

This means that Eq.~46! translates into

i $@SikSjl eW kl
~2!~S21k̂!#•@C21~S21k̂!#

2@eW kl
~2!~ k̂!#•@C21~ k̂!#%•aW 50. ~49!
-

e-
lid
a

t

Next we are going to translate this equation into a rest
tion on the coefficientsaW in the interaction. In order to do so
we must choose a particular form for the thus far unspeci
helicity basis. On each point of the unit sphere we cho
three orthonormal vectors. One in the radial direction, i.e.k̂,
the other two in such a way that the vector fields we get
this way are invariant under rotations about thec axis. This
cannot be done for the entire sphere and the po
(ka ,kb ,kc)5$(0,0,1),(0,0,21)% are excluded. Therefore th
only points where Eq.~49! is not, by construction, automati
cally satisfied for rotations about thec axis, are indeed thes
two points. We only treat (ka ,kb ,kc)5(0,0,1), because the
other point does not lead to any additional restrictions. In t
point we choose

e~1!5~1,0,0!,

e~2!5~0,1,0!,

e~3!5~0,0,1!5 k̂. ~50!

This means that here our helicity basis becomes

ei j
L 5

1

& S 1 0 0

0 1 0

0 0 0
D

i j

,

ei j
~2,2!5

1

2 S 1 i 0

i 21 0

0 0 0
D

i j

,

ei j
~2,22!5

1

2 S 1 2 i 0

2 i 21 0

0 0 0
D

i j

. ~51!

Each of these three matrices transforms according to an
ducible representation ofC6h . Thus, according to Schur’s
lemma,22 they do not mix under the operatorci jkl , which
means thatCmn50 if mÞn. We notice that these matrice
transform under rotations over an anglea about thec axis
@we are only considering the point~0,0,1!# as

ei j
L ~ k̂!→ei j

L ~ k̂!,

ei j
~2,2!~ k̂!→ei2aei j

~2,2!~ k̂!,

ei j
~2,22!~ k̂!→e2 i2aei j

~2,22!~ k̂!. ~52!

It now follows that

Cmn
21~S21k̂!5Cmn

21~ k̂!. ~53!

Thus for infinitesimal rotations Eq.~49! reduces to

S i2aei j
~2,2!

2 i2aei j
~2,22!

0
D •S C11

21 0 0

0 C22
21 0

0 0 C33
21
D •S a~2,2!

a~2,22!

aL
D 50.

~54!
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This equation has to be valid for all values ofi and j . There-
fore we get

a~2,2!C11
212a~2,22!C22

2150, for i 5 j ,

a~2,2!C11
211a~2,22!C22

2150, for iÞ j . ~55!

The only solution to these equations is

a~2,2!5a~2,22!50, ~56!

which means that our interaction in first instance reduce

Sint@FW ,xW 8#5E
0

\b

dtE dk

~2p!3 $k2aLxLND* 1kFW •M•JW* %.

~57!

Next we must determine the form of the matrixM . This is
done by demanding the following equality to be valid:

ir]t^~] iui !
phys&5 ir] i^~]tui !

phys&. ~58!

If the displacement field is single valued and continuous
erywhere, the left- and right-hand side of this equation
two equivalent expressions for2 i ]tdr. Therefore it should
be valid when there are only point defects present. Howe
when there are dislocations present Eq.~58! can be shown to
be false. It is therefore not at all obvious that the equality
satisfied at this point, because we started out with a desc
tion including dislocations. Indeed, the above requirem
actually gives a constraint onM , as we will see below. We
first calculateir]t^(] iui)

phys& and find

ir]t^~] iui !
phys&52r]tciikl

21^skl&

52rE dk

~2p!3 eik•xciikl
21~eW kl

~1!
•]t

2^FW &

1k2eW kl
~2!

•]t^xW &!

52E dk

~2p!3 eik•x$k2^FL8&

2r~&aL]t^ND&1kM1 j^Jj&!%, ~59!

where we used the equations of motion in Eq.~43!, the com-
pleteness relation for the helicity basis in writing

eW i j
~1!

•Q†1eW i j
~2!

•R5~eW i j
~1!

•eW kl
~1!1eW i j

~2!
•eW kl

~2!!cklmneWmn
~2!

5ci jmneWmn
~2! ,

eW i j
~1!

•P1eW i j
~2!

•Q5~eW i j
~1!

•eW kl
~1!1eW i j

~2!
•eW kl

~1!!cklmneWmn
~2!

5ci jmneWmn
~1! , ~60!

and the fact that onlyei j
L andei j

L8 are traceless. If we compar
the result in Eq. ~59! with the expression for
ir] i^(]tui)

phys&, which reads

ir] i^~]tui !
phys&5] i^pi&52E dk

~2p!3 eik•xk2^FL8&,

~61!

we see that]t^(] iui)
phys&5] i^(]tui)

phys& if
to

-
e

r,

s
ip-
t

M1 j Jj5&aLkJL852&aL]tND . ~62!

Furthermore, we take the interaction with the transverse
of the defect current density to be zero. This is justified
noting that the transverse part of the defect density is no
hydrodynamic variable. We will come back to this point
more detail below. The total interaction is now uniquely d
fined in terms of one parameteraL and given by

Sint@FW ,xW 8#5 i E
0

\b

dtE dk

~2p!3 $aL~k2xL1&]tF
L8!ND%.

~63!

We have now completely specified the interaction of t
point defects with the phonon field. However, only the ph
non field has dynamics up to now. Because of their inter
tion with the phonons the point defects would of course
fectively acquire dynamics, but one also expects the po
defects to behave as dynamical particles if one could fre
out the phonon field. Roughly speaking, they would beha
as particles in a periodic potential that could tunnel from o
minimum to another. Therefore we have to add a dynam
term for the point defects. The most general dynamical te
that describes propagating behavior of the defects is

S0@$x~n!%#52
1

2 E
0

\b

dt(
n

xi
~n!~mi j ]t

2!xj
~n! . ~64!

The form of the anisotropic massmi j is constrained by the
symmetry of the crystal. The field equations are now fou
by varying with respect toFW , xW , and the positionsx(n) of the
defects, and are given by

]t
2FW 5

k2

2r
P•S A8•FW 2 i

2r

k2 &aW ]tNDD2 iQ†
•aW ]tND ,

]txW 5
1

2r
Q•S A8FW 2 i

2r

k2 &aW ]tNDD2
i

k2 R•aW ]tND ,

]t
2mi j xj

~n!52 iaLq~n!~&]t] iF
L8ux5x~n!2]2] ix8Lux5x~n!!.

~65!

The equations of motion forx(n) can also be written as

]t
2xi

~n!52 iq ~n!mi j
21] jBklsklux5x~n! , ~66!

where

Bi j 5
aL

&
S d i j 1

] i] j

]2 D . ~67!

This way of writing it will prove useful when deriving the
hydrodynamic equations of motion in Sec. II C.

B. Microscopic picture

An alternative approach to the derivation of an acti
which describes the coupled dynamics of the point defe
and the phonons is to start from a microscopic action
describes the atoms constituting the crystal by their positi

y~ i !5n~ i !1u~ i ! ~68!
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relative to the sites$n( i )% of an ideal reference lattice an
assumes an isotropic, short-range interactionV(uy( i )2y( j )u)
between the individual atoms. In this approach, it is cl
that the hydrodynamic momentum density isg5 ir]tu and,
as we will see below, what approximations we implicit
made when we wrote down the free action of a point def
in Eq. ~64!. In first instance, the microscopic action reads

S@u#5E
0

\b

dtH 1

2 (
i

r~]tu
~ i !!21(

i , j
V~ uy~ i !2y~ j !u!J .

~69!

To explicitly include the point defects, we then decompo
the displacement field into a part describing the phonons
a part describing the defects

u~ i !5u~ i !,ph1u~ i !,def, ~70!

where the defects are located at the positions$x(n)(t)%. In-
serting this decomposition of the displacement field into
action we get

S@u#5E
0

\b

dtH 1

2 (
i

r~]tu
~ i !,ph1]tu

~ i !,def!2

1(
i , j

V~ uy~ i !2y~ j !u!J . ~71!

Since the positionsn( i ) correspond to the equilibrium pos
tions of the crystal, the total potentia
V($x( i )%)[( i , jV(ux( i )2x( j )u) satisfies

dV~$n~ i !1u~ i !% !5V~$n~ i !% !1O@~u~ i !!2#. ~72!

For slowly varying displacements, the quadratic terms equ
(1/2)*dxui j ci jkl ukl . However, we cannot use this lon
wavelength result to find the interaction between
phonons and the defects because defects cause fluctuatio
u on the scale of a few lattice spacings. To proceed
therefore assume thatudef only changes significantly over
distance which is much smaller than the typical wavelen
of a phonon. Moreover, in the continuum limit we can a
ways write for the displacement of a static defect

ui
def~y!5] i f ~y!, ~73!

because a defect is defined by a nonzero value
v05*dxuii , i.e., the volume that is removed from or add
to the crystal due to the presence of a defect. The functiof
thus satisfies*dy]2f 5qv0 , where q is either21 or 11
depending on whether we are dealing with an interstitial o
vacancy. Note that in the isotropic casef (y2x)}uy2xu21,
wherex is again the location of the defect. Furthermore,
first order in the velocity we can write for a moving poi
defect

]tui
def~y,t!']tui

def@y2x~t!#52]txj] jui
def. ~74!

Expanding the action in Eq.~71! up to second order in the
displacements and making use of the above results the e
tive action describing phonons and point defects is found
be
r

t

e
d

e

ls

e
s in
e

h

of

a

c-
to

S@ui #5E
0

\bE dxH r

2
~]tui

ph!21
1

2
ui j

phci jkl ukl
phJ

1(
n
E dtH 2

v0
2r

2
xi

~n!~]tmi j ]t!xj
~n!1q~n!v0B̃i j ui j

ph

3~x~n!,t!1q~n!v0r@]txi
~n!#] i] j@]tuj

ph

3~x~n!,t!#1EcJ , ~75!

where we have neglected contributions withmÞn, assuming
the defects to be sufficiently far apart to interact only throu
the phonon field. Furthermore,Ec denotes the energy asso
ciated with the creation of a defect. The microscopic act
gives certain relations between the coefficients in this act
However, renormalization changes these coefficients and
believe that it does not preserve the relations between th
Therefore they have to be treated as independent. Th
important when trying to establish a connection with the
tion in terms of the stress tensor, as found in the previ
section, which can be achieved by means of two Hubba
Stratonovich transformations and following the same ro
as before by introducing the gauge fields. The result turns
to be identical and shows in particular that there is inde
only an interaction between the phonons and the longitud
part of the defect current density.

C. Hydrodynamics

We can now derive the hydrodynamic equations for
crystal with point defects. The number of hydrodynam
modes is fundamentally related to the number of conser
quantities and the number of broken symmetries. The c
served quantities are the total mass, the total momentum,
the netto number of defectsND , the difference between th
number of interstitials and vacancies. The associated con
vation laws result in five hydrodynamic modes. In princip
we also need to take into account energy conservation, w
would yield an additional thermal diffusion mode.18 How-
ever, for our purposes it is relatively unimportant and we w
not consider it here. Note, however, that we can obtain
Hamiltonian from the action and therefore in principle al
include this mode into our considerations. In addition to t
conservation laws, translational symmetry is spontaneou
broken, which results in three hydrodynamic Goldsto
modes. Hence we expect to find a total of 8 hydrodynam
modes. To find the equations of motion describing the
modes we first identify the hydrodynamic momentum de
sity gi with ^pi&5 ir^(]tui)

phys&, which is obvious from a
microscopic point of view because locally it is just the m
mentum of the particles of massm situated on the latice
sites. It is important to note that it includes the momentum
the point defects, because we have constructed the phy
quantity (]tui)

phys that way. In the remainder of this articl
we do not explicitly include the averaging brackets, since
unneccessarily complicates the notation.

We can immediatly write down the equality

]tgi5] js i j . ~76!
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14 640 56M. J. BIJLSMA AND H. T. C. STOOF
This equation is nothing but the constraints found in S
II A in Eq. ~9!. In a perfect crystal without defects, the h
drodynamic modes are the phonon modes, and their equa
of motion is found by taking the time derivative of the abo
equation

]t
2gi5] j]ts i j . ~77!

Therefore we need to know]ts i j which is easily calculated
as

]ts i j 5E dk

~2p!3 eik•x~eW i j
~1!

•]t
2FW 1k2eW i j

~2!
•]txW 8!

5E dk

~2p!3 eik•xH k2

2r
ci jkl eW kl

~1!
•A8•FW 2 ic i jkl ~eW kl

~1!
•&aW

1eW kl
~2!

•aW !]tNDJ
5E dk

~2p!3 eik•xH 2
ikk

r
ci jkl gl2 ic i jkl ~&eW kl

~1!
•aW

1eW kl
~2!

•aW !]tNDJ
52ci jkl S 1

r
]kgl2Bkl] iJi D , ~78!

where we used the equations of motion forFW and xW 8, the
continuity equation]tND5 i ] iJi , the expression forBi j in
Eq. ~67! and the equality

k2

2
ci jkl eW kl

~1!
•A8•FW 5k2ci jkl k̂S el

~1,1!

&
F ~2,1!1

el
~1,21!

&
F ~2,21!

1el
~1,0!FL8D

5k2ci jkl k̂kk̂mFml

52 ikkci jkl ikmFml52 ikkci jkl gl . ~79!

Thus we find forgi the following equation of motion, de
scribing the phonon modes and their interaction with
point defects:

]t
2gi52ci jkl ] j S ]k

gl

r
2Bkl]mJmD . ~80!

We can split the above equation into three continuity eq
tions as

]tdr5 i ] igi ,

]tq i5 i« i jk] jgk ,

]tgi5 ic i jkl ] j H ]k

r S ] ldr

]2 1
« lmn]mqn

]2 D2BklNDJ . ~81!

Note that it follows from Eq.~81!, combined with the conti-
nuity equation forgi , thats i j can be written as
.

ion

e

-

s i j 52 ic i jkl

]k

r S ] ldr

]2 1
« lmn]mqn

]2 D2 iBklND . ~82!

To find the total of eight modes, instead of the six giv
by the equations above, we need to include point defects
our hydrodynamic equations, as was first noted by Ma
et al.14 Thus, we have an additional hydrodynamic variab
the netto defect densityND . Note that the transverse part o
the defect current density is not a hydrodynamic varia
because the momentum of the defects is not conserved.
now want to write down the equation of motion fo
ND5(nq(n)d(x2x(n)). Using the equations of motion fo
the point defects, we get

]t
2(

n
d~x2x~n!!5(

n
q~n!$ẋi

~n!ẋ j
~n!] i] jd~x2x~n!!

2 ẍi
~n!] id~x2x~n!!}

5(
n

q~n!$ẋi
~n!ẋ j

~n!] i] jd~x2x~n!!

1 imi j
21] jBklskl] id~x2x~n!!%. ~83!

To find the hydrodynamics of the netto defect densityND we
have to average Eq.~83! over the initial conditions. In an
isotropic gas in the absence of external forces, the term
portional to (nẋi

(n)ẋ j
(n)d(x2x(n)) would be the only term

present, the average of which is just the pressure tensorp i j .
A closed set of equations giving the linearized hydrodyna
ics would then be found by writing down a gradient expa
sion for p i j in terms of the hydrodynamic variables. In ou
case to lowest order the pressure tensor can only be a f
tion of dND[ND2^ND& because it is the only variabl
which is even under time reversal, and we g
p i j 5Mi j dND1O(dND

2 ). Neglecting the terms quadratic i
the fluctuations we find fordND the linearized equation o
motion

]t
2ND52Mi j ] i] jND1 imi j

21] i] jBklskl , ~84!

whereBkl→Bkl^ND&. Note that if we had naively introduce
the dynamics of the defects into our theory by adding a
grangian density for the defect density instead of the defe

L52 1
2 ND(@Mi j ] i] j #

21]t
211)ND as was done by Stoo

et al.,12 we would have obtained the same equation by va
ing the action with respect toND . However, our approach is
more fundamental and illumates clearly the underlying ph
ics of this Lagrangian density. The hydrodynamic equatio
are usually given as a set of continuity equations, i.e., w
first order time derivatives. Therefore we rewrite Eq.~84! as
a pair of continuity equations

]tND5 i ] iJi ,

]tJi5 i ] i S Mi j ] i] j

]2 ND2 i
mi j

21] i] j

]2 BklsklD . ~85!

We stress that this is actually only an equation for the lo
gitudinal part of the defect currentJi

L5] i] j /]2Jj . The trans-
verse part is not a hydrodynamic variable and is anticipa
to relax to zero on a microscopic time scale. This comple
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56 14 641COLLECTIVE MODES IN SUPERSOLID4He
our discussion of the dissipationless hydrodynamic eq
tions. We have obtained a set of hydrodynamic equati
describing phonons, point defects, and their interaction fo
hcp crystal. They are given by Eqs.~81! and ~85!.

It is interesting to note that these equations can also
derived from a hydrodynamic action of which the Lagran
ian density is given by

L5
1

2
s i j H ] j] ld ik

r]t
2 1ci jkl

21 J skl1 isklBklND

2
1

2
NDH ]t

2

mi j ] i] j
1EcJ ND , ~86!

usingMi j ] i] j5Ecmi j
21] i] j . From the associated action, th

hydrodynamic equations describing the phonon modes
their coupling toND are found by writing down the field
equations for s i j and defining gi by the constraint
]tgi5] js i j . Note that in Eq.~86! the term quadratic ins i j

is justpi
2/2r1s i j ci jkl

21 skl , which is the free part of the actio
in Eq. ~8! with the substitionpi→] js i j /]t . Therefore, Eq.
~86! is the analog of the hydrodynamic action describi
density fluctuations in a normal fluid.23,24

For completeness we write down the total set of hydro
namic equations which as expected amount to a total of e
continuity equations:

]tdr5 i ] igi ,

]tq i5 i« i jk] jgk ,

]tgi5 ic i jkl ] j H ]k

r S ] ldr

]2 1
« lmn]mqn

]2 D2BklNDJ ,

]tND5 i ] iJi ,

]tJi5 i ] i S Mi j ] i] j

]2 ND2
imi j

21] i] j

]2 BklsklD . ~87!

To check heuristically if we ended up with the right equ
tions we write down the hydrodynamic equations in the c
of a isotropic crystal and compare these to the ones found
a two-dimensional isotropic crystal by Stoofet al.12 In the
isotropic caseci jkl , Mi j , andmi j are given by

ci jkl 5ld i j dkl1m~d ikd j l 1d i l d jk!,

Mi j 5Md i j ,

mi j 5md i j . ~88!

This implies the equalities

ci jkl ] j]k] l

dr

r]2 5
~l12m!

r
] idr,

ci jkl ] j]k« lmn]m

qn

r]2 5
m

r
« imn]mqn ,

ci jkl Bkl] jND5
4

&
~m1l!aL] iND . ~89!
a-
s
a

e
-

nd

-
ht

-
e
or

Furthermore, we write the hydrodynamic equations in r
time, which amount to the substitution]t→2 i ] t . As a re-
sult the hydrodynamic equations for an isotropic thre
dimensional crystal with point defects are given by

] tdr52] igi ,

] tq i52« i jk] jgk ,

] tgi52H l12m

r
] idr1

m

r
« ikl]kq l2

4

&
~m1l!aL] iNDJ ,

] tND52] iJi ,

] tJi52cr] idr2cD] iND , ~90!

where cr5@maL/&#(4l14m) and cD5M22m(aL)2(4l
13m). These are indeed the three-dimensional general
tions of the equations found by Stoofet al. for the two-
dimensional isotropic cristal without dissipation.

In order to give a realistic description of the system, w
need to include dissipational effects into our hydrodynam
equations. Although there is a coupling between the pho
field and the defect density and thus a ‘‘shake up’’ of t
phonon field if a defect moves, up to this point there is
real dissipation because the bilineair coupling between
phonon and the defect modes causes mixing of these mo
but no dissipation. Therefore we include dissipation into o
hydrodynamic equations in the standard way by first expa
ing the dissipative part of the stress tensor to linear orde
the conjugate forces and requiring the coefficients to be c
patible with the symmetry of the system under considerat
and then in turn expanding the conjugate forces in terms
the currents.13,14,25A particularly clear treatment of this stan
dard method is given by Ja¨hnig and Schmidt.26 Quite gener-
ally, our hydrodynamic equations have the form

] tdr52] igi ,

] tq i52« i jk] jgk ,

] tgi52] j~s i j 1s i j
D!,

] tND52] iJi ,

] tJi52] j~p i j 1p i j
D!, ~91!

where the superscriptD denotes the dissipative part of th
‘‘stress’’ tensors, and the nondissipative part has alre
been determined. Roughly speaking the variablesq i and Ji
are associated with the three broken symmetries, wherear,
gi , ND account for the conservation of mass, momentu
and defects. The most general dissipative terms allowed
the requirement that the time reversal symmetry of the d
sipative currents is opposite to the associated hydrodyna
variable are given by

s i j
D5

1

r
h i jkl

~1! ]kgl1z i j
~1!]kJk ,

p i j
D5

1

r
d i j hkl

~2!]kgl1d i j z
~4!]kJk , ~92!
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where we used thatJi contained only a longitudinal degre
of freedom. The specific form of the parameters is de
mined by the discrete symmetries of the system, which in
case of the hcp crystal4He form the groupC6h . It should be
noted that in Stoofet al. it was incorrectly assumed that th
transverse part of the defect current behaves as in a gas
diffuses to zero.12 As we have seen, the correct behavior
the transverse part of the defect current is a relaxation to
on a microscopic time scale.

III. SUPERSOLID HYDRODYNAMICS

In view of the exciting experiments by Lengua and Goo
kind, our aim in writing this paper was also to formulate t
hydrodynamic equations of supersolid4He. Hence we have
come to the point where we have to include into our hyd
dynamic equations the superfluid degree of freedom. F
microscopic theories developed for superfluid liquids a
gases it is well known how we should proceed to inclu
these additional degrees of freedom into the hydrodyna
equations for the normal phase.4,27 First, the densityr is split
into a normal partr i j

n and a superfluid partr i j
s , satisfying

rd i j 5r i j
s 1r i j

n . ~93!

Note that the tensorial nature of the densities is of imp
tance in the case of an anisotropic hcp crystalline struct
Second, we split the total momentum density of the sys
into a normal partr i j

n v j
n and a superfluid partr i j

s v j
s according

to

gi5r i j
s v j

s1r i j
n v j

n5rv i
n1r i j

s ~v j
s2v j

n!, ~94!

where the superfluid velocity is purely longitudinal, i.e
« i jk] jvk

s50, because it is proportional to the gradient of t
superfluid phasefs.

Furthermore, the dissipative terms have to be general
for an anisotropic superfluid, and the dynamics of the sup
fluid velocity has to be determined. Following the standa
treatment, the dissipative part of the stress tensors i j

D be-
comes

s i j
D5h i jkl

~1! ]kv l
n1z i j

~1!]kJk1
1

r
z i j

~3!]krkl
s ~v l

s2v l
n!. ~95!

The last term on the right-hand side is the most general t
containing the conjugate variable of the phase field, i
] igi

s[] ir i j
s (v j

n2v j
s).13,14,25Furthermore, the dynamics of th

superfluid phase field is basically determined by the Jose
son relation and is given by

] tv i
s52

Br

r2 ] idr1bD] iND1] iz jk
~7!] jvk

n

1z~8!] i] j Jj1
z~10!

r
] i] jr jk

s ~vk
s2vk

n!, ~96!

whereBr5r2(]m/]r)uT,nD
is the isothermal bulk modulus

m is the chemical potential per unit mass, a
bD52]m/]nDur,T . By adding the last three terms in th
right-hand side of Eq.~96! we have also included dissipation
However, at this point we have to realize that we were
ready dealing with a two fluid hydrodynamics in the norm
r-
e

nd
f
ro

-

-
m
d
e
ic

-
e.
m

ed
r-
d

m
.,

h-

l-
l

solid phase, due to the presence of defects. This means
we also have to split the defect current densityJi into a
normal and a superfluid part, i.e.,Ji5Ji

n1Ji
s . Physically,

this means that the superfluid current density can be cau
both by the motion of defects and by lattice vibrations.12 As
a result we end up with the following hydrodynamic equ
tions describing supersolid4He:

] tdr52] igi ,

] tq i52« i jk] jgk ,

] tgi52ci jkl ] j H ]k

r S ] ldr

]2 1
« lmn]mqn

]2 D2BklNDJ
1h i jkl

~1! ] j]kv l
n1z i j

~1!] j]kJk
n1z i j

~2!] j]k~Jk
s2Jk

n!

1
1

r
z i j

~3!]krkl
s ~v l

s2v l
n!,

] tND52] iJi , ~97!

] tJi52] i S ] i] jM i j

]2 ND2
] i] jmi j

21

]2 ] jBklisklD 1h jk
~2!] i] jvk

n

1z~4!] i] j Jj
n1z~5!] i] j~Jj

s2Jj
n!

1
1

r
z~6!] i] jr jk

s ~vk
s2vk

n!,

] tv i
s52

Br

r2 ] idr1bD] iND1] iz jk
~7!] jvk

n1z~8!] i] j Jj
n

1z~9!] i] j~Jj
s2Jj

n!1
z~10!

r
] i] jr jk

s ~vk
s2vk

n!,

] tJi
s52

BD

r2 ] iND1br] idr1] iz jk
~11!] jvk

n1z~12!] i] j Jj
n

1z~13!] i] j~Jj
s2Jj

n!1
1

r
z~14!] i] jr jk

s ~vk
s2vk

n!.

The large number of dissipative terms makes these equa
look rather intricate, but in the limitk→0 only the nondis-
sipative terms remain and a considerable simplification
curs, as we will see below. They are easily seen to repre
ten equations for the ten unknown quantiti
dr,q i ,v i

n ,v i
s ,ND ,Ji , andJi

S , realizing thatv i
s , Ji

s , andJi
n

have only one degree of freedom andu i has only two de-
grees of freedom.

IV. COMPARISON WITH EXPERIMENT

We now want to compare our results with the equatio
used by Lengua and Goodkind to fit the data of their exp
ment in which they may have observed the supersolid ph
of 4He.11 Their phenomenological equations describe a
of two coupled harmonic oscillators. We show below th
these equations essentially follow from our hydrodynam
equations describing a normal crystal with defects.

To find the mode structure present in our dissipationl
hydrodynamic equations, it is convenient to rewrite Eq.~84!
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in terms of the longitudinal part of the defect current dens
Ji . After taking the time derivative of the second equation
Eq. ~85! and inserting the first equation we get

] t
2Ji5] i S mi j

21] i] j

]2 Bkli ] tskl1
Mi j ] i] j

]2 ]kJkD . ~98!

To obtain a closed set of equations we then use the real
version of Eq.~78!, which expressess i j in terms ofgi and
ND . We find

] t
2Ji5] iFmi j

21] i] j

]2 BmncmnklS 1

r
]kgl2Bkl] iJi D

1
Mi j ] i] j

]2 ]kJkG . ~99!

We now turn to Eq.~80! which describes the phono
modes. First we define the eigenvectorsAi

(n)( k̂), n5$1,2,3%,
of the matrixci jkl kjkk as

ci jkl kjkkAl
~n!~ k̂!5k2ln

2~ k̂!Ai
~n!~ k̂!. ~100!

The six phonon modes of the ideal crystal are thus given
Ai

(n)( k̂)ei (v(k)t6 ik•x), with v2(k)5k2ln
2( k̂). In order to find

the equations used by Lengua and Goodkind we first exp
gi in terms of the eigenvectorsAi

(n)( k̂), i.e., gi5

(ng(n)(k)Ai
(n)( k̂). We then writeJi5JL(k,t) k̂i and insert

these expressions into Eq.~80! and Eq.~99!. After contract-
ing the first equation with the eigenvectorsAi and the second
with k̂i , this leads to the following equations in Fouri
space:

] t
2g~n!52

1

r
k2ln

2~ k̂!g~n!1k2a~n!~ k̂!JL,

] t
2JL52mi j kikj S b~ k̂!JL1

1

r (
n

a~n!~ k̂!g~n!D ,

~101!

where we defined a (n)( k̂)[Bi j ci jkl k̂ jAl
(n) and

b( k̂)[(Mi j kikj )/(mi j kikj )2Bi j ci jkl Bkl . Finally we con-
sider one particular mode, saym, and eliminate the two
modes withnÞm. After Fourier transforming also the tim
variable the equations forg(n) with nÞm are solved by

g~n!5
k2a~n!~ k̂!JL

v22k2ln
2/r

. ~102!

Inserting this into Eq.~101! we find

2v2g~m!52
1

r
k2lm

2 g~m!1k2a~m!~ k̂!JL,

2v2JL52mi j kikj H b~ k̂!JL1
1

r
a~m!~ k̂!g~m!

1
1

r (
nÞm

a~n!~ k̂!a~n!~ k̂!k2JL

v22 k2ln
2/r J . ~103!
y
f

e

y

nd

These equations still contain four separate modes. Howe
solutions to these equations havev2}k2. Therefore we es-
sentially find the equations

] t
2g~m!52

1

r
k2ln

2g~m!1k2a~m!~ k̂!JL,

] t
2JL5kimi j kj S b8~ k̂!JL1

a~m!~ k̂!

r
g~m!D . ~104!

These indeed describe a set of coupled harmonic oscilla
and agree with the dissipationless limit of the equations u
by Lengua and Goodkind to interpret their data.

If we now add dissipation, the modesA(n) no longer di-
agonalize Eq.~80!. However, there will be a new set o
damped phonon modes with imaginary eigenvalues. P
ceeding as before, we can again eliminate two modes.
then find a coupled set of damped harmonic oscillators
now precisely agree with the equations used by Lengua
Goodkind.

To conclude this section, let us consider the dissipati
less hydrodynamic equations describing an isotropic su
solid. The transverse phonon modes then decouple, and
the longitudinal part we find schematically the equations

] t
2S dr

ND
D5]2S l12m

r
2

4

&
~m1l!aL

cr cD

D S dr
ND

D ,

]tS v i
s

Ji
sD 5] iS 2

Br

r2 bD

2
BD

r2 br

D S dr
ND

D . ~105!

The hydrodynamic modes can in principle be found by
agonalizing the two matrices. If we are in the normal pha
the first equation remains unchanged, whereas the seco
absent. Clearly we then have four propagating sound mo
In the supersolid phase the second equation is also pre
and we find two second sound modes in addition to the f
first sound modes. These are, however, not accurately
scribed by Eq.~105!, because for that it is essential to in
clude temperature fluctuations, which we have neglec
throughout this article. Nevertheless, it is clear from t
above that to show experimentally the existence of a su
solid, it would be very convincing if one observes an ad
tional resonance due to one of the modes associated with
superfluid degrees of freedom.

V. CONCLUSION

We have derived the hydrodynamic equations for
solid and supersolid phases of4He. It is well known that to
describe the normal solid phase, it is essential to inclu
defects into the hydrodynamic equations to find the rig
number of modes predicted by the conservation laws
broken symmetries. Because we know that there are six p
non modes, the defects are usually assumed to have diffu
dynamics, giving a total of 61157 hydrodynamic modes
This is then in agreement with the 821 modes one expect
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14 644 56M. J. BIJLSMA AND H. T. C. STOOF
from the usual counting argument, excluding a thermal d
fusion mode. However, Lengua and Goodkind in their e
periment observe instead propagating behavior of the de
mode. This brings the total number of hydrodynamic mod
to 61258. Therefore we introduced another hydrodynam
variable, the longitudinal part of the defect momentum. W
believe that this is justified by noting that, when counting t
number of conserved quantities, we should also include
conservation of defects. Hence the continuity equations
ND andJi are roughly speaking associated with respectiv
a conservation law and a broken symmetry. Indeed,
equations reproduce the set of coupled wave equations w
were used by Lengua and Goodkind to interpret their d
and lead them to the identification of the observed collec
mode as a propagating defect mode.

Furthermore, we have considered the hydrodynamic eq
tions of supersolid4He by allowing both fluctuations in the
defects density and lattice vibrations to lead to superfl
motion.12 If we include these superfluid degrees of freedo
into our hydrodynamic equations in the standard way,
on

.
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-
-
ct
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r

ich
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e
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e

end up with what one might call a four fluid hydrodynami
instead of the usual two fluid hydrodynamics. As a result
end up with two second sound modes instead of one.
expect on general grounds that including temperature fl
tuations leads to one of these modes becoming propaga
whereas the other will remain diffusive. Given these result
should then be possible in principle to identify experime
tally an additional resonance in the attenuation and velo
of sound due to the coupling of these modes to the phon
In our opinion this would be a more convincing experimen
proof for the existence of a supersolid phase than the ana
made by Lengua and Goodkind.
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