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We derive the hydrodynamic equations of motion of solid and superéble that describe the collective
modes of these phases. In particular, the usual hydrodynamics is modified in such a way that it leads to the
presence of a propagating instead of a diffusive defect mode. The former is appropriate for a quantum crystal
and observed in recent experiments. Furthermore, we find that in supersolid helium there are two additional
modes associated with the superfluid degrees of freedom. The observation of these additional modes is a clear
experimental signature of the supersolid ph&S€163-182¢07)04341-5

[. INTRODUCTION present in a quantum cryst? Furthermore, assuming the
speed of sound of the defect mode to depend on the density

The low-temperature behavior of the strongly interactingof defects in the same way as in a dilute Bose gas, they found
quantum liquid*He has been a subject of experimental anda relation between the temperature dependence of the phase
theoretical research for decades. In 1908 helium was firstelocity and that of the defect density. To consistently inter-
liquified by Kamerlingh Onnes and in 1911 he discovered &Pret their data they then had to assume a macroscopic popu-
sharp maximum in the density at what is now commonlylation of the zero momentum state of the point defects, i.e., a
called the\ point® After that, a number of macroscopic Bose-Einstein condensation of the point defects. Thus the
quantum phenomena such as superfluid flow, second sounghase diagram ofHe in three dimensions would be qualita-
the fountain effect, and quantized vortices were observedively given by Fig. 1. Following a certain trajectory in this
Phenomenological theories were developed and justifie@hase diagram’He may undergo a transition from the nor-
from a microscopic point of vie®:* Also, the famous mal phase to the superfluid phase at some temperdture
Kosterlitz-Thouless transition was first observed in thin su-and subsequently from the superfluid to the supersolid phase
perfluid helium films> at a temperaturd;. As mentioned above, the possibility of

In the solid phase ofHe, which is reached only at low superfluid flow in a solid has since long been anticipated
temperature and high pressusee Fig. 1, one also expects theoretically. Andreev and Lifschitz were the first to attempt
to observe macroscopic quantum phenomena because of tigederive the hydrodynamics of a supersolid by including the
large zero point vibration of the atoms about their equilib-effect of Bose-Einstein condensation of the defects on the
rium position® Because of this, solid helium has been termechydrodynamics of an ideal crystaln addition to this pio-

a quantum solid. neering work, Liu has more recently presented a thorough

In such a solid, the interstitials and vacancies are effecdiscussion of the Andreev and Lifschitz hydrodynantits.
tively delocalized due to their ability to tunnel through the = However, it was pointed out by Martiet al. that the con-
potential barriers. At low temperatures these point defectyentional treatment of the hydrodynamic equations for a
then form a weakly interacting Bose gas. Furthermore, thelassical crystal, which does not include defects, is neccesar-
large zero point motion results in an unusually rapid ex-ily incomplete since it yields the wrong number of modgés.
change rate of nearest-neighbor atoms, which may lead tbhey identified the missing mode as a mode in the defect
large ring exchanges between the helium atdnBose- density. This implies that the hydrodynamics of Andreev and
Einsein condensation of the defects or exchange processesldfshits is also incomplete, because it does not include the
the lattice atoms may then open two routes to a new phase of
matter at low temperature in which long-range crystalline -
and superfluid order coexist. This is called the supersolid | Solid He
phase’

Theoretically the existence of such a phase has since long .
been anticipated:*° However, it was only recently claimed g
to have been observed experimentally that three-dimensional A
solid “He is a spatially ordered superfluid, or supersolid, at 20
sufficiently low temperatures and densities. The experiments 15
leading to this claim were performed by Lengua and Good-
kind, who measured the attenuation and velocity of sound in
solid *He for relatively high purities and low atomic densi- s A Line
ties of the quantum crysté’r.The temperature dependence of | | |/,//|
the attenuation revealed a coupling to thermally activated 0 1 2 1K)
excitations, consistent with the existence of a propagating
mode in the gas of point defects that is expected to be FIG. 1. Tentative sketch of the phase diagranfde.
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noncondensed defects and as a result does not lead to tfare we can ignore higher gradient elasticity, which would be
required defect mode in the normal state of the crystal. Imeeded if we also wanted to describe disclinations. This sec-
addition, Martinet al. assume diffusive dynamics for their tion is closely related to previous work done by Kleid&H
defect mode. This seems to be appropriate for a classical bbut differs from it in the following aspects. First, we do not
not for a quantum crystal, where the defect mode is expecteiticlude higher gradient elasticity. Second, we consider the
to be a propagating mode, as is confirmed by the experimentaore general case of anisotropic solids and third, we explic-

of Lengua and Goodkind. itly remove the unphysical gauge degrees of freedom in the
Recently Stoogt al, in respons to experiments with sub- resulting theory of “quantum defect dynamics.”
monolayer superfluid helium filf?, derived the hydrody- The Euclidian action for a solid with dislocations of arbi-

2

namic equations for an isotropic supersolid in two dimen-trary crystaline symmetry is given B!’
sions which did include propagating behavior of the crucial
defect mode? Moreover, the longitudinal part of the solid (A p )
hydrodynamics derived by these authors turns out to be iden- Sui]= fo de dx) 5 (9:ui = Bi)
tical to the system of two coupled wave equations that Len-
gua and Goodkind used to accurately model their data. How- 1 Bij + Bii Bt Bik
ever, to apply these promising results to the experiments R CiJk'(uk'_ 2 )] @)
with solid helium, we have to extend them in two ways. First
of all we have to consider a three-dimensional system, and@here uijzé(aiuﬁajui) is the strain tensorg;j, is the
second of all we have to take into account the anisotropy oélasticity tensor whose structure is determined by the specific
solid “He, which is a hexagonally closed packidp crys-  symmetry of the crystal under consideration, gnds the
tal. Thus we hope to justify from a microscopic point of view average mass density. This is the most general quadratic ac-
the phenomenological equations that succesfully explainetion compatibel with the symmetries of the crystal and the
the propagation of sound in solifHe and led to the first requirement that the Hamiltonian of the system transforms
claim of a supersolid phase in this system. under a Gallilean transformationut)—(u+vt,t) as

The paper is organized as follows. In Sec. Il the hydrody-H—H +p-v+Mv?, with p the total momentum of the crys-
namic equations describing a normal solid with point defectsal and M it's total mass. The latter determines the form of
will be derived. This is achieved by deriving an action de-the kinetic energy.
scribing a solid with dislocations, using methods developed The dislocations mentioned above are topological defects,
by Kleinert!® From this action we obtain the interaction be- which exist because the displacement field is multivalued. In
tween phonons and a point defect, by seeing the point defeghuch the same way, vortices in a superfluid are a conse-
as a limiting case of a dislocation. Also, a more microscopicquence of the multivaluedness of the phase fiéffhe mul-
point of view is presented and dissipation is included. In Sectivaluedness of a displacement field describing a dislocation
[l we then add a superfluid degree of freedom to our hydrobecomes apparent when writing down what can be seen as
dynamic equations in the usual way and in Sec. IV we disthe definition of a dislocation, namely,
cuss the experiment by Lengua and Goodkind in the light of
our results. It should be noted that in order to understand this B
experiment it is not neccessary to include temperature flucu- ﬁ:dui— b
ations into our considerations and we will neglect them in
the rest of this article. We conclude with a discussion andere,C is a contour enclosing a dislocation lideandb is

outlook in Sec. V. the so-called Burgers vector measuring the strength of the
dislocation. This equation can be written in a differential
Il. HYDRODYNAMICS OF SOLIDS form as

WITH POINT DEFECTS
&ijkd; U =b; 8 (X, L) = a; (3

In this section we derive the hydrodynamics of a solid
with point defects. This will be done by first considering the
action describing phonons and their interaction with dislocas. | ™" . . :
tion loops. We then obtain the interaction of phonons WithfIEId 1S no_nmtegrable "?"0”9 the_ "“éi because here _the dis-

location gives as function contribution. If the lineC is pa-

vacancies and interstitials by shrinking a dislocation loop to . . . .
zero radius and using a dipolelike approximation. Next, Werametrlzed byx(s), the & function alongZ is defined by
axi(s)

add the dynamics of the point defects. The structure of the

resulting theory is much like that of an electron interacting 5i(x,g):f ds
with electromagnetic fields. An intuitive microscopic picture gs
of point defects is also presented which leads to an alterna-
tive derivation of the action descibing a solid with point
defects. Finally, the hydrodynamic equations are derived.

whereq;, is called the dislocation density. It is analogous to
Ampere’s law &ijkd;Bx=J; and states that the displacement

O[x=X(s)]. 4

If we would use in our calculations these multivalued dis-
placement fields, the action would be given by ED.with
Bi= Bi;=0. However, to perform a path integral over tine
it is much more convenient to use a singlevalued displace-
ment field which takes values on the real axis. The unphysi-
We start with deriving a gauge theory that describes theal singular contributions to the derivatives of a single-
solid phase at long wavelengths. To describe point defectgalued displacement field which describes dislocations in a
we only have to include dislocations into our theory. There-solid are compensated by substracting the quanitjesnd

A. Gauge theory of phonons and dislocations
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Bi . The relation between these quantities and the dislocation o, 1
line £ is conveniently visualized by the Volterra construc- Cijki Ckimn= 5 (SimSjn+ Sin Sjm).- (7)
tion, which we now briefly explain. Given a solid without
imperfections, a dislocation can be created by removing fronThe action we find after these transformations reads
this solid a volumey and drawing the boundary of the vol-
ume together, thus forming a surfaSevith boundary, and hB
restoring the crystaline symmetry everywhere except at this Stpisaij Uil = fo de dx
boundary..

The single-valued displacement field which describes a ) hvs hvs
dislocation created by this construction is discontinuous —ipi(9,u)PV+iouf™ . ®
across the surfac§ with a jump in the displacement field
that is equal to the Burgers vector This discontinuity gives We now integrate out the displacement field, which leads
a 4 function contribution to the gradient of the displacementtg the constraints
field which is called the plastic distortion and is given by

2
pi -1
5+Uijcijklo'kl

d.pj=d;ajj . 9)

Bij=b; 5i(X,3)=bjf dS o[ x—x(u,v)]. (50  This is Newton’s law. In order to automatically satisfy these
s constraints we rewrite the fieldg andoy; in terms of new

The integral measure is defined B = ¢ d,x;d,xdudy  fields A andF;; by
if the surfaceS is parametrized by(u,v). Furthermore, if
the dislocation line£ is moving with a speed, the time
derivative of the displacement field givessdunction con- _
tribution of Bj=v;B;i . If we are not on a dislocation line, Pj=diF; (10
the physical values of the spatial and time derivatives of thesubstituting these in the interaction, i.e., the last two terms in
displacement field should be continuous and are thereforghe right-hand side of Eq8), and performing some partial

oij = FijteidiAj

given by integrations, we find that this part of the action can be writ-
phys_ ten in terms of the dislocation density;; and dislocation
(G1u)PYo=giu;— Byj current densityly=v maj; , as
(9,u))P=g,u;— B; . (6)

ip
_ . Sind Aij vFij]:f dTJ dx{—iAjj aij = iFij&imImij}-
The value of these physical quantities equals what one would 0
get by using the multivalued version of the displacement (13)
field to calculate the spatial and time derivativésVe thus

see that the action introduced at the beginning of this section N the process of rewriting the action we have ended up
is indeed just the classical action for a perfect crystalVith to many degrees of freedom. These unphysical degrees
straightforwardly generalized to include dislocatidfg’ of freedom manifest themselves in the fact that the new

To be able to actually calculate the interaction betweer{i€lds Aij andF;; are gauge fields. Indeed, the expressions

the phonons and the defects we write the action in a canonl®" 7ij @ndp; are invariant under the gauge transformations

cal form. We do this by introducing two new fields by means
of a Hubbard-Stratonovich transformatitiPhysically these
field are the stress tensar; and momentum densityp;
which are canonical touf™*=(a;u;)P™s—(,u;)P™* and
(9,u;)P™s respectively. It amounts to adding to the Lagrang-At first sight one might therefore think that the gauge free-
ian density in Eq(1) the quadratic terms dom removes 12 degrees of freedom. However, we note that
these gauge transformations are themselves invariant under a
gauge transformation, which reduces the number of gauge
degrees of freedom. Indeed, the gauge transformations are
invariant under

Fij—FijteiadeAyj

AleAIj"‘(arAlj_f?IArj)- (12)

1
I —i \phys)2
zp[pl ip(d;u;) S_I

and
1 A”—)A”"‘&ﬂ\j,
(o +iuPYe . el i phy:
2(0'” T1Ugp chhlj)cljkl(a'kl+'Cklmnumns)- Arj_>ATj+aT}\j . (13)
Furthermore, to obtain the path integral representation of th&s a result the gauge freedom in E@.2) only removes
partition functionZ we have to add functional integrals over 12—3=9 degrees of freedom in the expressions gpand
the momentum density; and the stress tensot; . Note that  o; . Therefore we are left with :89=9 degrees of free-
the action containes only the symmetric part of the stresglom in the fieldsA;; and F;;, which is exactly what we
tensor, and we should therefore only perform the path inteexpect because there are 3 degrees of freedom presgnt in
gral over the symmetric part af;; . Note also that:i]klI is  9in oy, and the constraints in E¢9) remove 3 of these.
symmetric under the exchanges:j andk«|, and is de- Note that we should also demang) to be symmetric, which
fined by will remove another 3 degrees of freedom. This means that
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we end up with 6 physical degrees of freedom, correspondf we now takey,, to be symmetrico;; will also be sym-

ing to the usual 6 phonon modes. metric. In terms of these fields the free acti&nbecomes
In order to extract physically relevant information we will

have to remove the gauge-degrees of freedom, i.e., fix the hp (aiFij)Z 1

gauge. Before we embark on this problem, however, we will Sol Fij 'Xu]_f d"f dxj ———+ 2

prove the following equalities which we will need later on

when deriving the hydrodynamic equations of motion for a +8ik|8jmnf9k<9mX|n)Cﬂkl|

solid with point defects. They are

(9,Fj;

phys>_|c|]kl<0'kl> ><(077-Fkl+8kpq8jrs&par)(qs)] . (20)
|<p|> At this pointF;; and y;; both contain 6 degrees of freedom.
((9,u)Py = — P (14)  We are thus left with 12 6=6 nonphysical degrees of free-

dom which somehow correspond to 6 degrees of freedom in
The proof is given by adding to the action in Hd) source  Ajj.

terms proportional to the currenks; andK; : To eliminate the remaining unphysical degrees of free-
dom, we expand the Fourier transform of the fiefgs and

xij in the helicity basige{>™}.° If we take a direct product

of momentum spacé® W|th itself, i.e., P®P, the helicity
basis is defined as the irreducible representations of the ro-
Expectation values df[uphys (9,u;)P™s] are now easily cal- tation group in this space. From group theory we know that
culated as they form a complete séf.Hence we can develop a given
tensor field in this basis leading to

f dff dx{Kijuf™>+ K;(a,u;)P™s.

<f[uphys au)phybp_f(&z i)ln Z(K.J,K)|K._K -0, .
xii(K)=2> ePM (k) xS (k),
(15) S,h

where Z(K;; ,K;) denotes the partition function with nonva-
nishing source terms. Again performing a Hubbard- =S esh (s.h)
Stratonovich transformation we get F”(k)_g ()FEN (o). @)
Because of the symmetry of;; and Fj; the six nonzero
Su]= f de + ffucumffkl ipi components are s(h)={(0,0),(2,0),(2+1),(2+2)}. To
identify the surviving physical helicity components, we note

ohys Ki 4 that the expressiosi e;mndkdmxin IS Symmetric, traceless
X | (9,.u)PV+ — p +|<T.J(U Yo+ cijki Kir) and invariant under the transformation
2 Xin—= Xint d1ént dné . (22
2 —Kjj Cljlek| (16)

If we choose as a basis in Fourier spade,,e{"V(k),

Equation(14) now follows by differentiation. el Y(k)} and developg, in terms of this basis, this trans-
After this digression, we return to the elimination of the formation reads up to a factér

nonphysical degrees of freedom present in the action

S=Sy+ Sy and reexamine Eq(12). As mentioned, this klgn_"&an:Z& ﬁn§(°)+(&|e§11'l)+ﬁnefl'b)g(l)Jr(ﬁ,egl”l)

gauge transformation is invariant under the transformations

in Eq. (13). We use the latter invariance to choose a gauge in + k e(1 Dyg=n

which A ;=0, which is always possible by letting satisfy

2

. = (V2201 ¢[00 £(©

sz—f A(7)dr'. (17) V3

0 2,1) #(1 (2,-1) (-1
+v2e[2V eV 4vpe(2 Ve, (23
In this gauge our original gauge transformation reduces to
From this expression we see that if we choose a new basis in

Fij—Fij+eid\ij which to developy,, given by

A= A=A (18) {ef2? g[272 g2V 271 ok elh (24)

In order foro; to be symmetric, we use part of this residual \yhere
gauge freedom to choodg; symmetric. In addition, we in-
troduce the fieldy;; by means of 1 1 L
o= (—ein? +v2ejd?) = — (8 —kiky),
Ajj=&jmndmXin - (19 V3 V2
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_ 1 Lo L L 9.F"
el = 5 (V2627 +eln?) = ks, (25) YT T e 29

, If we furthermore realize that
the components of,, corresponding td(2,1),(2~1),L'}

are unphysical and disappear from the action because they
correspond to a gauge transformation. The coordinate trans-
formation from the old to the new basis is unitary and hence

the new basis is also orthonormal and complete in the space

k
ke2d =gt

of symmetric second rank tensors. In addition the elements k-e-(-z"l)zie(l"l)
{(2,2),(2~2),L} satisfy i~ v '
kiely' =kefs?=kefz"?=0. (26) kel =kk;, (30

This means there are only 3 dynamical degrees of freedoiwe obtain the final expression fd, which contains pre-
left in 9;F; corresponding to the helicity components cisely 6 dynamical degrees of freedom.
{(2,2),(2~1),L"}. Before explicitly writing downS, we introduce a new
We now Fourier transform the action and expand thecompact notation which also simplifies the algebraic manipu-
fieldsF;; and x;; in terms of the basis in Eq24). We get lations involved in the remainder of this article. We define
the quantities

ne dk (1 ,
Sol Fij aXij]:JO er’ W{zhki(eﬁz’b'ﬂz’n ) ':(;2;11) (22
F: F ! ; )_(),: X,(Z’iz) X
+ei(-z'_l)F(z"l)+ei"J-'F'-/)|2 Ft -x'"
Z (s.h) (2,2 e[ e{??
es a,F Sh)+k2(e--' (2,2 _ 3
ij X éi(jl): ei(jz, 1) : éi(j2): I(Jz 2) (31)
(2,—2 L * 1 eh eh
+e )y (2~ 2>—einL) Cijk|[lj<—>k|]], and
(27) A,.=(&]) c,]kl(e(l)) 100
(1) (2)y . r_
where[ij —kl] denotes the part between brackets with the Bw () .Ci (€L ] bvi A'={ 0 1 0/ (32
indicated interchange of indices. Up to now we have re- (e ) uCii (63, 0 0 2

moved all but three unphysical degrees of freedom. By InIndlces refenng to the abstract vector space introduced

troducingy;; and choosing a gauge in whiéf; andy;; are above, are denoted by Greek symbols to distinguish them

both symmetric, the stress tensor was made Symmetrl(from their real space counterparts. This allows us to vBjte
Hence we were left with 12 degrees of freedom. Then we P P

identified 3 unphysical gauge degrees of freedormllncor-

responding to the helicity componen{62,1),(2,-1),L'}, np dk
which reduced the remaining number degrees of freedom toSo[F X'1=5 J f (

9. Hence we expect a residual gauge freedom to be present in

the above action corresponding to three unphysical degrees A’k2

R k N
of freedom. As is apparent in the expression $r, this is F\* > —Aﬂf —k?B'9, F
indeed the case and the remaining gauge freedom corre- X 3 p2 . \x')
sponds to k“Bd, k*C

(33
Note the minus signs, which arise from partial integration.

Next, we also have to write the interaction in terms of the
X physical fieldsF andy’. The interaction in terms df;; and

for (s,h)={(2,2),(2—2),L}. We will see below that this Xii IS 9iven by

gauge freedom is also present $);. To remove this re- _ _

maining freedom we introduce three new, invariant, fields S xij ,Fij]:J' drf dx{—iejmndmXinaij — 1Fj&imdmij}-
(34)

It is not immediately obvious from this equation that the

interaction can be rewritten in terms ﬁfand)?’. Therefore

F2-2) we will show this explicitly. Aftgr partially_ integrating _the

(2-2)=y(2-2)4 dr first part of Eq. (34), the field y;; interacts with
€jmnIm@ij = Ejmndmeiki dkBi; Which is symmetric and trace-

F(s’h)HF(S’h)'f' sz(s’h),

(S (S g A(S), (28)

7,22

1222224 77 -

X

XI



14 636 M. J. BIJLSMA AND H. T. C. STOOF 56

less and therefore has only the helicity componentsa dislocation loop that shrinks to zero radius. The Volterra
{(2,2),(2;-2),L'}. Next we rewrite the second term term construction shows that one creates a dislocation by remov-

—iFjjeimJmij as ing a volumeV from the crystal. When shrinking the dislo-
cation loop, this volume finally ends up being the volume of
e ——iF | & — d;0) 9] a single atom. In this way one can thus remove or add the
ij&imi~mlj | 91T gz | kT gz | Eimndmnk volume of a single atom, which results in creating a vacancy

or an interstitial. Alternatively, one can take the long wave-
P 90 length limit, in which the dislocation will effectively look
g2 similar to a point defect. However, naively applying the
above procedure yields zero interaction between the point
(35) defects and the phonons because a point defect has no Bur-
gers vector. Indeed, assuming that the wavelength of the
fluctuations of the phonon fields are much larger than the
Gadius of a dislocation allows for the action to be coarse

grained. The physical fields andy then interact with some-
thing proportional to

did,
+ ?Slmn‘]mnj"'

I

X 2 EimnImnk| -

The second and third term on the right-hand side of the
above equation will give an interaction wif{?V, F(2~1),

and F(t") as is obvious from the fact that the contractions

9iFij and  9;F;; annihilate  the components
{(2,2),(2~2),L}. The first term together with the interac-
tion term involvingx;; will reduce to an interaction with the f dXa;
new fields introduced in Eq29), i.e., x¥’. To see this we use v
) However, the above quantity is zero and therefore there is no
9%8ij = di9; = €im1Ime 1k} Ik » (36) interaction with the phonon fields in a first approximation.

and substite this in the first term on the right-hand side of EqWe thus conclude that in order to find an interaction we need

(35). We obtain to have a gradient of the fields and y over the radius of a
dislocation loop. This is analogous to the well-known multi-
) Fij pole expansion in electrodynamics, where a dipole has no
_'J’ dx —7 (€ipa@peqndr) (ekstst v dv) EimnImnk netto charge but interacts with the gradient of the electro-
magnetic potentials. Assuming the physical fields to be
) i slowly varying over the region of nonzero dislocation den-
:'J dx quiapstviav? EkstdsEqriIrEimnImnk sity we can perform a gradient expansion that leads to an
interaction of the form

F,
dx( IpEtyidy J)sktﬁaTa K hB
f €qpiZpCivj (?4 st¥s q f dTJ (2 )2{k2-> ->/ *+kF M - J*}

a.F;
f dX( €qpidp€tvjdy {94”)8kst‘95aqka (37) (40

containing an extra factor &. The defect density is denoted

where we have used by N, J=(3© 3D 3=y are the helicity components of
the defect current density andM ,, is a matrix. If we have

eqndreimndmia= 9 (Sqmdrn = Sqndrm)Vm@nk= J,qk- n defects located &ix("}, the defect densitil, and defect
8) current densityd; are given by

We see that there is indeed only an interaction with(gh8),

(2,—2), andL components oF;; . Together with the expan- NA(X):E g™ s(x—xM),

sion for —iejmndmxinai; these precisely form the fields n

x' M Inserting all this intcS;,;, the interaction between the
dislocations and the physical fields describing the phonon

) = i (n)y(n) _y(n)
modes finally becomes Ji(%) ; 19 XMg S(x—x). (41)

. . dk - - In general there can be both vacancies and interstitials
Sint[F,X,]:|f dff W{(efn' 'x' 22 +ef2" 2y (272 present, and the charge distinguishes between vacancies
(g=-1) and interstitials §=1). Thus, the netto defect
+e|LnX'L)8jmn[ikma|j]* (6] (2D dens?ty N, is in fact the differenc;? beEV\ﬁeen t_he i_nterstitial
, density and the vacancy densi'—N3*', which is con-
+efTVF@ Y —gft EL ))kik,san*mnj served because defects and interstitials can locally only be
created in pairs. The defect density and defect current density
2,1) s 2,—1 — ) R . .
+(efPVF2Y 4 g2 VR therefore satisfy a continuity equation
— el FL) e akokickikmdad- (39) I Ny =i103;. 42)

From this interaction between phonons and a dislocation Up to this point, no specific crystaline symmetry has been
loop we now want to derive the interaction between phonongassumed. However, the explicit form of the interaction is
and a point defect. To do so, we consider a point defect to bdetermined by the symmetry of the crystal under consider-
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ation. This symmetry constrains the coefficiedtsand the Next we are going to translate this equation into a restric-
matrix M. In principle it should be possible to expicitly take tion on the coefficientd in the interaction. In order to do so,
the limit of a dislocation loop shrinking to zero in the inter- we must choose a particular form for the thus far unspecified
action given by Eq(39). The symmetry of the crystal is then helicity basis. On each point of the unit sphere we choose
contained ina;; and J;;, because the Burgers vector can three orthonormal vectors. One in the radial direction, ke.,
only be a lattice vector. There are however subtilities in-the other two in such a way that the vector fields we get in
volved in doing this, and the vect@& and matrixM will this way are invariant under rotations about thaxis. This
therefore be determined from symmetry considerations. Becannot be done for the entire sphere and the points
cause we are especially interested in the behavior of solifk,,k,,k.)={(0,01),(0,0,—-1)} are excluded. Therefore the
“He, we consider from this point on the special case of anly points where Eq(49) is not, by construction, automati-
hexagonally close packedhcp crystal structure. The asso- cally satisfied for rotations about tleeaxis, are indeed these
ciated symmetry group i€g,, which contains rotations two points. We only treatk,k;,,k.)=(0,0,1), because the
about thec axis and reflections in thab plane. The elastic- other point does not lead to any additional restrictions. In this
ity tensorc;jy for this symmetry containes five constants, thepoint we choose

analogs of the Lameonstants\ and u in the |sotrop|c case.

1)_
In what follows we need the field equations k’-)randx €=(1,00),
which follow from the complete actiorsy,+S;,; and are 2
given by e~=(0,1,0,

'S . 2p . (3)— -k
a2F=ZP-(A’-FH?pMJ)—iQT-é&TNA, e”=(0.0.=k. (50

This means that here our helicity basis becomes

R 1 2p i
0.0 ==—Q-|AE+iZlm.] - —R-dd,N,, (43 100
2p k k 1
efi=— 1 0|,
where V2 00 0 ij
P Q" (A B" (1 0
o r/'le c/7lo 1) (44) l1|o
22_— |+ —
To determine the form of the interaction between the &ij ) ! 1.0},
phonons and the defects we calculate the stress tensor 0 0 0/
resulting from a single point defect. We then note that from
the symmetry of the crystal and the fact that a single point 1 —-i 0
defect has no orientation it follows that; has to be invari- 2-2)_ L i 21 0 51
ant under the symmetry operations &f;,, i.e., rotations & 2 ' (5)
around thec axis and reflections in theb plane. Denoting a 0 0 0/

particular symmetry operation by, we get . . .
Each of these three matrices transforms according to an irre-

SikSjio(S %) =0 (X), (45  ducible representation ofg,. Thus, according to Schur's

lemma?? they do not mix under the operatay;, , which

means thaC,,=0 if u# v. We notice that these matrices

SicS01(S™ k) =05 (K). (46)  transform under rotations over an angleabout thec axis
[we are only considering the poif®,0,1)] as

which in Fourier language reads

In the case of a static defect we can solvedgr, using the
field equations fory’. These can be derived from E@3) eh(ﬁ)ﬁeh(ﬁ),
and read
22)(k)—>e'2“e(22)(k)
)_() = k2C . (47) n
eff 2 (k) —e12e? (k). (52

. . . ij
With the notation introduced beforg, anda, are vectors,

andC,,, is a matrix given by Eq(32). Inserting this into the |t now follows that
equation foroy; with F=0, i.e., considering a static defect,

“lie1py— -1
3 =k2éi<1.2)-)?’ _ —ie*i(jz)-Cfl- an, . (48) Thus for infinitesimal rotations Eq49) reduces to
This means that Eq46) translates into i2ae(22 Cy O 0 a22
~ ~ _ 2 2) -1 2,-2) | _
H[SKS)60 (S0 1-[C (S )] 20877 -| 0 G O )| a% =0,
0 -1 a
0 0 Cg

~[&2(k)]-[CX(Kk)]}-a=o0. (49) 64
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This equation has to be valid for all valuesiandj. There- My;d, =vIatkJt = —v2ata.N,. (62)
fore we get
Furthermore, we take the interaction with the transverse part
a??2ct-a?"2c,t=0, fori=j, of the defect current density to be zero. This is justified by
noting that the transverse part of the defect density is not a
a?2Cc ' +a?72C,,t=0, fori#j. (55 hydrodynamic variable. We will come back to this point in
. ) ) more detail below. The total interaction is now uniquely de-
The only solution to these equations is fined in terms of one parametat and given by
a?2=a(272 =0, (56) . 7B dk o R
which means that our interaction in first instance reduces to SnlF.X']=1 fo de (27r)3{a (K°x™+v29:F )Ny}
(63
= = hb dk 24L  Lng* - T*
Sl F.x']1= fo drf (Zw)g{k a~x"Nx+kF-M-J*}. We have now completely specified the interaction of the

(57) point defects with the phonon field. However, only the pho-
_ _ o non field has dynamics up to now. Because of their interac-
Next we must determine the form of the matWk. This is  tion with the phonons the point defects would of course ef-

done by demanding the following equality to be valid: fectively acquire dynamics, but one also expects the point
. ohys, _; ohy defects to behave as dynamical particles if one could freeze
1pd (3P =ipdi((d.u;)"™). (58 out the phonon field. Roughly speaking, they would behave

If the displacement field is single valued and continuous ev&S Particles in a periodic potential that could tunnel from one

erywhere, the left- and right-hand side of this equation ardMinimum to an_other. Therefore we have to add a dynamlcal
two equivalent expressions fofid dp. Therefore it should L€' for the point defects. The most general dynamical term
be valid when there are only point defects present. Howevefhat describes propagating behavior of the defects is

when there are dislocations present E5§) can be shown to 1 (hB

be false. It is therefore not at all obvious that the equality is Sl {xX™M}]=—= f dr>, Xf")(mijﬁi)x(”). (64)
satisfied at this point, because we started out with a descrip- 2 Jo n '

tion including dislocations. Indeed, the above requiremen
actually gives a constraint ddl, as we will see below. We
first calculatei pd,{(d;u;)P™9 and find

II'he form of the anisotropic massg;; is constrained by the
symmetry of the crystal. The field equations are now found

by varying with respect t&, ¥, and the positiong™ of the

ipd {(3u)PYS=—pa.cit{oy) defects, and are given by
dk i L. K2 L2 L
:_pf (277)38”( XCiik]i(e(k})'&i<F> é’TF:ZP A'-F- F‘fzaé)TNA _IQT'aﬁrNAi

+K2EE 94X

. .2 i
N : A’F—ik—gﬁéaTNA)—PRéaTNA,
:_J Weik~X{k2<FL'>
L aimijxj(n):_ian(n)(‘/?(?ré’iFL |x=x(”)_‘92(9iX,L|x=x(”>)-
—p(V2a~d {Na) +KkMy(J;))}, (59 (65)

where we used the equations of motion in E8), the com-  The equations of motion fax(" can also be written as
pleteness relation for the helicity basis in writing

2 . —
Dt 2 D D)L 2 A2 " o™= =1q"m; 1 9;By ol iexm (66)
€ Q' +6&-R=(&;" 61 +& - &7 CrimnEmn where
— (2
_Cijmnegm)w L
Bi= |5+ a‘a") 67)
(1 (2 _(x(1) z(1 =2(2) (1 (2 ij= = ij 2 |-
& P+é&-Q=(&"- &7 +&7 - &) crumninn Y, AR
=Cijmnéfnl,)1, (60) This way of writing it will prove useful when deriving the

, hydrodynamic equations of motion in Sec. Il C.
and the fact that onlyh andei"j are traceless. If we compare
the result in Eg. (590 with the expression for B. Microscopic picture

ipai((3,u;)P™S, which reads , o _
An alternative approach to the derivation of an action

. dk . , which describes the coupled dynamics of the point defects
|pai<((?fui)phys>:(9i<pi>:_J We'k'xkzﬂz" ), and the phonons is to start from a microscopic action. It
(61) describes the atoms constituting the crystal by their positions

we see that {(d;u;)PVS = a,((d,u;)PVS if yH=nW+y® (68)
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relative to the siten()} of an ideal reference lattice and hp P hp 1o A
assumes an isotropic, short-range interactitghy® —y{)|) S[Ui]ZJO de 5 (U7 + S ufeijq U
between the individual atoms. In this approach, it is clear

that the hydrodynamic momentum densitygisipd,u and, vgp ~
as we will see below, what approximations we implicitly +2 jdr —Txfn)(ﬁfmi,—af)x}”)+q(“>voBijui‘}
made when we wrote down the free action of a point defect n
in Eq. (64). In first instance, the microscopic action reads X (X", 7)+qMvep[d Xi<n>](9ip7j[(9 u}’h
ip 1 2 . i
stul= [ drl 5 S ptou2+ 3, vy -y X (X", 7))+ Eef, (79)
i i<j
(69)

To explicitly include the point defects, we then decomposé/here we have neglected contributions withn, assuming
the displacement field into a part describing the phonons antie defects to be sufficiently far apart to interact only through

a part describing the defects the phonon field. Fu.rthermorEc denotes thg energy asso-
ciated with the creation of a defect. The microscopic action
U= y(phy (i), def (70) gives certain relations between the coefficients in this action.

However, renormalization changes these coefficients and we
where the defects are located at the positipd®(7)}. In-  believe that it does not preserve the relations between them.
serting this decomposition of the displacement field into theTherefore they have to be treated as independent. This is
action we get important when trying to establish a connection with the ac-

tion in terms of the stress tensor, as found in the previous

(8 1 (i).ph ().deh 2 section, which can be achieved by means of two Hubbard-
S[U]—fo dr 2 E p(au) PN g M- Stratonovich transformations and following the same route
' as before by introducing the gauge fields. The result turns out
‘ , to be identical and shows in particular that there is indeed
+> V(|y(')—y(”|)] : (71)  only an interaction between the phonons and the longitudinal

= part of the defect current density.

Since the positions") correspond to the equilibrium posi-
tions of the crystal _ f[he total potential C. Hydrodynamics
V({xOh) ==, v(|x"—x1)|) satisfies . _ _
We can now derive the hydrodynamic equations for a
VAN +uDh) =v({n} + o[ (u)2]. (72 crystal with point defects. The number of hydrodynamic
modes is fundamentally related to the number of conserved
For slowly varying displacements, the quadratic terms equalguantities and the number of broken symmetries. The con-
(1/2)f dxujjcijuy - However, we cannot use this long served quantities are the total mass, the total momentum, and
wavelength result to find the interaction between thethe netto number of defectd, , the difference between the
phonons and the defects because defects cause fluctuationsimmber of interstitials and vacancies. The associated conser-
u on the scale of a few lattice spacings. To proceed wevation laws result in five hydrodynamic modes. In principle
therefore assume thaf®® only changes significantly over a we also need to take into account energy conservation, which
distance which is much smaller than the typical wavelengtiwould yield an additional thermal diffusion mod&How-
of a phonon. Moreover, in the continuum limit we can al- ever, for our purposes it is relatively unimportant and we will

ways write for the displacement of a static defect not consider it here. Note, however, that we can obtain the
Hamiltonian from the action and therefore in principle also
uidEf(y):aif(y), (73 include this mode into our considerations. In addition to the

conservation laws, translational symmetry is spontaneously
because a defect is defined by a nonzero value Ofroken, which results in three hydrodynamic Goldstone
vo=Jdxuji, i.e., the volume that is removed from or added modes. Hence we expect to find a total of 8 hydrodynamic
to the crystal due to the presence of a defect. The fundtion modes. To find the equations of motion describing these
thus satisfiesfdyd*f=quo, where g is either-1 or +1  modes we first identify the hydrodynamic momentum den-
depending on whether we are dealing with an interstitial or &ity g; with <Di>=ip<(3rui)phys), which is obvious from a
vacancy. Note that in the isotropic cablg/—x)|y—x|™*,  microscopic point of view because locally it is just the mo-
wherex is again the location of the defect. Furthermore, tomentum of the particles of mass situated on the latice
first order in the velocity we can write for a moving point sites. It is important to note that it includes the momentum of
defect the point defects, because we have constructed the physical
de dot def guantity (aTui)p'.‘yf the_lt way. In the remginder of this ar.ticle.
(Y, )= U [y=X(1)]=—adx9;ui~. (74  we do not explicitly include the averaging brackets, since it
unneccessarily complicates the notation.

Expanding the action in Eq71) up to second order in the We can immediatly write down the equality

displacements and making use of the above results the effec-
tive action describing phonons and point defects is found to
be 579i:¢9j0'ij . (76)
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IIAin Eqg. (9). In a perfect crystal without defects, the hy-
drodynamic modes are the phonon modes, and their equation
of motion is found by taking the time derivative of the above

This equation is nothing but the constraints found in Sec. A (ﬂl Sp

equation

929i= ;0,05 . (77

Therefore we need to know,o;; which is easily calculated
as

g

+82-8)0,N
K-

g

+82.8)0,N

2y ek ?F+k%6? - 9,x")

dk
(2m)°

LS -
e'k'x(zcijmé(k})'A' ' F_icijkl(éﬁ)'ﬁé

ei

|
dk ik, , o
(2m)3 X( - 7Cijklgl_|cijkl(‘/?e%>'a
|

1
:_Cijk|<;5kg|—5k|5i3i), (78
where we used the equations of motion forand ', the
continuity equationd,Ny=i4;J;, the expression foB;; in
Eq. (67) and the equality

2 et (11
_ 2D AT BP—2 gy T E(@2-)D
Cijki€ - A" - F=Kkcjj k F(oY+ F
2 ijkl =kl ijkl VI V2
]
= k2 j1 KiKmF i
= — ik Ciji iKmF mi= —iKCijia 91 -~ (79)

Thus we find forg; the following equation of motion, de-

M. J. BIJLSMA AND H. T. C. STOOF

. EimndmIn .
O'ij:—lCin; —52— —(?2—)—IBK|NA. (82)

To find the total of eight modes, instead of the six given
by the equations above, we need to include point defects into
our hydrodynamic equations, as was first noted by Martin
et al}* Thus, we have an additional hydrodynamic variable,
the netto defect densiti, . Note that the transverse part of
the defect current density is not a hydrodynamic variable
because the momentum of the defects is not conserved. We
now want to write down the equation of motion for
Ny=2,qM8(x—xM). Using the equations of motion for
the point defects, we get

5 B .
a,}n: 5(x—x(”))—§n: g {x"x M g9; 8(x—xM)
%M, 8(x—xM)}
:E q(n){Xl(n)Xjn)ﬂ|(9J 5(X_X(n))
n

+ imﬁlﬁjBka&i 5(X_X(n))}. (83)

To find the hydrodynamics of the netto defect denblifywe
have to average Ed83) over the initial conditions. In an
isotropic gas in the absence of external forces, the term pro-
portional to = xMx{" 5(x—x) would be the only term
present, the average of which is just the pressure temgor

A closed set of equations giving the linearized hydrodynam-
ics would then be found by writing down a gradient expan-
sion for 7j; in terms of the hydrodynamic variables. In our
case to lowest order the pressure tensor can only be a func-
tion of SN,=N,—(N,) because it is the only variable
which is even under time reversal, and we get
mij = Mj; 5NA+(’)(6N§). Neglecting the terms quadratic in
the fluctuations we find fobN, the linearized equation of
motion

(912-NA:_Mijé]iajNA—Fimi}laiajBklUH1 (84)

whereB,;— B (N,). Note that if we had naively introduced
the dynamics of the defects into our theory by adding a La-
grangian density for the defect density instead of the defects

scribing the phonon modes and their interaction with the£=—%NA([Mij&iaj]‘1af+ 1)N, as was done by Stoof

point defects:

g
539i:_Cijklﬁj(<9k;—3k|3m\]m)- (80)

et al,'? we would have obtained the same equation by vary-

ing the action with respect td, . However, our approach is

more fundamental and illumates clearly the underlying phys-
ics of this Lagrangian density. The hydrodynamic equations
are usually given as a set of continuity equations, i.e., with

We can split the above equation into three continuity €quajrs; order time derivatives. Therefore we rewrite E8g) as

tions as
a7'5p:ié’igi ’
9,91 =l1g{jk 90k,

) [ 6p  €imndmIn
5rgi:|CijkI‘9j[;< 7 + 7

)—Bk,NA]. (81)

Note that it follows from Eq(81), combined with the conti-
nuity equation forg; , thato; can be written as

a pair of continuity equations

ﬁTNA:i&iJi y
9i=101| — 7= Na=I——5—Buou . (89

We stress that this is actually only an equation for the lon-
gitudinal part of the defect curredt= 99, /aZJj . The trans-

verse part is not a hydrodynamic variable and is anticipated
to relax to zero on a microscopic time scale. This completes
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our discussion of the dissipationless hydrodynamic equaFurthermore, we write the hydrodynamic equations in real
tions. We have obtained a set of hydrodynamic equationime, which amount to the substitutioah— —id;. As a re-
describing phonons, point defects, and their interaction for gult the hydrodynamic equations for an isotropic three-

hcp crystal. They are given by Eq&1) and(85). dimensional crystal with point defects are given by
It is interesting to note that these equations can also be
derived from a hydrodynamic action of which the Lagrang- dp=—0d9i,

ian density is given by
Y= —&jjkd; 9k,

‘sza-ij P +Cijk| o-k|+|0-k|Bk|NA +2/~L I 4 .
PO hgi=— 9i0p+ —eidt— —(m+N)a-diNy(,
) p V2
lN i +E.(N 86
2 A m”(9|(9j € ar ( ) atNA:_ai\]iy
usingMij&i&j=ECmi}1&iaj . From the associated action, the 9Ji=—C,3,8p—CpdiNy (90)
i pYi i '

hydrodynamic equations describing the phonon modes and

their coupling toN, are found by writing down the field Wwherec,=[ma-/v2](4x+4u) and cy=M—2m(a")?(4\
equations for oj; and defining g; by the constraint +3u). These are indeed the three-dimensional generaliza-
d,0;=d07; . Note that in Eq(86) the term quadratic inr;  tions of the equations found by Stoet al. for the two-

is justp?/2p+ Uijci}kll oy » Which is the free part of the action dimensional isotropic cristal without dissipation.

in Eq. (8) with the substitionp;— d,07; /3. Therefore, Eq. In order to give a realistic description of the system, we
(86) is the analog of the hydrodynamic action describingn€ed to include dissipational effects into our hydrodynamic
density fluctuations in a normal flufd:?* equations. Although there is a coupling between the phonon

For completeness we write down the total set of hydrodydield and the defect density and thus a “shake up” of the
namic equations which as expected amount to a total of eighithonon field if a defect moves, up to this point there is no

continuity equations: real dissipation because the bilineair coupling between the
phonon and the defect modes causes mixing of these modes,

3,0p=10,Q;, but no dissipation. Therefore we include dissipation into our

hydrodynamic equations in the standard way by first expand-

3,9 =l1gijkd9k, ing the dissipative part of the stress tensor to linear order in

the conjugate forces and requiring the coefficients to be com-

_ I [30p € mndmUn patible with the symmetry of the system under consideration
afgi:'cijklaj:; (O'T’L T) - BkINA]’ and then in turn expanding the conjugate forces in terms of

the currents®**25A particularly clear treatment of this stan-
INy=i3,J;, dard method is given by Baig and Schmidt® Quite gener-
ally, our hydrodynamic equations have the form
Mjd;d); im;; 9,9
2 MNa——2

&T‘]i:iﬁi( Bklo'kl)- (87) dSp=—3d9i,

To check heuristically if we ended up with the right equa- Wi =~ &ijkdiGk,
tions we write down the hydrodynamic equations in the case
of a isotropic crystal and compare these to the ones found for
a two-dimensional isotropic crystal by Stoef al? In the

09i=—dj(aij+o7),

isotropic case;j , M;;, andm;; are given by dNp==didi,
=— 9 + P
Cijki =\ 8ij 81+ m(Sik 6y + 8t Ojk) 0pdi= = 0;(mij +mip), (1)
where the superscrigd denotes the dissipative part of the
Mij=Mdj, “stress” tensors, and the nondissipative part has already
_ been determined. Roughly speaking the variallesaind J;
mjj =md; . (88) are associated with the three broken symmetries, whereas
This implies the equalities gi» N, account for the conservation of mass, momentum,
and defects. The most general dissipative terms allowed by
Sp  (AN+2u) the requirement that the time reversal symmetry of the dis-
Cijk1 9j9k9| F: Tf% P, sipative currents is opposite to the associated hydrodynamic
variable are given by
n_ E 1
Cijki aj‘?kslmnamp_é,f = P €imndmYn, O-i?:_ 77i(j1k)l Ag + 51(11)(7k3k1

4 1
CijklBkI&jNA:E(M"_)\)aLaiNA- (89 Wﬁ:; S & g+ 8 LY aJy (92
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where we used that; contained only a longitudinal degree solid phase, due to the presence of defects. This means that
of freedom. The specific form of the parameters is deterwe also have to split the defect current densltyinto a
mined by the discrete symmetries of the system, which in th@ormal and a superfluid part, i.el;=J"+J>. Physically,
case of the hcp crystdHe form the grouZg, . It should be  this means that the superfluid current density can be caused
noted that in Stooét al. it was incorrectly assumed that the both by the motion of defects and by lattice vibratidAg\s
transverse part of the defect current behaves as in a gas aadesult we end up with the following hydrodynamic equa-
diffuses to zerd? As we have seen, the correct behavior oftions describing supersolitHe:

the transverse part of the defect current is a relaxation to zero

on a microscopic time scale. hép=—3,9;,

. SUPERSOLID HYDRODYNAMICS %=~ &ijkd; Gk,

In view of the exciting experiments by Lengua and Good- _ A [dp emndmn
kind, our aim in writing this paper was also to formulate the %9~ = Cijadj) 7| Tz T2 |~ BiiNa
hydrodynamic equations of supersofttie. Hence we have

come to the point where we have to include into our hydro- + a0l + L 90+ 07 3,00 Iy— )
dynamic equations the superfluid degree of freedom. From 1
microscopic theories developed for superfluid liquids and + 2/ 08 (uS—ph
" ) &y okpa(vr—vy),
gases it is well known how we should proceed to include P

these additional degrees of freedom into the hydrodynamic
equations for the normal phaé’ First, the density is split INy=—3d;J;, (97)
into a normal parbi”j and a superfluid palzi?j , satisfying

-1
s, on 8di=—0; aiajM”N _ Ao dByioy | + 728,000

P5ij:Pij+Pij- (93 T T 72 A 52 PPkl Okl | ™ Wi 0i0jU

Note t_hat the tensorial nat_ure of .the densmes.|s of impor- +§(4)<9i51~]?+5(5)0i31(3f—3?)

tance in the case of an anisotropic hcp crystalline structure.

Second, we split the total momentum density of the system 1
: n.n : s s : +—§(6)(9A(9A .5( S__ ”)
into a normal parp;;v; and a superfluid pagjv; according P i%iPjk\Uk~ Vi)
to
B
gi=pisjvjs+pi'}v?=pvin+pisj(vjs—v?), (94 atvf‘:—p—§8i5p+/3A(9iNA+ﬁi§}pﬁjvﬂ+5(8)3#91'3?

where the superfluid velocity is purely longitudinal, i.e.,
sijkajv§=0, because it is proportional to the gradient of the
superfluid phasebs.

Furthermore, the dissipative terms have to be generalized
for an anisotropic superfluid, and the dynamics of the super-
fluid velocity has to be determined. Following the standard
treatment, the dissipative part of the stress terts@rbe—
comes

(10
+¢96,0,(35— I+ Tﬁiﬁjpfk(vi_ Vi),

Ba 11
0= — ?ﬂiNA'f‘,Bp(?i Sp+ il v+ £129,0,37

1
{90339+ S 0o} -0},

1
on=niudl + 4 adet =4 dpp(vi—vf). (95 The large number of dissipative terms makes these equations
p look rather intricate, but in the limik—O0 only the nondis-
The last term on the right-hand side is the most general termaipative terms remain and a considerable simplification oc-
containing the conjugate variable of the phase field, i.e.curs, as we will see below. They are easily seen to represent
r?igisEﬁipiSj(v]n—v-s).13‘14’25Furthermore, the dynamics of the ten equations for the ten unknown quantities
superfluid phase field is basically determined by the JosephSp,¥; ,v{',v5, Ny, J;, andJ?, realizing that?, J°, andJ!
son relation and is given by have only one degree of freedom afidhas only two de-
grees of freedom.
PRSP +BadiNy+ ;LD o0
WIT T pZ AOPT PG A1tk 7 bk IV. COMPARISON WITH EXPERIMENT
® (10 < s n We now want to compare our results with the equations
+{700;di+ Tﬁiajpik(vk_vk)1 (96)  used by Lengua and Goodkind to fit the data of their experi-
ment in which they may have observed the supersolid phase
whereB,=p*(du/dp)|t,n, is the isothermal bulk modulus, of “He X Their phenomenological equations describe a set
u is the chemical potential per unit mass, andof two coupled harmonic oscillators. We show below that
ﬁAZ—f?M/(?“Mp,T- By adding the last three terms in the these equations essentially follow from our hydrodynamic
right-hand side of Eq96) we have also included dissipation. equations describing a normal crystal with defects.
However, at this point we have to realize that we were al- To find the mode structure present in our dissipationless
ready dealing with a two fluid hydrodynamics in the normal hydrodynamic equations, it is convenient to rewrite B4l
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in terms of the longitudinal part of the defect current densityThese equations still contain four separate modes. However,
J; . After taking the time derivative of the second equation ofsolutions to these equations hawéxk?. Therefore we es-

Eg. (85) and inserting the first equation we get

2 ml]l iJ] . M
dgdi=9; 7— Byl dioy +

|](?|‘9j
- 7| (99

To obtain a closed set of equations we then use the real time

version of Eq.(78), which expressesy; in terms ofg; and

N, . We find
5 milaﬂ?J 1
9t Jdi= 9, BmnCmnkl ;akgl_BklaiJi

sentially find the equations

1 R
aggm = — ;kz)\ﬁg(m>+ k2aM(k)Jt,

. (m) (g
atZJL:kimijkj ﬁ,(k)\]l‘-l—a ( )g(m) .

(104

These indeed describe a set of coupled harmonic oscillators
and agree with the dissipationless limit of the equations used
by Lengua and Goodkind to interpret their data.

If we now add dissipation, the modé§™ no longer di-
agonalize Eq.(80). However, there will be a new set of
damped phonon modes with imaginary eigenvalues. Pro-
ceeding as before, we can again eliminate two modes. We

We now turn to Eq.(80) which describes the phonon then find a coupled set of damped harmonic oscillators that

modes. First we define the eigenvectsf® (k), n={1,2,3,
of the matrixc;;, k;ky as

Cijnr K KA (K) = kN2 (K)AM (K). (100

now precisely agree with the equations used by Lengua and
Goodkind.

To conclude this section, let us consider the dissipation-
less hydrodynamic equations describing an isotropic super-
solid. The transverse phonon modes then decouple, and for

The six phonon modes of the ideal crystal are thus given byhe longitudinal part we find schematically the equations

AM (k) @O=k9) with w2(k)=k2\2(K). In order to find

the equations used by Lengua and Goodkind we first expand

gi in terms of the eigenvectorsA("(k), ie. gj=

S,0M(K)AM(K). We then writeJ;=J"(k, 7)k; and insert
these expressions into E@O) and Eq.(99). After contract-
ing the first equation with the eigenvectdxsand the second

with k;, this leads to the following equations in Fourier

space:

1, 5. .
gty =— ;kz)\ﬁ(k)g(”)Jr k?a(™(k)J",

1
92)t=— mi; kik; B(k JL+p >« (M (k) g™,
(101
where we defined a(™(k)=Bjc;kA™  and
B(k)E(Mijkikj)/(mijkikj)_BijCijk|Bk|. FlnaIIy we con-

sider one particular mode, say, and eliminate the two
modes withn#m. After Fourier transforming also the time
variable the equations faj™ with n#m are solved by

<n>(|2)JL

gV=—m—m .
w?—K>\ip

(102
Inserting this into Eq(102) we find

~ w?g M= %kzxzmg<m>+ K2a(™(k)Jt,

~ 1 ~
- (1)2\]L: - mij klkj{ﬁ(k)JL‘F ;am‘)(k)g(m)

1 aM(k) ™ (Kk)k2J"

+— . 103
p n;m w?— kz)\ﬁ/p ] (109

5 AN2u 4( . L 5
21 0P _ 5 =Y a p
at(NA)_ﬂ P V2 NA)’
Cp Ca
B
p
-4 B
oo al ” ] (5p> 10
T ‘JIS — 0O BA B NA . ( 5)
;2' p

The hydrodynamic modes can in principle be found by di-
agonalizing the two matrices. If we are in the normal phase,
the first equation remains unchanged, whereas the second is
absent. Clearly we then have four propagating sound modes.
In the supersolid phase the second equation is also present,
and we find two second sound modes in addition to the four
first sound modes. These are, however, not accurately de-
scribed by Eq.(105), because for that it is essential to in-
clude temperature fluctuations, which we have neglected
throughout this article. Nevertheless, it is clear from the
above that to show experimentally the existence of a super-
solid, it would be very convincing if one observes an addi-
tional resonance due to one of the modes associated with the
superfluid degrees of freedom.

V. CONCLUSION

We have derived the hydrodynamic equations for the
solid and supersolid phases Hfle. It is well known that to
describe the normal solid phase, it is essential to include
defects into the hydrodynamic equations to find the right
number of modes predicted by the conservation laws and
broken symmetries. Because we know that there are six pho-
non modes, the defects are usually assumed to have diffusive
dynamics, giving a total of & 1=7 hydrodynamic modes.
This is then in agreement with the-8L modes one expects
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from the usual counting argument, excluding a thermal dif-end up with what one might call a four fluid hydrodynamics
fusion mode. However, Lengua and Goodkind in their ex-instead of the usual two fluid hydrodynamics. As a result we
periment observe instead propagating behavior of the defeeind up with two second sound modes instead of one. We
mode. This brings the total number of hydrodynamic modegxpect on general grounds that including temperature fluc-
to 6+2=28. Therefore we introduced another hydrodynamictuations leads to one of these modes becoming propagating
variable, the longitudinal part of the defect momentum. Wewhereas the other will remain diffusive. Given these results it
believe that this is justified by noting that, when counting theshould then be possible in principle to identify experimen-
number of conserved quantities, we should also include th&ally an additional resonance in the attenuation and velocity
conservation of defects. Hence the continuity equations foof sound due to the coupling of these modes to the phonons.
N, andJ; are roughly speaking associated with respectivelyin our opinion this would be a more convincing experimental
a conservation law and a broken symmetry. Indeed, ouproof for the existence of a supersolid phase than the analysis
equations reproduce the set of coupled wave equations whighade by Lengua and Goodkind.

were used by Lengua and Goodkind to interpret their data,
and lead them to the identification of the observed collective
mode as a propagating defect mode.

Furthermore, we have considered the hydrodynamic equa- We thank Steve Girvin for many stimulating and helpful
tions of supersolid*He by allowing both fluctuations in the discussions. This research was supported by the Stichting
defects density and lattice vibrations to lead to superfluidvoor Fundamenteel Onderzoek der Matéf®M) which is
motion!? If we include these superfluid degrees of freedomfinancially supported by the Nederlandse Organisatie voor
into our hydrodynamic equations in the standard way, wéNetenschappelijk OnderzoglWO).
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