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Condensate and final-state effects in superfluid4He
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We present high-precision measurements of the dynamics of single atoms in superfluid4He atT51.6 K and
saturated vapor pressure. The measurements were taken on the MARI instrument at the ISIS neutron-scattering
facility, Rutherford-Appleton Laboratory. From the measurements we obtain a condensate fractionn056.0
62.0% atT51.6 K. The final-state effects~FSE’s! in the atomic response are also determined from the data
in the form of a final-state broadening function,R(Q,y). We find that this FS function is the same in the
superfluid atT51.6 K as that determined previously in normal4He at T52.3 K. If we reanalyze the data
assuming that the superfluid has no condensate, i.e.,n050, then the data requires that the normaln(k) change
dramatically betweenT52.3 K andT51.6 K. Since such a change inn(k) is physically unexpected, given
thatkT is much less than the zero-point energy, the data requires that a new contribution, such as a condensate,
entern(k) in the superfluid.@S0163-1829~97!04946-1#
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I. INTRODUCTION

Bose-Einstein condensation plays a special role in qu
tum physics. Bose1 and Einstein2 proposed that a gas of non
interacting bosons would condense into a state characte
by macroscopic occupation of one single-particle quant
state. London3 suggested that this condensation is the ori
of superfluidity in liquid 4He at temperatures belowTl

52.17 K. Superconductivity in a wide spectrum of materi
is now identified with condensation of paired fermions~com-
posite bosons!.4 Spectacular bose condensation in whi
nearly the entire system is condensed into a single ato
state has recently been observed in trapped, dilute gas
alkali atoms.5,6

Liquid 4He remains the most accessible pure bose liq
in nature and a key model system.7–9 Because of the strong
interaction between the4He atoms in the liquid, particularly
the repulsive core, the fractionn0 of atoms that condens
into the zero-momentum~k50! state is small, approximatel
10% atT50.10–16 The clear verification that there is indee
a condensate and the accurate determination ofn0 remain an
important goal. Taking advantage of significant improv
ments in neutron source intensity and instrumentation,
present accurate data and analysis methods which we be
show unambiguously that superfluid4He has a condensate
with a condensate fractionn0 5 6.062.0% atT51.6 K.

Miller et al.17 and Hohenberg and Platzman18 proposed
that the condensate fractionn0 could be observed in the dy
namic structure factorS(Q,v) of superfluid 4He. Essen-
tially, in neutron-scattering measurements ofS(Q,v) at high
wave vector (Q) transfer, the energy transferv is Doppler
560163-1829/97/56~22!/14620~11!/$10.00
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broadened by the momentum distribution,n(k), of the atoms
in the fluid. When there is a condensate, the fractionn0

5n(k50) of atoms in the condensate contributes an ‘‘u
broadened’’ peak toS(Q,v). This peak appears inS(Q,v)
at v5vR wherevR5\Q2/2M is the free, stationary, atom
recoil frequency andM is the atomic mass. Expressed in th
y-scaling variable,y5(v2vR)/(\Q/M ), the peak appears
at y50. The atoms struck by the neutrons recoil in the flu
If their interaction with their neighbors is neglected, denot
the impulse approximation~IA !, n0 can be extracted directly
from S(Q,v).

Early measurements ofn0 using neutrons~up to 1976! are
summarized by Martelet al.19. These measurements yielde
a wide range ofn0 values. This is because the interactions
recoiling atoms with their neighbors in the fluid, denot
final-state effects~FSE’s!, are not negligible, but rather con
tribute significantly to the observedS(Q,v). Gersch and
Rodriguez20 presented a systematic discussion of FSE’s
S(Q,v). In their formulation, FSE’s are accounted for via
broadening functionR(Q,y), to be convoluted with the IA to
obtainS(Q,v).

Sears21 developed a formulation in which FSE’s appear
additive corrections to the IA. Based on this formulation, a
using neutron-scattering data in the rangeQ;10 Å21, Sears
et al.10 obtained values ofn0'13.962.3% andn0'10.9
62.7% atT50 and saturated vapor pressure~SVP!.

Sokol and collaborators12–16 made an extensive series o
pioneering measurements at higherQ values (Q.20–30
Å 21), using the first spallation neutron source IPNS at A
gonne National Laboratory. From these measurements a
14 620 © 1997 The American Physical Society
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56 14 621CONDENSATE AND FINAL-STATE EFFECTS IN . . .
densate fractionn051062% at T50 and SVP was deter
mined, as well as the temperature and pressure depend
of n0 . In this case, the convolution approach of Gersch a
Rodriguez and the FSE functionR(Q,y) calculated by
Silver23 were used to account for final-state contributions

Taking advantage of the increased beam intensity at I
and the improved instrumental resolution of MARI, we ha
recently presented precision measurements of the dyna
structure factorS(Q,v) of normal 4He at T52.3 K and at
SVP. From the data, bothn(k) and the Final State broaden
ing function R(Q,y) in normal 4He were accurately
determined.22 The momentum distributionn(k) in normal
4He at SVP differs significantly from a Gaussian, with lar
occupation of the low-lyingk states. The extractedn(k)
agrees well with theoretical calculations. The
calculations24 also show thatn(k) for k.0 changes little
with temperature, as might be expected for a cold quan
liquid in which the zero-point kinetic energy (; 15 K! domi-
nates the thermal energy (; 2 K!. TheR(Q,y) is similar in
shape to those calculated by Silver25 and by Carraro and
Koonin,26 but is less peaked and broader than the calcula
R(Q,y)’s.

The aim of this paper is to determine bothn0 andR(Q,y)
accurately in superfluid4He (T<Tl). We have made preci
sion measurements ofS(Q,v) in the wave-vector range 1
<Q<29 Å21, in which FSE are not negligible. The data a
presented asJ(Q,y)5(\Q/M )S(Q,v) wherey is the scal-
ing variable and analyzed using a method developed
Glyde.27 Assuming thatn!(k), the momentum distribution o
the k.0 states above the condensate has the same sha
n(k) in the normal4He at T52.3 K, we determinen0 and
R(Q,y) in the superfluid atT51.6 K. We obtainn056.0
62.0% and anR(Q,y) that is the same as in the norm
phase. In a second analysis of the data, we assume that
is no condensate (n050) and thatR(Q,y) is the same atT
51.6 and 2.3 K, and determine a ‘‘normal’’n(k) at T
51.6 K. We show that this normaln(k) is unphysical and
interpret this as definitive evidence that there is a conden
in superfluid 4He at SVP belowTl .

In Secs. II and III, we discuss the method of analyzing
data and the experimental details, respectively. The res
are presented in Sec. IV where we particularly test the s
sitivity of the results to variation of analysis assumption
The results are discussed in Sec. V.

II. THEORETICAL BACKGROUND

At high momentum transfer (Q> 10 Å21 in helium!, the
incoming neutron scatters from a single atom. In this lim
the observed dynamic structure factor,S(Q,v), is well ap-
proximated by the incoherent structure factor9

Si~Q,v!5E dteivtSi~Q,t !, ~1!

where the intermediate scattering function,

Si~Q,t !5^e2 iQ•r ~ t !eiQ•r ~0!&

5e2 ivRt^Tte
2 i ~\Q/M !*0

t dt8kQ~ t8!&, ~2!
nce
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describes the motion of a single atom in the fluid. Herer is
the position of the atom struck by the neutron,\vR
5(\Q)2/(2M ) and vR5\Q/M are, respectively, the free
atom recoil energy and velocity, and\kQ5\k•Q/Q is the
momentum of the struck atom alongQ; ^ . . . & indicates a
thermal average. The second expression is useful at s
scattering times,t, ~high Q andv), andTt is the time order-
ing operator.

At high Q, Si(Q,v) andSi(Q,t) are approximately inde-
pendent ofQ if expressed in terms of the wave-vector va
able y5(v2vR)/(\Q/M ) and its conjugate variables
5(\Q/M )t, respectively. The approximatelyQ-independent
forms areJ(Q,y)5(\Q/M )S(Q,v) and

J~Q,s![eivRtSi~Q,t !5^Tse
2 i *0

s ds8kQ~s8!& ~3!

with

J~Q,y!5E ds eiysJ~Q,s!. ~4!

We present all data in the formJ(Q,y) in this paper. In Eq.
~3!, kQ(s) is the wave vector of the struck atom after it h
traveled a distances5(\Q/M )t from the scattering event
At high Q, the struck atom travels a short distances in the
fluid. In the IA we assumes is so short thatkQ(s) at all s can
be approximated bykQ(0) at s50. This means that all col-
lisions with neighbors in the final-state which changekQ are
ignored. In this caseJ(Q,s) in Eq. ~3! reduces to

JIA~s!5^e2 ikQs&. ~5!

The one-body density matrix~OBDM!, i.e., the Fourier
transform of the momentum distributionn(k), is

n~r !5
1

n
^C1~0!C~r !&5^e2 ik•r&. ~6!

Comparing Eqs.~5! and~6!, we see thatJIA(s) is the OBDM
for displacements ofr alongQ, k•r5kQs, i.e.,

JIA~s!5n~s!5n~r•Q̂!. ~7!

For a spherically symmetric fluid,n(s) and n(r ) are the
same function. The Fourier transform ofn(s),

JIA~y!5n~y!5E ds eiysJIA~s!, ~8!

is the longitudinal momentum distribution n(y)
5*dkxdkyn(kx ,ky ,kQ) for momentum variabley5kQ5k
•Q̂ alongQ.

When final-state interactions are important, the interme
ate functionJ(Q,s) can be formally expressed in terms
JIA(s) as

J~Q,s!5JIA~s!R~Q,s!, ~9!

which defines the final-state functionR(Q,s). From Eq.~4!,
the observed scattering function is

J~Q,y!5E ds eiysJIA~s!R~Q,s!. ~10!
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In the following section, we introduce a model forn(k). This
consists of a condensate component plus a ‘‘noncondens
component arising from the states withkÞ0. The n(k) is
Fourier transformed to obtainn(s)5JIA(s). As noted, at
high Q the scattering time ands are short. ForR(Q,s), we
use an expansion in powers ofs up to s6. J(Q,y) is then
obtained from Eq.~10! and fitted to experiment to obtainn0
and the coefficients in the expansion ofR(Q,s).

Model of n„k…

When there is a condensate we have a macroscopic o
pation of thek50 state and large occupation of states w
very low k. This leads to long-range components inJIA(s)
5n(s). To describen(k), we introduce the following model

n~k!5n0@d~k!1 f ~k!#1A1n!~k!. ~11!

Heren0d(k) is the condensate contribution and

n0f ~k!5
n0Mc

2\~2p!3n

1

uku
cothS c\uku

2kBT De2k2/~2kc
2
! ~12!

describes the high occupation of low momentum states
sulting from the excitation of quasiparticles out of the co
densate and the coupling between these quasiparticles
phonons in the range 0<k< 0.7 Å21. The first two terms in
Eq. ~11! are clearly terms inn(k) arising from the conden
sate and are proportional ton0 . In the expression forf (k), c
is the speed of sound in liquid helium andn5N/V is the
liquid density. The functional form off (k) can be derived
directly8,9,28 at low k and is given by the terms in Eq.~12!
except for the Gaussian. We have multiplied the kno
terms by a Gaussian in order to cut offf (k) at higherk since
f (k) must terminate at the end of the phonon region atk.
0.7 Å21. We have setkc50.5 Å21, which is a parameter in
the model. We will test the sensitivity ofn0 to kc .

The termA1n!(k) describes the momentum distributio
for the k.0 states above the condensate uncoupled to i
central assumption made here is that thisn!(k) has the same
functional form asn(k) in normal 4He. For n!(k) we use
the accurately determined22 momentum distribution of nor-
mal 4He atT52.3 K. Thisn!(k) is conveniently expresse
as the Fourier transform ofn(s), given by

n!~s!5expF2
ā2s2

2!
1

ā4s4

4!
2

ā6s6

6!
G ~13!

with ā250.897 Å22, ā450.46 Å24 and ā650.38 Å26.
This expression forn!(s) is correct up to termss6 for a
normal fluid ~see Appendix A! and

ā25^kQ
2 &, ~14!

ā45^kQ
4 &23^kQ

2 &2,

ā65^kQ
6 &215̂ kQ

4 &^kQ
2 &130̂ kQ

2 &3

are cumulants ofn(kQ). The calculations of Ceperley an
Pollock24 show thatn!(k) does not change with temperatu
between 1.18 and 2.5 K within calculational error which w
discuss further below.
e’’

cu-

e-
-
nd

n

A

The two parameters in the modeln(k) are n0 and kc ,
with A1 determined so thatn(k) is normalized, which typi-
cally givesA1'0.91. Forkc50.5 Å21, *dk f (k).0.5 and
the n0f (k) term contributes 30% of the condensate induc
weight in Eq.~11!. This defines the modeln(k). We Fourier
transform thisn(k) to obtainn(s) in the form

JIA~s!5n~s!5n0@11 f ~s!#1A1n!~s!. ~15!

For the final-state functionR(Q,s) we use an expansion in
powers ofs that can be obtained directly from its definitio
in Eq. ~9! ~see Appendix A!. Up to powerss6, this is

R~Q,s!5expF i b̄3s3

3!
1

b̄4s4

4!
2

i b̄5s5

5!
2

b̄6s6

6!
1•••G .

~16!

The coefficientsb̄n are given by

b̄35 ā3 /lQ, ~17!

b̄45 ā4 /~lQ!2,

b̄55 ā52/~lQ!31 ā54/lQ,

b̄65 ā62/~lQ!41 ā64/~lQ!2.

In Eq. ~17!, the ā n are independent ofQ and l5\2/M
51.0443 meV Å2. The b̄n clearly decrease with increasin
Q and, forQ→`, R(Q,s)→1, i.e., the IA. Analytic expres-
sions for the ā n can be derived.21,27 For example, ā3

5^¹2V(r )&/6 and ā45^F•F&/3 whereF52¹V(r ) is the
force on an atom. The series~16! was derived strictly using
the relationJ(Q,s)5n!(s)R(Q,s) and the central role of
R(Q,s) is to cut off J(Q,s) at large s. In the presence of
condensate, we have added a constant term ton!(s) in Eqs.
~15! and ~9! @ f (s) is long range ins# and we do not expec
the added constant to change the nature of the cut off sig
cantly ~see Appendix A!.

In summary,J(Q,y) is given by Eq.~10! with JIA(s)
5n(s) given by Eq.~15! andR(Q,s) given by Eq.~16!. The
J(Q,y) is fitted to experiment to determinen0 , and the pa-
rametersb̄3, b̄4, b̄5, and b̄6 in R(Q,s).

III. DATA COLLECTION AND REDUCTION

The measurements were carried out at the ISIS pu
spallation neutron source at the Rutherford Appleton La
ratory in the United Kingdom. The instrument used was
high-energy direct geometry chopper spectrometer MA
with incident energies up to 1000 meV possible. More th
650 3He gas detectors provide an almost continuous cov
age of scattering angles,f, between 3° and 135° in steps o
0.43°. This makes it possible to measure a large rang
momentum and energy transfer in a single experiment s
Due to the pulsed nature of the source, data collection
performed in time-of-flight~TOF! in which the time of ar-
rival of a neutron in the detector, measured from when th
leave the moderator, determines its energy loss or gain a
scattering from the sample. The momentum transfer depe
on the TOF and the scattering angle of the neutron. A hi
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56 14 623CONDENSATE AND FINAL-STATE EFFECTS IN . . .
purity sample of4He gas was condensed into a cylindric
aluminium can of length 5 cm and diameter 5 cm plac
inside a standard4He ‘‘orange’’ cryostat. To minimize mul-
tiple scattering of neutrons within the sample, the cylindri
sample volume was split into eight smaller cylindrical se
tions using highly neutron absorbing boron nitride disks. T
sample temperature was maintained at 1.660.05 K using a
Lakeshore temperature controller and a Germanium di
sensor. As an independent check, the resistance thermom
readings were compared to the vapor pressure readings o
sample. The measurement was made at saturated vapor
sure. In order to cover the (Q,v) range of interest, an inci
dent neutron energy of 755 meV was employed. A meas
ment was also made with the sample cell empty to determ
the sample independent background scattering.

The collected data in TOF was then converted to ene
transfer (\v) at constant scattering angle using standard p
cedures. The reader is referred to the recent article by An
senet al.29 for a detailed discussion of the data transform
tion from TOF toS(f,v) and then toS(Q,v). In this article
we have made use of the inherent scaling property of
scattering function withQ in the IA generally known asy
scaling and referred to in the last section. In the IA, t
scattering function can be portrayed as the longitudinal m
mentum distributionJIA(y) wherey5(v2vR)(M /\Q) and
JIA(y)5(\Q/M )SIA(Q,v), and does not depend onQ and
v separately. However, at moderateQ where the IA does no
apply,y scaling is still approximately observed and it is us
ful to present the data as a generalized longitudinal mom
tum distribution J(Q,y)5(\Q/M )S(Q,v) as in Eq. ~4!
which is weaklyQ dependent as a result of FSE’s. The e
perimental data were transformed toJ(Q,y) for Q515 to 29
Å 21 in steps of 0.5 Å21 and a sample of the data are show
in Fig. 1. The statistical accuracy of the data is very high

The observedJ(Q,y) consists of a convolution of the
underlying momentum distribution, the FS function and t
instrumental resolution function. Hence, for a quantitat
analysis of the data, the instrumental resolution funct
must be accurately known. We have used a Monte C
simulation method to calculate the instrumental resolutio30

In this method, the neutron-scattering experiment is sim
lated using the known instrument parameters, sample
geometry and an estimate for the sample scattering func
The incident neutron beam characteristics were modeled
ing the Ikeda-Carpenter31 speed and time distribution func
tion with the adjustable parameters determined from a fi
the experimental monitor peaks before and after the sam
The simulation results are obtained in TOF and are t
treated in the same way as the experimental data. The r
is a convolution between the instrumental resolution fu
tion, I (Q,y), and the model scattering function input to th
simulation. I (Q,y) is then simply deconvoluted from th
simulation. The resulting instrumental resolution function
shown as a dashed line in Fig. 1. It is seen thatI (Q,y)
narrows with increasingQ and is very small at largeQ thus
increasing the reliability of the data.

IV. RESULTS

A. Fitted n0 and R„Q,y…

Figure 1 shows the observed data at fourQ values be-
tweenQ515 Å21 andQ529 Å21. The solid line is the fit
l
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of J(Q,y) given by Eq.~10! using the model momentum
distribution in Eq.~15! and the final-state broadening fun
tion given by Eq.~16! to the data. The free parameters in t
fit are n0 , b̄3, b̄4, b̄5, and b̄6. The cutoff parameterkc in
f (k) was set at 0.5 Å21 and the parametersā2, ā4, ā6 in
n!(k) were set at the values determined22 for normal 4He,
ā250.897 Å22, ā450.46 Å24, ā650.38 Å26. The dotted
line in Fig. 1 is the instrumental resolution function~IRS!.
The fits to the data are clearly good both in the peak and
tail regions of the data. Fits as shown in Fig. 1 were made
data at 29 separateQ values betweenQ515 Å21 andQ529
Å 21. The fit procedure and errors in the parameters are
cussed in Appendix B.

The values obtained for the fitted parameters are show
functions ofQ in Fig. 2. Figure 2~a! showsn0 . The n0 is
independent ofQ with an average value ofn055.061.5%
indicated by the solid line. The precision in determiningn0
increases with increasingQ because the IRS narrows wit
increasingQ. As noted in Eq.~17!, b̄3 is expected to be
b̄35 ā3 /(lQ) where ā35^¹2V(r )&/6 is independent ofQ.
Figure 2~b! showsb̄3Q versusQ which indeed turns out to
be independent ofQ with ā3 /l52.7561.0 Å24. In the fits
we found b̄450 within the fitted error and we setb̄450.
Again as noted in Eq.~17! b̄5 has two terms. Figure 2~c!

FIG. 1. Observed scattering intensity expressed asJ(Q,y) at
constantQ515, 22, 24.5, and 29 Å21, in superfluid 4He at T
51.6 K and saturated vapor pressure. The dotted lines are the
culated instrumental resolution function and the solid lines are
to the data using the modelJ(Q,y) function described in the text.
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FIG. 2. Parameters obtained by fitting the modelJ(Q,y) to superfluid4He data as shown in Fig. 1 as a function of the wave-vec

transfer,Q. The fitted parameters are~a! the condensate fractionn0 , and the parameters for the final-state function~b! b̄3, ~c! b̄5, and~d!

b 6̄.
e
-
r

d

u

we

shows the values ofb̄5 obtained in the fits, plotted asb̄5Q3

vs Q2. This shows thatb̄5Q3 is independent ofQ, within our
precision. This means that the termā52/lQ3 in b̄5 domi-
nates, and thatā5450 within precision. TheQ-independent
value of b̄5Q3 gives ā52/l3522006800 Å28.

Finally, Fig. 2~d! showsb̄6Q2 which turns out to be in-
dependent ofQ. This means thatā6250 within error and
ā64/l25175675 Å28. These values ofā3, ā52, and ā64
determine the final-state broadening function in the form

R~Q,s!5expF is3

3!

ā3

lQ
2

is5

5!

ā52

~lQ!3
2

s6

6!

ā64

~lQ!2G . ~18!

Figure 3 compares the FS function,R(Q,y), obtained here
~solid line! with that obtained previously22 in normal 4He at
T52.3 K ~dashed line!. We see that the twoR(Q,y)’s agree
within determined precision. The main difference betwe
the two is that the normal4He R(Q,y) is peaked at a some
what lower~more negative! y value. This reflects the large
mean value ofā3 found in the normal4He (ā3 /l53.3
60.7 Å24). The two ā3 values agree within the determine
error of the fits. From this comparison, we find thatR(Q,y)
is the same in the normal and superfluid phases of liq
4He.
n

id

B. Variation of parameters

In order to test the sensitivity to parameters in the fits,
show results with some preset parameters.

1. Dependence on n0

Figures 4 and 5 show fits to data withn0 set atn050 and
R(Q,y) refitted to the data atQ519.5 Å21 andQ529 Å21,

FIG. 3. The extracted final-state function atQ529 Å21 in su-
perfluid 4He at T51.6 K ~solid line! compared to that obtained
previously~Ref. 22! in normal 4He atT52.3 K ~dashed line!.
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56 14 625CONDENSATE AND FINAL-STATE EFFECTS IN . . .
respectively. In this case, the normalization factor in Eq.~11!
is A151.0, which leads to a broadern(k). Clearly the fit of
J(Q,y) in Figs. 4~a! and 5~a! is too low aroundy50 where
n0 contributes the most. The fit is also broader than the d
throughout most ofJ(Q,y). Essentially, the fittedR(Q,y)
with n050 @the dashed line in Figs. 4~b! and 5~b!# cannot
become narrow enough to provide a good fit to the data.
believe this is because asR(Q,y) becomes narrower, th
amplitude of the oscillations inR(Q,y) for uyu>1 Å 21 be-
comes larger. These oscillations appear inR(Q,y) because it
is normalized to unity and its first and second moments eq
zero. There is no evidence of oscillations in the data. Thu
best fit in the wings and neary50 leads to aJ(Q,y) that is
broad, too low aty50 and has modest oscillations. Esse
tially it is not possible to fit the data in superfluid4He using
the n(k) from normal 4He and fittingR(Q,y).

Figure 6 shows fits to data atQ529 Å21 with n0 set at
0%, 5.7%~the best-fit value! and 10% withR(Q,y) adjusted
in each case to get the best fit. Clearly then055.7% is the
best fit both in the wings and in the peak region. In then0
510% case the fit is too high in the peak and too low n
y561.5 Å21. For n0510%, if R(Q,y) were broadened
further to fit the data in the peak region, it would be at t
expense of a much poorer fit in the wings.

FIG. 4. Upper frame; Fit of the model scattering function to d
at Q519.5 Å21 with n0 fixed at 0%. Lower frame; the resultin
R(Q,y) for the fit ~solid line! is compared with the best fitR(Q,y)
~dashed line! for the sameQ in the lower frame of the figure.
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To test the sensitivity ofn0 to the cut offkc , we fixedkc
at 0.3, 0.5 and 0.7 Å21 and fitted forn0 in each case and
obtained 6.4, 5.7, and 5.4%, respectively, atQ529 Å21.
Essentially a lower value ofkc means a smaller contributio
to n(k) from f (k) and a corresponding largern0 is required
to fit the data. The quality of the fit to the data for the d
ferent kc values is the same as shown in Fig. 1. Given
sensitivity tokc and that the fits are low, rather than high,
the peak region ofJ(Q,y), we take our observedn0 value as
n05662%. Reasonable lower and upper limits tokc are 0.3
and 0.7 so that the additional error inn0 arising from the
uncertainty inkc is 60.5%.

2. Dependence on n!„k…

We now assume that there is no condensate in super
4He and present fits to the data in whichn0 is set to zero and
n!(k) is adjusted to obtain a fit. For this fit, we setR(Q,y)
to that determined22 in the normal phase atT52.3 K. Since
R(Q,y) depends on interactions which change little w
temperature, theR(Q,y) from normal 4He is a logical
choice forn050. The upper frame of Fig. 7 shows a fit t
data atQ529 Å21. It is seen that a good fit is possible
However, then(k) obtained is physically quite unrealistic
The lower frame of Fig. 7 shows thisn(k) as the dotted line.
In the same frame, the solid line showsn(k) observed22 in
normal 4He atT52.3 K; the points shown(k) at three tem-
peratures calculated by Ceperley and Pollock~CP!24.

FIG. 5. Same as Fig. 4 forQ529 Å21.
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Clearly, the fit toJ(Q,y) with n050 at T51.6 K produces
an n(k) which differs markedly from the observedn(k) at
T52.3 K and the calculatedn(k) at all three temperatures
Such a dramatic change inn(k) when T is decreased from
2.3 to 1.6 K is phyically unexpected, given thatT52.3 K is
already much less than the zero-point energy. That is,
kinetic energy per atom is; 15 K which is much larger than
the thermal energy 3T/2. At T52.3 K, liquid 4He is already
a ‘‘cold’’ quantum liquid andn(k) differs markedly from a
classical Gaussian distribution. On further cooling byDT
50.7 K, we would not expect a significant, addition
change inn(k), were there no transition. Yet, a large chan
of n(k) betweenT52.3 K andT51.6 K is required to fit the
data, if no condensate is included. There would be no ph
cal reason for such a change. In other words, a reasonab
to the data withn050 cannot be obtained.

V. DISCUSSION

A key assumption made here to obtainn0 shown in Figs.
1 and 2 is that the momentum distributionn!(k) over the
k.0 states uncoupled fromn0 is independent of temperatur
between 1.6 and 2.3 K. This allows us to use the accura

FIG. 6. Sensitivity of the model ton0 . When n0 is too high
~10%! or too low ~0%!, it is not possible to fit the data by adjustin
R(Q,y). The change in the fittedR(Q,y) obtained for these ex
tremes inn0 are shown in the lower frame.
e

i-
fit

ly

determinedn(k) in normal 4He at T52.3 K for n!(k) in the
superfluid atT51.6 K. The n!(k) calculated by Ceperley
and Pollock~CP! are the same atT51.18, 1.54, and 2.50 K
within statistical uncertainties. Thesen!(k) are shown in the
lower frame of Fig. 7. Also CP findn0'761% atT51.18
K, n0'961% atT51.54 K andn0'0 atT52.50 K. If we
renormalize alln!(k) to the samen0 value, sayn050, then
all the calculatedn!~k! are the same, within statistical error
Indeed, the calculatedn!(k) for T51.18 K lies between
n!(k) for T51.54 K andT52.5 K. Then(k) shown as the
solid line in Fig. 7 is obtained from the data atT52.3 K and
is the same as then(k) calculated by CP atT52.50 K. Thus,
all evidence suggests thatn!(k) does not change from nor
mal to superfluid 4He. This follows physically, as noted
above, because the zero-point energy~i.e., the kinetic energy
per atom, approximately equal to 15 K!, is much greater than
the thermal energy atT52.3 K. A further small reduction in
T is unlikely to lead to significant redistribution within thek
.0 states.

We find a condensate fraction equal ton05662% at T
51.6 K and SVP. This is based on the best-fit values ofn0
55.061.5% in Fig. 2~a!, the sensitivity to the

FIG. 7. Upper frame; Fit to data atQ529 Å21, T51.6 K and
n050 with R(Q,y) fixed at the normal4He value~see Fig. 3! and
n(k) varied to obtain a fit. Lower frame shows the resultingn(k)
obtained from this fit~dotted line! compared with then(k) in nor-
mal 4He atT52.3 K ~solid line!. The CP are the PIMC calculation
of n(k) by Ceperley and Pollock~CP! at three temperatures. Th
CP n(k) for T,Tl are normalized to slightly less than unity be
cause of the condensate.
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cutoff parameterkc , which tends to increasen0 , and the
nature of the fits neary50. A very important conclusion is
that n0 cannot be zero. Ifn0 is fixed atn050, we obtain an
n(k) which differs dramatically from those observed expe
mentally atT52.3 K and computed theoretically~PIMC! at
all temperatures. We interpret this as evidence of a cond
sate in superfluid4He.

The present value ofn05662% is compared to previ
ously observed values and PIMC calculations in Fig. 8.
see thatn05662% is somewhat lower than the observ
value of Snow, Wang, and Sokol,32 but well within the com-
bined errors. The agreement with the PIMC value is go
From Fig. 6 we see that if we focused on the peak reg
(y50) of the data only, then a higher value ofn0 , around
8%, might be deduced. However, the fits in the wings of
distribution favor a lower value ofn0 . The value ofn0 af-
fects the wings through the FS broadening functionR(Q,y).
For example, the observedJ(Q,y) may be written as a con
volution of n(k) andR(Q,y) in the form

J~Q,y!5E dkn~k!R~Q,y2kQ!. ~19!

In Eq. ~19!, the condensate componentn0d(k) of n(k) leads
to a termn0R(Q,y) in J(Q,y). Thus, J(Q,y) has a term
proportional toR(Q,y) with weight n0 which contributes in
the wings followingR(Q,y) as well as in the peak region
R(Q,y) has oscillations in the wings but the data show
oscillations. A good fit in the wings and in the peak regi
leads to a lower value forn0 , to obtain uniform behavior. In
previous measurements, more emphasis was placed o
agreement in the peak region of the data. This may acco
for the slightly lowern0 value obtained here. Also, we hav
assumed here that the momentum distribution of the st
above the condensate uncoupled from the condensate i
same in the superfluid as in the normal phase which m

FIG. 8. Condensate fraction in liquid4He at SVP. Triangles are
calculated~PIMC! values of Ceperley and Pollock~Ref. 24!. The
triangle atT50.1 K is the calculatedT50 ~GFMC! value of Whit-
lock and Panoff~Ref. 37!. Diamonds are the observed values
Snowet al. ~Ref. 32! with the dashed line as a guide to the eye. T
square is the present value.
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affect the value ofn0 obtained. Further measurements at lo
temperature are needed to establish whether there is inde
significant difference.

Figure 3 shows that the FS function obtained here in
superfluid atT51.6 K is the same as that obtained prev
ously in normal 4He at T52.3 K. This is expected, since
R(Q,y) depends on the interactions in the fluid whic
change little withT. Precision measurements show that t
pair-distribution functiong(r ) changes little between supe
fluid and normal4He.33,34Theg(r ) calculated here~see Fig.
10 and below! changes little betweenT51.6 and 2.3 K. In a
less accurate determination, we have also found35 that
R(Q,y) is the same in liquid3He.

The presentR(Q,y) at Q523 Å21 is compared with the
R(Q,y) calculated by Silver and by Carraro and Koonin
Fig. 9. Both calculatedR(Q,y) are more sharply peaked tha
theR(Q,y) observed here. The amplitude of the oscillatio
of R(Q,y) at largeruyu is smaller in the Silver function than
observed here. Finally, theR(Q,y) obtained here peaks a
y,0 at all Q values, whereas both calculated functions a
pear to peak aty.0. Mazzantiet al.40 have recently evalu-
ated R(Q,y) using the expression originally derived b
Gersch and Rodriguez. In order to do this, they evaluated
two-body density matrix appearing inR(Q,y). At Q523
Å 21, the peak height of theirR(Q,y) is similar to the cal-
culated values shown in Fig. 9 and the oscillations are co
parable to those in theR(Q,y) by Carraro and Koonin and in
the one observed here.

R(Q,y) has been previously extracted from experime
by Sosnicket al.14 and by Herwiget al.36 Herwig et al. used
the n(k) and n0 calculated by Whitlock and Panoff37 at T
50 K in an expression similar to~19!, and fitted the total
J(Q,y) to their data atT50.75 K to obtainR(Q,y). Their
R(Q,y) is generally narrower than the one obtained here,
broader than the calculated values, especially at loweQ
values. AtQ5 23 Å21 the peak height of theirR(Q,y) is
the same as the calculated values shown in Fig. 9. T
observedR(Q,y) always peaks aty , 0.

The expansion used here to representR(Q,s) is exact up
to powerss6. The coefficientsb̄n are related to the moment
of R(Q,y). SinceR(Q,s) has no terms ins or s2, the first
and second moments ofR(Q,y) vanish. This is a well-

FIG. 9. Comparison of the extractedR(Q,y) in liquid helium
with theoretical calculations atQ523 Å21.
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known property ofR(Q,y). The observedR(Q,y) peaks at
y,0. This appears to be needed in order to get a posi
third moment,

E dy y3R~Q,y!5 b̄35 ā3 /lQ, ~20!

where

ā35^¹2V&/6 ~21!

is positive. Both of the calculatedR(Q,y) shown in Fig. 9
peak aty.0 and may have a negative third moment. W
return to a discussion of third and fourth moments below

In order to obtain independent theoretical values
^¹2V(r )& and^F25F•F&, that appear in the third and fourt
moments ofR(Q,y) respectively, as well as of the kineti
energy per particlê EK&, we carried out a path-integra
Monte Carlo~PIMC! simulation of liquid helium at SVP, in
the superfluid phase, atT51.6 K, and in the normal phase a
T52.3 K. The PIMC method is a well-established tool th
enables the computation of thermodynamic properties
quantum many-body systems at finite temperature dire
from the microscopic Hamiltonian.38 Here, we utilized it to
calculate the kinetic energy per particle and the pa
distribution functiong(r ). We carried out PIMC simulations
of 108 helium atoms interacting via an accepted pairw
potential,39 with periodic boundary conditions. This type o
simulation has been shown to afford a quantitatively accu
microscopic description of condensed helium.38 The pair-
distribution function at the two temperatures investigated
shown in Fig. 10. From the pair-distribution function, w
obtain ^¹2V(r )&53264 meV/Å2 ~3064 meV/Å2) at T
51.6 K ~2.3 K!, and ^F2&5380630 ~meV/Å! 2 ~320630
~meV/Å! 2) at T51.6 K ~2.3 K!. The computed values of th
kinetic energy per particle and of the coefficientsā3 and ā4,
obtained from ā3 /l5^¹2V(r )&/6l and ā4 /l25^F2&/3l2

wherel5\2/M51.0443 meV Å2, are reported in Table
where they are compared to the values deduced from ex

FIG. 10. Pair-distribution functiong(r ) computed by PIMC in
liquid helium at SVP, atT51.6 K ~solid line! andT52.3 K ~dashed
line!. Error bars are not shown for clarity; they are of the order
0.02 or less.
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ment. From Table I, we see that the calculatedā3 values at
the two temperatures lie above the observed values which
obtained from fits to the data. The difference is just outs

the combined error. In the fit to the data, the magnitude ofā3

is determined chiefly by the peak position ofJ(Q,y), i.e.,
whereJ(Q,y) falls on the ‘‘energy’’ transfery scale. If there
is a systematic error in determining the energy transfer in
measurement, this would translate into a systematic erro

ā3. We have checked the energy transfer by evaluating
first moment of the data and comparing it with thef -sum

rule. We find that the scale andā3 are correct within the

error quoted. In liquid Ne, theā3 determined from data in
the same way agrees well with PIMC calculations.42 Simi-

larly, the calculated value ofā4 lies above that obtained

from a fit of R(Q,s) to the data. We emphasize thatā4 is
actually very small and difficult to extract accurately fro
the fit. We believe that these discrepancies arise from
fitting of an R(Q,s) which has a finite number of terms i
the expansion to the data. The relatively few terms retai
will attempt to simulate the full function if their number i
insufficient to obtain convergence. For example, if on
terms up tos5 are retained, it is straightforward to show th

the coefficient ā4 would have to be negative in order t
obtain anR(Q,s) that converges at larges and reproduces
experimental values. When terms up tos6 are included in the

expansion, the extractedā4 still lies below the expected
value. This issue is discussed by Rinatet al.,41 who have
considered several fitting options. We emphasize that the
ference between the calculated and extracted values oā3

and ā4 are relatively small; in liquid neon, whereR(Q,y) is
narrow compared to the momentum distribution, the e
tracted value ofā3 agrees quantitatively with the PIMC
determined value, andā4 is positive.42
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TABLE I. Comparison of the values of the kinetic energy p

particleEK ~in K! and of the coefficientsā3 /l ~in Å 24) and ā4 /l2

~in Å 26) computed by PIMC and deduced from experimentl
5\2/M51.0443 meV Å2).

T ^EK& ā3 /l ā4 /l2 Method

1.6 14.760.1 5.160.5 116610 PIMC

1.6 14.960.35 2.861.0 ,50.0 Experiment

2.3 16.560.1 4.860.5 98610 PIMC

2.3 16.360.35 3.360.7 ,50.0 Experiment
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APPENDIX A

In this appendix we sketch the derivation ofn!(s) and
R(Q,s) leading to Eqs.~13! and ~16!, respectively. At high
Q, the scattering timet and the distances5(\Q/M )t trav-
eled by the struck atom within the scattering time are sh
This suggests a short-time expansion ofJ(Q,s) andJIA(s) in
powers ofs. Equations~3! and~5! are in the form natural for
an expansion in cumulants. Expansion of Eq.~5! gives

JIA~s!5expF2
ā2s2

2!
1

ā4s4

4!
2

ā6s6

6!
1•••G , ~A1!

where

ā25^kQ
2 &, ~A2!

ā45^kQ
4 &23^kQ

2 &2,

ā65^kQ
6 &215̂ kQ

4 &^kQ
2 &130̂ kQ

2 &3

are the cumulants ofn(kQ). Sincen(kQ) andn(s) are even
functions, Eq.~A1! has only even powers ofs. A similar
cumulant expansion of Eq.~3! yields27

J~Q,s!5expF2
m̄2s2

2!
1

i m̄3s3

3!
•••2

m̄6s6

6!
1•••G ,

~A3!

where them̄n are similarly cumulants of the time-ordere
J(Q,s). The ān are clearly independent ofQ. Them̄n can be
readily expressed as moments ofJ(Q,y) and theirQ depen-
dence determined. An expansion ofR(Q,s) can be obtained
directly from its definitionR(Q,s)5J(Q,s)/JIA(s) in Eq.
~9! and the expansions~A1! and ~A3! as

R~Q,s!5expF i b̄3s3

3!
1

b̄4s4

4!
2

i b̄5s5

5!
2

b̄6s6

6!
1•••G ,

~A4!

whereb̄n5m̄n for oddn and b̄n5m̄n2 ān for evenn. From
the moment expressions for them̄n , theQ dependence of the
b̄n can be determined. Up ton56 they are given by Eq
~17!.

Equation ~A1! describes only the shorts behavior of
JIA(s) which arises fromn!(s). When there is a condensat
the OBDM JIA(s) has long-range nearly constant comp
nents not described by the expansion~A1!. These compo-
nents must be added to theJIA(s) given by Eqs.~A1! and
~13! as discussed in Sec. II. Adding these components
JIA(s) in Eq. ~A1!, we have, from Eqs.~13! and ~15!,

JIA~s!5n0@11 f ~s!#1A1n!~s! ~A5!

and

J~Q,s!5$n0@11 f ~s!#1A1n!~s!%R~Q,s!, ~A6!

where this relation definesR(Q,s) as in Eq.~9!. Then!(s) is
again given by Eqs.~16! and ~A1!. Since f (k) is sharply
peaked neark50 similar to d(k), f (s) is long-ranged ins
similar to the unit term in Eq.~A5!. If f (s) is approximated
by a constant over the range of interest (s< 5 Å!, then the
only dependence on s in n(s) appears in the
t.

-

to

A1n!(s)R(Q,s) term. Physically, we know thatJ(Q,s) van-
ishes at larges even thoughn(s) has long-range compo
nents. Using the cumulant expansion~A3! again forJ(Q,s)
in Eq. ~A6!, shows thatR(Q,s) must again have a serie
representation as in Eq.~A4!. Assuming that (n0@11 f (s)# is
constant independent ofs we can show that the coefficient
in the expansion ofR(Q,s) are again given exactly by Eq
~17!. Thus Eqs.~16! and ~17! hold in the superfluid as wel
as in normal 4He. The central assumption underlying th
representation ofR(Q,s) is that n0@11 f (s)# is constant
over the range ofR(Q,s), i.e., betweens50 and the value of
s at whichR(Q,s) goes to zero.

APPENDIX B

In this appendix we discuss the fitting procedure and
errors in the fitted parameters. The values of the parame
n0 and theb n̄ in J(Q,y) at eachQ were determined by
fitting J(Q,y) given by Eq.~10!, properly convoluted with
the instrument resolution, to the data. The best fitJ(Q,y)
and hence the best values of the parameters were foun
minimizing the mean-square deviationx2 of the convoluted
J(Q,y)5 j i , from the data,di , using the standard definition

x25
1

N2M11(i 51

N S di2 j i

s i
D 2

. ~B1!

Here N is the number of data points at eachQ ~typically
120!, M is the number of adjustable parameters~typically 4!
ands i is the error in the data. The error bars on the para
eters were calculated by the fitting program~the ISIS Frills
package! assuming a linear relation between the calcula
function and the parameters. Typical fits are shown in Fig
and the resulting parameters and their errors at eachQ are
shown in Fig. 2. The magnitude of the error reflects the s
tistical error of the data at a givenQ and the sensitivity of the
fit to that parameter. A small error bar implies a high sen
tivity.

With N large, as the case here,x2 should take values o
0.8,x2,1.2, approximately. A smallx2 suggests that the
error s i in the data is overestimated. A largex2 signals a
poor fit. The best fit atQ529 Å21 shown in Fig. 1, withn0 ,
b̄3, b̄5, and b̄6, adjusted~which yieldedn050.057) has a
x250.956. Withn0 arbitrary fixed atn050.07, and theb̄n
refined to obtained a best fit, we find ax251.06. Thus the
values ofx2 are reasonable and the quality of the fit is qu
sensitive ton0. In contrast, the fit atQ529 Å21 shown in
the upper frame of Fig. 7, in whichn0 is fixed at n050,
R(Q,y) was set to the normal-liquid4He value shown in
Fig. 3, and the parametersān in n(k) adjusted to get a bes
fit, has ax251.40. This suggests a significantly poorer fit

Particularly to be noted in Fig. 2 is that the fluctuation
the b̄6 values fromQ to Q is significantly greater than the
error bar onb̄6 calculated by the fitting program at a give
Q. The data was normalized separately at eachQ. Additional
statistical error fromQ to Q can arise from this separat
normalization. We believe that the fluctuation of the para
eters fromQ to Q best represents the total statistical error
the parameters. The error in the quoted average value
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b̄6Q25175675 Å28 was set so that the mean value pl
errors cover 68% of the 29 separate determinations ofb̄6Q2.

We also made an independent check on the uncertaint
the determination ofb̄6 andn0 at a givenQ by varying these
parameters and noting the change inx2. Given the definition
of x2 above and assuming that theN is large enough that the
x2 have a Gaussian distribution about the least valuex2

;1, a change ofb̄6 by one standard deviation should chan
x2 by approximately 1/AN. At Q529 Å21 we found thatx2
d

e

,

in

was increased from its least value of 0.956 obtained

b̄6Q25280 to 1.05 forb̄6Q25160 and 445 Å21 suggesting

that b̄6Q252806140 Å28. This error is greater than the
error calculated by the fitting program and is consistent w

the final error inb̄6Q2 obtained from fluctuations fromQ to
Q. Similarly, we foundx251.05 for n050.069 and 0.045
suggesting thatn050.05760.12 emerges from the fit. This
is also consistent with the error of60.015 assigned ton0
due to its variation fromQ to Q.
.
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