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We present high-precision measurements of the dynamics of single atoms in sugtéatT=1.6 K and
saturated vapor pressure. The measurements were taken on the MARI instrument at the ISIS neutron-scattering
facility, Rutherford-Appleton Laboratory. From the measurements we obtain a condensate fraeti6rd
+2.0% atT=1.6 K. The final-state effectd~SE’9 in the atomic response are also determined from the data
in the form of a final-state broadening functidR(Q,y). We find that this FS function is the same in the
superfluid atT=1.6 K as that determined previously in nornfidle at T=2.3 K. If we reanalyze the data
assuming that the superfluid has no condensatenje.0, then the data requires that the norméit) change
dramatically betweelT=2.3 K andT=1.6 K. Since such a change ir(k) is physically unexpected, given
thatkT is much less than the zero-point energy, the data requires that a new contribution, such as a condensate,
entern(k) in the superfluid[S0163-182807)04946-1

. INTRODUCTION broadened by the momentum distributioik), of the atoms
_ . _ . _ in the fluid. When there is a condensate, the fractign
Bose-Einstein condensation plays a special role in quan=n(k=0) of atoms in the condensate contributes an “un-
tum physics. Boseand Einsteif proposed that a gas of non- proadened” peak t&(Q,w). This peak appears i8(Q,w)
interacting bosons would condense into a state characterizeg ,, = wg Where wg=%Q?/2M is the free, stationary, atom
by macroscopic occupation of one single-particle quantumecoil frequency andl is the atomic mass. Expressed in the
state. Londofhsuggested that this condensation is the Origi”y-scaling variabley = (o — wg)/(£Q/M), the peak appears
. . . . . 4 1
cf;’f?‘;'gﬂg'd'ty in I(quwtq _tH_e at t%mperat?res t:celoﬂth il aty=0. The atoms struck by the neutrons recoil in the fluid.
.; n'o . déntL']fp:(;CO'r;h Lcj;%mgnlga?ﬂ o? Sg.?gd“]f;ng. c(n[::n?_”a S|f their interaction with their neighbors is neglected, denoted
IS NOW m ) wi ' pal mia ., the impulse approximatiofi;A), ny can be extracted directly
posite bosons’ Spectacular bose condensation in whlchHom S(0.0)

nearly the entire system is condensed into a single atomi Earl . 197
state has recently been observed in trapped, dilute gases of Sy measurements 061gsmg neutrongup to 1976 are
alkali atoms>6 summarized by Martett al.”. These measurements yielded

Liquid “He remains the most accessible pure bose liquid® wi(_jg range ohg v_aIues._This_is becau_se the int_eractions of
in nature and a key model systéif.Because of the strong recoiling atoms with their neighbors in the fluid, denoted
interaction between théHe atoms in the liquid, particularly final-state effect$FSE’s, are not negligible, but rather con-
the repulsive core, the fraction, of atoms that condense tribute significantly to the observe8(Q,w). Gersch and
into the zero-momenturtk=0) state is small, approximately Rodriguez° presented a systematic discussion of FSE’s in
10% atT=0.2"1°The clear verification that there is indeed S(Q, ). In their formulation, FSE's are accounted for via a
a condensate and the accurate determination,oémain an  broadening functiolR(Q,y), to be convoluted with the IA to
important goal. Taking advantage of significant improve-obtain S(Q, ).
ments in neutron source intensity and instrumentation, we Searé! developed a formulation in which FSE’s appear as
present accurate data and analysis methods which we belieaglditive corrections to the IA. Based on this formulation, and
show unambiguously that superflufiHe has a condensate, using neutron-scattering data in the rai@e 10 A~1, Sears
with a condensate fractiomy = 6.0=2.0% atT=1.6 K. et all° obtained values ohy~13.9+2.3% andny~10.9

Miller et all” and Hohenberg and Platzntirproposed +2.7% atT=0 and saturated vapor pressgy/P).
that the condensate fractiory could be observed in the dy- Sokol and collaboratot$'® made an extensive series of
namic structure factoS(Q,w) of superfluid *He. Essen- pioneering measurements at high®r values Q=20-30
tially, in neutron-scattering measurementsSeQ, w) at high A ~1), using the first spallation neutron source IPNS at Ar-
wave vector Q) transfer, the energy transfer is Doppler gonne National Laboratory. From these measurements a con-
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densate fractiomy=10+2% atT=0 and SVP was deter- describes the motion of a single atom in the fluid. Heiis
mined, as well as the temperature and pressure dependeribe position of the atom struck by the neutrofiwg
of ny. In this case, the convolution approach of Gersch and=(4Q)?/(2M) and vg=AQ/M are, respectively, the free
Rodriguez and the FSE functioR(Q,y) calculated by atom recoil energy and velocity, arfikg=%k-Q/Q is the
Silver® were used to account for final-state contributions. momentum of the struck atom alor@; ( .. .) indicates a

Taking advantage of the increased beam intensity at ISI$hermal average. The second expression is useful at short
and the improved instrumental resolution of MARI, we havescattering timest, (high Q andw), andT, is the time order-
recently presented precision measurements of the dynaming operator.
structure factorS(Q,w) of normal “He atT=2.3 K and at At high Q, S(Q,w) andS;(Q,t) are approximately inde-
SVP. From the data, both(k) and the Final State broaden- pendent ofQ if expressed in terms of the wave-vector vari-
ing function R(Q,y) in normal “He were accurately able y=(w—wg)/(AQ/M) and its conjugate variabls
determined® The momentum distributiom(k) in normal = (4Q/M)t, respectively. The approximatey-independent
“He at SVP differs significantly from a Gaussian, with largeforms areJ(Q,y) =(AQ/M)S(Q, w) and
occupation of the low-lyingk states. The extracted(k)
agrees well with theoretical calculations. These =@lort = —if5ds'kg(s")
calculationé* also show thain(k) for k>0 changes little H(Q) =TS (QH=(Tse ) 3
with temperature, as might be expected for a cold quanturiith
liguid in which the zero-point kinetic energy-( 15 K) domi-
nates the thermal energy-(2 K). The R(Q,y) is similar in ‘](Q’y):j ds €/53(Q,s). (4)
shape to those calculated by Silkeand by Carraro and
Koonin?2® but is less peaked and broader than the calculate
R(Q.y)’s.

The aim of this paper is to determine bathandR(Q,y)
accurately in superfluidHe (T<T,). We have made preci-
sion measurements & Q,w) in the wave-vector range 15
<Q=29 A1 in which FSE are not negligible. The data are
presented a3(Q,y)=(AQ/M)S(Q,w) wherey is the scal-
ing variable and analyzed using a method developed b
Glyde?’ Assuming thah*(k), the momentum distribution of

We present all data in the ford(Q,y) in this paper. In Eq.
(3), ko(s) is the wave vector of the struck atom after it has
traveled a distance=(2Q/M)t from the scattering event.
At high Q, the struck atom travels a short distarscen the
fluid. In the IA we assums is so short thakq(s) at alls can

be approximated b%(0) ats=0. This means that all col-
lisions with neighbors in the final-state which charggare
anored. In this casd(Q,s) in Eg. (3) reduces to

thek>0 states above the condensate has the same shape as Jia(s)= (e Tkes), (5)
n(k) in the normal®He atT=2.3 K, we determine, and
R(Q,y) in the superfluid aff=1.6 K. We obtainny=6.0 The one-body density matrig®OBDM), i.e., the Fourier

+2.0% and anR(Q,y) that is the same as in the normal transform of the momentum distributior(k), is

phase. In a second analysis of the data, we assume that there

is no condensateng=0) and thatR(Q,y) is the same al R ik

=1.6 and 2.3 K, and determine a “normalii(k) at T n(r)—ﬁ<\lf (O)W(r))=(e""™"). 6)
=1.6 K. We show that this normail(k) is unphysical and ) .

interpret this as definitive evidence that there is a condensafeomparing Eqs(5) and(6), we see thafz(s) is the OBDM

in superfluid“He at SVP belowT, . for displacements of alongQ, k-r=Kgs, i.e.,
In Secs. Il and lll, we discuss the method of analyzing the .
data and the experimental details, respectively. The results Jia(s)=n(s)=n(r-Q). (7)

are _presented in Sec. IV Wr_\er_e we particularly test th? S€%or a spherically symmetric fluidp(s) and n(r) are the
sitivity of the results to variation of analysis assumptlons.sname function. The Fourier transform iofs),

The results are discussed in Sec. V.
= = iys
IIl. THEORETICAL BACKGROUND Jia(y)=n(y) fds &’%Ja(s), ()

At high momentum transfer@= 10 A~!in helium), the is the longitudinal momentum distribution n(y)
incoming neutron scatters from a single atom. In this limit, = fdk.dk n(k,k,,kg) for momentum variabley=kq=k

the observed dynamic structure fact&Q,w), is well ap- - alongQ.
proximated by the incoherent structure faGtor When final-state interactions are important, the intermedi-
ate functionJ(Q,s) can be formally expressed in terms of
. Jia(s) as
$(Q.0)- [ die's(Qu), &

J(Q,9)=Ja(s)R(Q;s), (€)

which defines the final-state functid®(Q,s). From Eq.(4),
the observed scattering function is

where the intermediate scattering function,

S(Q1)=(e 1¢TWel2T)
:e—int<Tte—i(hQ/M)f})dt'kQ(t’)% @) J(Q,y):f ds €°J,,(S)R(Q,S). (10
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In the following section, we introduce a model fofk). This The two parameters in the mode(k) are ny and k.,
consists of a condensate component plus a “noncondensatefith A; determined so that(k) is normalized, which typi-
component arising from the states wit0. Then(k) is  cally givesA;~0.91. Fork,=0.5 A1, fdk f(k)=0.5 and
Fourier transformed to obtain(s)=Ja(s). As noted, at thenyf(k) term contributes 30% of the condensate induced
high Q the scattering time ansl are short. FOR(Q,s), we  weight in Eq.(11). This defines the model(k). We Fourier
use an expansion in powers sfup to s®. J(Q,y) is then transform thisn(k) to obtainn(s) in the form

obtained from Eq(10) and fitted to experiment to obtam,

and the coefficients in the expansionRfQ,s). Jia(s)=n(s)=ng[1+f(s)]+An*(s). (15
For the final-state functioR(Q,s) we use an expansion in
Model of n(k) powers ofs that can be obtained directly from its definition

When there is a condensate we have a macroscopic occlit Ed- (9) (see Appendix A Up to powerss®, this is
pation of thek=0 state and large occupation of states with — 3 =4 5 .5
very low k. This leads to long-range componentsJia(s) R(Q S)ZEX;{"B?)S N Bas” _1BsS” _ BeS

=n(s). To describen(k), we introduce the following model: 3! 4! 5! 6!
(16)
n(k)=ng[ 8(k)+f(k)]+An*(k). 11 —
(k) =nol atk) (k) I+ A (k) @ The coefficientss,, are given by

Herengd(k) is the condensate contribution and o

" L HIK] Bs=asz/\Q, 17

noMc c 20012
nof(k)=———— — co e K72k (12 — —
o= S 2mn r(2I<BT) (12 Ba=a4/(AQ)?

describes the high occupation of low momentum states re- E=a_52/(>\Q)3+a_54/)\Q,
sulting from the excitation of quasiparticles out of the con-
densate and the coupling between these quasiparticles and Be= 2/ (ANQ)*+ ags/(NQ)2.

phonons in the ranges0k=< 0.7 A~*. The first two terms in B
Eq. (12) are clearly terms im(k) arising from the conden- In Eq. (17), the a, are independent 0@ and A=#%2%/M

sate and are proportional gy . In the expression fof(k), ¢ =1.0443 meVv R. The B, clearly decrease with increasing
is the speed of sound in liquid helium amd=N/V is the g and, forQ—, R(Q,s)—1, i.e., the IA. Analytic expres-
liquid density. The functional form of (k) can be derived sions for thea. can be derived™? For example. ax
directly®®?8 at low k and is given by the terms in EqL2) 8 n =< ' Pl€. as
except for the Gaussian. We have multiplied the known=—(V-V(r))/6 anda,=(F-F)/3 whereF=—VV(r) is the
terms by a Gaussian in order to cut 6fk) at higherk since force on an atom. Th(i seri€$6) was derived strictly using
f(k) must terminate at the end of the phonon regiok-at the rela'tlonJ(Q,s)=n (s)R(Q,s) and the central role of
0.7 A%, We have sek.=0.5 A=, which is a parameter in R(Q,s) is to cut off J(Q,s) at large s. In the presence of a
the model. We will test the sensitivity of, to k. . condensate, we h'ave added a constant terni¢e) in Egs.

The termA;n*(k) describes the momentum distribution (15 @nd(9) [f(s) is long range irs] and we do not expect
for the k>0 states above the condensate uncoupled to it. he added constant to change the nature of the cut off signifi-
central assumption made here is that tifigk) has the same cantly (see Appendix A. . .
functional form asn(k) in normal *He. Forn*(k) we use In summary,J(Q.y) is given by Eq.(10) with J;a(s)

the accurately determin&momentum distribution of nor- = N(S) given by Eq.(15) andR(Q,s) given by Eq.(16). The

mal “He atT=2.3 K. Thisn*(k) is conveniently expressed 9(Q:Y) is fitted to experiment to determing, and the pa-

as the Fourier transform of(s), given by rametersBs, B4, Bs, and Be in R(Q,s).
a2 st ags® Ill. DATA COLLECTION AND REDUCTION
n*(s)=expg — TR TR (13

L _ _ The measurements were carried out at the ISIS pulsed
with @,=0.897 A2, @,=0.46 A=* and @=0.38 A"®.  spallation neutron source at the Rutherford Appleton Labo-
This expression fon*(s) is correct up to terms® for a  ratory in the United Kingdom. The instrument used was the

normal fluid (see Appendix Aand high-energy direct geometry chopper spectrometer MARI
_ with incident energies up to 1000 meV possible. More than
ary=(k), (14) 650 He gas detectors provide an almost continuous cover-
age of scattering angles, between 3° and 135° in steps of
a_4:<ké>>—3<ké>2, 0.43°. This makes it possible to measure a large range in
momentum and energy transfer in a single experiment scan.
a_6=(kg>—15(kg><ké>+30<ké>3 Due to the pulsed nature of the source, data collection is

performed in time-of-flighttTOF) in which the time of ar-
are cumulants ofi(kg). The calculations of Ceperley and rival of a neutron in the detector, measured from when they
Pollock* show thamn* (k) does not change with temperature leave the moderator, determines its energy loss or gain after
between 1.18 and 2.5 K within calculational error which wescattering from the sample. The momentum transfer depends
discuss further below. on the TOF and the scattering angle of the neutron. A high-
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purity sample of*He gas was condensed into a cylindrical 05

aluminium can of length 5 cm and diameter 5 cm placed

e “ . - 22.0
inside a standardHe “orange” cryostat. To minimize mul- 04 |

tiple scattering of neutrons within the sample, the cylindrical
sample volume was split into eight smaller cylindrical sec-
tions using highly neutron absorbing boron nitride disks. The
sample temperature was maintained at+10805 K using a
Lakeshore temperature controller and a Germanium diode 02 |
sensor. As an independent check, the resistance thermomet
readings were compared to the vapor pressure readings of tr ¢ |
sample. The measurement was made at saturated vapor pre
sure. In order to cover theQ,w) range of interest, an inci-  _
dent neutron energy of 755 meV was employed. A measure~< 0.0 &
ment was also made with the sample cell empty to determine»; 0.5
the sample independent background scattering. &
The collected data in TOF was then converted to energy=
transfer ¢ ) at constant scattering angle using standard pro-
cedures. The reader is referred to the recent article by Ander
senet al? for a detailed discussion of the data transforma-
tion from TOF toS( ¢, w) and then t&5(Q, w). In this article
we have made use of the inherent scaling property of the
scattering function withQ in the IA generally known ay
scaling and referred to in the last section. In the IA, the
scattering function can be portrayed as the longitudinal mo-
mentum distribution) 5 (y) wherey= (o — wg)(M/%Q) and
Ja(Y)=(AQ/M)SA(Q,w), and does not depend @ and

0.3 |

o separately. However, at moder&evhere the IA does not 50 25 00 25 50 -50 25 00 25 50
apply,y scaling is still approximately observed and it is use-
ful to present the data as a generalized longitudinal momen Y A

tum distribution J(Q,y) = (£Q/M)S(Q,w) as in Eg. (4) o )

which is weaklyQ dependent as a result of FSE’s. The ex- FIG. 1. Observed scattering Intensity eXpreSS?Cﬂ4(@'y) at
perimental data were transformed}Q,y) for Q=15to 29  constantQ=15, 22, 245, and 29 A", in superfluid *He at T
A-Lin steps of 0.5 Alanda sample of the data are shown =1.6 K and saturated vapor pressure. The dotted lines are the cal-
R e . . culated instrumental resolution function and the solid lines are fits
n '_T_Ir?é 1(;6;2?\/3;3;2%'(;/&)' igﬂ;@; y (())ff g]ig:\tilbstigﬁ%fhltghz to the data using the modé(Q,y) function described in the text.
underlying momentum distribution, the FS function and the _ .

instrumental resolution function. Hence, for a quantitativeof J(Q,y) given by Eqg.(10 using the model momentum
analysis of the data, the instrumental resolution functiordistribution in Eq.(15) and the final-state broadening func-
must be accurately known. We have used a Monte Carltion given by Eq(16) to the data. The free parameters in the
simulation method to calculate the instrumental resolutfon. fit are No, Bs, Ba Bs, and Bg. The cutoff parametek, in

In this method, the neutron-scattering experiment is simuT(k) was set at 0.5 A® and the parameters,, ag, ag in

lated using the known instrument parameters, sample ceH*(k) were set at the values determif@ébr normal *He
geometry and an estimate for the sample scattering functiora.—_0 897 A2 2.=0.46 A~* 2-—=0.38 A6 The dotte,d
. ’ 4 Y- ’ 6 Y- .

The incident neutron beam characteristics were modeled us-2

. . o ine in Fig. 1 is the instrumental resolution functigiRS).
ing the Ikeda-Carpent&rspeed and time distribution func- . .
tion with the adjustable parameters determined from a fit tThe fits to the data are clearly good both in the peak and the

the experimental monitor peaks before and after the sampl alltregilggs of the datal. Fltsba? showrl 3”5'1%11 Wsre_rr;aéde to
The simulation results are obtained in TOF and are the%‘:‘aa separaf@ values betwee@ = andQ=

71 . . . _
treated in the same way as the experimental data. The result The fit proce_dure and errors in the parameters are dis
cussed in Appendix B.

is a convolution between the instrumental resolution func- The values obtained for the fitted parameters are shown as
tion, 1(Q,y), and the model scattering function input to the . L . .
I (Q.y) 3 g function npu functions ofQ in Fig. 2. Figure 2a) showsng. Theng is

simulation. 1(Q,y) is then simply deconvoluted from the . . ) 0
simulation. The resulting instrumental resolution function igindependent o with an average value afo=5.0+1.5%
shown as a dashed line in Fig. 1. It is seen thaD,y) indicated by the solid line. The precision in determinimg

harrows with increasing and is very small at larg® thus increases with increasinQ because_the IRS narrows with
increasing the reliability of the data. increasingQ. As noted in Eq.(17), B3 is expected to be
Bs=az/(\Q) wherea;=(V?V(r))/6 is independent of.
Figure Zb) showsEQ versusQ which indeed turns out to
A. Fitted no and R(Q,y) be independent d® with az/A=2.75+1.0 A=%. In the fits

Figure 1 shows the observed data at f@values be- We found ,=0 within the fitted error and we se,=0.
tweenQ=15 A1 andQ=29 A~1. The solid line is the fit Again as noted in Eq(17) B85 has two terms. Figure ()

IV. RESULTS
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FIG. 2. Parameters obtained by fitting the modéD,y) to superfluid*He data as shown in Fig. 1 as a function of the wave-vector

transfer,Q. The fitted parameters afe) the condensate fractiam,, and the parameters for the final-state functions, (c) Bs, and(d)

Be-

shows the values g5 obtained in the fits, plotted 385Q3
vs Q2. This shows thaBsQ? is independent of, within our
precision. This means that the teray,/AQ?% in B domi-
nates, and thaa_54=0 within precision. TheQ-independent
value of 85Q3 gives ag,/\3=2200+800 A8

Finally, Fig. 2d) shows8¢Q? which turns out to be in-
dependent ofQ. This means thaa_62=0 within error and

ags/\2=175+75 A~8. These values ofi3, as,, and ag,
determine the final-state broadening function in the form

isa; is® ag, S° ag
3LAQ 5! (ZQ)® 6! (\Q)?|

R(Q,s)= exp{ (18

Figure 3 compares the FS functioR(Q,y), obtained here
(solid line) with that obtained previousfy in normal “He at
T=2.3 K(dashed ling We see that the twR(Q,y)’s agree

within determined precision. The main difference between
the two is that the normalHe R(Q,y) is peaked at a some-
what lower(more negativey value. This reflects the larger

mean value ofa, found in the normal®He (as/\=3.3

+0.7 A=%). The twoa; values agree within the determined

error of the fits. From this comparison, we find th{Q,y)

‘He.

B. Variation of parameters

In order to test the sensitivity to parameters in the fits, we

show results with some preset parameters.

1. Dependence on @y

Figures 4 and 5 show fits to data wit set atn,=0 and
R(Q,y) refitted to the data @=19.5 A~* andQ=29 A%,

1.5

Q=29.0A"
— T=1.6K
021.0_ ——— T=23K
N
05
&
0.0

Y (AT
. : _ ~ FIG. 3. The extracted final-state function@t=29 A~ in su-
is the same in the normal and superfluid phases of liquigherfluid “He at T=1.6 K (solid line) compared to that obtained

previously(Ref. 22 in normal *He atT=2.3 K (dashed ling
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FIG. 5. Same as Fig. 4 f@p=29 A~ 1.

FIG. 4. Upper frame; Fit of the model scattering function to data
atQ=19.5 A~* with n, fixed at 0%. Lower frame; the resulting  To test the sensitivity ofi to the cut offk,, we fixedk,
R(Q,y) for the fit (solid line) is compared with the best R(Q,y)  at 0.3, 0.5 and 0.7 A! and fitted forn, in each case and
(dashed lingfor the sameQ in the lower frame of the figure. obtained 6.4, 5.7, and 5.4%, respectively, Q29 AL

) _ o _ Essentially a lower value df, means a smaller contribution

respectlvely. In this case, the normalization factor in (aq) to n(k) from f(k) and a corresponding largay, is required
is A;=1.0, which leads to a broade(k). Clearly the fit of {5 fit the data. The quality of the fit to the data for the dif-
J(Q.y) in Figs. 4a) and §a) is too low aroundy=0 where  ferentk, values is the same as shown in Fig. 1. Given the
no contributes the most. The fit is also broader than the datgensitivity tok, and that the fits are low, rather than high, in
throughout most of)(Q,y). Essentially, the fittedR(Q,y) the peak region od(Q,y), we take our observen, value as

with no=0 [the dashed line in Figs.(8) and 3b)] cannot 1, —g+ 204 Reasonable lower and upper limitskioare 0.3
become narrow enough to provide a good fit to the data. Wegnqg 0.7 so that the additional error i arising from the
believe this is because #(Q,y) becomes narrower, the \ncertainty ink, is +0.5%.

amplitude of the oscillations iR(Q,y) for |y|=1 A~ be-

comes larger. These oscillations appeaR{®,y) because it

is normalized to unity and its first and second moments equal

zero. There is no evidence of oscillations in the data. Thus, a We now assume that there is no condensate in superfluid

best fit in the wings and negr=0 leads to a(Q,y) thatis  “He and present fits to the data in whigjis set to zero and

broad, too low aty=0 and has modest oscillations. Essen-n*(k) is adjusted to obtain a fit. For this fit, we $¢Q,y)

tially it is not possible to fit the data in superfluftHe using  to that determingd in the normal phase &t=2.3 K. Since

the n(k) from normal “He and fittingR(Q,y). R(Q,y) depends on interactions which change little with
Figure 6 shows fits to data =29 A~* with n, set at temperature, theR(Q,y) from normal *He is a logical

0%, 5.7%(the best-fit valupand 10% withR(Q,y) adjusted choice forny=0. The upper frame of Fig. 7 shows a fit to

in each case to get the best fit. Clearly the=5.7% is the data atQ=29 A1 It is seen that a good fit is possible.

best fit both in the wings and in the peak region. In the However, then(k) obtained is physically quite unrealistic.

=10% case the fit is too high in the peak and too low neafhe lower frame of Fig. 7 shows thigk) as the dotted line.

y=+15 A~L For ny=10%, if R(Q,y) were broadened In the same frame, the solid line showgk) observe® in

further to fit the data in the peak region, it would be at thenormal *He atT=2.3 K; the points showm(k) at three tem-

expense of a much poorer fit in the wings. peratures calculated by Ceperley and Pollot®P)?*

2. Dependence on k)
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FIG. 6. Sensitivity of the model tmy. Whenn, is too high
(10%) or too low (0%, it is not possible to fit the data by adjusting
R(Q,y). The change in the fitteR(Q,y) obtained for these ex-
tremes inn, are shown in the lower frame.

Clearly, the fit toJ(Q,y) with ng=0 atT=1.6 K produces
an n(k) which differs markedly from the observedk) at
T=2.3 K and the calculated(k) at all three temperatures.
Such a dramatic change im(k) whenT is decreased from
2.3 to 1.6 K is phyically unexpected, given thiet 2.3 K is

R. T. AZUAH et al.
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FIG. 7. Upper frame; Fit to data =29 A~!, T=1.6 K and
no=0 with R(Q,y) fixed at the normafHe value(see Fig. 3and
n(k) varied to obtain a fit. Lower frame shows the resultir(d)
obtained from this fi{dotted ling compared with thea(k) in nor-
mal “He atT = 2.3 K (solid line). The CP are the PIMC calculations
of n(k) by Ceperley and PollockCP) at three temperatures. The
CP n(k) for T<T, are normalized to slightly less than unity be-
cause of the condensate.

determinech(k) in normal “He at T=2.3 K for n*(k) in the
superfluid atT=1.6 K. Then*(k) calculated by Ceperley
and Pollock(CP) are the same at=1.18, 1.54, and 2.50 K,

already much less than the zero-point energy. That is, thwithin statistical uncertainties. Thesé(k) are shown in the

kinetic energy per atom is- 15 K which is much larger than
the thermal energy ®2. At T=2.3 K, liquid “He is already
a “cold” quantum liquid andn(k) differs markedly from a
classical Gaussian distribution. On further cooling by

=0.7 K, we would not expect a significant, additiona
change im(k), were there no transition. Yet, a large chang

of n(k) betweenT=2.3 K andT=1.6 K is required to fit the

data, if no condensate is included. There would be no phys
cal reason for such a change. In other words, a reasonable |

to the data witny=0 cannot be obtained.

V. DISCUSSION

A key assumption made here to obtaip shown in Figs.
1 and 2 is that the momentum distributiori(k) over the

lower frame of Fig. 7. Also CP findyp~7*=1% atT=1.18
K, ng=9*x1% atT=1.54 K andny~0 atT=2.50 K. If we
renormalize alh*(k) to the samen, value, sayny=0, then
all the calculateah* (k) are the same, within statistical errors.

| Indeed, the calculated”(k) for T=1.18 K lies between
en*(k) for T=1.54 K andT=2.5 K. Then(k) shown as the

solid line in Fig. 7 is obtained from the data®t 2.3 K and
ii_s the same as the(k) calculated by CP af=2.50 K. Thus,

| evidence suggests that (k) does not change from nor-
al to superfluid*He. This follows physically, as noted
above, because the zero-point enefigy., the kinetic energy
per atom, approximately equal to 19,Ks much greater than
the thermal energy &= 2.3 K. A further small reduction in
T is unlikely to lead to significant redistribution within ttke
>0 states.

We find a condensate fraction equalrtg=6+=2% atT

k>0 states uncoupled from, is independent of temperature =1.6 K and SVP. This is based on the best-fit valuespf

between 1.6 and 2.3 K. This allows us to use the accurately 5.0+ 1.5%

in Fig. 2a), the sensitivity to the
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0.02 | { ] , . .
] . 5.0 25 0.0 2.5 5.0

0.00 . ! : 4

0 1 2 3 4 5 y (A-l)

T(K)

L . FIG. 9. Comparison of the extractd(Q,y) in liquid helium
FIG. 8. Condensate fraction in liquitHe at SVP. Triangles are with theoretical calculations @=23 AL,

calculated(PIMC) values of Ceperley and PollodRef. 24. The

triangle atT=0.1 K is the calculated =0 (GFMC) value of Whit-  affect the value of, obtained. Further measurements at low

lock and Panoff(Ref. 37. Diamonds are the observed values of temperature are needed to establish whether there is indeed a

Snowet al. (Ref. 32 with the dashed line as a guide to the eye. Thesignificant difference.

square is the present value. Figure 3 shows that the FS function obtained here in the
superfluid atT=1.6 K is the same as that obtained previ-

cutoff parameterk,, which tends to increase,, and the Ously in normal *He atT=2.3 K. This is expected, since
nature of the fits neay=0. A very important conclusion is R(Q.y) depends on the interactions in the fluid which
thatn, cannot be zero. Ifi, is fixed atn,=0, we obtain an chgng_e I!ttle_wnhT. Precision measurements show that the
n(k) which differs dramatically from those observed experi- Pair-distribution functiorg(r) changes little between super-
y : PEM"f1uid and normat*He 33 The (r) calculated her¢see Fi

mentally atT=2.3 K and computed theoreticallPIMC) at 0 and belowch . littl bgt Ti—16and 23 K. I 9-

all temperatures. We interpret this as evidence of a condenj-> 2'¢ Pelowchanges fithé between= 1.5 and .o x. 'n a
sate in superfluidHe ess accurate determination, we have also fourttat

The present value ofi,=6+2% is compared to previ- R(Q.y) is the same in liquidHe.

PAlER 1 The presenR(Q,y) atQ=23 A~1 is compared with the
gg:lﬁh%lﬁervgi \Zlf)iluiess szi)nr(rj\el\a/\yr\l/la(f |(§\i/\l/(2:|?::2rr:str|:; 'zg'sfr'v\é\éel?(Q,y) calculated by Silver and by Carraro and Koonin in
0=0=270 Fig. 9. Both calculate®(Q, harpl ked th
value of Snow, Wang, and Sok# put well within the com- 9 oth calculate®(Q,y) are more sharply peaked than

) : ; the R(Q,y) observed here. The amplitude of the oscillations
It;lrr(;en(]d EiréorGS.v\'ll'gieaeg;ﬁzrﬁr&/ewgcazidPLMnCth\éagfal'(s rgeg?:rgf R(Q.y) at larger|y| is smaller in the Silver function than
(y=0) of the data only, then a higher value f, around bserved here. Finally, thB(Q,y) obtained here peaks at

: L : <0 at allQ values, whereas both calculated functions ap-
0
8_/0, _mlg_ht be deduced. However, the fits in the wings of th ear to peak ay>0. Mazzantiet al° have recently evalu-
distribution favor a lower value afi,. The value ofn, af-

. : ated R(Q,y) using the expression originally derived by
fects the wings through the FS broadening _funcﬂd@,y). Gersch and Rodriguez. In order to do this, they evaluated the
For example, the observeldQ,y) may be written as a con-

i . two-body density matrix appearing iR(Q,y). At Q=23
volution of n(k) andR(Q.,y) in the form A ~1, the peak height of theiR(Q,y) is similar to the cal-

culated values shown in Fig. 9 and the oscillations are com-
parable to those in the(Q,y) by Carraro and Koonin and in
Q)= [ dnORQy kel (19 {he one observed here
R(Q.,y) has been previously extracted from experiment

In Eq. (19), the condensate components(k) of n(k) leads Py Sosnicket al* and by Herwiget al* Herwig et al. used

to a termnyR(Q,y) in J(Q,y). Thus,J(Q.y) has a term then(k) andn, calculated by Whitlock and Pandffat T
proportional toR(Q,y) with weightn, which contributes in =0 K in an expression similar t19), and fitted the total
the wings followingR(Q,y) as well as in the peak region. J(Q.y) to their data aff=0.75 K to obtainR(Q,y). Their
R(Q,y) has oscillations in the wings but the data show noR(Q.y) is generally narrower than the one optalned here, but
oscillations. A good fit in the wings and in the peak regionProader than the calculated values, especially at lo@er
leads to a lower value fat,, to obtain uniform behavior. In values. AtQ= 23 A™* the peak height of theiR(Q,y) is
previous measurements, more emphasis was placed on tHt€ same as the calculated values shown in Fig. 9. Their
agreement in the peak region of the data. This may accoufPservedR(Q,y) always peaks & < 0. _

for the slightly lowern, value obtained here. Also, we have ~ The expansion used here to represR(®,s) is exact up
assumed here that the momentum distribution of the states powerss®. The coefficients3, are related to the moments
above the condensate uncoupled from the condensate is thé R(Q,y). SinceR(Q,s) has no terms irs or s?, the first
same in the superfluid as in the normal phase which magnd second moments d®(Q,y) vanish. This is a well-
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1.4 —— : : ; TABLE I. Comparison of the values of the kinetic energy per
particleEy (in K) and of the coefficienta;/\ (in A~%) anda,/\?
12 | . (in A~% computed by PIMC and deduced from experiment (
o =#?/M=1.0443 meV K).
1.0 ‘ T — —
>>>>>>>>> T (Ex) as/\ as/\? Method
= 0.8 r 1 1.6 14.70.1 5.1+0.5 116-10 PIMC
< 4
06 | HeSVP | 15 149-035 2810  <50.0  Experiment
04 L T=1.6 K — | 2.3 16.5-0.1 4.8+0.5 98+ 10 PIMC
T=23K - 23 16.3-0.35  3.3:07  <50.0  Experiment
02t _
0‘0 1 1 1 1 1 .
2 3 4 5 6 7 8 ment. From Table |, we see that the calculategdvalues at
r () the two temperatures lie above the observed values which are

obtained from fits to the data. The difference is just outside

~ FIG. 10. Pair-distribution function(r) computed by PIMC in  the combined error. In the fit to the data, the magnituda of
liquid helium at SVP, al = 1.6 K (solid line) andT=2.3 K (dashed 5 determined chiefly by the peak position &Q,y), i.e.,

line). Error bars are not shown for clarity; they are of the order OfwhereJ(Q y) falls on the “energy” transfey scale. If there
0.02 or less. is a systematic error in determining the energy transfer in the

known property ofR(Q,y). The observe®(Q,y) peaks at measurement, this would translate into a systematic error in

y<0. This appears to be needed in order to get a positivés- We have checked the energy transfer by evaluating the

third moment, first moment of the data and comparing it with thesum
rule. We find that the scale arEs are correct within the
f dy Y*R(Q,y)= B3=a3/\Q, (200 error quoted. In liquid Ne, the; determined from data in

the same way agrees well with PIMC calculati6AsSimi-
where larly, the calculated value of, lies above that obtained

a_3=<V2V>/6 21) from a fit of R(Q,s) to the data. We emphasize thaj is
actually very small and difficult to extract accurately from
is positive. Both of the calculate®(Q,y) shown in Fig. 9 the fit. We believe that these discrepancies arise from the
peak aty>0 and may have a negative third moment. Wefitting of an R(Q,s) which has a finite number of terms in
return to a discussion of third and fourth moments below. the expansion to the data. The relatively few terms retained
In order to obtain independent theoretical values ofwjl| attempt to simulate the full function if their number is
(V2V(r)) and(F*=F-F), that appear in the third and fourth nsufficient to obtain convergence. For example, if only
moments ofR(Q,y) respectively, as well as of the kinetic terms up tos® are retained, it is straightforward to show that
energy per particlgEy), we carried out a path-integral the coefficienta_4 would have to be negative in order to

M lo(PIM imulati f liquid heli VP, i )
onte Carlo( ©) simulation of liquid helium at SVP, in obtain anR(Q,s) that converges at large and reproduces

the superfluid phase, at=1.6 K, and in the normal phase at . . :
T=2.3 K. The PIMC method is a well-established tool that &XPerimental values. When terms upstoare included in the

enables the computation of thermodynamic properties ogXpansion, the extracted, still lies below the expected
quantum many-body systems at finite temperature directlyalue. This issue is discussed by Rirettal,** who have
from the microscopic Hamiltonia#. Here, we utilized it to ~ considered several fitting options. We emphasize that the dif-
calculate the kinetic energy per particle and the pairference between the calculated and extracted values;of

distribution functiong(r). We carried out PIMC simulations  anqa,, are relatively small; in liquid neon, wheR(Q,y) is
of 108 helium atoms interacting via an accepted pairwiSgyarrow compared to the momentum distribution, the ex-

pptenthl, with periodic boundary cond|t|on_s. Th|s type of tracted value ofa; agrees quantitatively with the PIMC-
simulation has been shown to afford a quantitatively accurate =

microscopic description of condensed helitfriThe pair- determined value, and, is positive:?

distribution function at the two temperatures investigated is

shown in Fig. 10. From the pair-distribution function, we

obtain (VZV(r)>=32i42meV/A2 (304 me\é/Az) at T ACKNOWLEDGMENTS
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APPENDIX A A.n*(s)R(Q,s) term. Physically, we know thak(Q,s) van-
ishes at larges even thoughn(s) has long-range compo-
. . . nents. Using the cumulant expansi@kB) again forJ(Q,s)
R(Q.s) leading to Eqs(13) and(16), respectively. At high in Eq. (A6), shows thatR(Q,s) must again have a series

Q, the scattering timé and the distance= (A Q/M)t trav- . . : ;
eled by the struck atom within the scattering time are Shortrepresentatlon as in EGhd). Assuming thatifo[ 1+ f(s)] is

This suggests a short-time expansiode®.s) andJ;(s) in constant independent sfwe can show that the coefficients

. . in the expansion oR(Q,s) are again given exactly by Eq.
owers ofs. Equationg3) and(5) are in the form natural for . .
gn expansionqin cumil:;nts. I(E>2pansion of Ea). gives (17). Thus Egs(16) and(17) hold in the superfluid as well

as in normal*He. The central assumption underlying this
a_232 a—454 a_656 representation oR(Q,s) is that ng[1+f(s)] is constant
Jia(s)=exp — o1 + TR +-.-0, (A1) over the range oR(Q,s), i.e., betweers=0 and the value of
' : ' s at whichR(Q,s) goes to zero.

In this appendix we sketch the derivation f(s) and

where
a_2=<ké), (A2) APPENDIX B
o In this appendix we discuss the fitting procedure and the
a4=(kg>—3<ké>2, errors in the fitted parameters. The values of the parameters
o ny and thepB, in J(Q,y) at eachQ were determined by
ag=(kd) — 15k )(kd) + 30(k5)* fitting J(Q,y) given by Eq.(10), properly convoluted with

the instrument resolution, to the data. The bestf®,y)

and hence the best values of the parameters were found by
minimizing the mean-square deviatigs$ of the convoluted
J(Q,y)=j;, from the datad;, using the standard definition

are the cumulants ai(kg). Sincen(kg) andn(s) are even
functions, Eq.(Al1) has only even powers of. A similar
cumulant expansion of Eq3) yields’’

2 H 3 6
_ M2S™ T3S MeS N )
J(Q’S)_ex‘{_ o1 T3 T er T SR o |
(A3) XTN-M+14 | o

2

(B1)

where the,u_n_are similarly cumulants of the time—ordered Here N is the number of data points at eaGh (typically
J(Q,_s). The a, are clearly independent 6J. Theun canbe 120, M is the number of adjustable parametéygpically 4)
readily expressed as momentsl¢f,y) and theirQ depen-  anq 4, is the error in the data. The error bars on the param-
dence determined. An expansionRfQ,s) can be obtained eters were calculated by the fitting progréthe 1SIS Frills
directly from its definitionR(Q,s)=J(Q,s)/Jia(s) in Eq.  package assuming a linear relation between the calculated

(9) and the expansion@1) and(A3) as function and the parameters. Typical fits are shown in Fig. 1
— 3 — 4 —& —s and the resulting parameters and their errors at €acre
R(Q s)=exr{l'83s Bas — B _ BeS . shown in Fig. 2. The magnitude of the error reflects the sta-
' 3! 4! 5! 6! ' tistical error of the data at a give® and the sensitivity of the
(A4)  fit to that parameter. A small error bar implies a high sensi-
tivity.

where B = i for Odq” and By = un— o, for evenn. From With N large, as the case herg? should take values of

ﬂe moment expressions for thg, , theQ dependence of the 0.8< y2<1.2, approximately. A smalk? suggests that the

Bn can be determined. Up to=6 they are given by Eq. error ¢; in the data is overestimated. A largé signals a

(17|)E. on (A1) describ v the sho behavior of poor fit. The best fit aQ=29 A~ shown in Fig. 1, witt,,
quation escribes only the shod behavior of 5~ -~ 2 adi i i -

Jia(s) which arises froom*(s). When there is a condensate, p S’_g%;ndvﬁih sdJ:rS;i?;\;Vhlf?:e?Z:eo_lgo 070'2?]? t: *a

the OBDM Jia(s) has long-range nearly constant Compo-i(ef;lea to ‘obtaine(ij a bestyfit we finél);zizll 06 Thusqiﬁe

nents not described by the expansidl). These compo- values ofy? are reasonable and the quality of the fit is quite
nents must be added to tlig,(s) given by Egs.(Al) and > OlY i .
(® 9 y Eas(AD) gensitive tong. In contrast, the fit aQ=29 A~* shown in

(13) as discussed in Sec. Il. Adding these components t

: the upper frame of Fig. 7, in whichg is fixed atny=0,

Jia(s) in Eq. (Al), we have, from Egs(13) and (15), D 0
a(S) in Eq. (A1), w v qs.13) (19 R(Q,y) was set to the reraI-IlqwdHe value shown in
Jia(s)=ng[1+f(s)]+An*(s) (A5)  Fig. 3, and the parameters, in n(k) adjusted to get a best
and fit, has ay?=1.40. This suggests a significantly poorer fit.

Pirticularly to be noted in Fig. 2 is that the fluctuation of
J(Q,5)={n[1+f(s)]+AN*()}R(Q,S),  (AB)  the B4 values fromQ to Q is significantly greater than the

where this relation defind®(Q,s) as in Eq.(9). Then*(s) is  error bar onBg calculated by the fitting program at a given
again given by Egs(16) and (Al). Sincef(k) is sharply Q. The data was normalized separately at eacldditional
peaked neak=0 similar to 5(k), f(s) is long-ranged irs  statistical error fromQ to Q can arise from this separate
similar to the unit term in Eq(A5). If f(s) is approximated normalization. We believe that the fluctuation of the param-
by a constant over the range of interest<(5 A), then the eters fromQ to Q best represents the total statistical error in
only dependence ons in n(s) appears in the the parameters. The error in the quoted average value of
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BsQ2=175=75 A8 was set so that the mean value plusWwas increased from |t_s least value of 0.956 obtained for

errors cover 68% of the 29 separate determination@e@2.  BsQ°=280 to 1.05 for8sQ*=160 and 445 A'* suggesting
We also made an independent check on the uncertainty ithat 8,Q?=280+140 A~8. This error is greater than the

the determination o8¢ andn, at a givenQ by varying these ~ error calculated by the fitting program and is consistent with

parazmeters and noting the change_(?n Given the definition  the final error inB;Q? obtained from fluctuations fror® to

0f2X above and assuming that theis large enough that the Q. Similarly, we foundyx?=1.05 for no=0.069 and 0.045

x> have a Gaussian distribution about the least vaiie suggesting thah,=0.057+0.12 emerges from the fit. This

~1, a change oB¢ by one standard deviation should changeis also consistent with the error of 0.015 assigned tog

x? by approximately 1YN. At Q=29 A~! we found thaty?>  due to its variation fronQ to Q.
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