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Numerical study of the incommensurate phase in spin-Peierls systems

A. E. Feiguin, J. A. Riera, A. Dobry, and H. A. Ceccatto
Instituto de Fı´sica Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario, Argentina

~Received 14 May 1997!

We analyze several properties of the lattice solitons in the incommensurate phase of spin-Peierls systems
using exact diagonalization and quantum Monte Carlo simulations. These systems are modeled by an antifer-
romagnetic Heisenberg chain with nearest- and next-nearest-neighbor interactions coupled to the lattice in the
adiabatic approximation. Several relations among features of the solitons and magnetic properties of the system
have been determined and compared with analytical predictions. We have studied in particular the relation
between the soliton width and the spin-Peierls gap. Although this relation has the form predicted by bosonized
field theories, we have found some important quantitative differences which could be relevant to describe
experimental studies of spin-Peierls materials.@S0163-1829~97!00646-2#
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I. INTRODUCTION

One-dimensional or quasi-one-dimensional magnetic s
tems show many fascinating properties which continue
attract an intense theoretical activity. One of these proper
is the presence of a spin gap in antiferromagnetic Heisen
chains with integer spin1 and in ladders.2 Another, particu-
larly complex system which presents a spin gap is the s
Peierls ~SP! system. In this system a Heisenberg cha
coupled to the lattice presents an instability at a critical te
peratureTSP below which a dimerized lattice pattern appea
and a spin gap opens in the excitation spectrum.3

The interest in the spin-Peierls phenomena was rece
revived after the first inorganic SP compound CuGeO3 was
found.4 This inorganic material allows the preparation of b
ter samples than the organic SP compounds and hence
eral experimental techniques can be applied to characte
the properties of this system.5 Besides, this compound can b
easily doped with magnetic and nonmagnetic impuriti
leading to a better understanding of its ground state
excitations.6

Spin-Peierls systems present also a very rich and inte
ing behavior in the presence of an external magnetic fi
Below the spin-Peierls transition temperature, and for m
netic fieldsH smaller than a critical valueHcr(T), the system
is in its spin-Peierls phase, characterized by a gapped
magnetic (Sz50) ground state with a dimerized pattern
alternating nearest-neighbor~NN! interactions. For
T,Ttc,TSP, at H5Hcr(T) a transition occurs from the
dimerized phase to a gapless incommensurate~IC! state char-
acterized by a finite magnetizationSz.0. Ttc is the tempera-
ture of the point at which the dimerized, incommensura
and uniform phases meet. The dimerized-IC transition w
predicted by some theories7 to be of first order at low tem-
peratures, and this is the behavior found in experime
studies8,9. Other theories predict that this transition is a se
ond order one.10

A simple picture of the dimerized-IC transition can b
obtained by mapping the Heisenberg spin chain to a spin
fermion system by a Jordan-Wigner transformation. The
fect of the magnetic field favoring a nonzeroSz due to the
Zeeman energy can be interpreted as a change in the
560163-1829/97/56~22!/14607~7!/$10.00
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filling of the equivalent spinless fermion system. As a res
the momentum of the lattice distortion moves away fromp

as q̃5(12Sz/N)p, whereN is the number of sites on th
chain. However, since umklapp processes pin the momen
at p up to a critical fieldHcr(T), the lattice distortion will
remain a simple dimerization and the magnetic ground s
will remain a singlet.11 Theoretical10,12,13 and
experimental14,15 studies indicate that the lattice distortio
pattern in the IC phase corresponds to an array of soliton
complementary picture indicating how a soliton lattice cou
appear as a consequence of the finite magnetization in th
phase is the following. Let us assume that the dominant c
tribution to the magnetic ground state comes from a state
NN singlets or dimers. An up spin replacing a down sp
destroys a singlet and gives rise to two domain walls
solitons separating regions of dimerized order which
shifted in one lattice spacing with respect to each other. E
soliton carries a spin-1/2. Due to the spin-lattice coupling
is expected that the lattice solitons are driven by these m
netic solitons.

The soliton formation in spin-Peierls systems has be
studied analytically by bosonization techniques applied
the spinless fermion model.16 The coupling to the lattice is
treated usually in the adiabatic approximation. The result
field-theory formalism has led to important results, the m
remarkable being the relation between the soliton width a
the spin-Peierls gap,j;D21.12 Although this formalism has
been extended to a Heisenberg model with competing
and next-nearest-neighbor ~NNN! antiferromagnetic
interactions,17,18 it presents some unsatisfactory features.

In the first place, there are some recent experime
results14 for the soliton width in the IC phase in CuGeO3
indicating a disagreement with the theoretical prediction.
though there might be a contribution to the soliton wid
coming from magnetic17 or elastic18 interchain couplings
which would explain at least partially this disagreement, it
also possible that the differences could be due to sev
approximations involved in the bosonized field theory. O
should take into account that these theories are valid in p
ciple in the long wavelength limit, and the applicability o
their results to real materials cannot be internally asses
14 607 © 1997 The American Physical Society
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14 608 56FEIGUIN, RIERA, DOBRY, AND CECCATTO
Then, our first motivation to start a numerical study of the
phase in spin-Peierls systems is to measure the importan
these approximations in the analytical approach.

In the second place, the field theory approach does
provide a detailed dependence of the magnitudes involve
terms of the original parameters of the microscopical mod
For example, even for the simplest case12 the expression ob
tained for the spin-wave velocity must be replaced by
exact one known from Bethe’s exact solution of the Heis
berg chain. In this sense, numerical studies could give in
mation about how the relevant magnitudes depend on
original parameters without further approximations.

With these motivations, in this article we want to initia
the study of the incommensurate phase in SP systems u
numerical methods. These methods give essentially exac
sults for finite clusters, and they can be used to check var
approximations required by the analytical approaches and
validity of their predictions. Besides, the numerical simu
tions provide a detailed information of the dominant ma
netic and lattice states. In Sec. II we present the model c
sidered and we study several features of the sol
formation in the IC phase using the Lanczos algorithm.
particular we analyze the effect of NNN interactions on t
soliton width. In Sec. III we perform Monte Carlo simula
tions using the world line algorithm—which allows us
study larger chains than the ones accessible to the Lan
algorithm—in order to reduce finite size effects.

II. EXACT DIAGONALIZATION STUDY

The one-dimensional model which contains both the a
ferromagnetic Heisenberg interactions and the coupling
the lattice is

H5J(
i 51

N

@11~ui 112ui !#Si•Si 111J2(
i 51

N

Si•Si 12

1
K

2 (
i 51

N

~ui 112ui !
2, ~1!

whereSi are the spin-1/2 operators andui is the displace-
ment of magnetic ioni with respect to its equilibrium posi
tion. Periodic boundary conditions are imposed. The fi
term, which corresponds to the nearest neighbor~NN! inter-
actions, contains the spin-lattice coupling in the adiaba
approximation. The second term contains the AF NNN int
actions, which were proposed in Refs. 19,20 to fit the exp
mental magnetic susceptibility data in CuGeO3. Several
other properties of this material have been reasonably
scribed using this model.21–23 As in Ref. 19, we assume fo
simplicity that the lattice distortion does not affect th
second-neighbor interactions. In principle, the NNN inter
tions should be corrected by a term proportional
(ui 122ui) which vanishes in the dimerized phase but n
necessarily in the incommensurate phase. This correc
should be important precisely in the region around a solit
It is customary to introduce the frustration constanta5J2 /J.
The estimated value ofa in CuGeO3 varies between 0.24
~Ref. 20! and 0.36~Ref. 19!. In this second case,a is larger
of
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than the critical valueac'0.2411 above which in the ab
sence of dimerization a gap opens in the excitat
spectrum.24

Our purpose is to study numerically Hamiltonian~1! with
exact diagonalization~Lanczos! techniques and by Monte
Carlo simulations. In this latter case, in order to avoid t
well-known sign problem due to the frustration, we will co
sider only the diagonal second-neighbor interaction

H2
zz5J2

z (
i 51

N

Si
zSi 12

z , ~2!

instead of the isotropic NNN interactions@second term of
Eq. ~1!#.

It is quite apparent that the main numerical difficulty
related to the handling of the set of displacements$ui%,
which in principle can take arbitrary values to describe
various distortion patterns present in the dimerized and
phases of the system. These displacements are calcu
self-consistently by the following iterative procedure. Fir
we introduce the bond distortions defined asd i5(ui 112ui).
Then, the equilibrium conditions for the phononic degrees
freedom

]^H&
]d i

1l50 ~3!

lead to the set of equations

J^Si•Si 11&1Kd i2
J

N (
i 51

N

^Si•Si 11&50, ~4!

which satifies the constraint( id i50. This constraint has
been included in Eq.~3! through the corresponding Lagrang
multiplier l. The expectation values are taken with respec
the ground state of the system. The iterative procedure s
with an initial distortion pattern$d i

(0)%, which in general we
choose at random. At the stepn, with a distortion pattern
$d i

(n21)%, we diagonalize Hamiltonian~1! using the Lanczos
algorithm and compute the correlations^Si•Si 11&. We re-
place these correlations in Eq.~4! and the new set$d i

(n)% is
obtained. We repeat this iteration until convergence. Ess
tially the same procedure is followed in the quantum Mon
Carlo algorithm, as discussed in Sec. III.

We have applied this exact diagonalization procedure
determine the distortion patterns in the 20 site chain atT50.
In the first place we consider the case ofSz50. As men-
tioned above, this corresponds to a dimerized lattice,
d i5(21)id0. Notice that for this simple case, the equilib
rium distortion amplituded0 could be determined in an
easier way by computing the energies of the spin part of
Hamiltonian for a set of values ofd0. Then, adding the elas
tic energy and interpolating one obtains the minimum to
energy. We have performed this calculation in order to ch
our iterative algorithm.

The results ford0 vs K, for Sz50, are shown in Fig. 1 for
a50.0, 0.2, and 0.4 andJ2

z50.2 and 0.4. It can be seen tha
as expected, fora.0 the dimerized state is more favorab
and this leads to a largerd0 for a givenK. To a lesser exten
this trend is also present forJ2

z.0.
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56 14 609NUMERICAL STUDY OF THE INCOMMENSURATE PHASE . . .
The dependence ofd0 with K can be inferred from the
scaling relation between the energy and the dimeriza
E0(d0)2E0(0);d0

2n ~plus logarithmic corrections! with
n52/3, in principle valid for a,ac and smalld0.11,25,26

Then, it is easy to obtaind0;K23/2, a relation which is
approximately satisfied by our numerical data. The fact t
d0 vanishes at a finite valueK̂ of the elastic constant, is jus
a finite size effect. By diagonalizing chains ofN512, 16,
and 20 sites, fora50, we have verified thatK̂ increases
with the lattice size, as it can be seen in Fig. 2, and it sho
eventually diverge in the bulk limit.

Once we have determined the equilibrium distortion a
function ofK, we are able to compute the singlet-triplet sp
gap, defined as the following difference of ground state
ergies:

D5E0,dim~Sz51!2E0~Sz50!. ~5!

FIG. 1. Dimerization amplitude vs elastic constant obtained
exact diagonalization in the 20 site chain,Sz50, for various values
of a5J2 /J andJ2

z .

FIG. 2. Dimerization amplitude vs elastic constant obtained
exact diagonalization forN512,16,20~solid squares, diamond, an
triangles, respectively! and Monte Carlo simulations forN564
~open dots!, with a50. The inset shows the expected scaling b
havior d0;K23/2 for N564.
n

t

ld

a

-

It is worth emphasizing thatE0,dim is the ground state energ
of the system forSz51 with the dimerization obtained fo
Sz50 and the same set of parameters. The results of
calculation are shown in Fig. 3. Consistently with the larg
d0 shown in Fig. 1, the gap increases witha. The effect ofJ2

z

is much weaker than that of the isotropic second-neigh
interaction which is not surprising since the 1D ground st
magnetic structure, with a dominant dimerized state, has
sentially a quantum~off-diagonal! origin. This small increase
in D for a givenK is consistent with the small increase ind0
shown in Fig. 1. The corresponding scaling relationD;K21

obtained from the relation between the singlet-triplet gap a
the dimerizationD;d0

2/3 is again reasonably satisfied by o
numerical data.

We now consider the case ofSz51, which corresponds to
the incommensurate region just above the dimeriz
incommensurate transition. We have determined the dis
tion pattern for a 20 site chain using the iterative proced
described above. As discussed at the beginning of this
tion, the two solitons or domain walls separating dimeriz
regions are clearly distinguishable.~A typical pattern can be
seen in Fig. 7.! The maximum distortiond0, shown in Fig. 4,
presents similar behavior as the one shown in Fig. 1 co
sponding toSz50. In particular, the fact thatd0 vanishes at
a finite K is again due to finite size effects.

In order to compute the soliton width, we use the follow
ing form to fit the numerically obtained distortion patterns

d i5~21! i d̃ tanhS i 2 i 02d/2

j D tanhS i 2 i 01d/2

j D , ~6!

which corresponds to modeling each soliton as an hyperb
tangent, as obtained in the analytical approach to
problem.12 The amplituded̃ , the soliton widthj, and the
soliton-antisoliton distanced, are the parameters determine
by the numerical fitting. The amplituded̃ should be equal to
the maximum distortiond0 defined above for well separate
solitons, i.e.,d@j. The main limitation of this calculation
arises in the region where, for a givena, K is so large that

y

y

-

FIG. 3. Singlet-triplet gap vs elastic constant obtained by ex
diagonalization in the 20 site chain, for various values ofa andJ2

z .
The symbols have the same meaning as in Fig. 1.
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14 610 56FEIGUIN, RIERA, DOBRY, AND CECCATTO
the solitons have a substantial overlap in the 20 site ch
and the fitting function~6! is no longer appropriate. In thi
case, the elliptic sine should be used to describe the so
lattice. This is the region where finite size effects are imp
tant, as it was discussed above with respect to Figs. 1 an
However, this situation is not directly relevant to experime
since in real materials the solitons are well separated.14

We show in Fig. 5 the soliton width as a function of th
gapD for the 20 site chain, for the same values ofa andJ2

z

as before. It can be seen that the there is a linear depend
of the soliton width with the inverse of the gap. This beha
ior is consistent with the theoretical prediction12

j5vs /D, ~7!

where vs is the spin-wave velocity fora,ac . It was re-
cently shown that the relation~7!, originally obtained for the
unfrustrated chain,12 is also valid in the presence o

FIG. 4. Dimerization amplitude vs elastic constant obtained
exact diagonalization in the 20 site chain,Sz51, for various values
of a andJ2

z .

FIG. 5. Soliton width vs singlet-triplet spin gap obtained
exact diagonalization in the 20 site chain,Sz50, for various values
of a andJ2

z .
n,

on
-
4.
t
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-

frustration.18 For a.ac , D contains a contribution from the
frustration due to the presence of a gap even in the abs
of dimerization.

A linear fitting of these curves in the regionj.2.5 gives
the slopes 1.87, 1.70, and 1.63, fora50.0, 0.2, and 0.4,
respectively. Recently, a numerical study27 has proposed the
law vs5(p/2)(121.12a) in the bulk limit for a,ac , From
this law one getsvs5 1.57, 1.22, fora50.0 and 0.2 respec
tively. We can observe that the slopes obtained by fitting
curves shown in Fig. 5 are systematically larger than th
values ofvs . Besides, the effect ofa is weaker in the nu-
merical data than that predicted by Eq.~7!. For
a50.4.ac'0.2411, we have estimatedvs by fitting the
excitation dispersion relation «(k)5E0,dim(Sz51,k)2
E0(Sz50,k50) with the law«(k)25D21vs

2k21ck4 around
k50 andd i50. For L520 we obtainedvs50.707, a value
which is also smaller than the slope of the curvej vs 1/D for
a50.4 in Fig. 5. This disagreement between the predict
obtained by the continuum bosonized theory and the num
cal results could be due to the approximations involved
the former or to finite size effects present in the latter. T
study of much larger lattices than those considered in
section will be done in the following section using quantu
Monte Carlo simulations. On the other hand, for the case
J2

z50.4 the slope is actuallylarger ('2.1) than the value
obtained for the Heisenberg chain with NN interactions on
This effect is opposite to that of the isotropic NNN intera
tions and it will be further discussed in the next section.

III. MONTE CARLO SIMULATIONS

In order to treat longer chains than those considered in
Lanczos diagonalization study of the previous section,
have implemented a world-line Monte Carlo algorithm28

suited to this problem. The partition function is re-express
as a functional integral over wordline configurations, whe
the contribution on each imaginary time slice is given by t
product of the two-site evolution matrix elements

Wi ,i 11~t!5^Si ,t
z Si 11,t

z ue2DtJiSi•Si 11uSi ,t1Dt
z Si 11,t1Dt

z &,

where Ji5J(11d i). These matrix elements are the Bolt
mann weights associated with a bond (i ,i 11) in a time step
Dt51/mT in the Trotter direction, whereT is the tempera-
ture andm is the Trotter number. Since the exchange co
plings depend on the lattice displacements, these matrix
ments are site dependent.

We implemented the algorithm with the addition of a d
namic minimization of the free energy with respect to t
lattice displacements. Starting from a given initial configu
tion ~random distribution of spins and a dimerized pattern
the lattice displacements! we typically considered 23103

sweeps for thermalization. During the next 43103 sweeps
we measured the derivative of the magnetic free ene
which, in the limit ofT→0, is given by

]FM

]d i
5J^^Si–Si 11&&T . ~8!

Leaving three sweeps between each measurement for d
relation this produces 103 independent values to obtain th

y
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56 14 611NUMERICAL STUDY OF THE INCOMMENSURATE PHASE . . .
thermal average. With this free-energy gradient we correc
the displacements according to Eq.~4! and repeated the pro
cedure, including the 23103 sweeps for thermalization sinc
the spins have to accommodate to the new lattice distorsi
Once the displacement pattern is stabilized within statist
fluctuations—we typically considered;150 iterations, see
Fig. 6—we performed measurements of several quanti
For this we obtained 100 independent groups of 103 mea-
surements each, following the same procedure as desc
above, i.e.,~i! thermalization,~ii ! measurements of]FM /]d i
and observables, and~iii ! correction of the displacement pa
tern due to statistical fluctuations.

In our calculations we considered chains of 64 sites w
periodic boundary conditions and a temperatureT50.05J.
We checked that this value is low enough to study grou
state properties by comparison with measurements at e
lower temperatures. On the other hand, at higher temp
tures the soliton is not observed and there is no definite
tern of lattice displacements. We tookm580 for the Trotter
number, which is large enough to reproduce the Lanc
results on smaller chains~see Fig. 2!. For some particular
quantities such as the energy gap, which require more pr
sion, we considered alsom5160. In addition, comparison
with results for a longer chain withN5128 indicates that in
the parameter range of our calculations the Monte Carlo
sults have no sizeable finite-size effects.

In Fig. 2 we show the Monte Carlo results for the hom
geneous dimerization of the 64 site chain in theSz50 sub-
space as a function of the elastic constantK, together with
the Lanczos results for smaller chains. Notice that in
parameter range considered the 64 site chain does not
the finite-size effects present for smaller chains, namely,
vanishing ofd0 for finite values ofK. The inset shows the
expected scaling behaviord}K23/2 discussed in the previou
section. As a further check, we have also reproduced
scaling behavior of the energy gainE0(d0)2E0(0) and gap
with d0 with a measured exponentn52/3 within statistical
errors.

The soliton structure in the subspace withSz51 is given
in Fig. 7, where we plot the displacement envelo
d̃ i5(2) id i and the local magnetization̂Si

z& , for different
values of the elastic constantK. Notice that the displace

FIG. 6. Minimization of the free energy for a uniform dimerize
chain. We plot the derivative of the free energy and the parametd
along the successive iterations.
d
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ments are normalized by their maximum values~shown in
Fig. 2! and the local magnetization by the classical va
S51/2. Consequently, the size of lattice distortions in diffe
ent panels cannot be directly compared. For small value
K there is a well defined soliton-antisoliton structure in t
distortion pattern, with the associated local magnetizat
following a staggered order. There is a net 1/2 spin den
near each domain wall, which makes the excessSz51. As in
the previous section, we fitted a two-soliton solution~6!,
with d̃ 051 because of the normalization adopted. The
sults for the soliton widthj are shown in Fig. 8. For increas
ing values ofK the soliton width grows until the displace
ment profile resembles a sine law~see Fig. 7!. This
sinusoidal pattern is typical of the soliton lattice, observ
for large values ofSz. It can be seen that the scalingj;K
obtained in Ref. 12 is well reproduced in the whole para
eter range considered, as indicated by the linear fit to the
~dashed line!. This figure shows that the soliton width fo

FIG. 7. Lattice distortion patterns and local magnetizations
the 64 site chain obtained by Monte Carlo simulations, forSz51
and different values ofK. In every panel the maximum lattice dis
tortion is normalized to one, so that they cannot be directly co
pared.

FIG. 8. Soliton width vs elastic constantK obtained by Monte
Carlo simulations in the 64 site chain forJ2

z50.0 and 0.3, together
with Lanczos results for the 20 site chain,J2

z50.0 and 0.4, and
a50.4. The dashed line corresponds to a linear fit to the Mo
Carlo results forJ2

z50.
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J2
z50.3 also presents a linear dependence withK. These fea-

tures observed in the 64 site chain are qualitatively simila
those present in the 20 site chain as determined by e
diagonalization. Besides, it can seen in this figure that
reduction ofj is much stronger when the isotropic NNN
taking into account.

We have performed a simple study on the solito
antisoliton interaction. For this study we fixed the distorti
pattern to the law~6! with the previously fitted value ofj,
and considered increasing values ofd. For smallK (<2J)
we found that the total energy becomes a constant~within
statistical fluctuations! when d>4j, which implies that the
soliton-antisoliton pairs shown in the left panels of Fig. 4 a
not interacting. This was confirmed by allowing the latti
distortion to evolve starting from a pattern such as Eq.~6!
with an initial separation larger thand, which produces the
same result forj and the total energy.

Next, we study the behavior of the soliton widthj with
the spin-Peierls gapD. That is, we compare the quantityj
that characterizes theSz51 soliton state, with the singlet
triplet excitation gapD above the dimerizedSz50 ground
state. As shown in Fig. 9, these two quantities are invers
related to each other, as discussed in the previous sec
The slope of the linear fit is 1.9, very close to the value 1
obtained by exact diagonalization of the 20 site chain in
previous section. This result confirms the disagreement
tween the numerical results with the analytical predict
pointed out in Sec. II. Also shown in Fig. 9 are the results
J2

z50.3. A linear fit to these results leads to a slope'2.3,
i.e., larger than the value corresponding toJ2

z50.0. This in-
crease of the slope betweenj andD21 is consistent with the
result obtained for the 20 site lattice by exact diagonalizat
and J2

z50.4. This behavior should be contrasted with t
reductionof the slope found for the isotropic NNN interac
tion. A possible explanation of this behavior could be t
following. As discussed in the previous section, the termH2

zz

leads to a smaller increase of the spin gap than the f
isotropic NNN interaction. On the other hand, the Ising
teraction could be more effective in punishing the exc
^Sz& which appears around a soliton leading to a sma

FIG. 9. Soliton width vs inverse of singlet-triplet gap obtain
by Monte Carlo simulations forJ2

z50.0 and 0.3. The horizonta
error bars give the estimated error in the determination of the
D.
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reduction of the soliton width than the one caused by
isotropic term, as can be seen in Fig. 8. A more detai
study of the Hamiltonian in the presence of the term ofH2

zz

is clearly necessary to fully understand this behavior.
Finally, it is possible to estimate the critical value of th

magnetic field at zero temperature. By adding a Zeeman t
to the Hamiltonian~1!, 2gmBSzH (mB : Bohr’s magneton!,
Hcr may be calculated as

Hcr5E0~Sz51!2E0~Sz50! ~9!

in units ofgmB . E0(Sz51) is the ground state energy of Eq
~1!, and thenHcr,D, which is the value expected of
gapped system in the absence of magnetoelastic coup
The behavior ofHcr as a function ofD is shown in Fig. 10
for the 64 site chaina5J2

z50.0 and for the 20 site chain
a5J2

z50.4. It is apparent a linear dependence over all
range studied, which is in agreement with the mean-fi
prediction,3,11 Hcr'0.84D. However, we obtain a coefficien
considerable smaller,Hcr /D'0.47, almost independent ofa.
This value is also smaller than twice the soliton formati
energy calculated in Ref. 12. The finite value at the origin
the curves corresponding toa5J2

z50.4 is a finite-size ef-
fect.

IV. CONCLUSIONS

In this article we analyzed the magnetic soliton lattice
the incommensurate phase of spin-Peierls systems using
merical methods. There is a remarkable agreement betw
the results obtained by exact diagonalization using the La
zos algorithm and those obtained by quantum Monte Ca
simulations with the world-line algorithm. The relation
among various features of the solitons and magnetic pro
ties of the system have been determined and compared
analytical results. Our starting point is a microscopical mo
proposed to describe several properties of CuGeO3, consist-
ing of a 1D AF Heisenberg model with nearest- and ne
nearest-neighbor interactions.

p FIG. 10. Hcr vs spin gap obtained by Monte Carlo simulations
the 64 site chain fora5J2

z50.0 and by exact diagonalization in th
20 site chain, fora5J2

z50.4.
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In the first place we did not detect any crossover in
behavior of the quantities examined asa, the ratio of NNN
to NN interactions, becomes greater thanac at least for the
small chains considered. That is, there are only smo
changes asa varies between 0.0 and 0.4. The most import
effect of the competing NNN interaction is areductionof the
soliton width j as a function of the inverse of the single
triplet spin gapD. Furthermore, the effect of the diagon
term ~2! is much less important and in some cases e
qualitatively different to that of the isotropic NNN term.

Although several functional forms predicted by co
tinuum analytical theories have been confirmed by our
merical data, there are some important quantitative dif
ences. The most important disagreement between
numerical results and the analytical predictions is related
-

e

th
t

n

-
r-
ur
to

the coefficient in the relationj;D21, i.e., we obtained a
systematically higher value than the theoretical value wh
is the spin-wave velocity. The estimated value ofHcr /D is
also noticeably smaller than the mean-field result a
slightly smaller than the prediction of bosonized field theo
The relevance of these numerical results to real SP mater
such as CuGeO3 and the recently discovered NaV2O5,29 has
to be determined experimentally.

The numerical procedures developed in this article co
be applied to the study of several other properties of
incommensurate phase of spin-Peierls systems, such a
static magnetization as a function of the magnetic field~re-
cently measured in CuGeO3 by Fagot-Revuratet al.15! and
the order of the transition from the dimerized to the inco
mensurate phases.9
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