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Numerical study of the incommensurate phase in spin-Peierls systems
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We analyze several properties of the lattice solitons in the incommensurate phase of spin-Peierls systems
using exact diagonalization and quantum Monte Carlo simulations. These systems are modeled by an antifer-
romagnetic Heisenberg chain with nearest- and next-nearest-neighbor interactions coupled to the lattice in the
adiabatic approximation. Several relations among features of the solitons and magnetic properties of the system
have been determined and compared with analytical predictions. We have studied in particular the relation
between the soliton width and the spin-Peierls gap. Although this relation has the form predicted by bosonized
field theories, we have found some important quantitative differences which could be relevant to describe
experimental studies of spin-Peierls materif®0163-182607)00646-2

[. INTRODUCTION filling of the equivalent spinless fermion system. As a result,
the momentum of the lattice distortion moves away frem

One-dimensional or quasi-one-dimensional magnetic syszsg=(1— S%N), whereN is the number of sites on the
tems show many fascinating properties which continue tqnain. However, since umklapp processes pin the momentum
attract an intense theoretical activity. One of these propertieg; . up to a critical fieldH(T), the lattice distortion will

is the presence of a spin gap in antiferromagnetic Heisenberg,ain 4 simple dimerization and the magnetic ground state
chains with integer spinand in ladder$. Another, particu- will  remain a singlet! Theoretica®>%® and

larly complex system which presents a spin gap is the SPINay perimentdf1® studies indicate that the lattice distortion

Peierls (SP system. In this system a _Helsenbe_r_g Chalnpa’[tern in the IC phase corresponds to an array of solitons. A
coupled to the lattice presents an instability at a critical tem-

peratureT <p below which a dimerized lattice pattern appearscomplementary picture indicating how a soliton lattice could
and a spirSIPgap opens in the excitation spectfum appear as a consequence of the finite magnetization in the IC

The interest in the spin-Peierls phenomena was recentl hase is the following. Let us assume that the dominant con-
revived after the first inorganic SP compound CuGe@as ribution to the magnetic ground state comes from a state of

found? This inorganic material allows the preparation of bet-NN Singlets or dimers. An up spin replacing a down spin

ter samples than the organic SP compounds and hence séi@stroys a singlet and gives rise to two domain walls or

eral experimental techniques can be applied to characteri&9litons separating regions of dimerized order which are
the properties of this Systeﬁ‘BesideS, this Compound can be shifted in one lattice Spacing with respect to each other. Each
easily doped with magnetic and nonmagnetic impuritiessoliton carries a spin-1/2. Due to the spin-lattice coupling it

leading to a better understanding of its ground state ani$ expected that the lattice solitons are driven by these mag-
excitations netic solitons.

Spin-Peierls systems present also a very rich and interest- The soliton formation in spin-Peierls systems has been
ing behavior in the presence of an external magnetic fieldstudied analytically by bosonization techniques applied to
Below the spin-Peierls transition temperature, and for magthe spinless fermion modé&f. The coupling to the lattice is
netic fieldsH smaller than a critical valud .(T), the system treated usually in the adiabatic approximation. The resulting
is in its spin-Peierls phase, characterized by a gapped noffield-theory formalism has led to important results, the most
magnetic §=0) ground state with a dimerized pattern or remarkable being the relation between the soliton width and
alternating  nearest-neighbor(NN) interactions. For the spin-Peierls gag~ A .12 Although this formalism has
T<T<Tgp, at H=H_(T) a transition occurs from the been extended to a Heisenberg model with competing NN
dimerized phase to a gapless incommensui&estate char- and next-nearest-neighbor (NNN)  antiferromagnetic
acterized by a finite magnetizati®$>0. T,. is the tempera- interactions;’*8it presents some unsatisfactory features.
ture of the point at which the dimerized, incommensurate, In the first place, there are some recent experimental
and uniform phases meet. The dimerized-IC transition wasesult$* for the soliton width in the IC phase in CuGgO
predicted by some theorieo be of first order at low tem- indicating a disagreement with the theoretical prediction. Al-
peratures, and this is the behavior found in experimentathough there might be a contribution to the soliton width
studie&®. Other theories predict that this transition is a sec-coming from magneti¢ or elasti¢® interchain couplings
ond order oné® which would explain at least partially this disagreement, it is

A simple picture of the dimerized-IC transition can be also possible that the differences could be due to several
obtained by mapping the Heisenberg spin chain to a spinlesspproximations involved in the bosonized field theory. One
fermion system by a Jordan-Wigner transformation. The efshould take into account that these theories are valid in prin-
fect of the magnetic field favoring a nonze®d due to the ciple in the long wavelength limit, and the applicability of
Zeeman energy can be interpreted as a change in the battteir results to real materials cannot be internally assessed.
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Then, our first motivation to start a numerical study of the ICthan the critical valuex;~0.2411 above which in the ab-
phase in spin-Peierls systems is to measure the importance ence of dimerization a gap opens in the excitation
these approximations in the analytical approach. spectrunt?

In the second place, the field theory approach does not Our purpose is to study numerically Hamiltoniél) with
provide a detailed dependence of the magnitudes involved iaxact diagonalizatior{lLanczo$ techniques and by Monte
terms of the original parameters of the microscopical modelsCarlo simulations. In this latter case, in order to avoid the
For example, even for the simplest csie expression ob- well-known sign problem due to the frustration, we will con-
tained for the spin-wave velocity must be replaced by thesider only the diagonal second-neighbor interaction
exact one known from Bethe’s exact solution of the Heisen-
berg chain. In this sense, numerical studies could give infor- N
mation about how the relevant magnitudes depend on the HE=05 D, S' 0, ()
original parameters without further approximations. =1

With these mqtivations, in this article we want to initiate. instead of the isotropic NNN interactiofisecond term of
the study of the incommensurate phase in SP systems usigg, (1 1.
numerical methods. These methods give essentially exact re- }; g quite apparent that the main numerical difficulty is

sults for finite clusters, and they can be used to check varioug|ated to the handling of the set of displacemefus
approximations required by the analytical approaches and thgnich in principle can take arbitrary values to describe the
validity of their predictions. Besides, the numerical simula-y5jqys distortion patterns present in the dimerized and IC
tions provide a detailed information of the dominant mag-ppases of the system. These displacements are calculated

netic and lattice states. In Sec. Il we present the model COrsgit_consistently by the following iterative procedure. First,
sidered and we study several features of the solitonye jniroduce the bond distortions definedds (u; ., — u;).
formation in the IC phase using the Lanczos algorithm. |

X ) . ™hen, the equilibrium conditions for the phononic degrees of
particular we analyze the effect of NNN interactions on thefreedom

soliton width. In Sec. Ill we perform Monte Carlo simula-

tions using the world line algorithm—uwhich allows us to H(H)

study larger chains than the ones accessible to the Lanczos ——+\=0 (3
algorithm—in order to reduce finite size effects. 9o

lead to the set of equations
Il. EXACT DIAGONALIZATION STUDY

N
J
The one-dimensional model which contains both the anti- S-S+ K5i_ﬁ,2 (S-S+1)=0, (4)
ferromagnetic Heisenberg interactions and the coupling to =1
the lattice is

which satifies the constraint;5;=0. This constraint has
been included in Eq3) through the corresponding Lagrange

N N multiplier A. The expectation values are taken with respect to
H=3D, [1+(Us1—U)]S-S+1+3:> S-Sz the ground state of the system. The iterative procedure starts
=1 =1 with an initial distortion patterd 5>}, which in general we

KN choose at random. At the step with a distortion pattern
+=3 (U= u)?, 1 {8V}, we diagonalize Hamiltoniafil) using the Lanczos
2i=1 algorithm and compute the correlatiof§;-S ;). We re-

place these correlations in E@l) and the new sets(™} is

where S are the spin-1/2 operators ang is the displace- ©Obtained. We repeat this iteration until convergence. Essen-
ment of magnetic ion with respect to its equilibrium posi- tially the same procedure is followed in the quantum Monte
tion. Periodic boundary conditions are imposed. The firstCarlo algorithm, as discussed in Sec. lIl.

term, which corresponds to the nearest neighibby) inter- We have applied this exact diagonalization procedure to
actions, contains the spin-lattice coupling in the adiabati¢letermine the distortion patterns in the 20 site chaif-a0.
approximation. The second term contains the AF NNN interdn the first place we consider the case $=0. As men-
actions, which were proposed in Refs. 19,20 to fit the experitioned above, this corresponds to a dimerized lattice, i.e.,
mental magnetic susceptibility data in CuGgCSeveral ;=(—1)'d. Notice that for this simple case, the equilib-
other properties of this material have been reasonably degium distortion amplitudes, could be determined in an
scribed using this modét-23As in Ref. 19, we assume for €asier way by computing the energies of the spin part of the
simplicity that the lattice distortion does not affect the Hamiltonian for a set of values af,. Then, adding the elas-
second-neighbor interactions. In principle, the NNN interactic energy and interpolating one obtains the minimum total
tions should be corrected by a term proportional to€nergy. We have performed this calculation in order to check
(u;+»—U;) which vanishes in the dimerized phase but notour iterative algorithm.

necessarily in the incommensurate phase. This correction The results fois, vsK, for $°=0, are shown in Fig. 1 for
should be important precisely in the region around a solitone=0.0, 0.2, and 0.4 and;=0.2 and 0.4. It can be seen that,
It is customary to introduce the frustration constantJ,/J.  as expected, foe>0 the dimerized state is more favorable
The estimated value of in CuGeQ; varies between 0.24 and this leads to a largé, for a givenK. To a lesser extent
(Ref. 20 and 0.36(Ref. 19. In this second casey is larger  this trend is also present fdg>0.
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FIG. 1. Dimerization amplitude vs elastic constant obtained by

exact diagonalization in the 20 site cha8= 0, for various values

of a=J,/J andJ5.

The dependence aof, with K can be inferred from the

FIG. 3. Singlet-triplet gap vs elastic constant obtained by exact
diagonalization in the 20 site chain, for various valuestandJj .
The symbols have the same meaning as in Fig. 1.

scaling relation between the energy and the dimerizationt is worth emphasizing the g, is the ground state energy
E0(50)—E0(0)~5§” (plus logarithmic corrections with

v=2/3, in principle valid fora<ea, and small

Then, it is easy to obtai,~K %72 a relation which is

50.11’25'26

of the system forS*’=1 with the dimerization obtained for
$*=0 and the same set of parameters. The results of this
calculation are shown in Fig. 3. Consistently with the larger

approximately satisfied by our numerical data. The fact that, shown in Fig. 1, the gap increases withThe effect 0fJ5
5, vanishes at a finite valug of the elastic constant, is just is much weaker than that of the isotropic second-neighbor
a finite size effect. By diagonalizing chains Nf=12, 16,

and 20 sites, forw=0, we have verified thakK increases

interaction which is not surprising since the 1D ground state
magnetic structure, with a dominant dimerized state, has es-

with the lattice size, as it can be seen in Fig. 2, and it shoul§entially a quantunfoff-diagona) origin. This small increase

eventually diverge in the bulk limit.

in A for a givenK is consistent with the small increasedp

Once we have determined the equilibrium distortion as &nown in Fig. 1. The corresponding scaling relatior K™
function ofK, we are able to compute the singlet-triplet spin 0Ptained from the relation between the singlet-triplet gap and
gap, defined as the following difference of ground state enthe dimerizatiomA ~ 55~ is again reasonably satisfied by our

ergies:

A=Eggim(S$*=1) —Eo(S°=0).

©)

K

FIG. 2. Dimerization amplitude vs elastic constant obtained by
exact diagonalization faN=12,16,20(solid squares, diamond, and

triangles, respectivelyand Monte Carlo simulations foN=64 i ! €lined ab / _
(open dots with «=0. The inset shows the expected scaling be-solitons, i.e.,d>¢. The main limitation of this calculation

havior 8,~K ~%2 for N=64.

numerical data.

We now consider the case 8f=1, which corresponds to
the incommensurate region just above the dimerized-
incommensurate transition. We have determined the distor-
tion pattern for a 20 site chain using the iterative procedure
described above. As discussed at the beginning of this sec-
tion, the two solitons or domain walls separating dimerized
regions are clearly distinguishabl@ typical pattern can be
seen in Fig. 7. The maximum distortiord,, shown in Fig. 4,
presents similar behavior as the one shown in Fig. 1 corre-
sponding toS*=0. In particular, the fact tha, vanishes at
a finite K is again due to finite size effects.

In order to compute the soliton width, we use the follow-
ing form to fit the numerically obtained distortion patterns:

i—io—dlz)tam‘(i—io+d/2
& &

which corresponds to modeling each soliton as an hyperbolic
tangent, as obtained in the analytical approach to this
problem!? The amplituded, the soliton width¢, and the
soliton-antisoliton distancd, are the parameters determined

)

5i=(—1)‘73tanl‘(

by the numerical fitting. The amplitud& should be equal to
the maximum distortior5, defined above for well separated

arises in the region where, for a given K is so large that
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frustration'® For > a., A contains a contribution from the
frustration due to the presence of a gap even in the absence
of dimerization.

A linear fitting of these curves in the regid@t» 2.5 gives
the slopes 1.87, 1.70, and 1.63, fe=0.0, 0.2, and 0.4,
respectively. Recently, a numerical stéfljas proposed the
law v = (7/2)(1— 1.12x) in the bulk limit for e<a, From
this law one gets = 1.57, 1.22, fore=0.0 and 0.2 respec-
tively. We can observe that the slopes obtained by fitting the
curves shown in Fig. 5 are systematically larger than these
values ofvg. Besides, the effect ok is weaker in the nu-
merical data than that predicted by Eq7). For
a=0.4>a.~0.2411, we have estimatag, by fitting the
. . . . excitation dispersion relation (k) =Eg gim(S*=1k) —
60 70 80 90 10 Eo(S*=0k=0) with the lawe (k)2= A%+ v 2k?+ ck* around
k=0 and;=0. ForL=20 we obtained ;=0.707, a value
FIG. 4. Dimerization amplitude vs elastic constant obtained byWhICh IS alsp Sma”ef the_m the slope of the cuives 1A fo.r .
exact diagonalization in the 20 site cha8i= 1, for various values a:O.'A' in Fig. 5. Th'.s dlsagreement between the predlctlor]
of @ andJz. obtained by the continuum bosonized th_eory_ and _the numeri-

cal results could be due to the approximations involved in

the former or to finite size effects present in the latter. The

o . ) . . rEtudy of much larger lattices than those considered in this
and the fitting functior(6) is no longer appropriate. In this section will be done in the following section using quantum

case, the 'e||.lptIC sme.should be .“?ed to describe the' SOIItOI(}Ionte Carlo simulations. On the other hand, for the case of
lattice. This is the region where finite size effects are impor-

. : ; . 2=0.4 the slope is actualllarger (=~2.1) than the value
2
tant, as it was discussed above with respect to Figs. 1 and %btained for the Heisenberg chain with NN interactions only.

However, this situation is not directly relevant to experimentZ. . . ; ) . :
since in real materials the solitons are well separéted. LI.—h'S effec'F IS opposite to thgt of the Isotropic NNN Interac-
tions and it will be further discussed in the next section.

We show in Fig. 5 the soliton width as a function of the
gapA for the 20 site chain, for the same valuesaofind J5
as before. It can be seen that the there is a linear dependence ll. MONTE CARLO SIMULATIONS
of the soliton width with the inverse of the gap. This behav-
ior is consistent with the theoretical predicttén

T K

the solitons have a substantial overlap in the 20 site chai

In order to treat longer chains than those considered in the
Lanczos diagonalization study of the previous section, we
have implemented a world-line Monte Carlo algoriffim

§=vs/A, (7)  suited to this problem. The partition function is re-expressed
as a functional integral over wordline configurations, where
where v is the spin-wave velocity fore<a.. It was re- the contribution on each imaginary time slice is given by the
cently shown that the relatiof), originally obtained for the product of the two-site evolution matrix elements
unfrustrated chaif® is also valid in the presence of

Wi 1(7)=(S, S 1,le 2SSl ST

6.0 ‘ ' ‘ where J;=J(1+ &;). These matrix elements are the Boltz-
mann weights associated with a bond ¢ 1) in a time step
A7=1/mT in the Trotter direction, wher& is the tempera-
ture andm is the Trotter number. Since the exchange cou-
plings depend on the lattice displacements, these matrix ele-
ments are site dependent.

We implemented the algorithm with the addition of a dy-
namic minimization of the free energy with respect to the
lattice displacements. Starting from a given initial configura-
tion (random distribution of spins and a dimerized pattern for
the lattice displacementsve typically considered 2 10°
sweeps for thermalization. During the nexx40® sweeps
we measured the derivative of the magnetic free energy,
which, in the limit of T—0, is given by

50 |

4.0 |

3.0 |

20|

1.0 - - -
0.0 1.0 2.0 3.0 4.0

dFm
—5 ~ (S-S ®)
I
FIG. 5. Soliton width vs singlet-triplet spin gap obtained by _
exact diagonalization in the 20 site chaBi=0, for various values Leaving three sweeps between each measurement for decor-
of a andJ5. relation this produces £Gindependent values to obtain the
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FIG. 6. Minimization of the free energy for a uniform dimerized 0. 10 20 30 40 50 60 10 20 30 40 50 60

chain. We plot the derivative of the free energy and the parandeter

L . X X
along the successive iterations.

FIG. 7. Lattice distortion patterns and local magnetizations of

thermal average. With this free-energy gradient we correcteghe 64 site chain obtained by Monte Carlo simulations, $br: 1
the displacements according to E4) and repeated the pro- and different values oK. In every panel the maximum lattice dis-
cedure, including the 2 10° sweeps for thermalization since tortion is normalized to one, so that they cannot be directly com-
the spins have to accommodate to the new lattice distorsionpared.
Once the displacement pattern is stabilized within statistical
fluctuations—we typically considered 150 iterations, see ments are normalized by their maximum valuskown in
Fig. 6—we performed measurements of several quantitieszig. 2) and the local magnetization by the classical value
For this we obtained 100 independent groups of iita-  S=1/2. Consequently, the size of lattice distortions in differ-
surements each, following the same procedure as describest panels cannot be directly compared. For small values of
above, i.e.(i) thermalization{ii) measurements @f%, /d4; K there is a well defined soliton-antisoliton structure in the
and observables, artdi) correction of the displacement pat- distortion pattern, with the associated local magnetization
tern due to statistical fluctuations. following a staggered order. There is a net 1/2 spin density

In our calculations we considered chains of 64 sites withhear each domain wall, which makes the ex@®ss1. As in
periodic boundary conditions and a temperatlire0.05].  the previous section, we fitted a two-soliton soluti(),
We checked that this value is low enough to study groundysith 5 =1 because of the normalization adopted. The re-
state properties by comparison with measurements at eVefyjis for the soliton widtk are shown in Fig. 8. For increas-

lower temperatures. On the other hand, at higher tempergsg yajues ofK the soliton width grows until the displace-
tures the soliton is not observed and there is no definite patyont profile resembles a sine latsee Fig. 7. This

tern of lattice displacements. We toak=80 for the Trotter  gjn,spidal pattern is typical of the soliton lattice, observed
number, which is Iargv_a enoug_h to reproduce the _Lanczo%r large values of%%. It can be seen that the scalidig- K
results on smaller chainsee Fig. 2 For some particular pained in Ref. 12 is well reproduced in the whole param-
quantities such as the energy gap, which require more preciier range considered, as indicated by the linear fit to the data

si_on, we considered alsm=_160: In addit?on_, compt':lfi~'°»<_3n (dashed ling This figure shows that the soliton width for
with results for a longer chain witN= 128 indicates that in

the parameter range of our calculations the Monte Carlo re-

sults have no sizeable finite-size effects. 10.0

In Fig. 2 we show the Monte Carlo results for the homo- 00, = 0.0 Lanczos
geneous dimerization of the 64 site chain in 8fe=0 sub- 801 D—”J{=°-“ Lanczos
space as a function of the elastic constenttogether with | o -ooMe
the Lanczos results for smaller chains. Notice that in the 80 m—m.l-03mC ;
parameter range considered the 64 site chain does not have ol |
the finite-size effects present for smaller chains, namely, the '
vanishing ofd, for finite values ofK. The inset shows the 20 | . A
expected scaling behaviérK ~¥2 discussed in the previous ' g M
section. As a further check, we have also reproduced the 00 L g . .
scaling behavior of the energy gdity(5y) — E(0) and gap 0.0 1.0 20 3.0
with &y with a measured exponemt=2/3 within statistical K
errors.

. . L FIG. 8. Soliton width vs elastic constaKt obtained by Monte
The soliton structure in the subspace w&h=1 is given y

in Ei 7 h | he displ | Carlo simulations in the 64 site chain f3=0.0 and 0.3, together
In Fig. 7, where we plot the displacement envelope iy | anczos results for the 20 site chai#=0.0 and 0.4, and

‘3i=(—)'s, and the local magnetizatiof§) , for different  4=0.4. The dashed line corresponds to a linear fit to the Monte
values of the elastic consta#tt. Notice that the displace- Carlo results ford3=0.
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FIG. 9. Soliton width vs inverse of singlet-triplet gap obtained A

by Monte Carlo simulations fod3=0.0 and 0.3. The horizontal

error bars give the estimated error in the determination of the gap F!G- 10.Hc, vs spin gap obtained by Monte Carlo simulations in
A. the 64 site chain foee=J5=0.0 and by exact diagonalization in the

20 site chain, forw=J5=0.4.

J5=0.3 also presents a linear dependence KitThese fea- , . ,
tures observed in the 64 site chain are qualitatively similar tgeduction of the soliton width than the one caused by the
those present in the 20 site chain as determined by exaliOlrOPIC term, as can be seen in Fig. 8. A more detailed
diagonalization. Besides, it can seen in this figure that thétudy of the Hamiltonian in the presence of the ternt#f
reduction ofé¢ is much stronger when the isotropic NNN is S clearly necessary to fully understand this behavior.
taking into account. Flnal!y, _|t is possible to estimate the crl_t|cal value of the
We have performed a simple study on the soliton-magnetic flgld at zero temperature. By adding a Zeeman term
antisoliton interaction. For this study we fixed the distortiont0 the Hamiltonian(1), —gugS*H (ug: Bohr's magnetop
pattern to the law(6) with the previously fitted value of,  Hcr Mmay be calculated as
and considered increasing valuesdfFor smallK (=<2J)
we found that the total energy becomes a constaithin He=Eo(S*=1)—Eo(S*=0) 9)
statistical fluctuationswhend=4¢, which implies that the
soliton-antisoliton pairs shown in the left panels of Fig. 4 are
not interacting. This was confirmed by allowing the lattice
distortion to evolve starting from a pattern such as &j.

in units ofgug. Eq(S?=1) is the ground state energy of Eq.
(1), and thenH <A, which is the value expected of a
gapped system in the absence of magnetoelastic coupling.
with an initial separation larger thath which produces the 1€ behavior oH as a f;mctlon ofA is shown in Fig. 10
same result fog and the total energy. for the 64 site chaine=J5=0.0 and for the 20 site chain
Next, we study the behavior of the soliton widghwith a=J5=0.4. It is apparent a linear dependence over all the
the spin-Peierls gap. That is, we compare the quantigy ~fange studied, which is in agreement with the mean-field
' idinn3 1l ; s
that characterizes th&?=1 soliton state, with the singlet- Prediction;"*"H¢~0.84A. However, we obtain a coefficient
related to each other, as discussed in the previous sectiofifierdy calculated in Ref. 12. The finite value at the origin of
The slope of the linear fit is 1.9, very close to the value 1.87he curves corresponding @=J;=0.4 is a finite-size ef-
obtained by exact diagonalization of the 20 site chain in thdect.
previous section. This result confirms the disagreement be-

tween the numerical results with the analytical prediction IV. CONCLUSIONS
pointed out in Sec. Il. Also shown in Fig. 9 are the results for
J3=0.3. A linear fit to these results leads to a slop@.3, In this article we analyzed the magnetic soliton lattice in

i.e., larger than the value correspondinglge=0.0. This in-  the incommensurate phase of spin-Peierls systems using nu-
crease of the slope betwegrandA ! is consistent with the  merical methods. There is a remarkable agreement between
result obtained for the 20 site lattice by exact diagonalizationhe results obtained by exact diagonalization using the Lanc-
and J5=0.4. This behavior should be contrasted with thezos algorithm and those obtained by quantum Monte Carlo
reductionof the slope found for the isotropic NNN interac- simulations with the world-line algorithm. The relations
tion. A possible explanation of this behavior could be theamong various features of the solitons and magnetic proper-
following. As discussed in the previous section, the téthi  ties of the system have been determined and compared with
leads to a smaller increase of the spin gap than the fullgnalytical results. Our starting point is a microscopical model
isotropic NNN interaction. On the other hand, the Ising in-proposed to describe several properties of Cugesnsist-
teraction could be more effective in punishing the excessng of a 1D AF Heisenberg model with nearest- and next-
(S* which appears around a soliton leading to a smallenearest-neighbor interactions.
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In the first place we did not detect any crossover in thethe coefficient in the relatiog~A "1, i.e., we obtained a
behavior of the quantities examined asthe ratio of NNN  systematically higher value than the theoretical value which
to NN interactions, becomes greater thanat least for the is the spin-wave velocity. The estimated valueHyf /A is
small chains considered. That is, there are only smootllso noticeably smaller than the mean-field result and
changes a& varies between 0.0 and 0.4. The most importantlightly smaller than the prediction of bosonized field theory.
effect of the competing NNN interaction iseductionof the  The relevance of these numerical results to real SP materials,
soliton width £ as a function of the inverse of the singlet- such as CuGe@and the recently discovered Na®@s, has
triplet spin gapA. Furthermore, the effect of the diagonal to be determined experimentally.
term (2) is much less important and in some cases even The numerical procedures developed in this article could
qualitatively different to that of the isotropic NNN term. be applied to the study of several other properties of the

Although several functional forms predicted by con-incommensurate phase of spin-Peierls systems, such as the
tinuum analytical theories have been confirmed by our nustatic magnetization as a function of the magnetic fiedd
merical data, there are some important quantitative differcently measured in CuGe{by Fagot-Revuraet al*®) and
ences. The most important disagreement between ouhe order of the transition from the dimerized to the incom-
numerical results and the analytical predictions is related tenensurate phasés.
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