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Single-cluster algorithm for the site-bond-correlated Ising model
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We extend the Wolff algorithm to include correlated spin interactions in diluted magnetic systems. This
algorithm is applied to study the site-bond-correlated Ising model on a two-dimensional square lattice. We use
a finite-size scaling procedure to obtain the phase diagram in the temperature-concentration space. We also
have verified that the autocorrelation time diminishes in the presence of dilution and correlation, showing that
the Wolff algorithm performs even better in such situations.@S0163-1829~97!06146-8#
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I. INTRODUCTION

For randomly diluted magnetic systems the critical co
centration where the magnetic order vanishes is of grea
terest. The dependence of the critical temperature on the
centration is ruled by the topological properties of the latt
and by the symmetry of the interaction Hamiltonian.

In the simplest description of a dilute magnet, the oc
pied lattice sites correspond to magnetic atoms and
empty sites are associated with the presence of nonmag
atoms~impurities!. Interactions are short ranged, usually
the exchange interaction type. The strength of the excha
interaction is not affected by their neighbors. AtT50, the
cluster structure is well described by the ordinary site per
lation model.

However, it has been found experimentally that som
times thelocal environmentmay modify the exchange cou
pling constant between two atoms or may even suppress
magnetic manifestations. This means that interactions
volving more than two atoms are present in the system.
take these effects into account, two kinds of correlatio
were proposed: the long- and the short-ranged correla
models. The bootstrap percolation model1 is a good example
for the former and the site-bond-correlated model2,3 for the
latter. Long-ranged correlation may change the critical ex
nents or even the order of the transition of its correspond
uncorrelated model. In contrast, the short-ranged correla
seems to be unable to cause such drastic effects. Anyway
these systems, dilution as well as correlation plays an imp
tant role.

An analysis of19F NMR linewidths in the randomly di-
luted magnetic system KNixMg12xF3 and in the isostructura
compound KMnxMg12xF3 ~where x is the concentration!
show remarkable differences in their properties.2,4 For in-
stance, the concentration and percolation thresholds w
the magnetic order ceases are different. Further, the for
displays an upward curvature in the temperatu
concentration plane which is absent in the latter. In orde
explain these facts, Aguiaret al.2 proposed a dilution mode
where the exchange coupling constant of two ions Ni21 de-
pends directionally on the magnetic attributes of th
nearest-neighbor atoms. That is, the magnetic spins are
related. In a subsequent work,3 a parametera was introduced
which is a measure of the correlation strength. Whena.0
560163-1829/97/56~22!/14529~4!/$10.00
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or a,0 we haveferro- or antiferromagnetic correlation,
respectively. Due to the presence of both ferro- and anti
romagnetic coupling constants, the antiferromagnetic co
lation brings competition to the system and a spin-glass
havior is expected.

The thermal properties of the site-bond-correlated~SBC!
Ising model was investigated using several approaches: m
field,3 Honmura-Kaneyoshi effective field,5 renormalization
group,6,7 and Monte Carlo renormalization group.8 Any of
these techniques lead to almost the same physical sce
with the exception of the SBC model defined on the Be
lattice.9 Here there are some unexpected features which s
to be due to the pathological geometry of the Bethe latti
Also SBC cluster characteristics have been studied in c
nection to the percolation problem. For the square lattice
is now well established that there are two kinds of perco
tions: the usual site percolation with thresholdpc;0.592
when 0,a<1 and acorrelatedpercolation with threshold
pc;0.740 ata50.10 There are now strong indications th
both percolations belong to the same universality class.11,12

As far as we know, Ref. 13 is the only work which trea
the thermal properties of the SBC model by using the Mo
Carlo technique. In that paper, the parametera is restricted
to be null. Everyone knows that it is very difficult to simula
near phase transitions due to the emergence of the cri
slowing down phenomenon. In the SBC model this becom
even worse since dilution together with correlation conspi
to weaken the Metropolis technique. Fortunately, for the
calledcluster algorithmsthe dilution makes these algorithm
even more robust.14 In the Ising model~diluted or not! the
Metropolis algorithm is a local Monte Carlo method whe
only one spin is flipped each time. For thecluster algo-
rithms, however, the entire cluster can be flipped. Inde
there are actually two kinds of cluster algorithms: the sing
cluster algorithm like the Wolff15 algorithm and those in-
volving multiple clusters as the Swendsen-Wang16 and the
invaded cluster17 algorithms.

In spite of the great interest critical slowing down r
ceived during the last decades, it is still a hard question
find under what conditions it can be reduced. Two indep
dent strands of thought contributed to enlightening the pr
lem. The first was the search for the so-called ‘‘physic
cluster’’ of the Ising model. The idea is to find a percolatio
14 529 © 1997 The American Physical Society
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problem in absolute harmony with the thermal problem: T
temperature where the percolation threshold occurs (Tp)
must coincide with the critical temperature (Tc) and also
their corresponding critical exponents need to be the sa
The ‘‘geometrical cluster,’’ i.e., those clusters formed
grouping all nearest neighbors up~or down! spins, were dis-
carded since in three dimensions they neither haveTp5Tc
nor are their exponents the same. An explicit construction
‘‘physical clusters’’ was proposed by Coniglio and Klein.18

Parallel to this research line, Kasteleyn and Fortuin19 intro-
duced the random cluster model. They proved that the
ceptibility of the Ising model is equal to the mean cluster s
of the random cluster model on the right side. Gather
these ideas, Swendsen and Wang16 developed an algorithm
for the Potts model. In this algorithm, clusters of spins in
same states are grown and flipped. Thus, a number of s
are updated in a single move and the correlation time
reduced.

In 1989, asingle-clusterMonte Carlo algorithm was in-
troduced by Wolff15 for theO(N) spin models as a variatio
on the Swendsen-Wang scheme for the Ising model and
proven to be even more effective. In the Wolff algorith
only one cluster is formed and flipped with probability
whereas in the Swendsen-Wang dynamics all percola
clusters are formed and flipped with probability 1/2. Accor
ing to Tamayoet al.20 the main reason for a better perfo
mance of the Wolff algorithm is that the mean size of t
clusters flipped is significantly larger than in the Swends
Wang case.

In this paper we generalize the Wolff algorithm to inclu
correlation. Our results are used to construct the SBC ph
diagram for many concentrations and for the correlationa in
the interval @0,1#. We also determine the behavior of th
autocorrelation time with both dilution and spatial corre
tion included in the model. Withaugmenteddilution or spa-
tial correlation, our generalized cluster algorithm becom
even better, exhibiting adecreasingautocorrelation time.
This is a nice and different result, since forlocal algorithms,
dilution and correlation always reduce enormously their
ficiency.

II. MODEL

In the SBC model the presence of nonmagnetic impuri
in the neighborhood of a given pair of nearest-neighbor m
netic atoms can modify the strength of the exchange inte
tion between the two atoms. Moreover, in the limit of stro
correlationa, the correlation can even suppress the relev
exchange interaction.

The model Hamiltonian is the following:

H52(
i ,d

Ji ,i 1d~s is i 1d21!, ~1!

wheres i561 andd denotes an elementary lattice vecto
The exchange interactionJi ,i 1d is given by

Ji ,i 1d5J« i« i 1d@~12a!« i 2d« i 12d1a#, ~2!

whereJ.0. The random variables« i can take values 1 with
probability C and 0 with probability 12C, whereC is the
concentration of magnetic atoms. The parametera correlates
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the interaction between sitesi and i 1d with the magnetic
occupancy of the sitesi 2d and i 12d. The uncorrelated
dilute Ising model is reobtained in the limita51. For
0,a,1, the bond betweeni and i 1d is only weakened by
the absence of a magnetic atom ati 2d or i 12d. The limit
a50 corresponds to the maximum correlation, i.e., tw
magnetic first-neighbor sites are connected by an active b
only if their nearest-neighbor sites along the line joini
them are also present.

III. FORTUIN-KASTELEYN MAPPING

In the Wolff algorithm for the pure Ising model, first a sit
is randomly chosen in the lattice. A nearest-neighbor s
will be added to the cluster with an activation probabili
p512e22K ~where K5J/KBT) if it is in the same spin
state. This procedure is repeated until no more sites ca
incorporated to the cluster. The whole cluster is then flipp
Following Fortuin and Kasteleyn,19 we derive the bond acti-
vation probability,

pi .i 1d50 if s iÞs i 1d ,

pi .i 1d512e22K if s i5s i 1d and « i 2d« i 12d51,

pi .i 1d512e22aK if s i5s i 1d and « i 2d« i 12d50,

FIG. 1. The SBC Ising model phase diagram for many values
a. The percolation thresholds are 0.740 and 0.592 fora50 and
0,a<1, respectively. The dashed lines are only a guide to the e
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56 14 531SINGLE-CLUSTER ALGORITHM FOR THE SITE-BOND- . . .
between sitesi and i 1d. The definition of these activation
probabilities guarantees correctly the applicability of t
cluster dynamics and constitutes the Fortuin-Kasteleyn m
ping for the SBC model.

IV. PHASE DIAGRAM

We simulate the SBC model for various values of cor
lation (a) and concentration (C) on a square lattice of siz
L550, 100, 150, and 300. A random uniformly distribut
magnetic sites configuration~or simply sample! is generated
with an occupation probabilityC. Over this quenched~geo-
metric! configuration, aninitial spin configuration is chose
with half of the spins up. One Wolff’s cluster is then co
structed using the activation probabilities just described. T
entire cluster is then flipped and the new magnetization
determined. We call the sequence: cluster constructio1
flipping1magnetization measureone iteration or Monte
Carlo step. Our first 1000 iterations were discarded while
system achieves thermal equilibrium. The remaining ite
tions were used to measure the mean magnetization an
fluctuation—the magnetic susceptibility. On these quantit
another average over the samples was necessary in ord
anneal the geometric influence~always present in diluted
systems!. Finally, we scan the couplingK to find Kmax where
the susceptibility is maximum. In Table I we show the nu
ber of iterations and realizations necessary to reduce the
ror of Kmax to ;0.01. Of course, they depend on the valu
of a andC.

The determination ofKmax was done for fixed values ofa,

TABLE I. Range of the number of samples,Ns , and number of
iterations,Ni , used in this work. The numbersNs and Ni are in-
creased for smalla ~strong correlation! andC ~strong dilution!.

L Ns Ni

50 202150 300025000
100 05250 300025000
150 05250 300025000
300 05250 3000210000

FIG. 2. Dependence of the autocorrelation time with the dilut
for fixed lattice sizeL564.
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C, andL and then extrapolated to the thermodynamic lim
L→` through the BST algorithm.21 The BST is a useful
algorithm to extrapolate physical quantities that conve
obeying a power lawF(L)5F(L5`)1AL2Q. It allows a
reliable determination of critical parameters in the lim
L→` and its versatility becomes more pronounced if the
are only very short sequences available~see Fig. 1!.

V. AUTOCORRELATION TIME BEHAVIOR

Before we come to our results, it is appropriate to defi
the statistically relevant quantities necessary to obtain
system dynamical properties. The normalized autocorrela
function r(t) and the integrated autocorrelation timet int are
given by

r~ t !5
^OjOj 1t&2^O&2

^O2&2^O&2
, ~3!

t int5
1

2 (
t52`

`

r~ t !5
1

2
1(

t51

`

r~ t !, ~4!

whereOj is the value of an observable~here, the magnetiza
tion! in the configurationj . The brackets mean average
made on the configurational space. The mean autocorrela
time ^t int& was estimated after a sample average. Since
Wolff step has a computational cost of the cluster sizeuSu,
we need to rescalêt int&,

15

TABLE II. The number of samples,Ns , and number of itera-
tions,Ni , used to get the autocorrelation time.

L Ns Ni

16 400 40000
32 300 50000
64 200 80000

128 200 80000

FIG. 3. Plot of the autocorrelation time versus the correlation
fixed lattice sizeL564.
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tw5^t int&
^uSu&

CLd
, ~5!

whered is the lattice dimensionality. This is the correct re
caling for ^t int& since the total magnetic mass of the dilu
system isCLd. In Table II we show the lattice sizes, th
number of iterations and realizations necessary to reduce
error of tw up to 1% or 2%. A large number of samples
needed in order to diminish the geometric fluctuatio
present in diluted systems.

In Figs. 2 and 3, we plot thetw dependence on the dilu
tion and correlation, respectively. The autocorrelation ti
decreases with the dilution for all values of the correlationa
and with the correlation for all values of the concentrationC.
This behavior is completely opposite to that exhibited
local algorithms. For example, in the Metropolis algorith
the probability to flip one single spin depends exponentia
on the ratio between the energy increment~produced by the
spin flip! and the temperature. This means that a sma
critical temperature leads to a smaller acceptance rate
energetically unfavorable spin flips. On the other hand,
the cluster algorithms the presence of dilution and corre
tion has antagonistic effects. Indeed, the bond activa
probability ~see Sec. III! increases when the critical temper
ture is reduced. This simple argument works very well
the dilution aspect but it is not so straightforward concern
the correlation. In the last case there is a competition
tween the temperature and the correlationa. Both param-
eters appear in the exponent~see the bond activation formul
in Sec. III! in the form;a/Tc . If for a fixed concentration
C we augmentthe correlation~i.e., diminisha), our results
show that the critical temperatureTc decreases faster thana.
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So even in the case of stronger correlation, the Wolff alg
rithms performed very well.

VI. CONCLUSIONS

The phase diagram is shown in Fig. 1. The initial slo
(1/Tc)(dTc /dC) at the pureC51 case increases with th
degree of correlation, which is supported by bo
experimental2 and theoretical3,5,13 data. AtT50, we obtain
two distinct percolation thresholds: one fora50 and another
for aÞ0. It can be seen in the figure that the curves
intermediate correlation 0,a,1 have an upward curvatur
~not present in the extreme casesa50 anda51) in agree-
ment with theexperimentalresults for the KNixMg12xF3
compound.2 Our results show this behavior in a more cle
way than previous work.6 Further, our localization of the
critical concentration~at T50) is more precise than thos
obtained using other techniques3,5 and it is in good agree-
ment with earlier results in the context of the percolati
theory.12

From Figs. 2 and 3 we conclude that the Wolff algorith
performs even better in the presence of both dilution a
correlation. This means that for diluted systems, the Wo
algorithm should be preferred to single-spin-flip algorithm
The more delicate question about the dynamical universa
class requires an exhaustive computational effort and is n
under investigation.
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