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Single-cluster algorithm for the site-bond-correlated Ising model
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We extend the Wolff algorithm to include correlated spin interactions in diluted magnetic systems. This
algorithm is applied to study the site-bond-correlated Ising model on a two-dimensional square lattice. We use
a finite-size scaling procedure to obtain the phase diagram in the temperature-concentration space. We also
have verified that the autocorrelation time diminishes in the presence of dilution and correlation, showing that
the Wolff algorithm performs even better in such situatidi®0163-18207)06146-§

l. INTRODUCTION or a<0 we haveferro- or antiferromagnetic correlation

) ) - respectively. Due to the presence of both ferro- and antifer-
For randomly diluted magnetic systems the critical con-omagnetic coupling constants, the antiferromagnetic corre-
centration where the magnetic order vanishes is of great ingjon brings competition to the system and a spin-glass be-
terest. The dependence of the critical temperature on the cofjyyior is expected.
centration is ruled by the topological properties of the lattice The thermal properties of the site-bond-correlat8BC)

and by the symmetry of the interaction Hamiltonian. Ising model was investigated using several approaches: mean

In the simplest description of a dilute magnet, the OCCU'field,3 Honmura-Kaneyoshi effective fieRdrenormalization

pied lattice sites correspond to magnetic atoms and the oup®” and Monte Carlo renormalization grofipAny of
empty sites are associated with the presence of nonmagneﬁ%g P. 9 ANy

atoms(impurities. Interactions are short ranged, usually of ese techniques lead to almost the same physical scenario

the exchange interaction type. The strength of the exchanq@ith ”;e exception of the SBC model defined on the Bethe
interaction is not affected by their neighbors. A& 0, the attice” Here there are some unexpected features which seem

cluster structure is well described by the ordinary site percol® be due to the pathological geometry of the Bethe lattice.
lation model. Also SBC cluster characteristics have been studied in con-
However, it has been found experimentally that someection to the percolation problem. For the square lattice, it
times thelocal environmenmay m0d|fy the exchange cou- is now well established that there are two kinds of perCOla'
pling constant between two atoms or may even suppress thdiens: the usual site percolation with threshqig~0.592
magnetic manifestations. This means that interactions inwhen 0<a<1 and acorrelated percolation with threshold
volving more than two atoms are present in the system. Tgp.~0.740 ata=0.1° There are now strong indications that
take these effects into account, two kinds of correlationsboth percolations belong to the same universality ctass.
were proposed: the long- and the short-ranged correlation As far as we know, Ref. 13 is the only work which treats
models. The bootstrap percolation mddsla good example the thermal properties of the SBC model by using the Monte
for the former and the site-bond-correlated méddbr the  Carlo technique. In that paper, the parameteis restricted
latter. Long-ranged correlation may change the critical expoto be null. Everyone knows that it is very difficult to simulate
nents or even the order of the transition of its correspondingiear phase transitions due to the emergence of the critical
uncorrelated model. In contrast, the short-ranged correlatioslowing down phenomenon. In the SBC model this becomes
seems to be unable to cause such drastic effects. Anyway, feven worse since dilution together with correlation conspires
these systems, dilution as well as correlation plays an importo weaken the Metropolis technique. Fortunately, for the so-
tant role. calledcluster algorithmghe dilution makes these algorithms
An analysis of**F NMR linewidths in the randomly di- even more robust In the Ising modekdiluted or noj the
luted magnetic system KNVig, _Fs and in the isostructural Metropolis algorithm is a local Monte Carlo method where
compound KMpMg;_,F; (where x is the concentration only one spin is flipped each time. For thduster algo-
show remarkable differences in their properfiésFor in-  rithms however, the entire cluster can be flipped. Indeed,
stance, the concentration and percolation thresholds whetaere are actually two kinds of cluster algorithms: the single-
the magnetic order ceases are different. Further, the formeluster algorithm like the Woltf algorithm and those in-
displays an upward curvature in the temperaturevolving multiple clusters as the Swendsen-WXnand the
concentration plane which is absent in the latter. In order ténvaded clustéf’ algorithms.
explain these facts, Aguiat al? proposed a dilution model In spite of the great interest critical slowing down re-
where the exchange coupling constant of two ion§'Nie-  ceived during the last decades, it is still a hard question to
pends directionally on the magnetic attributes of theirfind under what conditions it can be reduced. Two indepen-
nearest-neighbor atoms. That is, the magnetic spins are cadent strands of thought contributed to enlightening the prob-
related. In a subsequent wotle, parameterr was introduced lem. The first was the search for the so-called “physical
which is a measure of the correlation strength. When0 cluster” of the Ising model. The idea is to find a percolation
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problem in absolute harmony with the thermal problem: The 8.0 . . .
temperature where the percolation threshold occdrs) (

must coincide with the critical temperaturd j and also 3 :g‘?
their corresponding critical exponents need to be the same —% 0=03
The “geometrical cluster,” i.e., those clusters formed by A—a =05
grouping all nearest neighbors (gr down spins, were dis- +—o=1.0

carded since in three dimensions they neither haye T,
nor are their exponents the same. An explicit construction of
“physical clusters” was proposed by Coniglio and Kléfh. 20
Parallel to this research line, Kasteleyn and Fortlintro-
duced the random cluster model. They proved that the sus
ceptibility of the Ising model is equal to the mean cluster size
of the random cluster model on the right side. Gathering*
these ideas, Swendsen and W¥ngeveloped an algorithm =
for the Potts model. In this algorithm, clusters of spins in the
same states are grown and flipped. Thus, a number of spin
are updated in a single move and the correlation time is
reduced.

In 1989, asingle-clusterMonte Carlo algorithm was in-
troduced by Wolft® for the O(N) spin models as a variation
on the Swendsen-Wang scheme for the Ising model and ha
proven to be even more effective. In the Wolff algorithm
only one cluster is formed and flipped with probability 1,
whereas in the Swendsen-Wang dynamics all percolatior Lo . . .
clusters are formed and flipped with probability 1/2. Accord- 0.50 0.60 0.70 0.80 0.90 1.00
ing to Tamayoet al?° the main reason for a better perfor- c
n:antce ofl;.thed\/\./olff_ aI%prlthtT ;S thatt;]he r_netr;n 2ze 0(]; the_ FIG. 1. The S_,BC Ising model phase diagram for many values of
clusters Tlipped 1S significantly farger than in the Swendsen-, - r,q percolation thresholds are 0.740 and 0.5924fer0 and
Wang (,:ase' . . . 0<a=1, respectively. The dashed lines are only a guide to the eye.

In this paper we generalize the Wolff algorithm to include
correlation. Our results are used to construct the SBC phase
diagram for many concentrations and for the correlatian the interaction between siteésandi+ 6 with the magnetic
the interval[0,1]. We also determine the behavior of the occupancy of the sites—o andi+24. The uncorrelated
autocorrelation time with both dilution and spatial correla-dilute Ising model is reobtained in the lim#&=1. For
tion included in the model. Witaugmentedlilution or spa- 0<a<1, the bond betweenandi + § is only weakened by
tial correlation, our generalized cluster algorithm becomeghe absence of a magnetic atom até ori+246. The limit
even better, exhibiting alecreasingautocorrelation time. a=0 corresponds to the maximum correlation, i.e., two
This is a nice and different result, since focal algorithms,  magnetic first-neighbor sites are connected by an active bond
dilution and correlation always reduce enormously their efonly if their nearest-neighbor sites along the line joining
ficiency. them are also present.

1.0 -

Il. MODEL

. . Ill. FORTUIN-KASTELEYN MAPPING
In the SBC model the presence of nonmagnetic impurities

in the neighborhood of a given pair of nearest-neighbor mag- In the Wolff algorithm for the pure Ising model, first a site
netic atoms can modify the strength of the exchange interads randomly chosen in the lattice. A nearest-neighbor site
tion between the two atoms. Moreover, in the limit of strongwill be added to the cluster with an activation probability
correlationa, the correlation can even suppress the relevanp=1—e 2X (where K=J/KgT) if it is in the same spin
exchange interaction. state. This procedure is repeated until no more sites can be

The model Hamiltonian is the following: incorporated to the cluster. The whole cluster is then flipped.
Following Fortuin and Kasteleyl?,we derive the bond acti-
vation probability,

H:_% Jii+sloioiis—1), 1)
whereo;=*1 and § denotes an elementary lattice vector. Piits=0 if oi#oi,s,
The exchange interactial ; , 5 is given by
Jii+s=Jdeigir (- a)ej_seit2st al, 2 Diiis=1-e 2K it o= s and e sei.ae=1,

whereJ>0. The random variables can take values 1 with
probability C and 0 with probability - C, whereC is the
concentration of magnetic atoms. The paramateorrelates  p; . ,=1—€ 2K if o=0i.5 and s&;_ssi;25,=0,
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TABLE I. Range of the number of sampldd,, and number of
iterations,N; , used in this work. The numbefd; andN; are in-

SINGLE-CLUSTER ALGORITHM FOR THE SITE-BOND. . .

creased for small (strong correlationand C (strong dilutior).

TABLE II. The number of sampled\g, and number of itera-
tions, N;, used to get the autocorrelation time.
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L Nq N,
L Ny N,
16 400 40000
50 20-150 3000-5000 32 300 50000
100 05-50 3000-5000 64 200 80000
150 05-50 3000-5000 128 200 80000
300 05-50 3000-10000

C, andL and then extrapolated to the thermodynamic limit
between sites andi+ 6. The definition of these activation | o through the BST algorithr?ﬁ The BST is a useful
probabilities guarantees correctly the applicability of thealgorithm to extrapolate physical quantities that converge
cluster dynamics and constitutes the Fortuin-Kasteleyn mapbeying a power lawr(L)=F(L=%)+AL~®. It allows a
ping for the SBC model. reliable determination of critical parameters in the limit

L—o and its versatility becomes more pronounced if there

IV. PHASE DIAGRAM are only very short sequences availafdee Fig. 1

We simulate the SBC model for various values of corre-
lation () and concentration@) on a square lattice of size
L =50, 100, 150, and 300. A random uniformly distributed

magnetic sites configuratiofer simply samplg is generated e gyatistically relevant quantities necessary to obtain the

with an occupation probabilit¢.. Over this quenche@eo-  gystem dynamical properties. The normalized autocorrelation

m_etric) conﬁguratio_n, arinitial spin configuratior_1 is chosen function p(t) and the integrated autocorrelation timg, are
with half of the spins up. One Wolff's cluster is then Con'given by

structed using the activation probabilities just described. Th
entire cluster is then flipped and the new magnetization is

V. AUTOCORRELATION TIME BEHAVIOR

Before we come to our results, it is appropriate to define

determined. We call the sequence: cluster construg¢tion (0;0;41)—(0)?
flipping+magnetization measurene iteration or Monte p( ):W 3
Carlo step. Our first 1000 iterations were discarded while the

system achieves thermal equilibrium. The remaining itera-

tions were used to measure the mean magnetization and its 17 1 =

fluctuation—the magnetic susceptibility. On these quantities, TintZEth p()=5 +t21 p(t), (4)

another average over the samples was necessary in order to

anneal the geometric influendalways present in diluted . _
systems Finally, we scan the couplin to find K ., where ~ WhereO; is the value of an observabikere, the magnetiza-
the susceptibility is maximum. In Table | we show the num-tion) in the configurationj. The brackets mean averages
ber of iterations and realizations necessary to reduce the e¢ftade on the configurational space. The mean autocorrelation

ror of K gy to ~0.01. Of course, they depend on the valuestime (i) was estimated after a sample average. Since one
Wolff step has a computational cost of the cluster $&e

of « andC. 15
The determination oK ., Was done for fixed values af, W€ need to rescalerin),
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FIG. 3. Plot of the autocorrelation time versus the correlation for
fixed lattice sizel=64.

FIG. 2. Dependence of the autocorrelation time with the dilution
for fixed lattice sizel =64.
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{8y So even in the case of stronger correlation, the Wolff algo-
o= Tint) oL’ (5  rithms performed very well.
VI. CONCLUSIONS
whered is the lattice dimensionality. This is the correct res-
caling for {7, since the total magnetic mass of the dilute
system isCLY. In Table Il we show the lattice sizes, the

number of iterations and realizations necessary to reduce t ) . .
y experimentdl and theoreticdl®!3 data. AtT=0, we obtain

error of 7, up to 1% or 2%. A large number of samples is disti lation thresholds: for-0 and h
needed in order to diminish the geometric fluctuations;EWO Istinct perco;tlont res Oh s].cone ;T ar? anot erf
present in diluted systems. or a#0. It can be seen in the figure that the curves for

In Figs. 2 and 3, we plot the,, dependence on the dilu- intermediate correlation9Qa«<1 have an upward curvature
. 1 W

tion and correlation, respectively. The autocorrelation timel"Ot Present in the extreme cases 0 anda=1) in agree-
decreases with the dilution for all values of the correlaion Ment with theexperimentalresults for the KNiMg; _xFs
and with the correlation for all values of the concentratian compound. O“F results show this behavior In a more Clear
This behavior is completely opposite to that exhibited byWay than previous work. Further, our localization of the
local algorithms. For example, in the Metropolis algorithm Critical concentrationat T=0) is more precise than those
the probability to flip one single spin depends exponentially°Ptaineéd using other techniqdésand it is in good agree-
on the ratio between the energy increméroduced by the ment with earlier results in the context of the percolation

12
spin flip) and the temperature. This means that a smalle"€0ry: . .
critical temperature leads to a smaller acceptance rate for F.10M Figs. 2 and 3 we conclude that the Wolff algorithm

energetically unfavorable spin flips. On the other hand, fOIperfolrm's evea' better in thhe fpresglnce of both diIL;]tion alr]'c?
the cluster algorithms the presence of dilution and correlacorrelation. This means that for diluted systems, the Wo

tion has antagonistic effects. Indeed, the bond activatiof9°rithm should be preferred to single-spin-flip algorithms.
probability (see Sec. Illincreases when the critical tempera- | '€ more delicate question about the dynamical universality
ture is reduced. This simple argument works very well forclass requires an exhaustive computational effort and is now

the dilution aspect but it is not so straightforward concerning”nder investigation.
the correlation. In the last case there is a competition be-
tween the temperature and the correlatienBoth param-
eters appear in the exponégeee the bond activation formula ~ We acknowledge Conselho Nacional de Desenvolvimento
in Sec. Il)) in the form~ a/T,. If for a fixed concentration Cientfico e Tecnolgico (CNPg and Fundgao de Amparo a

C we augmentthe correlation(i.e., diminisha), our results Pesquisa do Estado dé ®&#&®aulo (FAPESB for financial
show that the critical temperatuie decreases faster than  support.

The phase diagram is shown in Fig. 1. The initial slope
(1/T.)(dT./dC) at the pureC=1 case increases with the
r%egree of correlation, which is supported by both
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