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Quantum Monte Carlo in the interaction representation: Application to a spin-Peierls model
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A quantum Monte Carlo algorithm is constructed starting from the standard perturbation expansion in the
interaction representation. The resulting configuration space is strongly related to that of the stochastic series
expansion~SSE! method, which is based on a direct power-series expansion of exp(2bH). Sampling proce-
dures previously developed for the SSE method can therefore be used also in the interaction representation
formulation. The method is tested on theS51/2 Heisenberg chain. Then, as an application to a model of great
current interest, a Heisenberg chain including phonon degrees of freedom is studied. Einstein phonons are
coupled to the spins via a linear modulation of the nearest-neighbor exchange. The simulation algorithm is
implemented in the phonon occupation-number basis, without Hilbert space truncations, and is exact. Results
are presented for the magnetic properties of the system in a wide temperature regime, including theT→0 limit
where the chain undergoes a spin-Peierls transition. Some aspects of the phonon dynamics are also discussed.
The results suggest that the effects of dynamic phonons in spin-Peierls compounds such as GeCuO3 and
a8-NaV2O5 must be included in order to obtain a correct quantitative description of their magnetic properties,
both above and below the dimerization temperature.@S0163-1829~97!02242-X#
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I. INTRODUCTION

Over the last two decades, discrete Euclidean path i
grals constructed using the so-called Trotter decompositio1,2

have been widely used as the starting point for quan
Monte Carlo~QMC! simulations of lattice models at finit
temperature.3–6 In these ‘‘world-line’’ methods,6 the discreti-
zationDt in imaginary time introduces a systematic error
computed quantities, which in principle can be eliminated
carrying out simulations for different discretizations and e
trapolating toDt50. The error typically2,7 scales as (Dt)2.
However, algorithms can also be constructed which are
sociated with no inherent systematic errors, thus elimina
the need for multiple simulations and extrapolations. Suc
QMC scheme, applicable to the ferromagnetic spin-
Heisenberg model, was devised by Handscomb as early
1961.8 The method is based on a series expansion of
density-matrix operator exp(2bĤ), which in the case of the
Heisenberg model can be written in terms of products
permutation operators. Their traces can be evaluated ex
and are positive definite. One can then carry out importa
sampling in the space of operator sequences, and obtai
sults exact to within statistical errors. Handscomb’s meth
is not directly applicable to other models,9 not even for the
antiferromagnetic Heisenberg model for which the sche
breaks down due to the non-positive-definiteness of
traces.10 There was therefore not much followup on Han
scomb’s pioneering efforts, and there was little progress
wards practical QMC algorithms until Suzuki proposed t
use of the Trotter formula in this context.2 Several methods
based on this controlled approximation were subseque
developed.5,6,11 Variants of Handscomb’s method were al
later developed, for the antiferromagnetic Heisenberg mo
560163-1829/97/56~22!/14510~19!/$10.00
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by Lee et al.,12 and for theXY model by Chakravarty and
Stein,13 but this type of simulation scheme was for a lon
time still perceived as fundamentally limited by its relian
on the special properties of spin-1/2 operators.14,15However,
the generalizations of Handscomb’s method developed
S.1/2 spin models by Sandvik and Kurkija¨rvi,16 and for
one-dimensional~1D! Hubbard-type models by Sandvik,17

have now clearly demonstrated that nonapproximate a
rithms based on ‘‘stochastic series expansion’’~SSE! can in
principle be constructed for any lattice model. In th
scheme, the basic limitation of the earlier formulations
Handscomb’s method is overcome by expanding the tra
as sums over diagonal matrix elements in a suitable cho
basis. The importance sampling is then carried out in a sp
of basis states and operator sequences.16,17 In practice, this
type of method is of course still limited to models for whic
a positive definite weight function can be achieved. T
cases for which this is possible coincide with those for wh
the weight is positive definite also in the standard Trott
based path-integral~world-line! formulations. In fact, despite
the different starting points of the two approaches, the S
configuration space is strongly related to an Euclidean p
integral. Many characteristics are therefore shared, includ
the range of practical applicability, the types of observab
accessible for evaluation, and the scaling of the computa
time with the system size and the inverse temperatureb. The
main advantage of SSE is of course the absence of sys
atic errors. It should be noted that in order to eliminate
Trotter error in world-line calculations, simulations have
be carried out for several sufficiently small discretizatio
Dt. Since the computation time scales as 1/(Dt)3,18 the SSE
approach can in practice be considerably more efficient t
14 510 © 1997 The American Physical Society
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56 14 511QUANTUM MONTE CARLO IN THE INTERACTION . . .
the world-line method in cases where completely unbia
results are needed.

Recently, other approaches to exact QMC algorith
have been proposed. Beard and Wiese succeeded in fo
lating a world-line algorithm for the spin-1/2 Heisenbe
model directly in theDt→0 limit.19 Constructed within the
framework of a non-Metropolis sampling scheme with glob
‘‘loop-cluster’’ updates previously developed by Ever
et al.20 ~a generalization of the classical cluster sp
algorithm21!, this method also has the added advantage
significantly shorter autocorrelation times. Concurren
Prokof’ev, Svistunov, and Tupitsyn suggested the use of
standard perturbation expansion as a basis for a QMC
integral.18 For a finite system at finite temperature the ser
converges to an exact result for a finite number of terms
scheme involving only local updates was suggested for s
pling the continuous-time paths.

It is clear that the methods by Beard and Wiese19 and
Prokof’ev et al.18 are strongly related to each other, invol
ing the same configuration space of world lines in continu
imaginary time, but differing in the sampling procedure
Continuous-time path integrals also have many propertie
common with the SSE sum.16,17Notably, a transition event in
imaginary time corresponds directly to the presence of
off-diagonal operator in the SSE operator string. Here
discuss this connection in detail, and introduce a sim
modification of the SSE algorithm for simulations in the i
teraction representation. This formulation can be expecte
be more efficient than standard SSE in cases where the d
onal part of the Hamiltonian dominates. In order to explo
the properties of the method, we study the spin-1/2 Heis
berg chain, as well as a spin chain including couplings
dynamic~fully quantum-mechanical! phonons. We conside
a coupling via a linear modulation of the spin exchange b
local dispersionless oscillator~Einstein phonon!. The system
undergoes a spin-Peierls~dimerization! transition at zero
temperature. A detailed study of the model, and its releva
for understanding the magnetic properties of the recently
covered spin-Peierls compounds GeCuO3 ~Ref. 22! and
a8-NaV2O5 ~Ref. 23!, will be presented elsewhere.24 Here
we only consider a single set of model parameters, in
general regime expected to be of physical relevance,
illustrate the use of the method to calculate a variety of
servables, both at finite temperature and in the limitT→0.
Based on the results, we conclude that the effects of dyna
phonons cannot be neglected in quantitative description
materials such as those mentioned above.

The outline of the rest of the paper is the following:
Sec. II we review the formalism of the SSE method. T
perturbation expansion in the interaction representation
its relation to the SSE series are discussed in Sec. III. In S
IV we implement an interaction representation algorithm
the Heisenberg chain, and discuss the performance of
method. In Sec. V we consider the spin-phonon mod
Readers interested mainly in the results for this model
advised to skip directly to the introductory part of Sec.
and then go directly to the results Sec. V B. The discuss
there does not rely heavily on the previous, more techn
parts of the paper. Section VI concludes with a summary
outlook for further developments and applications of t
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QMC algorithm, in particular to various models includin
phonons.

II. STOCHASTIC SERIES EXPANSION

Here we review the general formalism of the SSE meth
needed as a basis for the discussion in the following secti
More details of the algorithm have been describ
elsewhere.17,25 Some recent applications to spin systems a
1D fermion systems are listed in Refs. 26–30.

The starting point for evaluating an operator expectat
value at inverse temperatureb,

^Â&5
1

Z
Tr$Âe2bĤ%, Z5Tr$e2bĤ%, ~1!

is to Taylor expand exp(2bĤ) and write the traces as sum
over diagonal matrix elements in a basis$ua&%. The partition
function is then

Z5(
a

(
n50

`
~2b!n

n!
^auĤnua&. ~2!

The Hamiltonian is next written as

Ĥ5 (
b51

M

Ĥb , ~3!

where the operatorsĤb have the ‘‘nonbranching’’ property,

Ĥbua&5hb~a,b!ub&, ~4!

where ua& and ub& are both basis states in the chosen rep
sentation. Each powerĤn is now expanded as a sum over a
possible products ofn of the operatorsĤb . With Sn denoting
an index sequence referring to the operators in the prod
~the operator string!,

Sn5~b1 ,...,bn!, biP$1,...,M %, ~5!

the partition function becomes

Z5(
a

(
n50

`

(
Sn

~2b!n

n! K aU)
i 51

n

ĤbiUaL . ~6!

Equations~3! and ~4! of course represent a complete
general formal device. In practice, one typically chooses
basis so as to make the sum~3! as simple as possible. Fo
example, for the Heisenberg model,

Ĥ5J(
^ i , j &

Si•Sj , ~7!

the eigenstates ofSi
z can be chosen;ua&5uS1

z ,...,SN
z &. Writ-

ing the Hamiltonian as

Ĥ5J(
^ i , j &

FSi
zSj

z1
1

2
~Si

1Sj
21Si

2Sj
1!G , ~8!

all the two-spin operators satisfy the requirement~4!. For
S51/2, Si

1Sj
21Si

2Sj
1 satisfies Eq.~4! and can be consid

ered as a single operator, whereas forS.1/2 the two terms
have to be treated as separate operators. For tight-bin
fermion or boson models, the real-space occupation num
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14 512 56A. W. SANDVIK, R. R. P. SINGH, AND D. K. CAMPBELL
basis is typically chosen. For fermions and hard-core bos
the hopping operatorci

1cj1cj
1ci satisfies Eq.~4!, whereas

for unconstrained bosons the terms again qualify only in
vidually.

For a finite system at finiteb, the lengthsn of the operator
strings contributing significantly to the partition function a
restricted to a finite range. In a Monte Carlo simulation
the series expansion, terms (a,Sn) are sampled with a prob
ability proportional to the weight function corresponding
Eq. ~6!:

W~a,Sn!5
~2b!n

n! K aU)
i 51

n

ĤbiUaL . ~9!

Here it will be assumed thatW(a,Sn) is positive definite,
which of course is not always the case. With a nonpositi
definite weight, simulations can, in principle, still be carri
out usinguWu,6 but in practice the statistical fluctuations
calculated expectation values diverge if the positive a
negative contributions almost cancel each other, which t
do exponentially both with increasing system size and
creasing temperature~the infamous sign problem!.31,32 As
already discussed in the Introduction, this is the most sev
limitation of the method—shared also by standard techniq
such as the world-line method~in the case of fermions, ‘‘de-
terminant methods’’11 typically are more effective in dealing
with the sign problem31!. Still, the class of models for which
a positive definiteW can be achieved is significant enough
motivate the continuing development of more efficient QM
methods for their study.

Proceeding as in the derivation of Eq.~6!, the numerator
in Eq. ~1! corresponding to a given operatorÂ of interest is
also expanded. If the expectation value can then be cast
the form

^Â&5
(a(n(Sn

A~a,Sn!W~a,Sn!

(a(n(Sn
W~a,Sn!

, ~10!

the simulation estimate of^Â& is given by the average of th
estimatorA(a,Sn) over the sampled configurations:

^Â&5^A~a,Sn!&. ~11!

The formally simplest observable within the framework
the SSE method is the internal energy,E5^Ĥ&. As in Hand-
scomb’s original formulation, the estimator involves only t
powern;8,16

E52^n&/b. ~12!

This, in combination with the expression for the he
capacity,8,16

C5^n2&2^n&22^n&, ~13!

shows that the terms contributing significantly are of len
;bN ~at low temperatures!, whereN is the system size. A
derivation of Eq.~12! will be discussed in the next section

Already at the level of Eq.~6!, the close relationship be
tween SSE and a standard Euclidean path integral is evid
The operator string defines a set of propagated statesua(p)&,
p50,...,n:
ns

i-

f

-

d
y
-

re
s

to

t

h

nt.

ua~p!&;)
i 51

p

Ĥbi
ua&, ua~0!&5ua&. ~14!

A nonzero weight ~9! implies the periodicity condition
ua(0)&5ua(n)&. The propagation indexp plays a role
analogous to imaginary time in a standard path integral. T
exact relation to imaginary time can be obtained by deriv
an expression for a time-dependent correlation functio17

Consider two diagonal operatorsÂi andÂj . In a given con-
figuration (a,Sn), their eigenvalues in the statesua(p)& are
denotedai@p# and aj@p#. One can show that the time
dependent correlation functionCi j (t)5^Âj (t)Âi(0)&,
whereetHÂje

2tH, is given by17

Ci j ~t!5K (
m50

n S n
mD tm~b2t!n2m

bn C̄i j ~m!L . ~15!

Here C̄i j (m) is a correlator between states separated bym
propagations:

C̄i j ~m!5
1

n11 (
p50

n

aj@p1m#ai@p#. ~16!

The periodicity of the propagated states of course imp
that aj@p1n#5aj@p#. In the equal-time case, onlym50
contributes to Eq.~15!, and Ci j (0) is simply given by
ai@p#aj@p# averaged overp:

Ci j ~0!5K 1

n11 (
p50

n

aj@p#ai@p#L . ~17!

Equation ~15! shows that an imaginary time separationt
corresponds to a distribution of separationsm between
propagated states, peaked aroundm5nt/b. Hence, the
propagation indexp in the SSE method indeed is close
related to the time in an Euclidean path integral.

As already discussed above, the range of contribut
powersn is limited in practice. One can therefore explicit
truncate the series expansion at some maximum po
n5L, large enough to introduce only an exponentially sm
completely negligible error. By insertingL2n unit operators
in the operator strings, a configuration space is obtained
which the sequence length formally isfixed at L. Defining
the unit operatorĤ05I , the summation overn in Eq. ~6! is
implicitly included in the summation over all sequencesSL ,
if the range of allowed indices is extended to include a
bi50. The weight~9! has to be divided by (n

L), in order to
compensate for the number of different ways of inserting
unit operators, resulting in16

W~a,SL!,
~2b!n~L2n!!

L! K aU)
i 51

L

ĤbiUaL , ~18!

where n now denotes the number of non-0 indices inSL .
This fixed-length formulation is useful for the constructio
of an efficient sampling scheme for the sequences. For
poses of measuring operator expectation values, one can
use the expressions discussed above, with the sequencSn
obtained by omitting all the zeros in the generatedSL .
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56 14 513QUANTUM MONTE CARLO IN THE INTERACTION . . .
In order to ensure a sufficiently high truncationL, the
power n is monitored during the equilibration part of th
simulation. If n exceeds some threshold valueL2DL , the
sequence is augmented with, e.g., 2DL randomly positioned
unit operators, corresponding toL→L12DL . With
DL'L/10, this procedure typically converges rapidly to
properL. During a subsequent simulation~of practical dura-
tion!, n never reachesL. The truncation is therefore no ap
proximation in practice.

The details of the Monte Carlo sampling procedures
course depend on the model under consideration. Here
some general principles will be discussed. The operatorsĤa
can be divided into two classes; diagonal and off-diagon
There are noa priori constraints on the number of diagon
operators that can appear inSL . The probability of a diago-
nal operatorĤdia at a positionp is only determined by the
stateua(p21)& on which it operates. The general strate
for inserting and removing diagonal operators is to attem
substitutions with the unit operatorĤ0 introduced in the
fixed-length scheme~note again thatĤ0 is not part of the
Hamiltonian!:

Ĥ0↔Ĥdia. ~19!

This update can be attempted consecutively at all position
SL . The weight change needed for calculating the Metro
lis or heat-bath acceptance probability involves only the m
trix element ^a(p21)uĤdiaua(p21)& and the prefactor
(2b)n(L2n)!, with n changing by61. With ua~0!& stored
initially, the subsequent states can be generated one-by
as needed during the updating process.

Suitable constants have to be added to the diagonal op
tors in order to make all the eigenvalues of2bĤdia positive.
According to Eq.~18!, the presence or absence of a si
problem then depends only on the off-diagonal opera
Ĥoff . They are associated with various constraints, and c
not be inserted or removed at a single position only. Th
can always be inserted and removed pairwise. One way t
this is in substitutions with diagonal operators, according

Ĥdia,Ĥdia↔Ĥoff ,Ĥoff
† . ~20!

In some one-dimensional models, the above types of upd
are sufficient for achieving ergodicity. In other cases, m
complicated updates are also required~e.g., involving off-
diagonal operators forming loops around plaquettes in 2!.
The constraints and weight changes associated with loca
dates involve only operators present inSL which act on a
small number of lattice sites surrounding those directly
fected by the update. Typically, this allows for a sampli
scheme for which the computation time scales asNb.17

III. RELATION TO THE PERTURBATION EXPANSION

In this section we discuss the general principles of ca
ing out importance sampling of the standard perturbation
pansion in the interaction representation. This starting p
for a QMC scheme was recently suggested by Proko
et al.18 We here show that the configuration space of t
method is closely related to that of the SSE method. We a
derive expressions for several types of observables.
f
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The partition function for a Hamiltonian

Ĥ5D̂1V̂, ~21!

with a diagonal~unperturbed! part D̂ and an off-diagonal
~perturbing! part V̂ is given by the standard time-ordere
perturbation expansion inV̂,

Z5 (
n50

`

~21!nE
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtn

3Tr$e2bD̂V̂~t1!V~t2!•••V~tn!%, ~22!

where the time dependence in the interaction representa

is V̂(t)5etD̂Ve2tD̂. In the same way as was done forĤ in
the SSE scheme,V̂ can be decomposed into operators th
satisfy requirement~4!, now in the basis$ua&% where D̂ is
diagonal:

V̂5 (
b51

MV

Ĥb . ~23!

For a given model, the operators in the above sum are
course a subset of those in the SSE Hamiltonian~3!, where
we now define the indexing such that allĤb with b.MV are
diagonal. An index sequence defining a product ofn of the
operatorsĤb is defined as before. In order to distinguish t
SSE sequenceSn , which contains off-diagonal as well a
diagonal operators, from the perturbation expansion
quence containing only off-diagonal operators, we denote
latter byTn :

Tn5~b1 ,...,bn!, bpP$1,...,MV%. ~24!

Expanding the trace in Eq.~22! over diagonal matrix el-
ements gives

Z5(
a

(
n50

`

(
Tn

E
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtnW~a,Tn ,$t%!,

~25!

where $t % is a short-hand for the set of times$t1 ,...,tn%.
The weight is

W~a,Tn ,$t%!5~21!nS e2bE0)
p51

n

e2tp~Ep2Ep21!D
3K aU)

p51

n

ĤbpUaL , ~26!

whereEp5^a(p)uD̂ua(p)&.
Now, consider an SSE index sequenceSn5(b1 ,...,bn),

containing m indices bp<MV , corresponding tom off-
diagonal andn2m diagonal operators. Removing all the in
dicesbp.MV results in a valid perturbation expansion s
quenceTm . We use the notation@Sn# for this ‘‘projection’’
of Sn onto the correspondingTm ; @Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finiteb,
neither for SSE nor for the perturbation expansion,
weights of the two formulations must be related according
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(
n5m

`

(
[Sn] 5Tm

W~a,Sn!5E
0

b

dt1E
0

t1
dt2•••E

0

tm21
dtm

3W~a,Tm ,$t%!. ~27!

Hence, for a given sequence of off-diagonal operators,
time integrals of the perturbation expansion correspond
summation over all possible augmentations with diago
operators in the SSE scheme. Equality~27! can be explicitly
verified in the extreme case where there are no diagonal
erators inĤ, i.e., D̂50 ~for example, theXY model in the
z-component basis!. In this case@Sn#5Sn5Tn , and thet
integrals above givebn/n!, which is exactly the prefactor o
the SSE weight~9!.

For a nonzeroD̂, the dominant SSE strings contain
finite fraction of diagonal operators, and the integrals in
interaction representation become nontrivial. In construct
a simulation algorithm based on one of these expansions,
hence has to weight the disadvantage of a longer oper
string in the SSE scheme against a more complicated we
function in the case of the perturbation expansion. Althou
the perturbation series integrand is formally simple, it do
not appear to be feasible to carry out the time integrals a
lytically. It is, however, straightforward to include an impo
tance sampling of the times in the Monte Carlo procedure
is likely that sampling the perturbation expansion will
more efficient than the SSE algorithm in cases where
diagonal term dominates. The average length of the per
bation expansion is then significantly shorter than the S
string. Note, however, that the average length of the per
bation expansion has the same scaling;bN as the SSE
string length, as will be discussed further below.

In constructing a functionA ~the estimator! measuring an
operatorÂ on the configuration space, symmetries of t
space should be taken into account in order to reduce
statistical fluctuations. An evident one is the translatio
symmetry of periodic~nonrandom! lattices. Another one is
the periodicity in the imaginary time~or SSE propagation!
direction, originating from the cyclic property of the trac
operation. In the SSE scheme, this is manifested by

W~a,Sn!5W~a~p!,Sn@p# !, p50,...,n, ~28!

whereSn@p# is the index sequence obtained byp times cy-
clically permutingSn , anda(p) refers to thep times propa-
gated state Eq.~14!. One can therefore average the measu
ments over allp50,...,n, an example of which is seen in Eq
~17!.

The perturbation expansion involves the imaginary tim
only in the form of differences. The part of the weight~26!
containing the times can be rewritten as

e2bE0)
p51

n

e2tp~Ep2Ep21!5 )
p51

n

e2EpDp, ~29!

where Dp5tp2tp111sb is the time difference betwee
the operators at positionsp,p11, with s50,1 chosen such
that DpP@0,b#, andtn5t0 . Shifting all times by an equa
amountd therefore does not change the weight, provided t
the shifted timest i1d obey the limits of the time-ordere
integration. Hence,dP@2tn ,b2t1#. Cyclically permuting
e
a
l

p-

e
g
ne
tor
ht
h
s
a-

It

e
r-
E
r-

he
l

-

s

t

Tn and $t %, and including an appropriate uniform shiftd, is
also allowed. We define a permutation of the times with
implicit shift, such that the last time in the permuted s
quence is at its lower bound 0. Denoting thep times per-
muted set$t(p)%, the zero times permuted$t~0!% hence cor-
responds to a uniform shiftd52tn . A permutation with an
additional shift is denoted$t(p)1d%. Hence we have

W~a,Tn ,$t%!5W~a~p!,Tn~p!,$t~p!1d%!, dP@0,Dp#.
(30)

We now derive expressions for some important types
operator expectation values within the perturbation exp
sion scheme, and contrast them with those of the SSE
mulation.

First, we consider an equal-time correlation function b
tween two diagonal operators,

Ci j 5^Âj Âi&. ~31!

In the SSE approach, the expansion of Tr$Âj Âie
2bĤ% leads

to the same sum as in Eq.~6!, with each term multiplied by
the eigenvalueai@0#aj@0#5^auÂj Âi ua&. Using the cyclic
property~28! then leads to Eq.~17!. In the interaction repre-
sentation, Eq.~30! implies that each cyclic permutationp
should be weighted with the time intervalDp . Since
(pDp5b we get

Ci j 5
1

b K (
p51

n

Dpai@p#aj@p#L . ~32!

This type of expression is, of course, valid for any diago
operator.

The SSE expression for the static susceptibility,

x i j 5E
0

b

dt^Âj~t!Âi~0!&, ~33!

can be obtained by integrating the time-dependent expe
tion value ~15! over t. Alternatively, one can include a
source( jhj Âj in the Hamiltonian, and calculate the respon
function via

x i j 5
]^Âi&
]hj

U
hj 50

. ~34!

The result is16,17

x i j 5K b

n~n11! S (
p50

n21

ai@p# D S (
p50

n21

aj@p# D
1

b

~n11!2 (
p50

n

ai@p#aj@p#L . ~35!

In the interaction representation, the derivative~34! applied
to ^Âi&5(pDpai@p#/b gives

x i j 5
1

b K S (
p51

n

Dpai@p# D S (
p51

n

Dpaj@p# D L . ~36!

Hence, with both methods, there is a simple exact estim
for the static susceptibility. This is important in view of th
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fact that the discretization can introduce spurious temp
ture dependences in divergent susceptibilities calculated
ing standard world-line methods, due to a combination
Trotter errors and numerical integration errors.7

A second class of observables easily accessible in SS
well as real-space path-integral formulations is one involv
the operatorsĤb present in the Hamiltonian. First, consider
single operator̂Ĥb&. In the SSE formalism, the estimator

^Ĥb&52^N~b!&/b, ~37!

whereN(b) is the total number of indicesbi5b in the se-
quenceSn . This formula can easily be derived by noting th

the expansion of the numerator Tr$e2bĤĤb% leads to a one-
to-one correspondence with a subset of the terms in Eq.~6!,
namely, those for which the last indexbn5b. The terms are
related by a factor2n/b, which hence is the contribution t
^Ĥb& from these partition function configurations. For th
terms withbnÞb the contribution is zero. Averaging over a
cyclic permutations then gives Eq.~37!. From this result, Eq.
~12! for the SSE internal energy estimator follows.

In view of the relation~27! between SSE and the pertu
bation expansion, we would expect Eq.~37! to be valid also
for an off-diagonal operator in the interaction representat
scheme. Proceeding as in the SSE derivation, there is ag
one-to-one correspondence between the terms of the ex

sion of Tr$e2bĤĤb% and a subset of those inZ. However,
the situation is complicated by the fact that, for a giv
powern, the terms ofZ have one more time integration. I
order to properly relate the terms to each other, we can
mally introduce another integral,

1

tn21
E

0

tn21
dtn51, ~38!

in the expansion of the numerator. Terms of ordern21 are
then in a one-to-one correspondence with terms of ordern in
the partition function~25!. The lack of the time-dependen
exponential associated with the last operatorĤb and the
factor 1/tn21 in Eq. ~38! imply a contribution
2etn(En2En21)/tn21 , if bn5b in the z expansion. By the
cyclic property~30!, this can be averaged over the time ran
Dp for eachp, giving

^Ĥb&52
1

b K (
p51

n

I b~p!K~p!L , ~39!

where I b(p)51 if bp5b and I b(p)50 otherwise. Since
tp215tp1Dp21 , the contribution ifbp5b is

K~p!5E
0

Dp
dtp

etp~Ep2Ep21!

tp1Dp21

5e2Dp21~Ep2Ep21!E
Dp21

Dp1Dp21
dx

ex~Ep2Ep21!

x
.

~40!

This integral cannot be solved in a closed form, excep
Ep2Ep2150. We expect Eqs.~39! and ~37! to be equiva-
lent. Therefore, the average of Eq.~40! over all times must
give 1. In fact, this is the case already for the average ove
a-
s-
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n
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an-
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e
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tpP@tp11 ,tp21#, which is equivalent to the average over a
Dp21 in the allowed range@0,Dp211Dp#, with Dp211Dp
kept constant. In doing this averaging, the integral~40! has
to be weighted by the relative probability of a givenDp21 ,
which according to Eq.~29! is ;eDp21(Ep2Ep21). The result-
ing double integral can be solved, with the result

K~p!5

*0
Dp211Dpdy*y

Dp211Dpdx
1

x
ex~Ep2Ep21!

*0
Dp211Dpdxex~Ep2Ep21!

51.

~41!

Thus, we have shown that Eq.~39! indeed reduces to the
SSE estimator~37!. This then also implies that the averag
length of the perturbation expansion is given

^n&5bu^V̂&u, which scales asbN.
In order to derive an expression for an off-diagonal equ

time correlation function of the type

F~b1 ,b2!5^Ĥb1
Hb2

&, ~42!

one can proceed along the same lines as for the single
erator considered above. The SSE expression is again
mally very simple. Each occurrence inSn of a pair of indices
b1b2 gives a constant contribution. Denoting byN(b1b2) the
number of such pairs of adjacent operators, the result is17

F~b1 ,b2!5^~n21!N~b1b2!&/b2. ~43!

In the interaction representation formalism, the estimator

F~b1 ,b2!5K (
p51

n

I b1b2
~p21,p!K~p21,p!L , ~44!

where I b1b2
(p21,p)51 if the indices at the adjacent pos

tions p21, p areb1 andb2 , and zero otherwise. In order t
evaluate the contributionK(n21,n) from a pair at the last
two positions,n21 andn, we now insert a double integra

2

~tn22!2 E
0

tn22
dtn21E

0

tn21
dtn51, ~45!

for a term of powern22 in the numerator. Performing th
appropriate cyclical permutations and time averages an
gous to the ones discussed above, the contribution from
arbitrary pair of adjacent operators is

K~p21,p!5
*0

Dpdz*0
zdy*z

Dpdx ~1/x2!ex~Ep2Ep22!

*0
Dpdy*y

Dpdxey~Ep2Ep21!ex~Ep212Ep22!
,

~46!

where

Dp5Dp221Dp211Dp . ~47!

Calculating the integrals results in

K~p21,p!5
~Ep212Ep22!/b

12
~Ep2Ep22!~eDp~Ep212Ep22!21!

~Ep212Ep22!~eDp~Ep2Ep22!21!

,

~48!
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where special cases such asEp2Ep2250 should be treated
as limiting values. In order to relate this much more comp
cated expression to the simple SSE result of a constant
tribution (n21)/b2 from each pair@Eq. ~43!#, we note that a
typical value of the time intervalDp is 3b/n, and
K(p21,p);1/(bDp) for Dp small. Hence, a typical value
of K(p21,p) is ;n/b2, i.e., of the same order as the SS
contribution.

The SSE estimator for the static off-diagonal suscepti
ity,

x̄ i j 5E
0

b

dt^Ĥb2
~t!Ĥb1

~0!&, ~49!

is given by the remarkably simple formula17

x̄ i j 5^N~b1!N~b2!2db1 ,b2
N~b1!&/b. ~50!

As this expression only involves counting the numbers
indicesb1 and b2 in the sequence, it must@by the configu-
ration relation, Eq.~27!# be the correct expression in th
interaction representation as well@in contrast, the equal-time
correlation function discussed above involves pairs of in
ces, the distributions of which are different in SSE and
interaction representation, due to the diagonal opera
present in SSE#. We shall not prove this explicitly here.

The above derivations have clearly shown the close r
tionships between the SSE configuration space and
continuous-time path integral. We note that in cases wh
the expressions differ, they are generally formally simpler
the SSE case. In this sense, the SSE propagation dimen
is a more natural representation of the quantum fluctuat
than imaginary time.

At this stage a reader may wonder why the expansio
dominated by such large powers^n&;Nb, independent of
the size of the perturbation, and why is it not dominated
small powers when the perturbation theory converges fo
infinite system atT50. The answer lies in the fact that th
stochastic sampling is done for the partition function,
which there is never a convergent expansion asT→0 and the
size of the system goes to infinity. To clarify the situation,
us assume that the off-diagonal part of the Hamiltonian
multiplied by a perturbation parameterl. Furthermore, the
free energy per unit volume,f , has a convergent expansio

f ~l!5 f 01 f 1l1O~l2!. ~51!

Then the series expansion for the partition function fo
system of volumeN becomes

Z5e2bN f}e2bN f15(
n

anln, ~52!

with uanu5(bN)nu f 1un/(n)!. It is easy to show thatan is
maximum forn5bNu f 1u in agreement with Eq.~37!.

An updating scheme for importance sampling of the p
turbation series can now be constructed along the lines
cussed in the previous section in the context of the S
method. The differences are only in the weight functio
which involves a set of times which also is sampled stoch
tically. As a pedagogical example, in the following secti
we develop the details of an algorithm for the simple case
-
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the anisotropic Heisenberg chain. In Sec. V we extend
scheme to include couplings to phonon degrees of freed
~spin-Peierls model!.

IV. ALGORITHM FOR THE HEISENBERG CHAIN

Here we describe the details of a perturbation series a
rithm developed for the anisotropicS51/2 Heisenberg chain
We discuss some properties of the method and use e
diagonalization results for small systems as well as kno
analytical results for the thermodynamic limit to show th
very accurate, unbiased results can indeed be produced

A. Construction of the algorithm

The model we consider here is defined by the Ham
tonian

Ĥ5J(
i 51

N FSi
zSi 11

z 1
D

2
~Si

1Si 11
2 1Si 11

1 Si
2!G , ~J.0!,

~53!

with periodic boundary conditions.D controls the anisotropy
with D51 corresponding to the isotropic Heisenberg poin

We wish to construct an algorithm in which, as in the SS
scheme, Monte Carlo updates that change the expansio
der, n, are accomplished by inserting or removing diagon
operators one at a time, and off-diagonal operators are
serted or removed pairwise in substitutions with diago
operators. Since there are only off-diagonal operators in
perturbation expansion string, we add constants to
Hamiltonian, and formally consider these as part of the p
turbation. For the spin chain at hand we define

Ĥ1,b52I , ~54a!

Ĥ2,b5Si
1Si 11

2 1Si 11
1 Si

2 , ~54b!

where I is the unit operator, and write the perturbation
(J51)

V̂5S D

2 D (
a51

2

(
b51

N

Ĥa,b . ~55!

For N even, only operator strings with an even number of
off-diagonal operatorsĤ2,b contribute to the partition func-
tion. The weight~26! is hence positive definite. The matri
element of an allowed operator string equals one, and th
fore

W~a,Tn ,$t%!5~D/2!ne2bE0)
p51

n

e2tp~Ep2Ep21!. ~56!

Tn is now for convenience defined as a sequence of in
pairs

Tn5@a1 ,b1#,@a2 ,b2#,...,@an ,bn#, ~57!

with apP$1,2% and bpP$1,...,N% referring to the operator
type and lattice bond~nearest-neighbor spin pair!, respec-
tively. Using the fixed-length scheme developed for the S



in

to
e

th

is

at
er
in
in

tio

r

i
e
e,
pa

r
ai
tio
l
ry
th
,
er

e
tio
to
c

-

n

d

-

s.
t

rs

es

ys-

te
sent
to

56 14 517QUANTUM MONTE CARLO IN THE INTERACTION . . .
algorithm, we defineĤ0,05I , and insertL2n of these in
each string. Taking into account the number of possible
sertions then gives

W~a,TL ,$t%!

5
~D/2!n~L2n!!n!

L!
e2bE0 )

p851

n

e2tp8~Ep82Ep821!, ~58!

wheren is the number of non-@0,0# elements inTL . There
are no times associated with the augmentation opera
@0,0#, and the indexp8 in the product therefore refers to th
p8th non-@0,0# operator.

The Monte Carlo sampling is based on updates of
types ~19! and ~20!. Using @a,b#p as an alternative to the
notation@ap ,bp#, the update changing the powern by 61 is

@0,0#p↔@1,b#p , ~59!

and the simplest update involving off-diagonal operators

@1,b#p1
,@1,b#p2

↔@2,b#p1
,@2,b#p2

. ~60!

These local updates are sufficient for generating all oper
strings for an open chain, or a periodic system in the z
winding number sector. An update changing the wind
number will be discussed further below. For a simulation
the canonical ensemble, i.e., with the total magnetiza
m5( iSi

z fixed, no further updates of the stateua& are re-
quired, since Eq.~60! also implies flips of nearest-neighbo
spins in the propagated statesua(p)& with p5p1 ,...,p221
~here and in the following, the periodicity of the sequence
always implied, so that ifp1.p2 , the affected states ar
p1 ,...,L21,0,...,p221). In the grand canonical ensembl
global spin flips changing the magnetization of all the pro
gated states also have to be carried out.

Figure 1 shows a graphical representation of a configu
tion generated for an eight-site isotropic Heisenberg ch
This type of representation emphasizes that in this simula
scheme the ordered sequence of operators is the centra
ject, and the times formally can be thought of as auxillia
variables associated with the operator positions. During
simulation, only one of the statesua(p)& needs to be stored
since all the other ones are uniquely defined given the op
tor sequence and can be generated as needed.

First, consider the single-operator update~59!. This can
be attempted consecutively at all positionsp51,...,L for
which apP$0,1%. In calculating the Metropolis acceptanc
probabilities for such updates, the fact that the augmenta
operators@0,0# are not associated with time integrals has
be taken into account. We now define the time differen
D̄p5t(,p)2t(>p), where t(,p), and t(>p) are the
times associated with the non-@0,0# operator closest top,
with position indices,p and>p, respectively. In a substi
tution @0,0#p→@1,b#p , b is chosen at random, and a timetp
in the range@t(.p),t(,p)# is generated. In the directio
@1,b#p→@0,0#p , the only action is to replace@1,b# with @0,0#
and discard the timet(p). One can easily verify that detaile
balance with the distribution~58! is maintained with the fol-
lowing acceptance probabilities~note that the energy differ
enceEp2Ep2150 for @ap ,bp#5@1,b#):
-
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P~@0,0#p→@1,b#p!5minF ~D/2!D̄pN~n11!

L2n
,1G ~61a!

P~@1,b#p→@0,0#p!5minF L2n11

~D/2!~D̄p1D̄p11!Nn
,1G .

~61b!

where min@x,y# denotes the smaller ofx andy.
The pair substitutions~60! are associated with constraint

In the → direction, the first requirement is tha
Sb

z@p121#52Sb11
z @p121#. In either direction, an update

flips the spinsSb
z@p# andSb11

z @p# in the statesua(p)& with
p1<p,p2 . This implies that there may be no operato
@2,b21# or @2,b11# present betweenp1 andp2 , and hence
that Sb11

z @p#52Sb11
z @p# for all p in the range affected by

the update. The change of the weight~58! in an allowed
update at b then depends on the energy differenc

FIG. 1. A configuration generated for an eight-site periodic s
tem withD51 atb54. A row represents a spin stateua(p)&, with
p50 to p5L from top to bottom. Solid and open circles indica
up and down spins, respectively. Dashed and solid bars repre
operators@1,b# and@2,b#, and their associated times are graphed
the right.
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Ep2Ep21 in the local four-spin substate
uSb21

z ,Sb
z ,Sb11

z ,Sb12
z &p for p1<p<p2 , but only for thosep

with operators acting on the spins of this substate.
The locality of the constraints and the weight chang

allows for a fast updating carried out onsubsequences.17 A
subsequenceb contains all operators@2,b# present inTL ,
and those@1,b# operators appearing between antipara
spinsSb

z andSb11
z . Information on the constraints impose

by the presence of the nearest-neighbor operators@2,b21#
and @2,b11# is also part of the subsequence. Operat
@2,b22# and@2,b12# do not impose constraints, but affe
the edge spins b21 and b12 of the substates
uSb21

z ,Sb
z ,Sb11

z ,Sb12
z &, and therefore also have to be in

cluded in the subsequence, so that the acceptance prob
ties can be calculated. All the four-spin substates acted u
by the operators of the subsequences are also stored fo
reason. Clearly, subsequencesb andb8 can be updated inde
pendently of each other ifub82bu.2. Since we normally
study chains withN a multiple of 4, we simultaneously con
struct the subsequences for all bonds separated by three
bonds, and update these one by one. Four such parti
updating cycles are then needed for updating all the bon

The subsequence information is arranged as follows:
length of subsequenceb is denotedLb , and is the number o
operators@1,b#, @2,b#, @2,b22#, and @2,b12# present in
TL . These operators are represented by the integers 124,
and are stored in listsAb(1,...,Lb). The original positions of
these operators inTL are needed for remerging the updat
subsequences into an updated full sequence, and are sto
lists Pb(1,...,Lb). The constraining operators@2,b61# do
not have to be stored. Instead, listsFb(1,...,nb) are created,
such thatFb( i )51 if there are constraining operators~one or
several! in TL between positionsPb( i ) and Pb( i 11), and
Fb( i )50 otherwise. The four-spin substates are encode
single integers (1216), and stored in listsSb(1,...,Lb).

For updating the subsequences, we use the scheme i
duced in Ref. 17~other methods are also possible!. An at-
tempt to carry out a substitution~60! in a given subsequenc
b consists of the following steps: A positioni 1 such that
Fb( i 1)50 is first chosen at random. One then searches in
forward direction for the first positionj for which Fb( j )51.
This position is the one furthest away fromi 1 which can be
considered, together withi 1 , in a pair substitution. Note tha
position i 51 follows i 5Lb due to the periodicity, and the
search is terminated ati 5 i 121 if this position is reached
~and then j 5 i 121!. During the search, the positionsi
of all encountered operatorsAb( i )5Ab( i 1) are stored.
One of these, i 5 i 2 , is then selected at random
and the pair $Ab( i 1),Ab( i 2)% is replaced by
$Ab8( i 1),Ab8( i 2)%5$22Ab( i 1),22Ab( i 2)% with a probability
satisfying detailed balance.

The total probability of making a certain pair substitutio
is the product of the probabilityPselect@A( i 1),A( i 2)# of se-
lecting the operators at positionsi 1 and i 2 , and the accep-
tance probabilityPaccept@A( i 1)A( i 2)→A8( i 1)A8( i 2)#. One
can show that the selection probabilities with the above p
cedures are the same in both directions,17 i.e.,
Pselect@A( i 1),A( i 2)#5Pselect@A8( i 1),A8( i 2)#, if the attempt
is cancelledwith a probability
s

l

s

ili-
on
his

her
n-
s.
e

d in

as

ro-

e

-

Pcancel@AA→A8A8#512
N~A!

N~A!1N~A8!
, ~62!

whereN(A) andN(A8) are the numbers of operatorsA and
A8 found betweeni 5 i 1 andi 5 j in the search@excluding the
first operatorAb( i 1)5A#. If the attempt is not cancelled a
this stage, a final acceptance probability is calculated on
basis of the weight~58!, using the stored substates, and t
corresponding states modified due to the replaced opera
~obtained by propagating with the updated subsequence
ment!. The Metropolis acceptance probability is

Paccept@AA→A8A8#

5minFe2b~E082E0! )
i 5p1

p2

e2tPb~ i !~Ei82Ei 218 1Ei2Ei 21!,1G ,

~63!

whereEi , andEi8 are the eigenvalues ofD̂ calculated on the
substateuSb21

z ,Sb
z ,Sb11

z ,Sb12
z & i before and after the operato

substitution. Typically, a constraint is encountered in the
search already a few steps from the starting positioni 1 , and
therefore the number of operations required per step is ra
small @the cancellation probability Eq.~62! is often 0#.

For each subsequence, a number of updating attem
proportional to the number of operators in the subsequenc
carried out. The average length of the subsequences,
hence the number of operations needed for their updatin
proportional tob at low temperatures. After updating all th
subsequences belonging to one out of the four partitions,
updated operators are inserted in the full index sequence,
changes in the local four-spin substates are copied into
stored full-system stateua&. The procedures are repeated f
all four partitions.

In a periodic system, configurations with a nonzero win
ing number are possible, and cannot be generated by
local updates discussed above. A winding number co
sponds to an excess of spin flips in one direction in
course of the propagation with the operator string, i.e.
cyclic permutation of same spins inua(L)& with respect to
those inua~0!&. The winding number can be changed by su
stituting a ‘‘half-ring’’ of off-diagonal operators by the
complementary half-ring according to16

@2,b1#p1
,@2,b2#p2

,...@2,bN/2#pN/2

↔@2,b18#p1
,@2,b28#p2

,...@2,bN/28 #pN/2
, ~64!

where the bondsb1 ,...,bN/2 ,b18 ,...,bN/28 are a permutation of
all the bonds of the periodic lattice. The acceptance rate
this type of update decreases rapidly with increasing sys
size, due to the increasing number of constraints. In pract
simulations for systems larger thanN'16220 must be re-
stricted to the sector with zero winding number The result
small error is a boundary effect, and vanishes in the therm
dynamic limit.33

At high temperatures, simulations can be carried out
the grand canonical ensemble, by including updates of
total magnetization. This is, in principle, easily achieved
flipping ‘‘straight lines’’ of spins,Si

z@0#,...,Si
z@L21#, which

is allowed provided that there are no operators@2,i 21# or
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@2,i # present inTL , and the acceptance probability then d
pends only on the neighbor spinsSi 21

z @0# and Si 11
z @0#.

However, the likelihood of an allowed spin flip decreas
rapidly with decreasing temperature, and in practice simu
tions for T&J/10 have to be carried out in the canonic
ensemble.

Finally, we also perform updates of the times$t% without
changes either in the operator string or the states. A sin
time tp can be updated by generating a time in the allow
range@tp11 ,tp21# ~and t1<b, tn>0!, and accepting this
with a Metropolis acceptance probability calculated from E
~58!:

P~tp→tp8!5min$exp@~tp82tp!~Ep212Ep!#,1%. ~65!

The typical time separation, and hence the differen
tp82tp , scales as 1/N, and is typically very small. The ac
ceptance rate for these single-time updates is therefore c
to 100% in most cases. It is clear that the rate of evolution
$t% updated this way@in addition to the generation of a ran
dom time when inserting an operator in an update~59!#, will
be very slow for large systems. Therefore, we consider
multaneously updating a whole set of times$tp1

,...tp2
%, us-

ing the following scheme.
A position p1 is first chosen at random, andp2 is chosen

as the smaller ofp11nt and n, with nt a number chosen
randomly between 1 and some upper boundmt , andmt is
adjusted so that a reasonable acceptance rate ('50%) is
maintained. If the weight would be independent of the tim
the distribution of the times would be uniform within th
limits of the time-ordered integral. If the separationtp2

2tp1

is not too large, the true distribution will be close to uniform
We therefore attempt to replace the selected set of times
randomly generated ordered set$tp1

8 ,...tp2
8 %, with

tp1
8 <tp121 ~tp1

8 <b if p151! and tp2
8 >tp211 ~tp2

8 >0 for

p25n!. The Metropolis acceptance probability for this mu
titime update is

P~$tp%→$t8%!5minFexpS (
p1

p2

~tp82tp!~Ep212Ep!D ,1G .

(66)

It is clear that the acceptance rate is essentially determ
by the time differencetp2

2tp1
, independently of the system

size. In simulations of large systems, the maximum num
of simultaneously updated times,mt11, can therefore be a
high as 103 or higher ~in many cases, all times can be u
dated simultaneously!. The importance of the multitime up
dates will be further discussed below.

We define a Monte Carlo step~MC step! as a sequence o
diagonal updates~59! at all positions inTL , followed by
off-diagonal pair updates~60! at all bonds. In a grand ca
nonical simulation, a global flip of each spin is also a
tempted, and for simulations of small systems with fluctu
ing winding number ‘‘ring updates’’~64! are carried out.
The number of multitime updates per MC step is chos
such that, on the average,'50% of the times are changed
As already noted, an MC step requires of the order ofNb
operations.
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B. Performance tests

We now present some tests of the accuracy of the meth
We also briefly address the issues of autocorrelation tim
and the equilibration of the simulation. We only consider t
spin isotropic Heisenberg case@D51 in Eq. ~53!#. Detailed
numerical finite-temperature results for this model have
cently been obtained using the SSE method and h
temperature expansions.28

In order to verify that the QMC algorithm indeed pro
duces results free from detectable systematic errors, we
ried out a long simulation of a 12-site system at inve
temperatureb58, in the grand canonical ensemble and w
fluctuating winding numbers. These results can be dire
compared with exact diagonalization data.

A useful internal check of the simulation in the isotrop
case is the internal energy calculated in two different wa
from the diagonal nearest-neighbor correlation function
E153^Si

zSi 11
z &, according to Eq. ~17!, and from the

expectation value of the off-diagonal operators,E2

52(3/2)^Ĥ2,i&, according to Eq.~37!. For the 12-site sys-
tem at b58, a simulation consisting of 23108 MC steps
gave E120.44 372(3) andE2520.443 68(2), where the
numbers within parentheses indicate the statistical err
The exact result isE520.443 697. Hence, both QMC est
mates are accurate to within relative statistical errors of l
than 1024.

We also calculated the static structure factor

S~q!5
1

N (
j ,l

e2 i ~ j 2 l !q^Sj
zSl

z&, ~67!

and the corresponding static susceptibility

x~q!5
1

N (
j ,l

e2 i ~ j 2 l !qE
0

b

dt^Sj
z~t!Sl

z~0!&. ~68!

Comparisons with the exact results are presented in Tab
Here the relative accuracy is the highest,'1024, close to
q5p/2. The accuracy is lower close toq5p, due to the
strong antiferromagnetic fluctuations present in the mod
At q50 the accuracy is hampered by the low acceptance
for the spin flips required in the grand canonical ensemb

TABLE I. Simulation results for the static structure factor an
the static susceptibility of a 12-site Heisenberg chain atb58, com-
pared with the exact results. The numbers within parentheses
cate the statistical errors~defined as one standard deviation of t
averages!, i.e., 0.123~45! stands for 0.12360.045.

q/p S(q) ~QMC! S(q) ~exact! x(q) ~QMC! x(q) ~exact!

0 0.008581~24! 0.008590 0.06864~20! 0.068720
1/6 0.048110~5! 0.048120 0.11822~3! 0.118266
1/3 0.102865~8! 0.102875 0.14422~3! 0.144236
1/2 0.169906~13! 0.169917 0.19746~5! 0.197478
2/3 0.263758~18! 0.263768 0.32669~8! 0.326648
5/6 0.43371~5! 0.433742 0.8027~3! 0.803118
1 0.95472~18! 0.954566 3.9897~13! 3.989397
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The above results clearly demonstrate that the method
principle, is very accurate. We now consider a significan
larger system, and address some practical issues that ar
realistic simulations.

For the Heisenberg chain, a number of exact results
known in the thermodynamic limit. For example, Egge
et al. recently calculated the temperature dependence of
uniform magnetic susceptibilityx5x(q→0), using the ther-
mal Bethe ansatz.34 We here compare their infinite-size re
sult with QMC data for a system with 128 spins. The sim
lations consisted of 3 – 53107 MC steps for each
temperature. At high temperatures (T/J>0.1) the grand ca-
nonical ensemble was used, and at lowerT the magnetization
was kept fixed atmz50. In the latter case, we define th
uniform susceptibility asx(q1) whereq1 is the smallest non-
zero wave number;q152p/L. Figure 2 shows the results
The relative statistical errors are'1023 down to about
T/J50.15, below which the accuracy diminishes due to
low acceptance rate for the grand canonical spin flips. M
accurate results could have been obtained by extrapolatin
zero wave number on the basis of a few points close toq50,
instead of just usingq50. For the grand canonical simula
tions, the agreement with the exact result is clearly v
good, indicating no detectable effects of finite size
N5128 at the temperatures considered. For the canon
ensemble, all results are slightly below the exact curve, s
gesting larger finite-size effects when the magnetization
not allowed to fluctuate~extrapolating toq50 instead of
usingq1 gives a still larger deviation!.

In any Monte Carlo simulation, care has to be taken t
the equilibrium distribution is reached before measureme

FIG. 2. Upper panel: The uniform magnetic susceptibility~in
units of 1/J! of a 128-site Heisenberg chain calculated using
QMC method~circles with error bars! compared with the exac
result for the infinite system~curve!. Lower panel: The relative
deviation (xQMC2xexact)/xexact of the QMC data from the exac
result. The solid and open circles are for grand canonical and
nonical simulations, respectively.
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are taken. In our algorithm, the cutoff of the perturbati
expansion at orderL is determined during the equilibratio
part of the simulation, by monitoring the powern and in-
creasingL whenevern exceeds some threshold fraction ofL
~typically 90–95 %!. We have found that an efficient upda
ing of the times$t% is crucial for achieving a rapid equilibra
tion. In Fig. 3 we show results for the cutoff versus t
simulation time for anN5128 system atb58 for two dif-
ferent ways of updating the times; consecutively updating
the times one-by-one, according to Eq.~65!, and collectively
updating a whole range of times according to Eq.~66!. With
single-time updates, the final cutoffL51064 was reached
after approximately 20 000 MC steps, whereas the multis
updating gave the finalL already after 288 steps. In this cas
all times were updated simultaneously, with an average
ceptance rate of'70%.

Measuring the expectation value of the constant opera
Ĥ1,b also provides for a good check of the equilibration
the sequence length. WithJ51, 22^Ĥ1,b& should equal 1,
but before equilibrium is reached a calculation using Eq.~37!
will deliver a smaller value. In Fig. 3 we also show th
evolution of this measurement with MC time for the tw
different ways of updating the times. With multitime upda
ing, the measured values fluctuate around 1 already after3

steps, whereas with single-time updates the result are too
even after 105 steps. In both cases, subsequent simulati
consisting of 107 MC steps gave comparable results for
calculated quantities, with similar statistical errors. Hence

e

a-

FIG. 3. Upper panel: The truncationL vs the number of MC
steps performed during the initial parts of two simulations of a 1
site system atb58. In one case~solid curve!, all the times were
simultaneously updated, whereas in the other case~dashed curve!
the times were consecutively updated one-by-one. Lower pa
convergence of22^Ĥ1,b&, which should equal unity, for single
time ~open circles! and multitime~solid circles! updates.
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56 14 521QUANTUM MONTE CARLO IN THE INTERACTION . . .
this case the multitime update appears to be important
reaching equilibrium, but does not significantly affect t
statistics of the simulation otherwise. For a larger system
single-time update becomes even less efficient, and
likely that the multitime update then will become importa
also for the statistics of the simulation~i.e., the autocorrela-
tion times of measured quantities after equilibration!.

The efficiency of the updating process in generating in
pendent~uncorrelated! configurations is measured by aut
correlation functions. The optimal frequency for measur
expectation values on the generated configurations is in p
ciple determined by such functions. For a quantityA, the
autocorrelation function is defined as

aA~ t !5
^A~ i 1t !A~ i !&2^A~ i !&2

^A~ i !2&2^A~ i !&2 , ~69!

where A( i ) denotes the value of the simulation estima
after i MC steps, and the normalization has been chosen s
that aA(0)51. For large time separationst, one expects
aA(t) to decay ase2t/jA, where jA is the autocorrelation
time. In principle, the long-time dynamics of the simulatio
is characterized by a single autocorrelation time, i.e.,
longestjA . An observable of interest may or may not ove
lap with the quantity corresponding to this slowest mo
Hence, in practice one will deal with different autocorre
tion times for different quantities.

Successive measurements provide independent info
tion only if they are separated by a number of steps su
ciently large for the corresponding autocorrelation funct
to have decayed substantially. In practice, the decay ma
much faster thane2t/ja for short times, and therefore th
relevant separation between measurements may be sh
thanja . In general one expects the autocorrelations for
servables related to the long-distance properties of
model, such asS(p) and x~p! for the antiferromagnetic
Heisenberg chain, to decay slower than those for essent
local quantities such as the energy, or correlation functi
away from the wave number of the dominant fluctuatio
Figure 4 shows results for the logarithms of the autocorre
tion functions of E, S(p), x~p!, and x~0! for a 128-site
system atb58. For S(p) and x~p!, the asymptotic linear
decay is the same, as expected, and the autocorrelation
is '40 MC steps. Note, however, thataS(p)(t) decays
slightly faster thanax(p)(t) for short times, which can be
understood on account ofS(p) being an equal-time correla
tion function, whereasx~p! involves also an integration ove
imaginary time. This effect becomes even more pronoun
at lower temperatures. Forx~0! the autocorrelation time is
considerably longer at this temperature~'80 MC steps!, due
to the low acceptance rate for the global spin flips. In co
trast, at higher temperaturesx~0! exhibits the shortest auto
correlation time. The autocorrelation function for the ener
decays very rapidly, and it is difficult to see a regime with
linear behavior before statistical noise dominates the m
surements. One would expectaE(t) to contain a componen
of the slowest mode of the simulation, but the overlap m
be too small to detect~and hence the effect on the statistics
essentially irrelevant!. Clearly, the relevant time scale fo
measurements of the energy is much shorter than
asymptotic autocorrelation time.
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In practice, it is not feasible to measure the autocorre
tions in every case. As usual, binning the data, so tha
single bin represents a simulation time much longer than
asymptotic autocorrelation time, ensures proper estimate
averages and statistical errors. The only concern then is
the time spent on the measurements should not dominate
simulation. Measuring every 10–20 MC steps typically on
results in a minor overhead.

V. SPIN-PEIERLS MODEL

The effects of phonons on spin systems in one dimens
are of great current interest, in view of the recent discove
of spin-Peierls transitions in the inorganic compoun
GeCuO3 ~Ref. 22! anda8-NaV2O5 ~Ref. 23!. These materi-
als consist of weakly coupled spin-1/2 chains and dimeriz
T514 and 36 K, respectively. A variety of experiments ha
probed their static and dynamic magnetic properties.35,36

To date, most numerical work on spin-Peierls models
1D has focused on Lanczos exact diagonalization studie
the ground state of dimerized chains, and the finite temp
ture susceptibility has been calculated using complete dia
nalization of undimerized chains.37–39 The QMC approach
discussed in this paper should be an excellent tool for
tailed nonperturbative studies of spin systems including
namic, i.e., fully quantum mechanical, phonon degrees
freedom.

Early studies of 1D electronic models including phono
were carried out by Hirsch and Fradkin, using the worldli
QMC method with the phonons introduced via their re
space displacement coordinates, in imaginary time d
cretized with the standard Trotter approximation.40 We have
developed an extension of the Heisenberg algorithm
scribed in the previous section, with phonons treated in
real-space occupation number basis. We believe that this
more efficient way to include the phonons, and furtherm
the scheme is exact. The same ideas could also easil
implemented within the SSE scheme, but so far we have
done so. The present scheme is likely more efficient th

FIG. 4. The autocorrelation function forE ~solid squares!, x~0!
~open squares!, x~p! ~solid circles!, and S(p) ~open circles!, ob-
tained in a simulation of a 128-site system at inverse tempera
b58.
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SSE at high temperatures, where the average phonon o
pation number is high and dominates the energy. At l
temperatures, SSE may in fact be slightly more efficient.

We here restrict ourselves to the perhaps simplest typ
spin-phonon coupling, namely, we consider a dispersion
harmonic oscillator with frequencyv0 at each bondi ~Ein-
stein phonons!. The exchange interaction between the sp
at sitesi and i 11 is modulated by the phonon displaceme
xi . The Hamiltonian is hence

Ĥ5(
i 51

N

~J1axi !Si•Si 111v0(
i 51

N

ni . ~70!

Here J is the ‘‘bare’’ exchange,a is the spin-phonon cou
pling, and ni is the phonon occupation number, given
terms of the phonon creation and destruction operator
ni5ai

†ai . We define the phonon displacement operator a

xi5~ai
†1ai !/&, ~71!

and hence absorb in the couplinga the mass and spring
constant of the oscillator. The oscillator potential cor
sponding to the definition~71! is V(x)5v0x2/2.

We remark that the linear coupling is not completely
alistic, since it can lead to negative~ferromagnetic! spin-spin
couplings if the fluctuations are large. In the low temperat
regime this does not occur, and the model should then b
good starting point for understanding the effects of phon
in real quasi-1D spin systems.

Augier and Poilblanc41 have recently studied a model re
lated to the Hamiltonian~70!. They included only the
phonons with momentumq5p, which are the ones forming
a condensate in the dimerized state, and carried outT50
Lanczos exact diagonalization in a space with a restric
number of these phonons. They found quantitative chan
in the behavior from that of a statically dimerized syste
Here we will show that theqÞp phonons are also importan
at finite temperature, in particular theq50 ones which lead
to a temperature-dependent effective spin-spin coupling.

A. Algorithm

In a simple modification of the Heisenberg algorithm d
scribed in the previous section, we now have additional p
non occupation number operators in the unperturbed Ha
tonian;

D̂5J0(
b51

N

Sb
zSb11

z 1v0(
b51

N

nb . ~72!

We write the perturbationV̂5(a,bĤa,b in terms of the fol-
lowing operators:

Ĥ1,b52J0/2, ~73a!

Ĥ2,b5~J0/2!~Sb
1Sb11

2 1Sb11
1 Sb

2!, ~73b!

Ĥ3,b5~a/2& !~Sb
1Sb11

2 1Sb11
1 Sb

2!ab
† , ~73c!

Ĥ4,b5~a/2& !~Sb
1Sb11

2 1Sb11
1 Sb

2!ab , ~73d!
cu-
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Ĥ5,b5~a/& !S Sb
zSb11

z 2
1

4Dab
† , ~73e!

Ĥ6,b5~a/& !S Sb
zSb11

z 2
1

4Dab , ~73f!

Ĥ7,b5~a/2& !ab
† , ~73g!

Ĥ8,b5~a/2& !ab . ~73h!

The definitions ofĤ5,b andĤ6,b contain off-diagonal opera
tors ;ab

† and ;ab , which are not present in the origina
Hamiltonian. They have been included in order to make
weight function positive definite. They also induce a const
shift in the oscillators, which has no effect other than shifti
the value ofJ by an amount proportional toa2. The opera-
tors Ĥ7,b andĤ8,b have been included in the Hamiltonian
order to enable straightforward measurements of correla
functions of the displacement operatorsxb , which are off-
diagonal in the chosen representation and hence mus
measured using expressions such as Eqs.~44! and ~50! @the
prefactor in Eqs.~73g! and~73h! is chosen for convenience
but is in principle arbitrary#. Again, these operators just shi
the effective valueJ and therefore do not affect the physic
of the model.

In order to compensate for the shift induced by the add
operators, we define the spin-spin coupling in Eqs.~73b! and
~72! with a constantJ0ÞJ, determined such that the ne
bare couplingJ51 ~i.e., its value in the absence of the spi
phonon couplinga( ixiSi•Si 11 , which in turn induces an
additional shift whichis part of the physics of the model!.
For each bond, the added operators equal (3a/4)xb . Thus
the shifted oscillator potential isV8(x)5v0(x23a/4v0)2/2.
The actual bare value ofJ is then

J5J01
3a2

4v0
, ~74!

and we therefore chooseJ0512 3
4 (a/J)(a/v0) to give

J51. If we do not want to deal with negative values ofJ0 ,
this implies that the maximum coupling constant we c
study, for a givenv0 , is amax52(Jv0/3)1/2, which is prob-
ably not a serious restriction for realistic situations. We c
relax the restriction by choosing a smaller prefactor in
definition of Ĥ7,b and Ĥ8,b , or leaving out these operator
altogether~which can be done if no phonon correlation fun
tions need to be measured in the simulation!. We note that, in
principle, one can useJ0,0 and avoid the coupling constan
restriction. However, this causes a sign problem due to fr
tration. The standard way of treating the phonons, in
representation where the displacementsxi are diagonal,41

avoids this by enforcing a positive coupling. This corr
sponds to including nonlinear terms in the oscillator poten
and/or the coupling, and hence modifies the model its
This clearly makes sense from the point of view of modeli
real materials. Including nonlinear terms that strictly enfor
a positive sign appears to be complicated with our simulat
scheme, and therefore the standard method is likely pre
able in cases where this would be necessary. Note, howe
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that including ‘‘simple’’ nonlinear terms in the oscillator po
tential should be possible, as long as they do not cause a
problem.

It is now a simple matter to include Monte Carlo upda
involving the operators@a,b# with a53,...,8 in theHeisen-
berg simulation scheme developed in the previous sect
As before, we denote by@0,0# a unit operator, not part of the
Hamiltonian, introduced in order to fix the length of the i
dex sequence toL. The operator string matrix element in th
weight function, Eq.~26!, is more complicated than before
since the matrix elements of the phonon operators depen
the occupation numbersnb ;

abunb&5Anbunb21&,

ab
†unb&5Anb11unb11&. ~75!

Hence, changes in the matrix element ofTL have to be evalu-
ated in pair substitutions involving phonon operators. Ap
from this, the methods we use for updating the configu
tions are very similar to the Heisenberg case describe
Sec. IV, and we shall therefore merely list the types of s
stitutions carried out and only very briefly comment on th
implementation.

As before, the update changing the expansion powern is
@0,0#↔@1,b#, with acceptance probabilities given by E
~61! @with J0 in place ofD#. The pair substitutions can b
divided into two classes. A substitution of the first type
only accompanied by changes in the spin states. We use
following ones:

@1,b#,@1,b#↔@2,b#,@2,b#, ~76a!

@3,b#,@4,b#↔@5,b#,@6,b#, ~76b!

@4,b#,@3,b#↔@6,b#,@5,b#. ~76c!

These updates are again carried out withTL partitioned into
one out of four sets of subsequences. The other upd
cause changes only in the phonon states. They are

@2,b#,@2,b#↔@3,b#,@4,b#, ~77a!

@3,b#,@4,b#↔@4,b#,@3,b#, ~77b!

@1,b#,@3,b#↔@5,b#,@2,b#, ~77c!

@1,b#,@4,b#↔@6,b#,@2,b#, ~77d!

@2,b#,@5,b#↔@3,b#,@1,b#, ~77e!

@2,b#,@6,b#↔@4,b#,@1,b#, ~77f!

@5,b#,@6,b#↔@7,b#,@8,b#, ~77g!

as well as the ones obtained from these by permuting op
tors both on the left and the right. Since the oscillators
independent~i.e., we have not included phonon-phonon co
plings!, these updates can be carried out independently
all bonds, withTL partitioned intoN subsequences.

For small systems, we also carry out ‘‘ring’’ update
changing the winding number according to Eq.~64!. Global
flips of single spins can again be carried out only at relativ
high temperatures, thus necessitating the use of a cano
ign
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ensemble for the spin sector at lower temperatures. For
phonons, the algorithm is automatically grand canonica
any temperature, since the phonon number is not conser
We do, however, also include global fluctuations of the nu
ber of phonons at each bond. For this purpose, we mon
~during equilibration! the average number of phonons p
oscillator,^nb&, and attempt adding or subtracting between
and'A^nb& phonons at a time.

Since the number of phonons is unbounded~in practice
the largest number sampled is limited, but can be very la
at high temperatures!, we cannot test the QMC program
against exact diagonalization results with the full phon
space included. However, we have compared results w
exact diagonalizations for a four-site chain with the numb
of phonons per oscillator restricted to less than or equa
two. This restricted case already encompasses all the
ments of the simulation algorithm, and hence we can c
clude that our program generates results exact within sta
tical errors.

B. Results

We shall here only present some selected illustrative
sults for the spin-Peierls model, deferring to a separate p
lication a detailed discussion of the physics of the model, a
its relevance in interpreting various experimental results
quasi-1D spin systems.24 The main purpose here is to give a
impression about the kind of detailed information that can
extracted using the QMC algorithm. We do, however, a
point out some important model features of experimental
evance that can be inferred already from the results obta
here.

We note that in the adiabatic limitv0→0, the model
should dimerize for anya.42 The situation for finite fre-
quency is still not completely settled. For the case of non
teracting spinless fermions, which is equivalent to theXY
spin chain, Hirsch and Fradkin found numerical eviden
that a critical phonon coupling is required for a dimerizati
to occur. We here consider a phonon frequencyv05J/10,
and a couplinga5J/4. Our low-temperature results sho
that the system is dimerized atT50 for these parameters
Based on their exact diagonalization study including
q5p phonons only, Augier and Poilblanc41 suggested a cou
pling a/J'0.38 ~after adjusting for a difference& in defi-
nitions! and a bare frequencyv0 /J50.3 for describing
a8-NaV2O5. Hence, the case considered here is closer to
adiabatic limit, and the spin-phonon coupling is slight
weaker. This is still a regime that can be expected to be
relevance for real materials. As we will see, our bare c
pling J is in fact renormalized to a slightly higher value du
to q50 phonons, so that our effective phonon frequency a
coupling are somewhat lower in units of the effective sp
spin coupling.

We present simulation results for a wide range of fin
temperatures, including low enoughT to give the ground
state for all practical purposes. Systems with up to 128 s
are considered, and a simulation typically consisted
1223107 MC steps. At high temperatures (T/J>0.125),
we used the grand canonical ensemble for the spins, an
lower T we had to restrict ourselves to the canonical e
semble withmz50, due to the low acceptance rate for glob
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spin flips. For the relatively large lattices considered the
fects of this restriction are minor. As already noted, the sim
lation algorithm is automatically grand canonical for t
phonons, and we have found no practical problems with
ability of the phonon numbers to fluctuate effectively.

The spin-phonon coupling causes an average uniform
placement̂ xi&.0 of the oscillators, due to the energy low
ering realized by increasing the average coupli
J→J1a^xi&5Jeff , balanced by the increased potential e
ergy of the oscillator. Hence, the spin-Peierls system is c
acterized by a temperature-dependent effective spin-
coupling Jeff(T). Figure 5 shows our QMC results for th
effective coupling, along with its rms fluctuation, defined

s~Jeff!5aA^xi
2&2^xi&

2. ~78!

As already noted, the relevance of the model to real mate
is likely limited to the regime whereJeff rarely fluctuates to
negative values. The results of Fig. 5 indicate that, for
model parameter considered here, this is the case forT/J&1,
whereJeff.s(Jeff). Since the actual distribution of the insta
taneous values ofxi is not symmetric, it is of course no
possible to uses(Jeff) to give an exact probability for ferro
magnetic couplings.

At low temperatures, the lonq-wavelength spin susce
bility shows the behavior expected for a dimerized s
chain. Figure 6 shows results forx(q) for q,p/2. The be-
havior changes rapidly between inverse temperaturesb516
and 64, from having only a very weakq dependence in the
q→0 regime in the former case, to a rapid suppression in
latter case. This clearly shows the presence of a spin
There is only a minor change going tob5128, indicating
that the system is essentially in its ground state at this inv
temperature. In order to accurately extract the uniform s
ceptibility x(q→0), it is necessary to extrapolate toq50
using 2–4 low-q points. This procedure is of sufficient acc

FIG. 5. The temperature dependence of the effective spin-
coupling ~upper panel!, and its fluctuation~lower panel!.
f-
-

e

s-

,
-
r-
in

ls

e

i-

e
p.

se
s-

racy in the interesting intermediate temperature regi
where the susceptibility drops rapidly.

The uniform susceptibility is one of the most importa
experimentally measurable quantities. It is often used to
timate the Heisenberg spin-spin coupling. In comparing
sults for the spin-Peierls model with the Heisenberg chain
is natural to measure the temperature in units of the effec
coupling atT50, which we denoteJeff(0). We here have
Jeff(0)'1.273 ~see Fig. 5!. Susceptibilities calculated in th
simulation, where the bare exchangeJ51 is used to set the
temperature scale, then also have to be adjusted by this fa
since the definition~68! contains the inverse temperatur
Hence, unless stated otherwise, we now defineb5Jeff(0)/T,
and give the susceptibility in units of 1/Jeff(0).

In Fig. 7 we compare the uniform susceptibility of th
spin-Peierls model with the exact Heisenberg result.34 There
is a significant shift in both the peak position and the amp
tude. Both can be understood on the basis of the redu
antiferromagnetism due to the fluctuations induced by
phonons. There are no signs of a suppression of the sus
tibility for T/Jeff(0)*0.1, below which there is a sudden
very rapid drop. Above this drop, we find that the shape
the temperature dependence ofx can be quite well fit to the
result for the Heisenberg chain without phonons, but with
exchangeJfit,Jeff(0), as also indicated in the figure. Th
overall magnitude of the susceptibility is then found to
lower than for a Heisenberg chain with this exchangeJ5Jfit .
In terms of an effective Landeeg factor~i.e., the value of the
g factor one would deduce under the incorrect assump
that the system is described by a Heisenberg chain!, which is
2 for an idealS51/2 Heisenberg chain, this impliesgfit,2.
For the parameters used here, we findJfit'0.82J and
gfit'1.86. This is interesting, since experimentally it
sometimes found that theg factor extracted from the suscep
tibility fit is less than 2, whereas one would in fact expec43

a g factor slightly larger than 2. For example, Eggert w
able to fit well experimental susceptibility data for Sr2CuO3
with the Heisenbergx(T),44 but theg factor corresponding

in

FIG. 6. The spin susceptibility~in units of 1/J! vs wave number
in the long-wavelength regime for a system withN5128 at inverse
temperaturesb516 ~solid circles!, b532 ~open circles!, b564
~solid squares!, and b5128 ~open squares!. The statistical errors
are at most the size of the symbols.
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to the fit is as low as 1.6, and this seeming discrepancy
not been explained. Based on our results presented here
propose that the apparentg-factor reduction may be at leas
partially due to phonons. Additional calculations for vario
phonon frequencies and couplings are underway to fur
investigate this possibility. Note that the susceptibility of t
spin-Peierls model deviates significantly from the Heis
bergx(T) also if one considers a temperature-dependent
ergy scaleJeff(T) instead of the fixed scaleJeff(0) used
above, as shown in the inset of Fig. 7. The shift in the pe
position remains, and there is a regime where the phon
cause a significant susceptibility enhancement. This sh
that the effects of the phonons cannot be simply captured
a mapping to a Heisenberg chain with a temperatu
dependent exchange equal to the average couplingJeff(T) of
the model, i.e., the fluctuations inJeff(T) must be taken into
account. These issues will be discussed in more de
elsewhere.24

The effects of the phonons on the antiferromagnetism
be seen directly in the staggered susceptibility, graphe
Fig. 8. For the Heisenberg chainx(p)5D ln1/2(L/T)/T at
low temperatures, where the constants have been estim
as D'0.32 andL'6.28 For the gapped spin-Peierls mod
we should havex(p)→const. We find here that there is
maximum inx~p! approximately at the same temperature
which the rapid drop in the uniform susceptibility is se
@the staggered structure factorS(p) exhibits a similar maxi-
mum#. This behavior is distinctively different from that of
gapped system with fixed values of the exchange couplin
such as a statically dimerized chain, for whichx~p! simply
saturates at a value set by the gap. In the presence o
namic phonons the staggered correlations among the ins
taneous spin-spin couplings only build up gradually asT is
lowered, and therefore the antiferromagnetic spin corre
tions can initially grow stronger than what they will event
ally be in the statically dimerizedT50 state. Experimen-

FIG. 7. The uniform susceptibility@in units of 1/Jeff(0)# vs tem-
perature@in units of Jeff(0)#, compared with the exact Heisenbe
result ~solid curve!. For the Heisenberg chainJeff5J51. The
dashed curve is the Heisenberg susceptibility forJ50.823Jeff(0)
and ag factor '1.86. The inset shows the QMC data graphed
the temperature scale set by the temperature-dependent cou
Jeff(T) @x here also contains this factor, i.e., it is given in units
1/Jeff(T)#, compared withx(T) for the Heisenberg chain.
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tally, this may have implications for NMR experiment
which probe the low-frequency dynamic spin-spin corre
tions. A peak inx~p! would likely be accompanied by a
maximum in theT dependence of both 1/T1 and 1/T2G. The
NMR rates for models including phonons should be acc
sible using the same numerical techniques~QMC and
maximum-entropy analytic continuation! that have recently
been used for the standard Heisenberg chain.27,28

The phonon correlations are also interesting, and can g
some indirect information on the dynamics as well. We d
fine the static phonon structure factor and susceptibility
cording to

Sx~q!5
a2

N (
j ,l

e2 i ~ j 2 l !q^~xj2^x&!~xi2^x&!&, ~79a!

xx~q!5
a2

N (
j ,l

e2 i ~ j 2 l !qE
0

b

dt^~xj~t!2^x&!~xi~0!2^x&!&.

~79b!

We expect both to develop peaks atq5p at low tempera-
tures, signaling the dimerization instability. Figure 9 sho
results at several temperatures. At high temperatures,
Sx(q) and xx(q) are almost independent ofq and increase
with increasing temperature. This reflects the behavior
~almost! independent harmonic oscillators. At lower tem
peratures, the expected peaks atq5p develop. In the high-
and intermediate-temperature regime (T*v0) graphed in
Fig. 9, Txx(q)5Sx(q) within statistical errors. Hence, a
these temperatures the phonon dynamics is for all wa
lengths dominated by the first Matsubara frequency and
thus essentially classical. Note that the phonon suscepti
ties have considerably smaller statistical errors than
structure factors. This is contrary to the situation for the s
structure factor and susceptibility, which are calculated us
the diagonalSi

z operators. This counterintuitive feature of th
QMC method can be traced to the simple form of the o
diagonal susceptibility estimator, Eq.~50!.

n
ling

FIG. 8. The staggered susceptibility@in units of 1/Jeff(0)# vs
temperature~solid circles!, compared with results for the Heisen
berg chain~open circles!. The curve indicates the asymptotic dive
gent form for the Heisenberg chain.
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The static phonon structure factor and susceptibility c
be related to the dynamic real-frequency phonon correla
function ~or spectral function! A(q,v) through sum rules.
We define the spectral function as

A~q,v!5a2(
j ,l

eiq~ j 2 l !E
2`

`

dte2 ivt^xl~ t !xj~0!&. ~80!

From the Lehmann representation one can derive the foll
ing sum rules in the standard way:45

Sx~q!5
1

p E
0

`

~11e2bv!A~q,v!, ~81a!

xx~q!5
2

p E
0

`

~12e2bv!
1

v
A~q,v!. ~81b!

At T50, these sum rules can be used to obtain anupper
bound for the lowest phonon excitation of momentum q, ac-
cording to

vmin~q!<2Sx~q!/xx~q!. ~82!

In the case of a single sharp phonon mode, 2Sx(q)/xx(q) is
the exact excitation energy. This bound has recently b
used to extract spin and charge velocities of 1D electro
models from QMC data.30 Here we demonstrate its use fo
the phonon spectrum. Figure 10 shows results for a 128
system at a low temperature,T5J/128. For long wave-
lengths, the calculated bound is at the bare phonon freque
v0 /J50.1 within statistical errors, indicating a very wea
effective coupling of these phonons to the spin system.
q→p, there is a clear reduction, as expected due to

FIG. 9. The static phonon structure factor vs wave numbe
T/J51.0 ~open circles!, T/J50.5 ~solid circles!, T/J50.25 ~open
squares!, and T/J50.125 ~solid squares!. The corresponding sus
ceptibilities, multiplied byT/J, are indicated by the~in some cases
barely visible! solid curves. The statistical errors of the susceptib
ties are considerably smaller than those of the structure factors
are not indicated for sake of clarity. The dashed lines indicate
q-independent structure factors of independent harmonic oscilla
at the corresponding temperatures.
n
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softening of theq5p mode in a system that spontaneous
dimerizes. In an infinite system, theT→0 bound
2Sx(p)/xx(p)→0 since a static dimerization implies th
classical relationxx(p)5bSx(p). For a finite system, there
is always a gap~decreasing with increasing size! to the low-
est phonon excitation and bothSx(q) and xx(q) therefore
saturate at finite values for allq. For qÞp, the results
shown in Fig. 10 are saturated, butx~p! @but notSx(p)# still
grows with decreasingT and the actualT50 bound is there-
fore considerably lower than that in the figure.

We now calculate the size of the Peierls distortion. In t
dimerized state the average displacement alternates bet
even and odd bonds;^xi&5^x&6d. Hence, theT50 stag-
gered phonon structure factor is, for large system sizesN,
given by

Sx~p!5a2d2N. ~83!

Figure 11 showsSx(p) versus the inverse temperatureJ/T
for several system sizes. As expected, the saturation t
place at a temperature which decreases with increasing
tem size. The results forN532 andN5128 obey Eq.~83!
quite accurately, the ratio of the saturated values being'4.
For N58 the value is considerably lower, indicating muc
larger fluctuations in this small system. Using theN5128
result with Eq.~83! gives a dimerizationad'0.13, i.e., the
effective alternating average exchange isJi5Jeff(0)@16DJ#,
with DJ'0.10.

The main purpose here has been to illustrate how vari
physical quantities are accessible with the QMC algorit
developed in the previous section. We have therefore
discussed how our results compare to, e.g., mean-field th
and previous numerical calculations including only theq5p
phonon mode.41 These important issues will be addressed
a future publication.

t

nd
e
rs

FIG. 10. Upper bound~in units of the bare exchangeJ! for the
lowest phonon excitation vs momentum for a 128-site system
T5J/128. The dashed line indicates the bare, momentu
independent phonon frequencyv0 /J50.1.
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VI. SUMMARY AND DISCUSSION

In this paper we have introduced a quantum Monte Ca
algorithm based on the standard perturbation expansio
the interaction representation. This starting point was
cently suggested by Prokof’evet al.18 Our implementation of
the sampling of the series is different and is essentially
adaptation of procedures previously developed for the
chastic series expansion algorithm.17 We have shown that the
SSE sum and the continuous imaginary time path integral
in fact very strongly related to each other.

As in the SSE scheme, the central element of the met
is the ordered sequence of operators. In the interaction
resentation formulation developed here, time enters in
form of auxilliary variables associated with the sequence
sitions. The operator updates leading to changes in the
ticle propagation paths~kink-antikink creation and annihila
tion, in the language of Prokof’evet al.18! are carried out via
substitutions of pairs of off-diagonal and constant operat
with the time field held fixed. An efficient procedure fo
collective updating of whole segments of the time field w
introduced. We also derived expressions for several type
important operator expectation values, and compared th
with the corresponding expressions previously obtain
within the SSE scheme.

In the sampling scheme developed by Prokof’evet al.18

an integrated statistics is used to determine the distributio
the transitions in imaginary time. In cases where the ratio
the diagonal to the off-diagonal energy scale is very lar
the transitions are dominated by short-time fluctuations b
and forth between states with low and high unperturbed
ergy. The integrated statistics should then be more effic
than the random substitutions performed in the SSE-insp
sampling algorithm developed here. Without carrying out
tailed comparisons of the two approaches it is, however,
ficult to determine exactly when the advantages of the in
grated statistics will speed up the simulation. For the mod
considered in this paper the random substitutions are
cient and there are no problems with low acceptance rat

We note that the loop-cluster algorithm, invented

FIG. 11. The staggered phonon structure factor vs inverse t
perature for systems of sizeN58 ~solid circles!, N532 ~open
circles!, and N5128 ~solid squares!. The statistical errors are
smaller than the symbols.
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Evertzet al.,20 has recently been used with considerable s
cess in studies of various spin-1/2 Heisenberg systems,46 in
particular in the exact formulation developed by Beard a
Wiese.19 Variants of the loop algorithm have also been su
gested for the 1D Hubbard model,47 and for S.1/2 spin
chains.48 However, physics results for these cases have
yet been presented. Although its performance for the Heis
berg model can be considered spectacular~however, for
some quantities more accurate results have actually been
tained with the SSE method49!, it is not clear how the loop
algorithm will fare with more complicated models, such
spin-phonon models. It is known to break down complet
in some cases.20 In contrast, the stochastic series expans
algorithm and the perturbation series schemes are, in p
ciple, completely general and are practically useful for
wide range of models for which the sign problem can
avoided.

As a demonstration of the power of the perturbation se
method, we have implemented it for studies of a spin-Pei
model. We considered oscillators associated with the bo
coupled to the spins via a linear modulation of the exchan
Unlike earlier studies of 1D electronic models coupled
phonons,40 we used the occupation number basis also for
phonons. The QMC algorithm is ideally suited for this typ
of model, since the bare phonon part of the Hamiltonian
diagonal. The initial results presented here for the sp
Peierls chain indicate that reliable results can be obtai
with modest computer resources. The method should be
useful for resolving issues related to the effects of dynam
phonons on the physics of the recently discovered inorga
spin-Peierls compounds, as well as other quantum spin
tems. Work along these lines is in progress.24 1D itinerant
electronic models of the Hubbard andt-J types including
phonons can also be studied using the procedures devel
here. We also believe that studies of spin-phonon model
higher dimensions are feasible with our method.

The results presented here for the spin-Peierls mode
ready indicate some important consequences of dyna
phonons at finite temperature. The type of phonons con
ered here naturally lead to a temperature-dependent effe
spin-spin coupling. We found that the uniform magnetic s
ceptibility still has a shape rather similar to that of th
Heisenberg chain in a sizable regime close to the susce
bility maximum often used to extract the size of the e
change coupling from experimental data. However, both
value ofJ and theg factor extracted from a fit are reduce
relative to a Heisenberg chain with a coupling equal to
average coupling of the spin-phonon model. We propose
this dynamic effect may at least partially be the reason
the reducedg factor found in some quasi-1D systems.44 Fur-
thermore, these results cast some doubts on the validit
detailed extractions37,39 of the nearest-neighbor and nex
nearest-neighbor couplings in GeCuO3 from fits of exact di-
agonalization data of frustrated Heisenberg chains to sus
tibility measurements. It is likely that the couplings extract
from such fits do not directly correspond to the true spin-s
couplings of the system, but are influenced by the tempe
ture dependence of the couplings as well as their fluct
tions, as discussed above. Interchain couplings likely a
have some non-negligible effects on the susceptibility a
can be included in simulations. Unfortunately, the QMC a

-
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proach introduced here does not allow for studies of fr
trated systems~at least not at very low temperatures!, due
tosign problems. Sincea8-NaV2O5 is not expected to be
frustrated,23,34 we believe that detailed experimental stud
of this material in combination with finite-T QMC studies
will be of key importance in clarifying the microscopic phy
ics of the spin-Peierls materials.
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