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Quantum Monte Carlo in the interaction representation: Application to a spin-Peierls model
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A guantum Monte Carlo algorithm is constructed starting from the standard perturbation expansion in the
interaction representation. The resulting configuration space is strongly related to that of the stochastic series
expansion(SSB method, which is based on a direct power-series expansion of-@hb. Sampling proce-
dures previously developed for the SSE method can therefore be used also in the interaction representation
formulation. The method is tested on t8e 1/2 Heisenberg chain. Then, as an application to a model of great
current interest, a Heisenberg chain including phonon degrees of freedom is studied. Einstein phonons are
coupled to the spins via a linear modulation of the nearest-neighbor exchange. The simulation algorithm is
implemented in the phonon occupation-number basis, without Hilbert space truncations, and is exact. Results
are presented for the magnetic properties of the system in a wide temperature regime, includiindthimit
where the chain undergoes a spin-Peierls transition. Some aspects of the phonon dynamics are also discussed.
The results suggest that the effects of dynamic phonons in spin-Peierls compounds such ag &&CuO
a'-NaV,05 must be included in order to obtain a correct quantitative description of their magnetic properties,
both above and below the dimerization temperat[8€163-18207)02242-X]

I. INTRODUCTION by Leeet al,'? and for theXY model by Chakravarty and
Stein®® but this type of simulation scheme was for a long
Over the last two decades, discrete Euclidean path inteime still perceived as fundamentally limited by its reliance
grals constructed using the so-called Trotter decomposition on the special properties of spin-1/2 operafdrs.However,
have been widely used as the starting point for quantunthe generalizations of Handscomb’s method developed for
Monte Carlo(QMC) simulations of lattice models at finite S>1/2 spin models by Sandvik and Kur'[«ija?,16 and for
temperaturé.‘eln these “world-line” method?,the discreti- one-dimensional1D) Hubbard-type models by Sandvik,
zationAr in imaginary time introduces a systematic error in have now clearly demonstrated that nonapproximate algo-
computed quantities, which in principle can be eliminated byrithms based on “stochastic series expansig8SB can in
carrying out simulations for different discretizations and ex-principle be constructed for any lattice model. In this
trapolating toA 7=0. The error typically” scales as{7)”.  scheme, the basic limitation of the earlier formulations of
However, algorithms can also be constructed which are asysndscomb’s method is overcome by expanding the traces
sociated with no i_nhergnt sys_tematic errors, thu_s eIiminatingiS sums over diagonal matrix elements in a suitable chosen
the need for multiple simulations and extrapolations. Such asis. The importance sampling is then carried out in a space

QMC scheme, applicable to the ferromagnetic spin-1/2, <o states and operator sequenté§in practice, this
Heisenberg model, was devised by Handscomb as early as Jn . S .
A . . . pe of method is of course still limited to models for which
1961° The method is based on a series expansion of th . . : : :
a positive definite weight function can be achieved. The

densny—matnx operator exp(ﬁl—!), Wh.'Ch in the case of the f:ases for which this is possible coincide with those for which
Heisenberg model can be written in terms of products o . . o . .
he weight is positive definite also in the standard Trotter-

permutation operators. Their traces can be evaluated exac hsed path-integraworld-line) formulations. I fact, despite

and are positive definite. One can then carry out importanc . . .
sampling in the space of operator sequences, and obtain r 1e different starting points of the two approaches, the SSE

sults exact to within statistical errors. Handscomb’s methodonfiguration space is strongly related to an Euclidean path
is not directly applicable to other modélsiot even for the integral. Many cha_ractenst!cs are therefore shared, including
antiferromagnetic Heisenberg model for which the schemdhe range of practical applicability, the types of observables
breaks down due to the non-positive-definiteness of th@ccessible for evaluation, and the scaling of the computation
tracest® There was therefore not much followup on Hand- time with the system size and the inverse temperafurhe
scomb’s pioneering efforts, and there was little progress tomain advantage of SSE is of course the absence of system-
wards practical QMC algorithms until Suzuki proposed theatic errors. It should be noted that in order to eliminate the
use of the Trotter formula in this contekSeveral methods Trotter error in world-line calculations, simulations have to
based on this controlled approximation were subsequentlpe carried out for several sufficiently small discretizations
developed®!! Variants of Handscomb’s method were also A. Since the computation time scales as\l), '8 the SSE
later developed, for the antiferromagnetic Heisenberg modedpproach can in practice be considerably more efficient than
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the world-line method in cases where completely unbiase@MC algorithm, in particular to various models including
results are needed. phonons.

Recently, other approaches to exact QMC algorithms
have been proposed. Beard and Wiese succeeded in formu- Il. STOCHASTIC SERIES EXPANSION
lating a world-line algorithm for the spin-1/2 Heisenberg
model directly in theA 7— 0 limit.® Constructed within the
framework of a non-Metropolis sampling scheme with global

Here we review the general formalism of the SSE method,
needed as a basis for the discussion in the following sections.

More details of the algorithm have been described

“Ioolpz-ocluster” updlr?\tes_ prerIOUEly dleve!opled Iby EVertz o sewherd”25 Some recent applications to spin systems and
etal® (a generalization of the classical cluster Spinjp fermion systems are listed in Refs. 26—30.

a.Igo'rllthn?l), this method also has the added advantage of Thg starting point for evaluating an operator expectation
significantly shorter autocorrelation times. Concurrently,yajye at inverse temperatug

Prokof'ev, Svistunov, and Tupitsyn suggested the use of the
standard perturbation expansion as a basis for a QMC path
integrall® For a finite system at finite temperature the series

converges to an exact result for a finite number of terms. A

scheme involving only local updates was suggested for sanis to Taylor expand exptsH) and write the traces as sums
pling the continuous-time paths. over _dlagonal matrix elements in a bafi@)}. The partition

It is clear that the methods by Beard and Widsend  function is then
Prokof'ev et al8 are strongly related to each other, involv- = (= p)
ing the same configuration space of world lines in continuous 7= 2 E B (a] |3|n| ). 2
imaginary time, but differing in the sampling procedures. « n=o N
Continuous-time path integrals also have many properties ifne Hamiltonian is next written as
common with the SSE suff:}’Notably, a transition event in
imaginary time corresponds directly to the presence of an .o
off-diagonal operator in the SSE operator string. Here we H:bZl Hp, (€)
discuss this connection in detail, and introduce a simple R -
modification of the SSE algorithm for simulations in the in- where the operatord,, have the “nonbranching” property,
teraction representation. This formulation can be expected to .
be more efficient than standard SSE in cases where the diag- Hpla)=hy(a,B)|B), (4)
onal part of the Hamiltonian dominates. In oro!er to expllorewhere|a> and |g) are both basis states in the chosen repre-
the properties of the method, we study the spin-1/2 Heisensaniation. Each powéﬂn is now expanded as a sum over all

berg chain, as well as a spin chain including couplings to . . :
dynamic (fully quantum-mechanicalphonons. We consider possible products of of the operator$t, . With S, denoting

a coupling via a linear modulation of the spin exchange by

<A): % Tr{Ae*ﬂﬁ'}, Z=Tr{e*ﬁ'3'}, (1)

an index sequence referring to the operators in the product
a(the operator string

n

ITH

i=1

local dispersionless oscillatgEinstein phonon The system
undergoes a spin-Peieri@imerization) transition at zero S,=(by,....0,), bef{l,...M}, (5)
temperature. A detailed study of the model, and its relevance - _
for understanding the magnetic properties of the recently disthe partition function becomes
covered spin-Peierls compounds GeGu@®ef. 22 and o n
a’-NaV,0s (Ref. 23, will be presented elsewhefé Here Z:z 2 2 (=8 <a > (6)

. . . | .| & [ -
we only consider a single set of model parameters, in the @ n=0'S, n! '
general regime expected to be of physical relevance, and
illustrate the use of the method to calculate a variety of ob- Equations(3) and (4) of course represent a completely
servables, both at finite temperature and in the Imit0. ~ general formal device. In practice, one typically chooses the
Based on the results, we conclude that the effects of dynam#easis so as to make the su) as simple as possible. For
phonons cannot be neglected in quantitative descriptions ¢¥xample, for the Heisenberg model,
materials such as those mentioned above.

The outline of the rest of the paper is the following: In QZJE S-S, (7)
Sec. Il we review the formalism of the SSE method. The (i.j)
perturbgtlon expansion in the interaction representation anghe eigenstates & can be choserp)=|SZ ... .S%). Writ-
its relation to the SSE series are discussed in Sec. Ill. In Se?ng the Hamiltonian as
IV we implement an interaction representation algorithm for
the Heisenberg chain, and discuss the performance of the - 1
method. In Sec. V we consider the spin-phonon model. H=J2 S.ZSJZ+§(5.+517+375J+) : (8)
Readers interested mainly in the results for this model are (D

advised to skip directly to the introductory part of Sec. V,all the two-spin operators satisfy the requireméfit For

and then go directly to the results Sec. V B. The discussios=1/2, Sij’JrSI’Sj+ satisfies Eq(4) and can be consid-
there does not rely heavily on the previous, more technicatéred as a single operator, whereas $or1/2 the two terms
parts of the paper. Section VI concludes with a summary antiave to be treated as separate operators. For tight-binding
outlook for further developments and applications of thefermion or boson models, the real-space occupation number
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basis is typically chosen. For fermions and hard-core bosons P

the hopping operatoc; ¢ +c;"c; satisfies Eq(4), whereas la(p))~ 11 Hpla), [a(0))=|a). (14
for unconstrained bosons the terms again qualify only indi- =1

vidually. A nonzero weight(9) implies the periodicity condition

_For afinite_: system at _fi_nitB, the lengths 91_‘ the operator |a(0))=|a(n)). The propagation indexp plays a role
strlngs contrlbut}n_g significantly to the partition functlo_n are analogous to imaginary time in a standard path integral. The
restnct(_ed to a f|n|_te range. In a Monte Carlo s_|mulat|on of exact relation to imaginary time can be obtained by deriving
thbgl_serles expan5||on, tﬁrm’_ﬁnr)] a:cre sampled with ag)_rob- an expression for a time-dependent correlation functon.
ability proportional to the weight function corresponding to ~, - ior o diagonal operatofs andA, . In a given con-

Eq. (6): figuration (,S,), their eigenvalues in the statgs(p)) are

n denoteda;[p] and a;[p]. One can show that the time-
H Hb- a> .

i=1 !

(99  dependent correlation functionCij(r)=(Aj(r)Ai(O)>,
Here it will be assumed tha(«,S,) is positive definite,

wheree™A;e"™, is given by’

which of course is not always the case. With a nonpositive- So(n| (BT —
definite weight, simulat in principle, sti i Cij(n=\ 2 || ——5——Ci(m). (9

ght, simulations can, in principle, still be carried ] m B ]
out using|W|,® but in practice the statistical fluctuations of e
calculated expectation values diverge if the positive andHere C;;(m) is a correlator between states separatedrby
negative contributions almost cancel each other, which thegropagations:
do exponentially both with increasing system size and de-
creasing temperatur&he infamous sign problenit®? As _ n
already discussed in the Introduction, this is the most severe Cij(m)=—= > aj[p+mja[p]. (16)
limitation of the method—shared also by standard techniques p=0
such as the world—I’|1r1e methdih the case of fermions, “de- the periodicity of the propagated states of course implies
terminant methods™ typically are more effective in dealing ¢, aj[p+n]=a[p]. In the equal-time case, onlgn=0

with the sign problerf). Still, the class of models for which contributes to Eq.(15), and C; (0) is simply given by
a positive definitdV can be achieved is significant enough to a[p]a[p] averaged ovep: !
i j .

motivate the continuing development of more efficient QMC

methods for their study. 10
Proceeding as in the derivation of E), the numerator Cij(0)={ — > aj[plalp] ). (17)

in Eq. (1) corresponding to a given operatarof interest is n+15=o

also expanded. If the expectation value can then be cast in

Was)= P <a

n!

Equation (15 shows that an imaginary time separatien

the form corresponds to a distribution of separations between
3,55 A(a,S)W(a,S,) propagat_ed states, _peaked arourmnEnr/,_B. Hence, the
<A>: n ' (10)  Propagation indexp in the SSE method indeed is closely
2225 W(a,S,) related to the time in an Euclidean path integral.

_ _ _ a As already discussed above, the range of contributing
the simulation estimate dfA) is given by the average of the powersn is limited in practice. One can therefore explicitly

estimatorA(e,S,) over the sampled configurations: truncate the series expansion at some maximum power
- n=L, large enough to introduce only an exponentially small,
(A)=(A(a,S)). 1D completely negligible error. By insertirig— n unit operators

¢in the operator strings, a configuration space is obtained for
which the sequence length formally fixed at L. Defining
the unit operatoHy=1, the summation oven in Eq. (6) is
implicitly included in the summation over all sequen&s
if the range of allowed indices is extended to include also
E=—(n)/B. (12) b;=0. The weight(9) has to be divided by,';o, in order to

o o ] ] compensate for the number of different ways of inserting the
Th|S, in combination with the expression for the heatunit Operators] resu'ting }ﬁ

capacity?1

The formally simplest observable within the framework o
the SSE method is the internal energys (H). As in Hand-
scomb’s original formulation, the estimator involves only the
powern;&16

—_a\(| — L
C=(n?)—(n)2—(n), (13 W(a.S,), M<a T i,

L!

a> , (18

shows that the terms contributing significantly are of length
~ BN (at low temperaturgswhereN is the system size. A wheren now denotes the number of non-0 indicesSn.
derivation of Eq.(12) will be discussed in the next section. This fixed-length formulation is useful for the construction
Already at the level of Eq(6), the close relationship be- of an efficient sampling scheme for the sequences. For pur-
tween SSE and a standard Euclidean path integral is eviderposes of measuring operator expectation values, one can still
The operator string defines a set of propagated statgs ), use the expressions discussed above, with the sequ8pces
p=0,...n: obtained by omitting all the zeros in the generaBd
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In order to ensure a sufficiently high truncatian the The partition function for a Hamiltonian
power n is monitored during the equilibration part of the R
simulation. Ifn exceeds some threshold value-A, , the H=D+V, (21

sequence is augmented with, e.gA 2randomly positioned ) ) - )
unit operators, corresponding td—L+2A,. With with a diagonal(unperturbed part D and an off-diagonal

A, ~L/10, this procedure typically converges rapidly to a(perturbing part V is given by the standard time-ordered
properL. During a subsequent simulatigof practical dura- perturbation expansion ¥,
tion), n never reachek. The truncation is therefore no ap-

proximation in practice. - a7 m Th-1
The details of the Monte Carlo sampling procedures of Z:zo (=1) fo dTlfo de"'fO dry
course depend on the model under consideration. Here only )
some general principles will be discussed. The operatqrs xTr{e*ﬁD\A/( V(1) V(7)) (22)

can be divided into two classes; diagonal and off-diagonal. _ _ _ _ _
There are na priori constraints on the number of diagonal Where the time dependence in the interaction representation

operators that can appear$. The probability of a diago- is f/(T):eTDVe‘ TP, In the same way as was done farin
nal operatorH;, at a positionp is only determined by the the SSE scheme/ can be decomposed into operators that

state|a(p—1)) on which it operates. The general strategysatisfy requirement4), now in the basig|a)} whereD is
for inserting and removing dlagonal operators Is to attempaiagonak

substitutions with the unit operatdil, introduced in the

. . . M

fixed-length scheménote again thaH, is not part of the ~ V.

Hamiltonian: V:bzl Hp. (23
|:|0<—>|:|dia. (19 For a given model, the operators in the above sum are of

course a subset of those in the SSE Hamiltor{@n where

This update can be attempted consecutively at all positions in . . . T

. . we now define the indexing such that Hl}, with b>M,, are
SL' The weight change needed for_ palc_:ulatmg the Mempo'diagonal. An index sequence defining a produchadf the
lis or heat-bath acceptance probability involves only the ma- ~

. " operatordH,, is defined as before. In order to distinguish the
trix element (a(p—1)|Hgda(p—1)) and the prefactor ; . o
(= B)"(L—n)!, with n changing by~ 1. With |a(0)) stored SSE sequencs,, which contains off-diagonal as well as

initially, the subsequent states can be generated one-b _Od(ieagonal operators, from the perturbation expansion se-
Y, oseq . 9 Y 'E]uence containing only off-diagonal operators, we denote the
as needed during the updating process.

Suitable constants have to be added to the diagonal operl';la-tter by Tn:

tors in order to make all the eigenvalues-e8H i, positive. To=(b1,...00), bpe{l,...M}. (24)

According to Eq.(18), the presence or absence of a sign

problem then depends only on the off-diagonal operators Expanding the trace in Eq22) over diagonal matrix el-

Ho¢. They are associated with various constraints, and carements gives

not be inserted or removed at a single position only. They

can always be inserted and removed pairwise. One way to do ~ B m Tne1

this is in substitutions with diagonal operators, according to ZZ; nZO TE jo dTlJO drye - JO dr \W(a, Ty {7}),
(25)

_ ) where{r} is a short-hand for the set of timgs,...,7.}.

In some one-dimensional models, the above types of updatgg, ¢ weight is

are sufficient for achieving ergodicity. In other cases, more

complicated updates are also requir@dg., involving off- n

diagonal operators forming loops around plaquettes in 2D W(a,T, ,{T})z(_l)n(eBEoH erp(EpEpn)

The constraints and weight changes associated with local up- p=1

dates involve only operators present$n which act on a <

X\ «

H gia, Haia Hom , H g (20)

small number of lattice sites surrounding those directly af-
fected by the update. Typically, this allows for a sampling
scheme for which the computation time scalesNas’

n
II H
p=1

whereE,=(a(p)|D[a(p)).

Now, consider an SSE index sequerge=(b4,...,b,),
containing m indices b,<M,,, corresponding tom off-

In this section we discuss the general principles of carrydiagonal andh—m diagonal operators. Removing all the in-
ing out importance sampling of the standard perturbation exdicesb,>M,, results in a valid perturbation expansion se-
pansion in the interaction representation. This starting poinguenceT,,. We use the notatiopS;,] for this “projection”
for a QMC scheme was recently suggested by Prokof'ewf S, onto the corresponding,,; [S,]=T,. Since there are
et al’® We here show that the configuration space of thisno convergence issues for a finite lattice model at figite
method is closely related to that of the SSE method. We alsoeither for SSE nor for the perturbation expansion, the
derive expressions for several types of observables. weights of the two formulations must be related according to

b, a> ) (26)

Ill. RELATION TO THE PERTURBATION EXPANSION
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* 8 " S T, and{7}, and including an appropriate uniform shét is
> > W(a,Sn)zf dTlf d7'2~--f dr, also allowed. We define a permutation of the times with an
n=m [S]=Tm 0 0 0 implicit shift, such that the last time in the permuted se-
XW(at, T, d7h). (27) quence is at its lower bound 0. Denoting thetimes per-

muted sef 7(p)}, the zero times permuted(0)} hence cor-
Hence, for a given sequence of off-diagonal operators, theesponds to a uniform shifi=— 7. A permutation with an
time integrals of the perturbation expansion correspond to additional shift is denotel=(p) + &}. Hence we have
summation over all possible augmentations with diagonal
operators in the SSE scheme. Equal2y) can be explicitly =~ W(a, Tn {7) =W(a(p),Ts(p).{7(p)+5}), o[0Ap].
verified in the extreme case where there are no diagonal op- (30)
erators inH, i.e., D=0 (for example, theXY model in the

z-component basjs In this caseS,]=S,=T,, and ther We now derive expressions for some important types of

il above T, i s exacly s preacior o S %o AL bl i e perieten e
the SSE weight9). mulation.

~ For a nonzerdD, the dominant SSE strings contain a  Fjrst, we consider an equal-time correlation function be-
finite fraction of diagonal operators, and the integrals in the,yeen two diagonal operators,

interaction representation become nontrivial. In constructing

a simulation algorithm based on one of these expansions, one Cij :(Ain>_ (31)
hence has to weight the disadvantage of a longer operator o .

string in the SSE scheme against a more complicated weiglih the SSE approach, the expansion o{erAie‘BH} leads
function in the case of the perturbation expansion. Althougio the same sum as in E(f), with each term multiplied by
the perturbation series integrand is formally simple, it doeshe eigenvaluea;[0]a;[0]=(a|A;Aj|a). Using the cyclic
not appear to be feasible to carry out the time integrals angroperty(28) then leads to Eq(17). In the interaction repre-
lytically. It is, however, straightforward to include an impor- sentation, Eq(30) implies that each cyclic permutatiom
tance sampling of the times in the Monte Carlo procedures. lshould be weighted with the time interval ;. Since

is likely that sampling the perturbation expansion will be S,A,= B we get

more efficient than the SSE algorithm in cases where the

diagonal term dominates. The average length of the pertur- 1/

bation expansion is then significantly shorter than the SSE Cij ~B 21 Apailplajlp] ). (32
string. Note, however, that the average length of the pertur- -

bation expansion has the same scalingdN as the SSE This type of expression is, of course, valid for any diagonal

string length, as will be discussed further below. operator.

In constructing a functior (the estimatogrmeasuring an The SSE expression for the static susceptibility,
operatorA on the configuration space, symmetries of the
space should be taken into account in order to reduce the A A

o . ; . . xij= | d7(A;(1)A(0)), (33
statistical fluctuations. An evident one is the translational 0

symmetry of periodigdnonrandom lattices. Another one is
the periodicity in the imaginary timéor SSE propagation
direction, originating from the cyclic property of the trace
operation. In the SSE scheme, this is manifested by

can be obtained by integrating the time-dependent expecta-
tion value (15) over 7. Alternatively, one can include a
sourceZh;A; in the Hamiltonian, and calculate the response

function via
W(a,Sn)ZW(a(p),Sn[p]), p:O!"'!n! (28) (9<A>
1
whereS,[p] is the index sequence obtained pytimes cy- Xij = oh; : (34)
clically permutingS,,, anda/(p) refers to thep times propa- hj=0
gated state Eq14). One can therefore average the measureThe result &6’
ments over alp=0,...,n, an example of which is seen in Eq.
(17) ,8 n-1 n-1
The perturbation expansion involves the imaginary times Xij= < nn+1) ZO ai[p]) ( ZO aj[p]>
only in the form of differences. The part of the weigB6) P= P=
containing the times can be rewritten as 8 n
i i a1 2, atplalel ). (35
- BE —75(Ep—Ep_1) — —E, A
€ Opﬂl e v e pl;[l e (29 In the interaction representation, the derivati@d) applied

_ _ _ to (A))=Z,Apai[pl/B gives
where A,=7,—7,,1+ 0 is the time difference between
the operators at positions, p+ 1, with =0,1 chosen such 1 " "
thatA,e[0,8], and r,= 4. Shifting all times by an equal Xi=g 21 Apai[p] 21 Apaifpl] ). (36
amounts therefore does not change the weight, provided that P P
the shifted timesr;+ & obey the limits of the time-ordered Hence, with both methods, there is a simple exact estimator
integration. Hencege[ —7,,B8— 71]. Cyclically permuting for the static susceptibility. This is important in view of the



56 QUANTUM MONTE CARLO IN THE INTERACTION . .. 14 515

fact that the discretization can introduce spurious temperar, e[ 7,.1,7,-1], Which is equivalent to the average over all
ture dependences in divergent susceptibilities calculated ugx,_, in the allowed rang¢0,A,_1+A,], with A,_;+A,
ing standard world-line methods, due to a combination okept constant. In doing this averaging, the intedrd) has
Trotter errors and numerical integration errors. to be weighted by the relative probability of a givan_,,

A second class of observables easily accessible in SSE aghich according to Eq29) is ~e®r-1(Ep~Fp-1)_ The result-

well as real-space path-integral formulations is one involvingng double integral can be solved, with the result
the operatorsi,, present in the Hamiltonian. First, consider a

single operatotHy). In the SSE formalism, the estimator is fgpflﬂpdyfépflﬂpdx} eX(Ep=Ep-1)
- X
(Hp)=—(N(b))/B, 37 K(p)= Jap~ PedxgEpBp-) =L
whereN(b) is the total number of indicels;=Db in the se- (41

quenceS, . This formula can easily be derived by noting thatThus, we have shown that E9) indeed reduces to the

the expansion of the numerator{r *"Hy} leads to a one-  gSE estimatot37). This then also implies that the average
to-one correspondence with a subset of the terms in&gq. length of the perturbation expansion is given by
namely, those for which the last indbex=b. The terms are (n):,8|(\7>| which scales agN
related by a factor-n/g, which hence is the contribution to In order tyo derive an expressi.on for an off-diagonal equal-
(Hp) from these partition function configurations. For the time correlation function of the type
terms withb,# b the contribution is zero. Averaging over all
cyclic permutations then gives E7). From this result, Eq. F(b17b2)2<|:|b Hy.), (42)
(12) for the SSE internal energy estimator follows. Lo

In view of the relation(27) between SSE and the pertur- gne can proceed along the same lines as for the single op-
bation expansion, we would expect E§7) to be valid also  erator considered above. The SSE expression is again for-
for an off-diagonal operator in the interaction representatiormally very simple. Each occurrence $j of a pair of indices
scheme. Proceeding as in the SSE derivation, there is againygp, gives a constant contribution. Denoting Kyb,b,) the
one-to-one correspondence between the terms of the expaflamber of such pairs of adjacent operators, the restflt is
sion of T{e #"H,} and a subset of those . However,
the situation is complicated by the fact that, for a given F(by,by)=((n—=1)N(b;b,))/ 5. (43
powern, the terms ofZ have one more time integration. In In the interaction representation formalism, the estimator is
order to properly relate the terms to each other, we can for-
mally introduce another integral,

F(bl,b2>=<p21|b1b2<p—1.p>+<(p—1,p>>, (44)

1 anfl

dr,=1, (38)

Tn-1J0 wherely , (p—1,p)=1 if the indices at the adjacent posi-
1v2

in the expansion of the numerator. Terms of orderl are  tionsp—1, p areb, andb,, and zero otherwise. In order to
then in a one-to-one correspondence with terms of andar  evaluate the contributiok(n—1,n) from a pair at the last
the partition function(25). The lack of the time-dependent two positions,n—1 andn, we now insert a double integral
exponential associated with the last operatty and the

factor 1/,.; in Eg. (38 imply a contribution 2 Tn-2 -1
—eEn~En-1/7z . if b,=b in the z expansion. By the (tn-2)2 Jo d7n—s dr=1, (45
cyclic property(30), this can be averaged over the time range
A, for eachp, giving for a term of powem—2 in the numerator. Performing the
appropriate cyclical permutations and time averages analo-
N 1/ gous to the ones discussed above, the contribution from an
(Hp)=—={ X 15(mK(p) ), (39 arbitrary pair of adjacent operators is
B \p=1
where 1,(p)=1 if b,=b and 1,(p)=0 otherwise. Since JordzfEdyfOrdx (1/x?)eXEoEp-2)
Tp—1=Tp+A,_1, the contribution ifb,=b is K(p—1p)= fgpdyfprder(Ep*EpfﬂeX(Epfl*Epfz)’
Ay eTp(Ep_Epfl) (46)
K(p)= dry————
(P) fo TPt A, where
(Ep—Ep-1)
:eAp—l(EpEp—l)jAp+ApldXex P p-1 . Dp:Ap_2+Ap_1+Ap. (47)
Ap-1 X Calculating the integrals results in
(40)

This integral cannot be solved in a closed form, except if  K(p—1,p)= (Ep‘l_Ep(‘EZ)/éE ; ,
E,—Ep—1=0. We expect Eqs(39) and (37) to be equiva- _ (Ep—Ep p)(e7r™p1mme-27—1)
lent. Therefore, the average of E40) over all times must (Ep—1—Ep_2)(ePpEp~Ep-2)—1)

give 1. In fact, this is the case already for the average over all (48
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where special cases suchis—E,_,=0 should be treated the anisotropic Heisenberg chain. In Sec. V we extend the
as limiting values. In order to relate this much more compli-scheme to include couplings to phonon degrees of freedom
cated expression to the simple SSE result of a constant cofspin-Peierls modegl

tribution (n— 1)/ from each paifEq. (43)], we note that a

typ|CaI value of the time intervale is 3ﬁ/n, and IV. ALGORITHM FOR THE HEISENBERG CHAIN

K(p—1,p)~1/(BD,) for D, small. Hence, a typical value
of K(p—1p) is ~n/g2, i.e., of the same order as the SSE Here we describe the details of a perturbation series algo-

contribution. rithm developed for the anisotrop&= 1/2 Heisenberg chain.
The SSE estimator for the static off-diagonal susceptibil\We discuss some properties of the method and use exact
ity, diagonalization results for small systems as well as known

analytical results for the thermodynamic limit to show that

—_ (%0 . very accurate, unbiased results can indeed be produced.
Xii=f0 dr(Hp,(7)Hp,(0)), (49

A. Construction of the algorithm

is given by the remarkably simple formdila _ _ _ _
The model we consider here is defined by the Hamil-

xij = (N(b)N(bz) = 8y, ,N(by))/ 5. (50 tonian
As this expression only involves counting the numbers of N ez A L b
indicesb, andb, in the sequence, it mugby the configu- H:\]El SSit 5 (8575t SaS )| (3=0),
ration relation, Eq.(27)] be the correct expression in the (53)

interaction representation as wgh contrast, the equal-time
correlation function discussed above involves pairs of indi-with periodic boundary conditiona controls the anisotropy,
ces, the distributions of which are different in SSE and thewith A=1 corresponding to the isotropic Heisenberg point.
interaction representation, due to the diagonal operators We wish to construct an algorithm in which, as in the SSE
present in SSE We shall not prove this explicitly here. scheme, Monte Carlo updates that change the expansion or-
The above derivations have clearly shown the close relader,n, are accomplished by inserting or removing diagonal
tionships between the SSE configuration space and theperators one at a time, and off-diagonal operators are in-
continuous-time path integral. We note that in cases wherserted or removed pairwise in substitutions with diagonal
the expressions differ, they are generally formally simpler inoperators. Since there are only off-diagonal operators in the
the SSE case. In this sense, the SSE propagation dimensiperturbation expansion string, we add constants to the
is a more natural representation of the quantum fluctuationslamiltonian, and formally consider these as part of the per-

than imaginary time. turbation. For the spin chain at hand we define
At this stage a reader may wonder why the expansion is R
dominated by such large powefs)~Ng, independent of Hip=—1, (543
the size of the perturbation, and why is it not dominated by
small powers when the perturbation theory converges for an Hz,b=S+ S,,+S%,S, (54b)

infinite system aff =0. The answer lies in the fact that the

stochastic sampling is done for the partition function, forwherel is the unit operator, and write the perturbation as

which there is never a convergent expansioiias0 andthe  (J=1)

size of the system goes to infinity. To clarify the situation, let

us assume that the off-diagonal part of the Hamiltonian is - (AVE N

multiplied by a perturbation paramet&r Furthermore, the V= E) Z E Hap- (55

free energy per unit volumd, has a convergent expansion a=1b=1

ForN even, only operator strings with an even number of the

off-diagonal operatorsi,, contribute to the partition func-

Then the series expansion for the partition function for ation. The weight(26) is hence positive definite. The matrix

system of volumeN becomes element of an allowed operator string equals one, and there-
fore

Z=e ANfug ANfi= D" g \", (52) n
" W(a, T, {7})=(A/2)"e PEo] | e Eo~Bp-1). (56)
p=1

f(N)=fo+f A +O(\?). (51)

with |a,|=(BN)"|f|"/(n)!. It is easy to show thaa, is

maximum forn=BN|f,| in agreement with Eq37). T, is now for convenience defined as a sequence of index
An updating scheme for importance sampling of the perpairs

turbation series can now be constructed along the lines dis-

cussed in the previous section in the context of the SSE T,=[a;,bi],[a5,b5],....[an,b,], (57)

method. The differences are only in the weight function,

which involves a set of times which also is sampled stochaswith a,{1,2} andb,e{1,... N} referring to the operator

tically. As a pedagogical example, in the following sectiontype and lattice bondnearest-neighbor spin pairrespec-

we develop the details of an algorithm for the simple case ofively. Using the fixed-length scheme developed for the SSE
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algorithm, we defind:|0,0=l, and insertL —n of these in
each string. Taking into account the number of possible in-
sertions then gives

b=1 b=2 b=3 b=4 b=5 b=6 b=7 b=8 =0 1=

o
o'e

QOQOOQ

200000
00000
QOO0

W(a, Ty {})

00000O0OS
Q0000000000000 0
(AR X RN NN N XokokalnloXol

Q

QOO
(X X 2

3 (A/2)"(L—n)!n!

n
= e FE [ e Er—Ep-1 (58

p'=1

Q0000000000000

000000000

wheren is the number of nofi©,0] elements inT, . There b4
are no times associated with the augmentation operators .
[0,0], and the index’ in the product therefore refers to the ~  ®..¢ 4
p’th non{0,0] operator. o
The Monte Carlo sampling is based on updates of the
types (19) and (20). Using[a,b], as an alternative to the
notation[a,,b,], the update changing the poweby * 1 is

00000Q0O0OPOIOIOIOTS
QOO0 O0
0000000

Q000

QOOOQOO00O0
00000000 S

®
Q

(XXX X X ]
(eXoZaXoXako)
LO

[ X ]
QO

[0,0]p<—>[1,b]p, (59

QOO0

and the simplest update involving off-diagonal operators is

[eXoXal

(X X J
0000000000000 00R00Oees00 e
VOO00O0OOOO0O00ees0sGOOGOIOOOGIOGOIS

[1b],,[1b],,~[2b], [2b],,. (60)

e

Q
[

00000000

These local updates are sufficient for generating all operator
strings for an open chain, or a periodic system in the zero
winding number sector. An update changing the winding
number will be discussed further below. For a simulation in ~~ Q....¢
the canonical ensemble, i.e., with the total magnetization
m=3;S’ fixed, no further updates of the stalie) are re-
quired, since Eq(60) also implies flips of nearest-neighbor &4
spins in the propagated stateg(p)) with p=p4,...,p,—1
(here and in the following, the periodicity of the sequence is
always implied, so that ifp;>p,, the affected states are
Pi,-.-,.—1,0,..,po—1). In the grand canonical ensemble,
global spin flips changing the magnetization of all the propa-
gated states also have to be carried out.

Figure 1 shows a graphical representation of a configura- FIG. 1. A configuration generated for an eight-site periodic sys-
tion generated for an eight-site isotropic Heisenberg chainiem withA=1 at3=4. A row represents a spin stgdie(p)), with
This type of representation emphasizes that in this simulatioR =0 to p=L from top to bottom. Solid and open circles indicate
scheme the ordered sequence of operators is the central d#? and down spins, respectlvely. Dash(_ed anq solid bars represent
ject, and the times formally can be thought of as auxi”iaryopergtor{l,b] and[2,b], and their associated times are graphed to
variables associated with the operator positions. During thé€ fght.
simulation, only one of the statéa(p)) needs to be stored,
since all the other ones are uniquely defined given the opera-

0000000000000 Q000C0OOCKOOOTS
QOOOO00OLOOOO0OOO0000
O 0O
(X X ]
Q
®

Q Q Q
[ X X ]

Q
[

QOOOOOROO
o000 0OOOS

[ XXX XXX}
VOO0
000000 OCOGFOOGOOSS
Q00O

QOO0

(A/2)AN(n+1)

P([O,O]pﬂ[l,b]p)=min{ ,1} (613

tor sequence and can be generated as needed. L—n
First, consider the single-operator updé&s®). This can
be attempted consecutively at all positiops-1,...L for
which a,€{0,1}. In calculating the Metropolis acceptance — i L-n+1
P ; P([1,b],—[0,0]p)=min — ,
probabilities for such updates, the fact that the augmentation (A/2)(Ap+Api1)NN

operatord0,0] are not associated with time integrals has to (61b

be taken into account. We now define the time difference _

A,=7(<p)—7(=p), where r(<p), and 7(=p) are the where min[x,y] denotes the smaller of andy. _
times associated with the n¢@;0] operator closest t@, The pair substitution&50) are associated with constraints.
with position indices<p and=p, respectively. In a substi- 1N the — direction, the first requirement is that
tution[0,0],—[1b],, b is chosen at random, and a timg ~ SplP1~1]=—Sp,4[p1—1]. In either direction, an update
in the rangd 7(>p),7(<p)] is generated. In the direction flips the spinsSj[p] and Sy, 4[p] in the statega(p)) with
[1b],—[0,0],, the only action is to repladel b] with [0,0] ~ P1<P<p,. This implies that there may be no operators
and discard the time(p). One can easily verify that detailed [2,0—1] or[2,b+1] present betweep, andp,, and hence
balance with the distributiof68) is maintained with the fol- thatS, ;[p]=—S;. ,[p] for all p in the range affected by
lowing acceptance probabilitigsote that the energy differ- the update. The change of the weighB) in an allowed
enceE,—E, 1=0 for[a,,b,]=[1b]): update atb then depends on the energy differences
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Ep—Ep1 in the local four-spin substates o N(A)
ISt 1,5%,S5+ 1,5+ 2)p fOr py<p=p,, but only for thosep Peancd AA—A'A"]=1— N(A)*N(A)’ (62)
with operators acting on the spins of this substate.

The locality of the constraints and the weight changesvhereN(A) andN(A’) are the numbers of operatofsand
allows for a fast updating carried out aubsequencé$ A A’ found between=i, andi=j in the searcljiexcluding the
subsequence contains all operatorg2,b] present inT,,  first operatorAn(i,) =A]. If the attempt is not cancelled at
and those[1b] operators appearing between antiparallelth's,Staga a flngl acceptance probability is calculated on the
spinsS; andSf, ;. Information on the constraints imposed basis of the_ weights8), using the stored substates, and the
by the presence of the nearest-neighbor operd@its—1] correfspondlng states mod|f!ed due to the replaced operators
and [2b+1] is also part of the subsequence. Operator (obtained by propagating with the updated subsequence seg-

$nend. The Metropolis acceptance probability is
[2b—2] and[2,b+2] do not impose constraints, but affect ) P P P 4
the edge spinsb—1 and b+2 of the substates Paccet AA—A'A"]
IS 1,S5.51,Sh+2), and therefore also have to be in-

cluded in the subsequence, so that the acceptance probabili- e P2 o E-E BB
ties can be calculated. All the four-spin substates acted upon =mini e Ao O)il:[ e PuE TR tETE-D 1]
by the operators of the subsequences are also stored for this P1 63)

reason. Clearly, subsequendeandb’ can be updated inde- .
pendently of each other ifb’—b|>2. Since we normally whereE;, andE/ are the eigenvalues & calculated on the
study chains witiN a multiple of 4, we simultaneously con- substatdS{_;,S{,Sp. 1,5, »)i before and after the operator
struct the subsequences for all bonds separated by three otlsebstitution. Typically, a constraint is encountered in the list
bonds, and update these one by one. Four such partitiosearch already a few steps from the starting positjorand
updating cycles are then needed for updating all the bondstherefore the number of operations required per step is rather
The subsequence information is arranged as follows: Thémall[the cancellation probability Ed62) is often Q.
length of subsequendeis denoted.,,, and is the number of ~ For each subsequence, a number of updating attempts
operators[1,], [2b], [2b—2], and[2b+2] present in proportlonal to the number of operators in the subsequence is
T_. These operators are represented by the integerd, 1 carried out. The average Igngth of the subse.quencefs, apd
and are stored in list8,(L,... L ). The original positions of hence t'he number of operations needed for thelr_updatlng, is
these operators ifi;, are needed for remerging the updatedprOportlonaI top3 at IOW. temperatures. After updatmg _all the
subsequence o an updated fl sequence, and are sore 04 21CE5 61010 10 o cul o e o pertons e
lists Pp(1,...L,). The constraining operatof2,b+1] do P d ’

. changes in the local four-spin substates are copied into the
not have to be stored. Instead, ligtg(1,...n,) are created, d b :

: ' o stored full-system statky). The procedures are repeated for
such thaf,(i) =1 if there are constraining operatdme or 4| four partitions.

several in T between position®,(i) and Py(i+1), and In a periodic system, configurations with a nonzero wind-
Fp(i)=0 otherwise. The four-spin substates are encoded &fg number are possible, and cannot be generated by the
single integers (+16), and stored in list§y(1,... Lp). local updates discussed above. A winding number corre-

For updating the subsequences, we use the scheme intrggponds to an excess of spin flips in one direction in the
duced in Ref. 17other methods are also possibl&n at-  course of the propagation with the operator string, i.e., a
tempt to carry out a substitutiq®0) in a given subsequence cyclic permutation of same spins ja(L)) with respect to
b consists of the following steps: A positian such that those in|a(0)). The winding number can be changed by sub-
Fu(i1) =0 is first chosen at random. One then searches in thstituting a “half-ring” of off-diagonal operators by the
forward direction for the first positiop for which F,(j)=1.  complementary half-ring according*fo
This position is the one furthest away framwhich can be
considered, together with , in a pair substitution. Note that [2.01]p,.[2b2]p,.-- [2bni2lp,,
positioni=1 follows i=L}, due to the periodicity, and the
search is t_erminated at=?l—1 if this position is re.a.chled H[z,bi]pl,[z,bé]pz,,,,[2,b,’\|,2]pN/2, (64)
(and thenj=i;—1). During the search, the positions
of all encountered operatoré\,(i)=A,(i,) are stored. where the bondby,...,by;,b1,...,by, are a permutation of
One of these,i=i,, is then selected at random, all the bonds of the periodic lattice. The acceptance rate for
and the pair {Ay(i1),Ap(io)} is replaced by this type of update decreases rapidly with increasing system
{AL(11),AL>I2)}={2—Ap(i1),2— Ay(i,)} with a probability  size, due to the increasing number of constraints. In practice,
satisfying detailed balance. simulations for systems larger thadr16—20 must be re-

The total probability of making a certain pair substitution stricted to the sector with zero winding number The resulting
is the product of the probabilitPefA(i1),A(i5)] of se- small error is a boundary effect, and vanishes in the thermo-
lecting the operators at positiofg andi,, and the accep- dynamic limit*?
tance probability Paccet Ai1)A(i) —A'(i1)A’(i5)]. One At high temperatures, simulations can be carried out in
can show that the selection probabilities with the above prothe grand canonical ensemble, by including updates of the
cedures are the same in both directidhs,i.e., total magnetization. This is, in principle, easily achieved by
Peetecdt A(i1),A(12)]1=Psered A’ (i1),A’(i,)], if the attempt flipping “straight lines” of spins,S0],...,.STL—1], which
is cancelledwith a probability is allowed provided that there are no operatid2g—1] or
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[2,i] present inT_, and the acceptance probability then de- TABLE I. Simulation results for the static structure factor and
pends only on the neighbor spir®_,[0] and S, ,[0]. the static susceptibility of a 12-site Heisenberg chaigai8, com-
However, the likelihood of an allowed spin flip decreasespared with the _exact results_. The numbers within pargtheses indi-
rapidly with decreasing temperature, and in practice simulacate the Sﬁatlstlcal errorglefined as one standard deviation of the
tions for T<J/10 have to be carried out in the canonical 8Verages i.e., 0.12845) stands for 0.1230.045.

ensemble.

Finally, we also perform updates of the times without ~ &¥/7 (@ (QMC)  (q) (exach  x(q) (QMC)  x(q) (exac)
changes either in the operator string or the states. A singlg 0.008581{24)  0.008590 0.068620) 0.068720
time 7, can be updated by generating a time in the allowedi/s  0.04811(5) 0.048120  0.11823) 0.118266
range[ 7p41,7p-1] (@nd ry<pB, 7,=0), and accepting this 1/3 01028688)  0.102875  0.14423)  0.144236
with a Metropolis acceptance probability calculated from Ed.;,  0.16990613) 0.169917  0.19746) 0.197478
(58): 2/3 0.26375818) 0.263768  0.32668)  0.326648

5/6  0.433715) 0.433742 0.802(B) 0.803118
P(7p— 1p)=min{exd (7,— 7p)(Ep—1—Ep)].1}. (65 1 0.9547218)  0.954566  3.98913) 3.989397

The typical time separation, and hence the difference

7o~ Tp, Scales as N, and is typically very small. The ac- B. Performance tests
ceptance rate for these single-time updates is therefore close
to 100% in most cases. It is clear that the rate of evolution o
{7} updated this wayin addition to the generation of a ran-
dom time when inserting an operator in an upd&®], will

be very slow for large systems. Therefore, we consider si
multaneously updating a whole set of tin{e:gl,...rpz}, us-

ing the following scheme. _ temperature expansioRS.

A position p is first chosen at .random, amg is chosen In order to verify that the QMC algorithm indeed pro-
as the smaller op,+n. andn, with n, a number chosen 0o results free from detectable systematic errors, we car-
randomly between 1 and some upper boumd andm. is  (jaq oyt a long simulation of a 12-site system at inverse

adjusted so that a reasonable acceptance rat80%) IS (omperaturgd=8, in the grand canonical ensemble and with
maintained. If the weight would be independent of the timesg,,t,ating winding numbers. These results can be directly
the distribution of the times would be uniform within the compared with exact diagonalization data.

limits of the time-ordered integral. If the separatigy) — 7, A useful internal check of the simulation in the isotropic
is not too large, the true distribution will be close to uniform. case is the internal energy calculated in two different ways;
We therefore attempt to replace the selected set of times byfeom the diagonal nearest-neighbor correlation function as
randomly generated ordered sefr, ,...7,}, with E,;=3(S'S,,), according to Eg.(17), and from the
T")ls Tp, -1 (Télgﬁ’ if p,=1) and T")zz Tp,+1 (T"Jzzo for ~ expectation value of the off-diagonal operqtorEZ
p,=n). The Metropolis acceptance probability for this mul- =~ (3/2)(Hz;), according to Eq(37). For the 12-site sys-
titime update is tem at8=8, a simulation consisting of 210° MC steps
gave E;—0.44 372(3) andE,=—0.443 682), where the
numbers within parentheses indicate the statistical errors.
The exact result i€=—0.443 697. Hence, both QMC esti-
mates are accurate to within relative statistical errors of less
(66) than 10°%

. . . . We also calculated the static structure factor
It is clear that the acceptance rate is essentially determined

by the time differencepz— Ty independently of the system 1
size. In simulations of large systems, the maximum number S(q)=— >, e 'U-hastsy), (67)
of simultaneously updated times,,+ 1, can therefore be as N7
high as 18 or higher(in many cases, all times can be up-
dated simultaneously The importance of the multitime up- and the corresponding static susceptibility
dates will be further discussed below.

We define a Monte Carlo stdpC step as a sequence of 1 B
diagonal update¢59) at all positions inT,_, followed by X@=5 > e“(i")qf d=(S{(1)S{(0)). (69
off-diagonal pair update$60) at all bonds. In a grand ca- J! 0
nonical simulation, a global flip of each spin is also at-
tempted, and for simulations of small systems with fluctuat-Comparisons with the exact results are presented in Table 1.
ing winding number ‘“ring updates’(64) are carried out. Here the relative accuracy is the highest10~4, close to
The number of multitime updates per MC step is choserq=7/2. The accuracy is lower close &=, due to the
such that, on the average;50% of the times are changed. strong antiferromagnetic fluctuations present in the model.
As already noted, an MC step requires of the ordeN@ At g=0 the accuracy is hampered by the low acceptance rate
operations. for the spin flips required in the grand canonical ensemble.

We now present some tests of the accuracy of the method.
e also briefly address the issues of autocorrelation times,
and the equilibration of the simulation. We only consider the
spin isotropic Heisenberg cagad=1 in Eq. (53)]. Detailed
numerical finite-temperature results for this model have re-
cently been obtained using the SSE method and high-

P({7p}—{7"})=min 1

P2
ex %} (7h= o) (Ep-1—Ep)
1
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FIG. 2. Upper panel: The uniform magnetic susceptibility 0 20 40 60
units of 10) of a 128-site Heisenberg chain calculated using the 10" MC steps
QMC method(circles with error barscompared with the exact
result for the infinite systenfcurve. Lower panel: The relative FIG. 3. Upper panel: The truncatidn vs the number of MC

deviation (xomc— Xexacd/ Xexact Of the QMC data from the exact steps performed during the initial parts of two simulations of a 128
result. The solid and open circles are for grand canonical and caite system apB=8. In one casésolid curve, all the times were
nonical simulations, respectively. simultaneously updated, whereas in the other ¢dashed curve
the times were consecutively updated one-by-one. Lower panel:
The above results clearly demonstrate that the method, ifenvergence of-2(H, ), which should equal unity, for single-
principle, is very accurate. We now consider a significantlytlme (open circles and multitime(solid circles updates.
larger system, and address some practical issues that arise in
realistic simulations. are taken. In our algorithm, the cutoff of the perturbation
For the Heisenberg chain, a number of exact results arxpansion at ordek is determined during the equilibration
known in the thermodynamic limit. For example, Eggertpart of the simulation, by monitoring the powarand in-
et al. recently calculated the temperature dependence of thereasing. whenevem exceeds some threshold fractionlof
uniform magnetic susceptibility= y(q— 0), using the ther-  (typically 90—95 %. We have found that an efficient updat-
mal Bethe ansat¥ We here compare their infinite-size re- ing of the times{7} is crucial for achieving a rapid equilibra-
sult with QMC data for a system with 128 spins. The simu-tion. In Fig. 3 we show results for the cutoff versus the
lations consisted of 3-8 107 MC steps for each simulation time for arN=128 system aB=8 for two dif-
temperature. At high temperatureE/0=0.1) the grand ca- ferent ways of updating the times; consecutively updating all
nonical ensemble was used, and at loWehe magnetization the times one-by-one, according to &65), and collectively
was kept fixed am?=0. In the latter case, we define the Updating a whole range of times according to E&f). With
uniform susceptibility ag(q;) whereq; is the smallest non-  Single-time updates, the final cutoff=1064 was reached
zero wave numberg,=2x/L. Figure 2 shows the results. after approximately 20 000 MC steps, whereas the multispin
The relative statistical errors are 103 down to about Updating gave the final already after 288 steps. In this case,
T/J=0.15, below which the accuracy diminishes due to thedll imes were updated simultaneously, with an average ac-
low acceptance rate for the grand canonical spin flips. Mor&eptance rate o&70%.
accurate results could have been obtained by extrapolating tp Measuring the expectation value of the constant operators
zero wave number on the basis of a few points closg=t®, H1p also provides for a good check of the equilibration of
instead of just using|=0. For the grand canonical simula- the sequence length. With=1, —2(H,,) should equal 1,
tions, the agreement with the exact result is clearly venbut before equilibrium is reached a calculation using @)
good, indicating no detectable effects of finite size forwill deliver a smaller value. In Fig. 3 we also show the
N=128 at the temperatures considered. For the canonica&volution of this measurement with MC time for the two
ensemble, all results are slightly below the exact curve, sugdifferent ways of updating the times. With multitime updat-
gesting larger finite-size effects when the magnetization isng, the measured values fluctuate around 1 already affer 10
not allowed to fluctuatgextrapolating toq=0 instead of steps, whereas with single-time updates the result are too low
usingq, gives a still larger deviation even after 10 steps. In both cases, subsequent simulations
In any Monte Carlo simulation, care has to be taken thatonsisting of 10 MC steps gave comparable results for all
the equilibrium distribution is reached before measurementsalculated quantities, with similar statistical errors. Hence, in
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this case the multitime update appears to be important for

reaching equilibrium, but does not significantly affect the 0 n;

statistics of the simulation otherwise. For a larger system the %9%
single-time update becomes even less efficient, and it is : °°°eeeem N
likely that the multitime update then will become important A m’“%ese,e 1
also for the statistics of the simulatigne., the autocorrela- ) ® %5000,

tion times of measured quantities after equilibration

The efficiency of the updating process in generating inde-
pendent(uncorrelategl configurations is measured by auto-
correlation functions. The optimal frequency for measuring 3
expectation values on the generated configurations is in prin-

2t

In[o(t)]

ciple determined by such functions. For a quan#ty the n e,
autocorrelation function is definedas [ Ty, ——
C(AGHDA®))—(A())? 69 0 10 20 30 40
aall)= <A(i)2>—<A(i)>2 ) (69 t (MC steps)

where A(i) denotes the value of the simulation estimator FIG. 4. The autocorrelation function f& (solid squares x(0)
afteri MC steps, and the normalization has been chosen sudpen squares x(m) (solid circles, and S() (open circle§ ob-
that a(0)=1. For large time separatiorts one expects tained in a simulation of a 128-site system at inverse temperature
ax(t) to decay ase~YéA, where &, is the autocorrelation B=8
time. In principle, the long-time dynamics of the simulation
is characterized by a single autocorrelation time, i.e., the In practice, it is not feasible to measure the autocorrela-
longesté, . An observable of interest may or may not over-tions in every case. As usual, binning the data, so that a
lap with the quantity corresponding to this slowest mode single bin represents a simulation time much longer than the
Hence, in practice one will deal with different autocorrela-asymptotic autocorrelation time, ensures proper estimates of
tion times for different quantities. averages and statistical errors. The only concern then is that
Successive measurements provide independent inform&he time spent on the measurements should not dominate the
tion only if they are separated by a number of steps suffisimulation. Measuring every 10—20 MC steps typically only
ciently large for the corresponding autocorrelation functionresults in a minor overhead.
to have decayed substantially. In practice, the decay may be
much faster thare V¢« for short times, and therefore the
relevant separation between measurements may be shorter
thané,. In general one expects the autocorrelations for ob- The effects of phonons on spin systems in one dimension
servables related to the long-distance properties of thare of great current interest, in view of the recent discoveries
model, such asS(w) and x(m) for the antiferromagnetic of spin-Peierls transitions in the inorganic compounds
Heisenberg chain, to decay slower than those for essentiall@geCuQ (Ref. 22 and a’-NaV,0Os (Ref. 23. These materi-
local quantities such as the energy, or correlation functionals consist of weakly coupled spin-1/2 chains and dimerize at
away from the wave number of the dominant fluctuations.T=14 and 36 K, respectively. A variety of experiments have
Figure 4 shows results for the logarithms of the autocorrelaprobed their static and dynamic magnetic propertres.
tion functions of E, S(w), x(m), and x(0) for a 128-site To date, most numerical work on spin-Peierls models in
system atB3=8. For S(m) and x(w), the asymptotic linear 1D has focused on Lanczos exact diagonalization studies of
decay is the same, as expected, and the autocorrelation tinige ground state of dimerized chains, and the finite tempera-
is ~40 MC steps. Note, however, thatg . (t) decays ture susceptibility has been calculated using complete diago-
slightly faster thana,,(t) for short times, which can be nalization of undimerized chairi$-*° The QMC approach
understood on account & ) being an equal-time correla- discussed in this paper should be an excellent tool for de-
tion function, whereag(m) involves also an integration over tailed nonperturbative studies of spin systems including dy-
imaginary time. This effect becomes even more pronouncedamic, i.e., fully quantum mechanical, phonon degrees of
at lower temperatures. For(0) the autocorrelation time is freedom.
considerably longer at this temperatre80 MC stepy due Early studies of 1D electronic models including phonons
to the low acceptance rate for the global spin flips. In conwere carried out by Hirsch and Fradkin, using the worldline
trast, at higher temperaturgg0) exhibits the shortest auto- QMC method with the phonons introduced via their real-
correlation time. The autocorrelation function for the energyspace displacement coordinates, in imaginary time dis-
decays very rapidly, and it is difficult to see a regime with acretized with the standard Trotter approximatf8iwe have
linear behavior before statistical noise dominates the meadeveloped an extension of the Heisenberg algorithm de-
surements. One would expeet(t) to contain a component scribed in the previous section, with phonons treated in the
of the slowest mode of the simulation, but the overlap mayreal-space occupation number basis. We believe that this is a
be too small to dete¢and hence the effect on the statistics ismore efficient way to include the phonons, and furthermore
essentially irrelevant Clearly, the relevant time scale for the scheme is exact. The same ideas could also easily be
measurements of the energy is much shorter than itsnplemented within the SSE scheme, but so far we have not
asymptotic autocorrelation time. done so. The present scheme is likely more efficient than

V. SPIN-PEIERLS MODEL
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SSE at high temperatures, where the average phonon occu- 1

pation number is high and dominates the energy. At low H5,b:(a/‘/2)(sgsg+l_z aj, (739
temperatures, SSE may in fact be slightly more efficient.

We here restrict ourselves to the perhaps simplest type of
spin-phonon coupling, namely, we consider a dispersionless er:(a/ﬁ)( SIS, l a, (73f)
harmonic oscillator with frequency, at each bond (Ein- ’ 4

stein phonons The exchange interaction between the spins

at sitesi andi +1 is modulated by the phonon displacement I:|7,b=(a/2ﬁ)a;§, (739
Xj . The Hamiltonian is hence

N N H&b:(aIZ\/f)ab . (73h)
H—;l (J+ax)S: S‘“*“’Ozl i (70 The definitions o5, andHg), contain off-diagonal opera-

. . . tors ~a, and ~a,, which are not present in the original
HereJ is the “bare” exchangeq is the spin-phonon cou- Hamiltonian. They have been included in order to make the
pling, and n; is the phonon occupation number, given in weight function positive definite. They also induce a constant
terms of the phonon creation and destruction operators agift in the oscillators, which has no effect other than shifting
ni=ala;. We define the phonon displacement operator as the value ofJ by an amount proportional ta?. The opera-

+ torsH;, andHg,, have been included in the Hamiltonian in
X =(ay +a)/v2, (71 order to enable straightforward measurements of correlation
functions of the displacement operatogs, which are off-
diagonal in the chosen representation and hence must be
measured using expressions such as Eg.and (50) [the
We remark that the linear coupling is not completely re_gref_ac_tor ir) E_qs(73g). and(73h)_is chosen for CO“V‘?”iE”C?’
A . ) - ; ut is in principle arbitrar} Again, these operators just shift
alistic, since it can lead to negatikerromagneti spin-spin the effective valuel and therefore do not affect the physics
couplings if the fluctuations are large. In the low temperatureof the model phy
regime this does not occur, and the model should then be a In order to compensate for the shift induced by the added

?nofg af?&ggglpg 'Qgif;;'ggizsstandmg the effects of phonon%perators, we define the spin-spin coupling in E@8b) and

Augier and Poilblant' have recently studied a model re- E);Zr)evggz 'T}ncorls;a(riltgoﬁti,vgﬁtsrir:l%idazgzzgg %tf mg 2 el\;]v
lated to the Hamiltonian(70). They included only the pling=1 (.e., p

; _ : . honon couplinga2;x;S- S 1, which in turn induces an
phonons with momentum= 7=, which are the ones forming phon . 1 .
. L : additional shift whichis part of the physics of the model
a condensate in the dimerized state, and carriedTet® g‘or each bond, the added operators equat/4lx, . Thus

and hence absorb in the couplirg the mass and spring
constant of the oscillator. The oscillator potential corre-
sponding to the definitioi71) is V(X) = wx?/2.

Lanczos exact diagonalization in a space with a restricte . . ; N - 2
number of these phonons. They found quantitative chang e shifted oscillator pOte'?t'al 18" (X) = wo(x = 3aldwo) /2.
he actual bare value dfis then

in the behavior from that of a statically dimerized system.
Here we will show that the# 7 phonons are also important

2
at finite temperature, in particular t_lq:.to ones which Igad J=Jo+ 3i (74)
to a temperature-dependent effective spin-spin coupling. 4dwg
A. Algorithm and we therefore choosg,=1— 2 (a/J)(alw,) to give

. L , ) J=1. If we do not want to deal with negative valuesJgf
In a simple modification of the Heisenberg algorithm de-;g implies that the maximum coupling constant we can
scribed in the previous section, we now have additional pho'study for a givenwg, IS ama=2(Jwy/3)Y2 which is prob-

non occupation number operators in the unperturbed Hamilyp,y "ot & serious restriction for realistic situations. We can

tonian; relax the restriction by choosing a smaller prefactor in the
N N definition of H;, and Hgp, or leaving out these operators
D=J zqz Ne 72 a_lltogethet(whlch can be dor_le if no_phonqn correlation ft_mc-
Obzl SSo+1 wobzz:l b (72 tions need to be measured in the simulatiéile note that, in

_ . N principle, one can us&,<0 and avoid the coupling constant
We write the perturbatioV=X, ,H, ;, in terms of the fol-  restriction. However, this causes a sign problem due to frus-

lowing operators: tration. The standard way of treating the phonons, in the
. representation where the displacemertsare diagonaf?!

Hip=—Jo/2, (73a avoids this by enforcing a positive coupling. This corre-

sponds to including nonlinear terms in the oscillator potential

I:|2,b=(\]0/2)(8;8g+1+$§+18g), (73p  and/or the coupling, and hence modifies the model itself.

This clearly makes sense from the point of view of modeling
N t o b et real materials. Including nonlinear terms that strictly enforce
Hap=(al2v2)(Sy Spi1+S55115,) 2y, (739 a positive sign appears to be complicated with our simulation
R . L scheme, and therefore the standard method is likely prefer-
Hap=(al2v2)(S; Spy1+ 5115, )ay, (73d  able in cases where this would be necessary. Note, however,
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that including “simple” nonlinear terms in the oscillator po- ensemble for the spin sector at lower temperatures. For the
tential should be possible, as long as they do not cause a sighonons, the algorithm is automatically grand canonical at
problem. any temperature, since the phonon number is not conserved.
It is now a simple matter to include Monte Carlo updatesWe do, however, also include global fluctuations of the num-
involving the operatorga,b] with a=3,...,8 in theHeisen-  ber of phonons at each bond. For this purpose, we monitor
berg simulation scheme developed in the previous sectioduring equilibration the average number of phonons per
As before, we denote byd,0] a unit operator, not part of the oscillator,(ny), and attempt adding or subtracting between 1
Hamiltonian, introduced in order to fix the length of the in- and ~ \/(n,) phonons at a time.
dex sequence th. The operator string matrix element in the  Since the number of phonons is unbounded practice
weight function, Eq(26), is more complicated than before, the largest number sampled is limited, but can be very large
since the matrix elements of the phonon operators depend ait high temperaturgswe cannot test the QMC program

the occupation numbers, ; against exact diagonalization results with the full phonon
space included. However, we have compared results with

ap|Np) = Vnp/n,— 1), exact diagonalizations for a four-site chain with the number

. of phonons per oscillator restricted to less than or equal to
ap|Np) =Ny +1[n,+1). (79 two. This restricted case already encompasses all the ele-

Hence, changes in the matrix elemenfgfhave to be evalu- ments of the simulation algorithm, and hence we can con-

ated in pair substitutions involving phonon operators. Apar{C!Ude that our program generates results exact within statis-

from this, the methods we use for updating the configuralic@l errors.

tions are very similar to the Heisenberg case described in
Sec. IV, and we shall therefore merely list the types of sub- B. Results

stitutions carried out and only very briefly comment on their ) )
implementation. We shall here only present some selected illustrative re-

As before, the update changing the expansion pawisr sults for the spin-Peierls model, deferring to a separate pub-
[0,0]<+[1b], with acceptance probabilities given by Eq. lication a detailed discussion of the physics of the model, and
(61) [with J, in place ofA]. The pair substitutions can be It relevance in interpreting various experimental results for
divided into two classes. A substitution of the first type is uasi-1D spin systenté.The main purpose here is to give an

only accompanied by changes in the spin states. We use tfygpression about the kind of detailed information that can be
following ones: extracted using the QMC algorithm. We do, however, also

point out some important model features of experimental rel-

[1b],[1b]«[2b],[2b], (768  evance that can be inferred already from the results obtained
here.

[3,b],[4b]—[5b],[6b], (76b We note that in the adiabatic limi&g—0, the model
should dimerize for anye.*? The situation for finite fre-

[4b],[3,b]<[6b],[5bP]. (760  quency is still not completely settled. For the case of nonin-

teracting spinless fermions, which is equivalent to ¥
in chain, Hirsch and Fradkin found numerical evidence
at a critical phonon coupling is required for a dimerization
to occur. We here consider a phonon frequengy= J/10,

These updates are again carried out Withpartitioned into
one out of four sets of subsequences. The other updat(?
cause changes only in the phonon states. They are

[2b],[2b]—[3b],[4b], (77a  and a couplinga=J/4. Our low-temperature results show
that the system is dimerized @t=0 for these parameters.
[3b],[4b]—[4)b],[3b], (7709  Based on their exact diagonalization study including the
q= 7 phonons only, Augier and Poilblaticsuggested a cou-
[1b],[3.b]«[5b],[2b], (770  pling a/J~0.38 (after adjusting for a difference2 in defi-
nitions) and a bare frequencw,/J=0.3 for describing
[1b],[4b]—[6b],[2b], (770 a’-NaV,0s. Hence, the case considered here is closer to the
adiabatic limit, and the spin-phonon coupling is slightly
[2b],[5b]—[3.b].[1b], (778 weaker. This is still a regime that can be expected to be of
relevance for real materials. As we will see, our bare cou-
[2,0],[6b]—[4b],[1p], (77h) pling J is in fact renormalized to a slightly higher value due

to q=0 phonons, so that our effective phonon frequency and
[5b].[6.]~[7b].[8b], (779 coupling are somewhat lower in units of the effective spin-
as well as the ones obtained from these by permuting operspin coupling.
tors both on the left and the right. Since the oscillators are We present simulation results for a wide range of finite
independenti.e., we have not included phonon-phonon cou-temperatures, including low enough to give the ground
plings), these updates can be carried out independently fostate for all practical purposes. Systems with up to 128 sites
all bonds, withT, partitioned intoN subsequences. are considered, and a simulation typically consisted of
For small systems, we also carry out “ring” updates 1—2x 10" MC steps. At high temperature§/J=0.125),
changing the winding number according to E64). Global we used the grand canonical ensemble for the spins, and at
flips of single spins can again be carried out only at relativelyjjower T we had to restrict ourselves to the canonical en-
high temperatures, thus necessitating the use of a canonicsg#mble withm?=0, due to the low acceptance rate for global
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FIG. 5. The temperature dependence of the effective spin-spin . . ) . .
coupling (upper pane| and its fluctuatior(lower panel. racy in the interesting intermediate temperature regime
where the susceptibility drops rapidly.
spin flips. For the relatively large lattices considered the ef- The uniform susceptibility is one of the most important
fects of this restriction are minor. As already noted, the simu&Xperimentally measurable quantities. It is often used to es-
lation algorithm is automatically grand canonical for thetimate the Heisenberg spin-spin coupling. In comparing re-
phononS, and we have found no practica| prob|ems with théults for the Spin-Peier|S model with the Heisenberg Chain, it
ability of the phonon numbers to fluctuate effectively. is natural to measure the temperature in units of the effective
The spin-phonon coupling causes an average uniform digzoupling atT=0, which we denotele(0). We here have
placemen{x;}>0 of the oscillators, due to the energy low- Jer(0)~1.273(see Fig. 5. Susceptibilities calculated in the
ering realized by increasing the average couplingsimulation, where the bare exchangel is used to set the
J—J+ a(x;)=Jex, balanced by the increased potential en-temperature scale, then also have to be adjusted by this factor
ergy of the oscillator. Hence, the spin-Peierls system is chasince the definition(68) contains the inverse temperature.
acterized by a temperature-dependent effective spin-spifence, unless stated otherwise, we now defirele«(0)/T,
coupling Je(T). Figure 5 shows our QMC results for the and give the susceptibility in units of Jg(0).
effective coupling, along with its rms fluctuation, defined as In Fig. 7 we compare the uniform susceptibility of the
spin-Peierls model with the exact Heisenberg re¥llthere
o (Joe) = a (X2 — (x:)2. 78 is a significant shift in both the peak position and the ampli-
(Jer) b= 0 78 tude. Both can be understood on the basis of the reduced
As already noted, the relevance of the model to real materialantiferromagnetism due to the fluctuations induced by the
is likely limited to the regime wherdy rarely fluctuates to  phonons. There are no signs of a suppression of the suscep-
negative values. The results of Fig. 5 indicate that, for thdibility for T/Je(0)=0.1, below which there is a sudden,
model parameter considered here, this is the cas&/fbe1, very rapid drop. Above this drop, we find that the shape of
whereJq>o(Jer). Since the actual distribution of the instan- the temperature dependenceyotan be quite well fit to the
taneous values o%; is not symmetric, it is of course not result for the Heisenberg chain without phonons, but with an
possible to user(J.s) to give an exact probability for ferro- exchangelg;<Jg(0), as also indicated in the figure. The
magnetic couplings. overall magnitude of the susceptibility is then found to be
At low temperatures, the long-wavelength spin susceptilower than for a Heisenberg chain with this exchadeels; .
bility shows the behavior expected for a dimerized spinln terms of an effective Landegfactor (i.e., the value of the
chain. Figure 6 shows results fg(q) for g<#/2. The be- g factor one would deduce under the incorrect assumption
havior changes rapidly between inverse temperat@red6  that the system is described by a Heisenberg gheihich is
and 64, from having only a very weakdependence in the 2 for an idealS=1/2 Heisenberg chain, this impligg,<2.
g— 0 regime in the former case, to a rapid suppression in th&or the parameters used here, we fidg~0.821 and
latter case. This clearly shows the presence of a spin gags~1.86. This is interesting, since experimentally it is
There is only a minor change going @®=128, indicating sometimes found that thgefactor extracted from the suscep-
that the system is essentially in its ground state at this inversibility fit is less than 2, whereas one would in fact exféct
temperature. In order to accurately extract the uniform susa g factor slightly larger than 2. For example, Eggert was
ceptibility x(q—0), it is necessary to extrapolate ¢p=0 able to fit well experimental susceptibility data for,GuO;
using 2—4 lowg points. This procedure is of sufficient accu- with the Heisenberg/(T),* but theg factor corresponding
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FIG. 7 The_ uniform susceptibilitjin ur_1its of 104(0)] vs tem- FIG. 8. The staggered susceptibilifin units of 10.4(0)] vs
peraturefin units of Je(0)], compared with the exact Heisenberg yomherature(solid circles, compared with resuits for the Heisen-

result (solid curve. For the Heisenberg chaides=J=1. The o chaiyopen circles The curve indicates the asymptotic diver-
dashed curve is the Heisenberg susceptibility Jer0.82X Jo+(0) gent form for the Heisenberg chain.

and ag factor ~1.86. The inset shows the QMC data graphed on

the temperature scale set by the temperature-dependent couplingII hi h imolicati for NMR .
Jei(T) [x here also contains this factor, i.e., it is given in units of {lly, this may have implications for experiments,

1Udeg(T)], compared withy(T) for the Heisenberg chain. which probe the low-frequency dynamic spin-spin correla-
tions. A peak inx(m) would likely be accompanied by a

maximum in thelT dependence of both T{ and 1/T,¢. The

to the fit is as low as 1.6, and this seeming discrepancy h%MR rates for models including phonons should be acces-

e oot Peseriee ere: fbie using the same rumercal techniqu@NC

partially due to phonons. Additional calculations for Variousmaxmum-entropy analytic con.tmuatwrthat7have recently

phonon frequencies and couplings are underway to furthetr)een used for the stan_dard Helsenb_erg cﬁa_?ﬁ. .
The phonon correlations are also interesting, and can give

in\{estigate this possibili'_[y. Note_ th_a_t the susceptibility Of thesome indirect information on the dynamics as well. We de-
spin-Peierls mpdel dewatps significantly from the |_|e'Sen'fine the static phonon structure factor and susceptibility ac-
bergx(T) also if one considers a temperature-dependent enéording to
ergy scaleJqu(T) instead of the fixed scald.4(0) used

above, as shown in the inset of Fig. 7. The shift in the peak )

position remains, and there is a regime where the phonons _* —iGi=Day vy _ o

cause a significant susceptibility enhancement. This shows SAD=y JZ’ € (= (xN(xi=(x))), (793
that the effects of the phonons cannot be simply captured by

a mapping to a Heisenberg chain with a temperature- o2 p
dependent exchange equal to the average couplif(@) of - —i(i—l)qJ () — (0)—
the model, i.e., the fluctuations ih(T) must be taken into (A= ; © 0 d7((X;(7) = (X)) (Xi(0) —(x))).
account. These issues will be discussed in more detail (79b
elsewheré?

The effects of the phonons on the antiferromagnetism caliVe expect both to develop peaksgt 7 at low tempera-
be seen directly in the staggered susceptibility, graphed itures, signaling the dimerization instability. Figure 9 shows
Fig. 8. For the Heisenberg chay(7)=D InY(A/T)/T at  results at several temperatures. At high temperatures, both
low temperatures, where the constants have been estimat&j(q) and x,(q) are almost independent of and increase
asD~0.32 andA ~6.28 For the gapped spin-Peierls model with increasing temperature. This reflects the behavior of
we should havey()— const. We find here that there is a (almos}) independent harmonic oscillators. At lower tem-
maximum iny(m) approximately at the same temperature atperatures, the expected peakgjat7 develop. In the high-
which the rapid drop in the uniform susceptibility is seenand intermediate-temperature regimé=w,) graphed in
[the staggered structure fact®f«) exhibits a similar maxi- Fig. 9, Txx(q) =S«(q) within statistical errors. Hence, at
mum]. This behavior is distinctively different from that of a these temperatures the phonon dynamics is for all wave-
gapped system with fixed values of the exchange couplingdgngths dominated by the first Matsubara frequency and is
such as a statically dimerized chain, for whigtw) simply  thus essentially classical. Note that the phonon susceptibili-
saturates at a value set by the gap. In the presence of dfies have considerably smaller statistical errors than the
namic phonons the staggered correlations among the instaftructure factors. This is contrary to the situation for the spin
taneous spin-spin couplings only build up graduallyTass  structure factor and susceptibility, which are calculated using
lowered, and therefore the antiferromagnetic spin correlathe diagonalsf operators. This counterintuitive feature of the
tions can initially grow stronger than what they will eventu- QMC method can be traced to the simple form of the off-
ally be in the statically dimerized =0 state. Experimen- diagonal susceptibility estimator, EO).
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FIG. 9. The static phonon structure factor vs wave number at FIG. 10. Upper boundin units of the bare exchangh for the
T/J=1.0 (open circley T/J=0.5 (solid circle, T/J=0.25 (open lowest phonon excitation vs momentum for a 128-site system at
squarel and T/J=0.125 (solid squares The corresponding sus- T=J/128. The dashed line indicates the bare, momentum-
ceptibilities, multiplied byT/J, are indicated by thén some cases independent phonon frequenay /J=0.1.
barely visiblg solid curves. The statistical errors of the susceptibili-
ties are considerably smaller than those of the structure factors, and

are not indicated for sake of clarity. The dashed lines indicate th%oftening of theg= = mode in a system that spontaneously
g-independent structure factors of independent harmonic oscillatorairnerizes In an infinite system, thel—0 bound

at the corresponding temperatures. 2S,(m)/ x(m)—0 since a static dimerization implies the

The static phonon structure factor and susceptibility carflassical relationy(m) = BS(m). For a finite system, there

be related to the dynamic real-frequency phonon correlatiof® alwrz]iys a gapjdec_r easm% Vt\;'th mcreas:jng sjim Lhe I?W'
function (or spectral function A(q,w) through sum rules. est phonon excitation an 08,(q) and xx(q) therefore
We define the spectral function as saturate at finite values for alf. For q# m, the results

shown in Fig. 10 are saturated, br) [but notS, ()] still
o o _ grows with decreasin@ and the actual =0 bound is there-
A(q,w)=a2_§|: e'qufl)J dte™"“(x(1)x;(0)). (80)  fore considerably lower than that in the figure.
b o We now calculate the size of the Peierls distortion. In the
From the Lehmann representation one can derive the followdimerized state the average displacement alternates between

ing sum rules in the standard way: even and odd bondgx;)=(x)+ 8. Hence, theT=0 stag-
gered phonon structure factor is, for large system shtes
L given by
s@-= [[areage, @
Sy ()= a?8N. (83
—wal ~Be 1A 81b
xx(Q)=— 0( —e ") —AQ,0). (81b)

. Figure 11 showsS () versus the inverse temperatutér

At T=0, these sum rules can be used to obtainupper o several system sizes. As expected, the saturation takes
bound for the lowest phonon excitation of momentyra@t  piace at a temperature which decreases with increasing sys-
cording to tem size. The results fdl=32 andN=128 obey Eq(83)
quite accurately, the ratio of the saturated values beidg
For N=8 the value is considerably lower, indicating much

@min(0) < 2S(@)/x(@)- (82) larger fluctuations in this small system. Using tNe=128
In the case of a single sharp phonon mod8,(R)/x(q) is  result with Eq.(83) gives a dimerizationt6~0.13, i.e., the
the exact excitation energy. This bound has recently beeaffective alternating average exchangelis- Jo#(0)[1+A;],
used to extract spin and charge velocities of 1D electronievith A ;~0.10.
models from QMC datd’ Here we demonstrate its use for ~ The main purpose here has been to illustrate how various
the phonon spectrum. Figure 10 shows results for a 128-sitghysical quantities are accessible with the QMC algorithm
system at a low temperaturd,=J/128. For long wave- developed in the previous section. We have therefore not
lengths, the calculated bound is at the bare phonon frequenaliscussed how our results compare to, e.g., mean-field theory
wy/J=0.1 within statistical errors, indicating a very weak and previous numerical calculations including only the =
effective coupling of these phonons to the spin system. Fophonon modé! These important issues will be addressed in
g— , there is a clear reduction, as expected due to the future publication.
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‘ Evertzet al,?° has recently been used with considerable suc-
- cess in studies of various spin-1/2 Heisenberg sysférims,
particular in the exact formulation developed by Beard and
Wiese!® Variants of the loop algorithm have also been sug-
gested for the 1D Hubbard mod€l,and for S>1/2 spin
chains?® However, physics results for these cases have not
yet been presented. Although its performance for the Heisen-
berg model can be considered spectacytaowever, for
some quantities more accurate results have actually been ob-
] tained with the SSE methdd, it is not clear how the loop
© algorithm will fare with more complicated models, such as
spin-phonon models. It is known to break down completely
in some case? In contrast, the stochastic series expansion
algorithm and the perturbation series schemes are, in prin-
ciple, completely general and are practically useful for a
wide range of models for which the sign problem can be
. avoided.

FIG. 11. The Staggered.phgnon structure facmrl/s INVerse M- s a demonstration of the power of the perturbation series
perature for systems of sizd=8 (solid circle3, N=32 (open . . . . .
circles, and N=128 (solid squares The statistical errors are method, we havg |mpIemented it for stuQIes of 6.‘ spin-Peierls
smaller than the symbols. model. We consw_ierec_i osc_lllators assom_ated with the bonds,

coupled to the spins via a linear modulation of the exchange.
Unlike earlier studies of 1D electronic models coupled to
phonons'® we used the occupation number basis also for the

In this paper we have introduced a quantum Monte Carl@honons. The QMC algorithm is ideally suited for this type
algorithm based on the standard perturbation expansion iaf model, since the bare phonon part of the Hamiltonian is
the interaction representation. This starting point was rediagonal. The initial results presented here for the spin-
cently suggested by Prokof'at al*® Our implementation of Peierls chain indicate that reliable results can be obtained
the sampling of the series is different and is essentially anvith modest computer resources. The method should be very
adaptation of procedures previously developed for the stodseful for resolving issues related to the effects of dynamic
chastic series expansion algoritif/e have shown that the phonons on the physics of the recently discovered inorganic
SSE sum and the continuous imaginary time path integral arepin-Peierls compounds, as well as other quantum spin sys-
in fact very strongly related to each other. tems. Work along these lines is in progré$4.D itinerant

As in the SSE scheme, the central element of the methoglectronic models of the Hubbard anel types including
is the ordered sequence of operators. In the interaction regphonons can also be studied using the procedures developed
resentation formulation developed here, time enters in th@ere. We also believe that studies of spin-phonon models in
form of auxilliary variables associated with the sequence pohigher dimensions are feasible with our method.
sitions. The operator updates leading to changes in the par- The results presented here for the spin-Peierls model al-
ticle propagation pathékink-antikink creation and annihila- ready indicate some important consequences of dynamic
tion, in the language of Prokof'est al®) are carried out via phonons at finite temperature. The type of phonons consid-
substitutions of pairs of off-diagonal and constant operatorsgred here naturally lead to a temperature-dependent effective
with the time field held fixed. An efficient procedure for spin-spin coupling. We found that the uniform magnetic sus-
collective updating of whole segments of the time field wasceptibility still has a shape rather similar to that of the
introduced. We also derived expressions for several types dfieisenberg chain in a sizable regime close to the suscepti-
important operator expectation values, and compared thedality maximum often used to extract the size of the ex-
with the corresponding expressions previously obtained¢hange coupling from experimental data. However, both the
within the SSE scheme. value ofJ and theg factor extracted from a fit are reduced

In the sampling scheme developed by Prokofanal®  relative to a Heisenberg chain with a coupling equal to the
an integrated statistics is used to determine the distribution giverage coupling of the spin-phonon model. We propose that
the transitions in imaginary time. In cases where the ratio ofhis dynamic effect may at least partially be the reason for
the diagonal to the off-diagonal energy scale is very largethe reduced) factor found in some quasi-1D systefftsur-
the transitions are dominated by short-time fluctuations backhermore, these results cast some doubts on the validity of
and forth between states with low and high unperturbed endetailed extractiorié°® of the nearest-neighbor and next-
ergy. The integrated statistics should then be more efficientearest-neighbor couplings in GeCyftom fits of exact di-
than the random substitutions performed in the SSE-inspiredgonalization data of frustrated Heisenberg chains to suscep-
sampling algorithm developed here. Without carrying out dedibility measurements. It is likely that the couplings extracted
tailed comparisons of the two approaches it is, however, diffrom such fits do not directly correspond to the true spin-spin
ficult to determine exactly when the advantages of the inteeouplings of the system, but are influenced by the tempera-
grated statistics will speed up the simulation. For the model$ure dependence of the couplings as well as their fluctua-
considered in this paper the random substitutions are effitions, as discussed above. Interchain couplings likely also
cient and there are no problems with low acceptance rateshave some non-negligible effects on the susceptibility and

We note that the loop-cluster algorithm, invented bycan be included in simulations. Unfortunately, the QMC ap-

S,

VI. SUMMARY AND DISCUSSION
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proach introduced here does not allow for studies of frus-

trated systemgat least not at very low temperatujesiue
tosign problems. Sincex’-NaV,0Os is not expected to be
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