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Magnetoquantum effects in III-V tunneling heterostructures
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A two-parameter variational wave function is used to calculate the electronic properties of the two-
dimensional accumulation layer in a single-barrier tunneling heterostructure. This model is used to describe the
effect of a magnetic-field applied perpendicular to the tunneling barrier. Using a Gaussian broadened density of
states to describe the Landau-level structure, the magneto-oscillations in the Fermi energy, the sheet density,
and the tunneling current are calculated. The tunneling current determined by this model agrees qualitatively
with the experimental results. The contribution of the density of states on the magnetocapacitance of the
tunneling heterostructure is also studied. It is found that apart from the density of states, there is another
important effect on the magnetocapacitance due to charge redistribution.@S0163-1829~97!00227-0#
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I. INTRODUCTION

When there is a strong electric field at the interface
tween two semiconductors of different band gaps~or at a
semiconductor-insulator interface!, the motion of electrons
bound by the electric field and the potential barrier at
interface is quantized. The bound electrons form a tw
dimensional electron gas~2DEG!. The physical properties o
the 2DEG are determined by quantities such as position
Fermi levels, doping levels, and gate voltages, depending
the device structures. In a modulation-doped heterostruc
the 2DEG, either an accumulation or inversion layer, is
termined by the doping levels throughout the whole devi
In a tunneling heterostructure with a conduction band d
gram shown in Fig. 1, the 2DEG, which is always an ac
mulation layer, is controlled by the external applied volta
There have been extensive studies, both theoretical and
perimental, of 2DEGs in modulation-doped heterostructu
and Si metal-oxide-semiconductor field-effect transistor a
some experimental studies1–3 of the 2DEG in a tunneling
heterostructure. Relatively few theoretical studies4–7 have
been carried out on the accumulated 2DEG.

The tunneling current from the 2DEG through the barr
is a useful probe of the electronic properties of the 2DEG
a tunneling heterostructure. Eaveset al.1 and Hickmott2 have
investigated magneto-oscillations in the tunnel current w
only the first subband is occupied and a magnetic field
applied perpendicular to the plane of the 2DEG. The exp
mental results were analyzed to obtain the Fermi ene
EF ~at zero magnetic field! and areal charge densityNs of the
2DEG at each bias voltage. However there are conflict
models for the mechanism of modulation of the tunnel c
rent by the magnetic field and different approaches to a
lyze the results. Eaveset al.1 assume that the Fermi energ
and subband energy remain constant. The charge density
current are then modulated by changes in the density
states with the magnetic field. Current minima occur wh
the Fermi level lies in a gap between two Landau levels. T
condition that the Fermi level lies midway between then
560163-1829/97/56~3!/1447~9!/$10.00
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21)th and nth Landau levels isn\vc5EF , where vc
5eB/m* is the cyclotron frequency andm* is the effective
mass. This gives magneto-oscillations periodic in 1/B, as
observed experimentally, and the current minima occur
fieldsBn5Bf /n, whereBf5m*EF /e\. The sheet density is
then obtained fromNs5eBf /p\. Hickmott2 assumes that a
a given bias the number of electrons in the 2DEG rema
constant as the magnetic field is swept. As maxima and m
mum in the density of states pass through the Fermi le
the Fermi energy and subband energy are modulated
maintain a constantNs . In this model magneto-oscillation
in the current occur through changes in the tunneling r
which depends on the barrier height relative to the subb
energy level. It is not clear why these empirical analyses
be used to estimate the accumulated charge density at
magnetic field.

It is clear, however, that neither of the above assumpti
can be correct. If modulation of the tunnel current wi
changing magnetic field is due to modulation of the cha

FIG. 1. Schematic energy-band diagram for t
n1(A)/n2(A)/B/n1(A) single-barrier tunneling heterostructur
under forward bias.A5InxGa12xAs and B5InP in Eaveset al.
~Ref. 1! A5GaAs andB5Al xGa12xAs in Hickmott ~Ref. 2!.
1447 © 1997 The American Physical Society
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density, as Landau levels pass through the Fermi level,
there must be consequent changes in the potential pr
across the structure in order to maintain a constant bias v
age. This results in a change in the wave function and ene
of the bound state which in turn causes further changes in
Fermi energy, accumulated charge density, and potential
file. This feedback mechanism, activated by the change
external conditions, regulates the modifications in suc
way that the 2DEG is always in a dynamic equilibrium sta
The magneto-oscillations in the charge density, Fermi
ergy, and tunnel current must therefore be determined s
consistently. Some theoretical studies of the effect of a m
netic field on a 2DEG in modulation-doped or quantum-w
structures have found a modulation of the charge density
the field.3,7–9 But owing to the differences in device stru
tures these results cannot be used to explain and analyz
experiments onn-type tunnel structures in which we are in
terested.

A full self-consistent numerical solution to the problem
computationally demanding as a self-consistent solution
required for each magnetic field and therefore is not suita
for the purpose of our present work, which is to elucidate
current modulation mechanism. In the present study,
have calculated the Fermi energy, charge density, tunnel
rent, and capacitance of the accumulated 2DEG as a func
of magnetic fields using a variational method. With t
variational approach we are able to explain and descr
using some simple physical arguments, the mechanism o
modulation of the charge density, Fermi level, and hence
tunnel current. In our model we only consider the Coulom
potentials of the accumulated 2DEG and the positive cha
in the depletion layer. The effects of the bulk electrons a
the background doping in then2 layer, where the accumu
lated 2DEG is formed, are assumed to be negligible. We
that when the magnetic field is changed the Fermi ene
and the charge density of the 2DEG both oscillate with
magnetic field. The tunnel current follows closely the osc
latory behavior observed experimentally. The current mo
lation is found to be the result of the charge-density mo
lation by the applied magnetic field. Some of the results h
been reported in a conference10 without a detailed discussio
of the variational method. In this paper, we discuss the
sults and calculation in detail.

Several groups3,11–13 have studied the magnetocapa
tance of a 2DEG and obtain the density of states of the L
dau levels. Some of these analyses assume that the ch
distribution and the potential profile in the heterostructu
remain unchanged during the measurement of the magn
capacitance. However, as explained above, this assump
is not correct for a tunneling heterostructure, since, in
measurement of capacitance, the charges in the 2DEG
the potential profile are both changed by the change in
external bias voltage. There is a contribution to the cap
tance due to the change in the potential profile. Our res
show that the capacitance due to the change in potential
file is as important as the capacitance due to the densit
states. It is necessary to take this effect into account in o
to obtain quantitative information about the density of sta
of a 2DEG under a magnetic field.

This paper is organized in the following way. In Sec.
we will describe the structure of the device and review
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experimental results. The model and the calculation will
described in Sec. III. We discuss the theoretical results
Sec. IV and conclude the paper in Sec. V.

II. REVIEW OF EXPERIMENTAL RESULTS

The single-barrier tunneling heterostructures which
consider consist of the following layers: a thick layer
heavily dopedn1 semiconductorA; a layer of lightly n2

doped semiconductorA; a thin layer of undoped semicon
ductorB, with a larger band gap which acts as a barrier
the electrons; a thick layer of heavily dopedn1 semiconduc-
tor,A. Metallic contacts are alloyed to the two heavily dop
layers. The structure considered in our calculation hasA
5~InGa!As andB5InP. The band structure~as seen by an
electron at the conduction-band edge! of the device under an
applied voltage is shown schematically in Fig. 1. On t
left-hand side of the barrier is then2 region, which is biased
negatively with respect to then1 region on the right-hand
side so that a two-dimensional accumulation layer is form
at the interface between then2 layer and the barrier. Be
cause of a finite electric field in the barrier region, the sha
of the barrier potential is not rectangular. A depletion lay
which gives rise to the band-bendingDV, is formed near to
the interface between the barrier and then1 layer. The po-
tential drop of the device is mainly, across the barrier,
accumulation layer~in the n2 region!, and the depletion
layer in then1 region.

At liquid-helium temperature, the current flowing throug
the device is mainly carried by electrons tunneling from t
first subband of the accumulation layer. The electrons in
accumulation layer are degenerate and the applied vol
considered in the experiment is not high enough to crea
second subband. Application of a magnetic field perpend
lar to the barrier splits the density of states of the first s
band into discrete Landau levels. When a fixed bias volt
is applied between the outern1 contacts, the tunnel curren
oscillates as the magnetic field is swept. Eaveset al.1 mea-
sured the magnetotunneling current of a InxGa12xAs/InP
tunneling heterostructure with structure parameters ident
to those used in the present model calculation. They obs
that the magnetic fields at which the current reaches a m
mum are approximately given byBf /n, wheren is equal to
1,2,3, . . . , etc. Hickmott2 studied the magnetotunneling cu
rent and the magnetocapacitance of GaAs/AlxGa12xAs tun-
neling heterostructures. The barrier material in the hete
structures is AlxGa12xAs (x50.37,0.4) and the barrie
thickness is 200 Å. He measured the oscillation of the tun
current as a function of the magnetic field for various b
voltages. The current maxima and minima in the tunnel
current are considered to be the result of the passage o
maxima and minima of the Landau-level density of sta
through the Fermi level. Both the analyses in Hickmott2 and
Eaveset al.1 are based on some empirical models and do
consider the effects of changes in charge distribution w
the magnetic field.

III. MODEL

In order to understand the microscopic mechanism of
current modulation described in Sec. II, we have to perfo
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a variational calculation in which the bias voltage can
kept constant when the variational parameters and ch
density are varied to minimize the energy. This facilita
comparison with experimental results which are obtained
fixed bias voltages when the magnetic field is changed.
reduce the complexity of the problem, we consider a sim
model, in which the main physical features are retain
With this model, we can understand the magnetic-fi
modulation of the tunnel current and its relation to the el
tronic properties.

For the device which we consider here the tunnel bar
is sufficiently thick that the electrons in the accumulati
layer have a long enough time to form a degenerate t
dimensional electron gas, which is almost in thermal equi
rium. The potential drop of the device is mainly across
barrier, the accumulation~in then2 region! and the depletion
~in the n1 region! layers. As the tunneling rate through th
barrier is small in comparison with the scattering rates
electrons between the 2DEG states and the bulk states
2DEG is in equilibrium with the bulk electrons of then2

layer and the device can be considered as a capacitor. S
the tunneling current in the heterostructure is small, the
ference in Fermi levels between then2 and then1 layers on
the left-hand side of the barrier is small and there is a c
stant Fermi level close to the conduction-band edge on
left of the barrier. Taking these factors into account,
make the following assumptions in our model:

~1! The main effect of then2 region is to provide good
electrical contact between the 2DEG and the external cir
so that the Fermi levels of the 2DEG and bulk electrons a
with each other. The assumption of the pinning of the Fe
level is a major assumption of this model, which restricts
allowable range of the variational parameters and the sh
of the wave function.

~2! To further simplify the calculation, We ignore th
small difference in energy~;4 meV! between the
conduction-band edge and the shallow-impurity levels.

~3! Only the first subband is occupied. The higher su
bands are occupied only at high bias voltage (;300 mV). In
this work we only consider the case in which one subban
occupied.

~4! The minority acceptors in then2 region are ignored.
In the n2 layer, there is always some backgroundp-type
doping, which can give rise to a space-charge layer and e
band bending. The amount of this background doping is
exactly known and depends on sample growth conditio
Ekenberg6 has varied the amount of the fixed space char
to align the Fermi levels of the 2DEG and the bulk. T
amount of the space charge is less than 10% of the 2D
charge even for a large background doping. Since our in
est is in understanding the effect of the magnetic field on
2DEG, we ignore the background doping so as to simp
our calculation.

In an open system, like the 2DEG we are consideri
exchange of particles with an external reservoir is allow
and equilibrium is established when the energy nee
~gained! for putting ~removing! a particle into ~from! the
2DEG is equal to the work done by~to! the external voltage
source. In the variational calculation we should minimize
grand potentialV of the 2DEG which is defined by
e
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V5U2NVbiase, ~1!

whereU is the sum of the kinetic and Coulomb interactio
energies andN is the number density of the 2DEG. In
modulation-doped heterostructure, the Fermi level is unifo
throughout the whole device, therefore only the total ene
is minimized in the variational calculation.

In the discussion above, we have implicitly assumed t
the electrons occupy bound states described by the va
tional wave function which has a zero expectation value
the current operator. This description does not seem to
appropriate for a tunneling device, as a realistic wave fu
tion should be nonzero throughout the barrier and conn
with a traveling wave at the other side. One justification
this is that the tunneling current is very small and so is
traveling wave part of the wave function. Another justific
tion is that in a ‘‘sequential’’ tunneling picture we can rega
the variational wave function as the wave function of one
the two subsystems in the transfer Hamiltonian formalism

The sequential picture of tunneling,14 in which the process
of tunneling is slower than the process of scattering into
accumulation layer, is also in accordance with the condit
of equilibrium discussed above. When an electron tunn
into then1 region, it loses its energy by inelastic scatteri
in the collector reservoir. The unoccupied state left behind
immediately filled by an electron ‘‘driven’’ into the accumu
lation layer by the external battery. Between two tunneli
events the accumulation layer is constantly exchanging e
trons with the reservoir on the left-hand side. If we avera
the total energy~as defined above! of the accumulation layer
over a period of time which is longer than the inverse of t
scattering rate but shorter than the inverse of the tunne
rate, the value does not exhibit any fluctuations due to s
tering and is constant when the stationary state is establis
It is quite clear from this consideration that this approach
only useful in the case of a thick and high barrier. In the ca
where the tunneling rate is comparable to the scattering r
we cannot define a time scale on which the tunneling proc
is negligible and should include tunneling in the determin
tion of the equilibrium configuration. This means that t
variational approach is no longer valid.

We use the Fang-Howard15 wave function in our varia-
tional calculation

c~z!5H 2~z2as!

a3/2
e~z2sa!/a ~z,as!

0 ~z.as!,

~2!

wherez50 is the tunnel-barrier interface anda and s are
variational parameters. For reasons explained below,
variational parameters are needed for the calculation. Par
etera has the dimension of length and is related to the spr
of the charge in the direction perpendicular to the interfa
Parameters is a dimensionless parameter and is related
the penetration of the wavefunction into the barrier. T
probability of finding the electron inside the barrier is equ
to

E
0

`

uc~z!u2dz5u~s!512~2s212s11!e22s. ~3!
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We note that this wave function does not have an expon
tial tail in the barrier. However, the probability of finding th
electron in the barrier is generally only a few percent so
linear approximation above is a sufficiently good approxim
tion.

The depletion layer~which gives rise to the positive
charge! in the n1 region has a finite thickness. For hea
doping, the thickness of the depletion layer is determined
the screening length. In our model, we simplify the calcu
tion by assuming a very high doping so that the thickness
the depletion layer is negligible. As a result the ban
bendingDV is negligible.

To determine the energy of the bound state in the ac
mulation layer, we first find the electric potential variatio
through the structure by solving Poisson’s equation. We
tain the potential due to the positive„V1(z)… and negative
„V2(z)… charges as

V2~z!5
eN

« r«0
H 2

3

4
a2

1

2
~z2sa!

1F ~z2sa!2

a
22~z2sa!1

3

2
aGexpS 2~z2sa!

a D J
~z.sa!, ~4!

V2~z!5
eN

« r«0
@ 1
2 ~z2sa!1 3

4a# ~z.sa!, ~5!

V1~z!5
eN

2« r«0
~z22b1sa2 3

2a! ~z,b!, ~6!

V1~z!52
eN

2« r«0
~z1 3

2a2sa! ~z.b!, ~7!

where the origin of potential is atz→1` and the right-hand
side of the barrier is atz5b. « r is the relative dielectric
constant of the material andN is the areal number density o
electrons in the accumulation layer.

The asymptotic values of the total potentialV(z)
5V1(z)1V2(z) whenz→1` andz→2` are given by

V~2`!52
eN

« r«0
~b2sa1 3

2a!,
~8!

V~1`!50.

The potential difference across the sample,V(1`)
2V(2`), is related to the external biasVbias by

Vbias5V~1`!2V~2`!2
EFR

e
5

eN

« r«0
~b2sa1 3

2a!2
EFR

e
,

~9!

whereEFR is the Fermi energy of the bulk electrons in th
right-handn1 electrode. If we fix the external bias in th
equation, we can determine one of the three variab
(N,s,a) as a function of the other two.

We now calculate the energy of the bound stateEB . This
is given by the expectation values of the kinetic energy,
Coulomb potential energy V1(z)1V2(z), and the
n-

e
-

y
-
f
-

u-

-

s

e

conduction-band discontinuity between the barrier and
n2 layer. In this order these terms give

EB5E
2`

sa

c~z!S 2
\2

2me

]2

]z2
1V1~z!

1V2~z!1VB~z! Dc~z!dz,

5
\2

2mea
22

15e2Na

32« r«0
1

e2N

« r«0
~ 3
2a2sa1b!

1eVbu~s!, ~10!

whereVB(z) is the potential variation due to the conductio
band discontinuity andVb is the conduction-band discont
nuity between materialsA andB.

The Fermi energyEF of the 2DEG is equal to the energ
difference between the bound-state energy and the Fe
level of the left contact, which is taken to bemL5
2eV(z→2`).

EF5mL2EB52
\2

2ma2
2eVbu~s!1

15e2Na

32« r«0
. ~11!

In the absence of a magnetic field the Fermi energy dire
determines the number of electron per unit area by

N5EFDE , ~12!

whereDE is the density of states per unit area. Combini
equations~9!, ~11!, and~12!, we can determineN anda as a
function of the parameters.

In a magnetic field, the density of states is not const
and we must write

N5E
2`

EF
g~E!dE, ~13!

whereg(E) is the density of states per unit area. We us
Gaussian-broadened density of states11,12 given by

g~E!5xDE1(
n

2eB

h
~12x!

1

GAp

3expF2S E2~n1 1
2 !\vc

G
D 2G , ~14!

wherexDE is the nonzero background density of states~x
50.05 in the present calculation!, B is the magnetic field,
and G is the broadening parameter which is related to
magnetic field by G0AB. G0 is chosen to be 9
31024 eV T21/2. We have used different values ofG0 and a
different density of states and find that the details of
oscillatory structures in the theoretical results are modifi
For example, when we increase the broadening, the am
tudes of the oscillations are reduced and the positions of
minima and the maxima are shifted slightly. This is impo
tant when a quantitative comparison is made between
theoretical and experimental results. As we have sta
above, the main aim of this paper is to acquire an und
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standing of the microscopic mechanisms. Thus the detail
the broadening of the Landau levels do not have much b
ing on the present work.

In this variational calculation, the grand potentialV is
minimized by varying the parametersa ands subjecting to
the constraint that the bias voltage is kept constant. The
pression of the grand potential is given by

V5
N\2

2mea
22

15e2N2a

64« r«0
1

e2N2

2« r«0
~ 3
2a2sa1b!1eVbu~s!

1E
2`

EF
g~E!E dE2eNVbias. ~15!

In this expression the first and second terms are, respecti
the kinetic energy in thez direction and the potential energ
due to the Coulomb interaction between the nega
charges. The third term is the potential energy due to
interaction between the positive and the negative char
The fourth term is the increase in energy due to the pene
tion of the wave function into the barrier. The fifth term
the energy of the motion in thex-y plane. In a typical step o
the numerical calculation, we first fix the bias voltageVbias
and an initial value ofs. Electron densityN and variational
parametera are then obtained by solving equations~9!, ~11!,
and ~12! ~at zero magnetic field!. When there is a magneti
field, Eq. ~12! should be replaced by Eq.~13!. After N and
a are determined, we then calculate the grand potentiaV.
The step is then repeated for other values ofs so as to find
the solution which minimizes the grand potential.

IV. THEORETICAL RESULTS

A. Results at zero magnetic field

It is interesting to know the properties of the 2DEG pr
dicted by the present model at zero magnetic field. In Fig
we plot the electron density and the differential capacita
per unit areadQ/dV as a function of the applied voltage
zero magnetic field. The tunneling heterostructure studie
this work has a barrier thickness of 200 Å, a barrier heigh
200 meV, and a doping density of 431023 m23 in the n1

region on the right-hand side. The electron effective mass

FIG. 2. The areal density and the differential capacitance
unit area of the accumulated electron plotted as a function of
applied voltage at zero magnetic field.
of
r-

x-

ly,

e
e
s.
a-

-
2
e

in
f

e

used is 0.045m0 . The relative dielectric constant is taken
be 12.5. We have ignored the differences between the m
rial parameters of InP and In~Ga!As. Since the right-hand
side of the barrier is doped, at zero-bias voltage the accu
lation layer has a density of 7.531014 m22. When the ap-
plied voltage is increased to 0.15 V, the accumulated e
tron density increases to 3.831015 m22. The variational
parametera decreases with the applied voltage from 158
110 Å while the variational parameters increases with the
applied voltage from 0.1 to 0.2. For the voltages conside
the penetration of the wave function~equal tosa! into the
tunneling barrier is not negligible. This effect reduces t
electron’s distance from the barrier by about 6–10 %. T
average distance of the electrons from the barrier^z& is re-
lated to parametersa and s by ^z&5(1.52s)a. When the
applied voltage is increased, the electrons are confined
stronger electric field and as a result^z& is reduced. In view
of this, it is interesting to know whether the relation betwe
electron charge and voltage is linear. In Fig. 2, the differe
tial capacitance increases from 3.131023 F m22 to 3.5
31023 F m22 when the bias voltage is changed from 0
0.15 V. This nonlinearity is due to the decrease in the m
distance of the 2DEG charges from the barrier. Although
charge-voltage relation at zero magnetic field is not linea
is a reasonable approximation to describe the charge-vol
relation with the ideal capacitor model, which gives an er
of about 10%.

B. Charge density and Fermi energy
under an applied magnetic field

In Figs. 3 and 4 we plot the magnetic-field dependence
the electron densityN and the Fermi energy of the 2DEG a
an applied voltage of 0.125 V (EF5mL2EB), respectively.
In these two figures, we also show the electron density
culated by assuming a constant Fermi energy and the F
energy calculated by assuming a constant electron den
These quantities oscillate with the magnetic field,B. When
the applied voltage is increased, the oscillations shift
higher magnetic fields. Instead of showing the oscillatio

r
e

FIG. 3. The areal electron density of the accumulated electr
plotted as a function of the magnetic field at a fixed applied volta
of 0.125 V. The magnetic field is in the unit of cyclotron ener
\eB/me . Solid line is for the present model. Dashed line is o
tained assuming a constant Fermi energy. The arrows show
positions forn\vc5EF , wheren51,2,3.
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for different applied voltages, we show only the results fo
fixed applied voltage and discuss the mechanism of osc
tion at a fixed bias. For an applied voltage of 125 mV, t
electron density at zero magnetic field is about 3
31015 m22, which corresponds to a Fermi energy of 17
meV. In Figs. 3 and 4, when we increase the magnetic fi
both the Fermi energy of the 2DEG and the electron den
oscillate symmetrically about the zero field value with opp
site phases. It is clear that neither one of the following
sumptions works: The total electron density is constant
the Fermi energy of the 2DEG is constant. We notice
following distinctive features:~i! the Fermi energy of the
2DEG is a maximum when the electron density is a mi
mum and vice versa;~ii ! the amplitudes of the magneto
oscillations in the 2DEG density and the Fermi energy
smaller than those amplitudes determined by assuming e
a constant density or a constant Fermi energy. Below
shall discuss the physical mechanism of the modulation
these quantities by the magnetic field.

With a magnetic field we can modify the electron dens
by changing the density of states of each Landau level. W
the Fermi level is near to the center of a Landau le
@(n11/2)\vc5EF , i.e., \vc.36, 12, 7.2 meV, . . . in
Figs. 3 and 4# and there is a large density of states at
Fermi level, an increase in the magnetic field moves the L
dau level upwards and forces a large number of charges
of the potential well. For a fixed bias voltage, this will in
crease the average distance of charges from the barrie@as
predicted in Eq.~9!#. When the distance from the barrie
increases, the Fermi energy of the 2DEG is increased as
bound-state energy is lowered. Therefore whenever
Fermi level is at a Landau level, any increase in the magn
field will be accompanied with an increase in the Fermi e
ergy. The increase in the Fermi energy is generally slo
than the increase in the Landau-level energy and there
the electron density gradually decreases. Because of
feedback mechanism and the change in the Fermi energy
electron density decreases with a rate less than that pred
by assuming a constant Fermi energy. When the Fermi le
is at a gap between two Landau levels~n\vc5EF , i.e.,
\vc518, 9 meV, . . . inFigs. 3 and 4! and the density of

FIG. 4. The Fermi energy of the accumulated electron plotted
a function of the cyclotron energy. The solid line shows the res
of the present model and the dashed line shows results assum
constant areal density. The arrows show the positions forn\vC

5EF , wheren51,2.
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states is zero or at a minimum, the change in the numbe
electrons is determined by the change in the total numbe
states by the magnetic field. When there is an increas
magnetic field, the total number of available energy sta
below the Fermi level is increased and hence the elec
density is increased. This results in a decrease in the ave
distance from the barrier̂z&. The Fermi energy will be de-
creased aŝz& is decreased.

In summary, when there is a high density of states at
Fermi level~i.e., the Fermi level is close to a Landau leve!,
the 2DEG’s Fermi energy increases and the electron den
decreases with an increase in magnetic field. When there
small density of states at the Fermi level~i.e., the Fermi level
is in between two Landau levels!, the 2DEG’s Fermi energy
decreases and the electron density increases. When the
netic field gradually increases from zero, the Fermi ene
and the electron density oscillate with opposite phases a
their zero-field values. The amplitudes of oscillation a
smaller than those predicted by assuming either a cons
electron density or a constant Fermi energy.

C. Tunnel current under an applied magnetic field

In Sec. IV B, we have discussed using a simple model,
mechanism of oscillation of the Fermi energy, and the el
tron density when the applied magnetic field is chang
However, in experiments, we can only measure the tun
current from the 2DEG. Therefore, to analyze measured
sults, it is necessary to relate the tunnel current to the e
tron density and the potential profile in the heterostructu
In a semiclassical picture the tunnel current is proportiona
the product of the electron density, the transmission coe
cient, and the rate at which a single electron confined in
potential well hits the barrier~the attempt rate!. The latter
quantity is equal to the average velocity of an electr
(\/pam) divided by the width of the potential well~propor-
tional to a!. The tunnel current is therefore proportional
the following expression:

Te\N

pa2m
, ~16!

whereT is the transmission coefficient through the tunneli
barrier. The variation in potential across the barrier is smo
and slow~linear inz due to the electric field! compared with
the decay length of the electron wave function in the bar
so the WKB method will give a good approximation for th
transmission coefficient as follows:

T}expH 22E
0

b 2m

h2 S 2
e2N

« r«0
z1EhD 1/2dzJ

5expH 2
4Eh

3/2« r«0A2m
3e2Nh F12S 12

e2N

Eh« r«0
bD 3/2G J ,

Eh5eVb2
e2N

« r«0

~322s!a

2
2

e2Nb

2« r«0
1EF , ~17!

whereEh is the energy difference between the bound st
and the top of the energy barrier.

The tunnel current is proportional to both the electr
density and the transmission coefficient, and is inversely p

s
ts
g a
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portional to the square of parametera. Sincea is approxi-
mately equal to 2̂z&/3, the tunnel current can be regarded
inversely proportional to the square of the distance from
barrier. The current calculated using Eqs.~16! and ~17!
~shown in Fig. 5! follows closely the trend of these thre
factors. When the current is a maximum~minimum!, the
electron density is a maximum~minimum!, the transmission
coefficient~shown in Fig. 6! is a maximum~minimum! and
the distance from barrier is a minimum~maximum!. To un-
derstand how the transmission coefficient is modulated
the magnetic field, we plot the quantityEh in Fig. 6 with the
transmission coefficient. According to Eq.~17! the transmis-
sion coefficient is a function ofEh andN. If N is kept con-
stant the transmission coefficient decreases with an incr
in Eh as the effective barrier height is increased. However
the present case, whenEh increases, the transmission coef
cient increases. This shows that the change in the trans
sion coefficient is determined by the electron-density mo
lation. When the electron density is increased~decreased!,
there is a stronger~weaker! electric field at the tunneling
barrier and hence a smaller~larger! transmission coefficient
In the present case, the oscillation in tunnel current is ma
due to the oscillation in charge density and the charges’
tance from the barrier.

FIG. 5. The tunneling current~arbitrary unit! plotted as a func-
tion of the cyclotron energy. The arrows show the positions
n\vc5EF , wheren51,2.

FIG. 6. The transmission coefficient~solid line! andEh ~dashed
line! plotted as a function of the cyclotron energy.
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In the analysis of Eaveset al.,1 the tunneling current
minima for a fixed bias voltage occur at\vc5EF /n
(n51,2,...). Hickmott2 associates the current maxima wi
the condition (n11/2)\vc5EF (n50,1,...) and thecurrent
minima with the conditionn\vc5EF (n51,2,...). From
Fig. 5, it is clear that the tunneling current extremum poi
does not coincide with the positions predicted by these c
ditions. This indicates that we can use the express
EF /(n1f) with bothEF andf as adjustable parameters
fit the experimental results and obtain an estimate of
zero-field Fermi energy~equal to the value ofEF!. The po-
sitions of the minimum and maximum points of the tunneli
current obtained in our theoretical calculation are listed
Tables I and Tables II, respectively. We can accurately
these extremum positions withf50.19, f50.86, as it is
shown in these tables that the extremum positions calcul
using the expressionEF /(n1f) with corresponding values
of f are very close to the results obtained by the variatio
method. Our results here indicate that the empirical mod
used in Eaveset al.1 and Hickmott,2 which usef50 for
minima andf51/2 for maxima, only provide an approxi
mate fit to the experimental results.

D. Magnetocapacitance

There have been some measurements of the magne
pacitance of 2DEG’s in GaAs/~AlGa!As modulation-doped
heterostructures11,12 and tunneling heterostructures,3 which
have been used to extract the density of states under m
netic fields. Some analyses of the experimental results11,12

have been based on the following equation:

1

C
5

b

« r«0
1

g^z&
« r«0

1
1

e2
dn

dEF

, ~18!

whereg is a numerical constant~0.5–0.7!, ^z& is the average
distance of the charges from the barrier, anddn/dEF is the
thermodynamic density of states. Assuming the charge d

r

TABLE I. Positions of current minima.

Current minima obtained
from Fig. 5

Current minima predicted by
EF /(n1f) with f50.19

andEF517.8 meV

n51 14.87 meV 14.95 meV
n52 8.26 meV 8.17 meV
n53 5.58 meV 5.57 meV
n54 4.13 meV 4.24 meV

TABLE II. Positions of current maximum.

Current maximum obtained
from Fig. 5

Current maxima predicted
by EF /(n1f) with f50.86 an

EF517.8 meV

n50 20.66 meV 20.69 meV
n51 9.5 meV 9.56 meV
n52 6.19 meV 6.22 meV
n53 4.54 meV 4.61 meV
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sity, b and ^z& are constants, the density of states can
easily extracted from the measured capacitance by fitting
experimental results to Eq.~18!. These results are very usef
as it can be used to investigate the scattering of elect
under a magnetic field. As discussed above, in a tunne
heterostructure, the magnetic field can modify the poten
profile in the heterostructure,^z&, and the 2DEG charge den
sity. It is therefore interesting to study how the magneto
pacitance is affected by the changes in these quantities.

The differential capacitance per unit areaC5dQ/dV is
calculated by changing the bias by a small amountdV and
then determining the ratio between the change in the ch
densitydQ anddV. When the charge density is changed it
usually accompanied by a change in the potential pro
throughout the heterostructure and a shift in the bound-s
energy. As a result the small change in the external app
voltage is not equal to the change in the Fermi energy of
2DEG. From Fig. 1, the relation betweendV and dEF is
given as

edV5dEF1dEB , ~19!

wheredEB is the change in the bound-state energy. Hen
the relation between capacitanceC measured and the densi
of statesdN/dEF is given by

1

C
5

1

e2
dN

dEF

1
1

e2
dN

dEB

5
1

Cq
1

1

Cb
1

b

« r«0
, ~20!

whereCq5e2(dN/dEF) is called the quantum capacitance16

andCb is the capacitance due to modulation of the bou
state energy relative to the band edge. The applied magn
field can modulate bothCb andCq and hence it is necessar
to estimate the contribution ofCb to C.

We have determined the capacitance from the result
our numerical calculations of 2DEG charge as a function
bias voltage. In Fig. 7,C is plotted as a function of magneti
field and in Fig. 8 the separate contributionsCq andCb are
plotted. It can be seen thatC is a minimum when the densit
of state at the Fermi level is a minimum and is a maxim
when the density of states at the Fermi level is a maximu

FIG. 7. The differential capacitance per unit area plotted a
function of the cyclotron energy. The arrows show the positions
n\vc5EF , wheren51,2.
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Qualitatively the measured capacitance agrees with the
havior predicted by Eq.~18! assuminĝ z& constant. How-
ever, in Fig. 8, we show that the change ofCb with the
magnetic field is not negligible. The modulation ofCb by the
magnetic field has to be taken into account, if we want
obtain quantitative information of density of states from t
total magnetocapacitance. In Fig. 8, we notice that when
Fermi level is close to a Landau level where the density
states is large,Cq , proportional to the density of states,
much larger thanCb . For the parameters used in the prese
work, Cq is at least 10 times larger thanCb . Therefore in
this regime, change inC is mainly determined byCb , which
is determined by how the bound-state energy responds to
change in the 2DEG charge density. When the Fermi leve
in the middle of two Landau levels~i.e., the density of states
of the Fermi level is small!, Cq andCb are very close in
value from Fig. 8. Therefore, the change inC has two equal
contributions fromCq andCb . In this case, if we analyze th
magnetocapacitance using Eq.~18!, the density of states ob
tained will be reduced by about 50%. These results dem
strate that it is not accurate to obtain the density of state
a 2DEG in a tunneling heterostructure by fitting the mag
tocapacitance with Eq.~18!.

V. CONCLUSION

We have used a simple variational approach to determ
the effects of a magnetic field on the accumulation layer i
III-V single barrier tunneling structure. Based on a simp
model, we can explain using some physical arguments
modulation mechanism of the charge density and the Fe
level. This provides a framework of understanding for a
ries of experiments carried out by our group1 and by
Hickmott.2 We find @considering the InP/~InGa!As hetero-
structure in the numerical calculation# that the charge distri-
bution in the accumulation layer changes with the magn
field. As a result, the distance of charges from the barrier,
Fermi energy, and the electron density oscillates with
changing magnetic field. It is not correct to assume eithe
constant charge density or a constant Fermi energy when
magnetic field is changed. Our calculation shows that
magnetic-field dependence of the tunnel current is mainly
effect of the modulation of the charges’ distance from t

a
r

FIG. 8. The areal capacitanceCq andCb plotted as a function of
the cyclotron energy.
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barrier and the charge density.
Our model provides a theoretical foundation to the e

pirical analyses used by Eaveset al.1 and Hickmott.2 From
the results we find that the oscillatory behavior of the curr
is determined by the position of the Fermi level with respe
to the Landau levels. Therefore, from the current oscillatio
we can estimate the positions of the Fermi level with resp
to the Landau levels. When the current increases with
magnetic field, the Fermi level should be approximately m
way between two Landau levels, where the density of sta
is small. When the current decreases with an increase
magnetic field, the Fermi level is near to a Landau le
where there are a high density of states. From the magn
fields at which the current increases or decreases with fi
we can deduce the range of the Fermi energies at these fi
Since the field-dependent Fermi energies oscillates abou
zero-field value, this range of values give us an estimate
the zero-field value. If the broadening does not smear out
oscillatory structures, the current minima and maxima oc
when the Fermi level is approximately midway between tw
Landau levels. This suggests that the current minima
maxima can be fitted with the expressionB1 /(n1f), where
B1 and f are adjustable parameters. We fit our numeri
results withB1517.8 meV andf50.19 and 0.86 for curren
e
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t
t
,
ct
e
-
s
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l
tic
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ds.
he
f
e
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minima and maxima, respectively, while in Eaveset al.1 and
Hickmott2 f equals to 0. and 0.5 for the minima an
maxima, respectively. This explain why the empirical ana
ses can be used to obtain an estimate of the charge de
and Fermi energy at zero magnetic field.

We have also studied the magnetocapacitance of the
cumulation layer and show that there is a contribution of
charge rearrangement of the accumulation layer to the
pacitance. When charges are added to the 2DEG, the b
state energy is modified as well as the potential profile. T
effect contributes to the total capacitance. The change in
bound-state energy depends on the density of states a
thus modulated by the magnetic field. The contribution
this effect to the magnetocapacitance of the 2DEG is
negligible. As a result the effect of the density of states of
2DEG on the magnetocapacitance has to be determine
some model calculation and cannot be analyzed using
approach used by Weiss, Klitzing, and Mosser.11
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