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Metamagnetic transitions in strongly anisotropic antiferromagnets are investigated within a quantum me-
chanical theory of correlated electrons. We employ the Hubbard model with staggered magnetizationg
an easy axig in a magnetic fieldH|e. On the basis of the dynamical mean-field the@MFT) this model is
studied both analytically and numerically. At intermediate couplings the self-consistent DMFT equations,
which become exact in the limit of a large coordination number, are solved by finite temperature quantum
Monte Carlo techniques. The temperature and magnetic-field dependence of the homogeneous and staggered
magnetization are calculated and the magnetic phase diagram is constructed. At half filling the metamagnetic
transitions are found to change from first order at low temperatures to second order neagltterigerature,
implying the existence of a multicritical point. Doping with holes or electrons has a strong effect: the system
becomes metallic, the electronic compressibility increases, and the critical temperatures and fields decrease.
These results are related to known properties of insulating metamagnets such gsnieBlHic metamagnets
such as UPdGe, and the giant and colossal magnetoresistance found in a number of magnetic bulk systems.
[S0163-182697)03446-3

. INTRODUCTION netic field H||le the staggered magnetization vanishes in a
phase transition, the so-called metamagnetic transition. This
The concept of antiferromagnetic order was proposed inphase transition may be of first or second order and several
dependently by Nei' and Landai. Both sought to explain  of these insulating systems even show both: the first order
the, at that time, puzzling low temperature behavior of thephase transition becomes second order for temperafures
magnetic susceptibility of certain materials: of metals sucthigher than the tricritical temperature. At the metamagnetic
as Cr and Mn in the case of Mk and of insulators with a transition the homogeneous susceptibility has a discontinu-
layered structure such as the chlorides of Cr, bivalent Fe, Caty. Apart from the materials mentioned above, there are also
and Ni in the case of Landau. While Blecorrectly suggested strongly anisotropic metamagnets that are conducting, e.g.,
the existence of interpenetrating sublattices in Cr and Mruranium-based mixed system$SmMn,Ge,,” and probably
with opposite magnetizatiohLandau equally correctly pre- also TbRh_,Ir,Si,.2 We note that the term metamagnetic
dicted the existence of stacks of ferromagnetically orderedransition has been adopted also to those systems where the
layers whose magnetization alternates from layer to Iayer. homogeneous susceptibility as a function of the magnetic
both cases the total spontaneous magnetization adds up field shows no discontinuity but only a maximum. With this
zero. Assuming the interlayer coupling to be weak, LaRdaudefinition many different systems become metamaghets.
argued that a relatively small magnetic field would be suffi- Theoretical investigations of metamagnetic transitions
cient to modify the mutual orientation of the moments inand tricritical points, began with the work of Landau, who
each layer. This leads to deviations from the linear depenedescribed multicritical behavior within his phenomenological
dence of the total moment on the field, i.e., to an anomaloutheory of phase transitiort8.Clearly, a genuine understand-
increase of the susceptibility, and finally — at high fields — toing of the origin of tricritical points, etc. requires investiga-
a saturation of the magnetization. Such a behavior was indons on a more microscopic level. In the case of strongly
deed observed by Becquerel and van den Hanmethe anisotropic metamagnets those investigations where sofar re-
carbonate of Fe and Mg at low temperatures. Not beingtricted to the insulating systems, such as FeChey are
aware of Landau’'s or Ne's work they could not explain usually based on the Ising model with antiferromagnetic and
their observation in terms of ferro- and paramagnetism, anéerromagnetic interactions. In mean-field theory Kincaid
therefore suggested for it the name metamagnetism. and Cohel? showed that the tricritical poinTCP) may
These carbonates and other systems like Fe@hd separate into a critical endpoif€E) and a bicritical end-
Dy,Al:0;, (DAG) (Ref. 5 belong to a class of insulators point (BCE) (see Fig. 1. Numerical calculatiors~*®beyond
where the valence electrons are localized at th¢Mgeand  mean-field theory do not find this behavior. Instead S€lke
Dy ions, respectively. The resulting local moments order anobserved anomalously strong noncritical fluctuations in the
tiferromagnetically and are constrained to lie along an easyicinity of a BCE. Experimentally a scenario similar to that
axis e, implying a strong anisotropy such that a spin flopshown in Fig. 1b) was reported for FeBr!’ Here magneti-
transition cannot occur. Under the influence of a large magzation measuremerfs merely showed weak anomalies
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a) b) netic behavior, i.e.gx/dH>0, up to saturatioR® However,
q CE.... this is entirely due to the convex shape of the density of
TCP H ‘\@K‘ states ind=1 and occurs even & =0.
r In general the Hubbard model in the form of Ef) can-
) BCE not describe metamagnetic behavior. The Hubbard model is
AF isotropic in spin space and hence the antiferromagnetic phase
' described by it is isotropic, too. Consequently, any finite
magnetic fieldH will orient the staggered magnetizatiam,
T T T T perpendicularto itself. Real antiferromagnets are, however,
never isotropic in spin space: the relativistic spin-orbit inter-

metamagnet anb) the Ising model in mean-field theory with only actionL -S, whereL andS are operqtors for the orbital an-
weak ferromagnetic interaction. Solid lines: first order transition,gular momentum and spin, respectively, transfers the anisot-

broken lines: second order transition; AF: antiferromagnetic phasdOPY Of position space (caused by the broken rotational
P: paramagnetic phase. symmetry of the crystal lattigeinto spin space, producing

one, or more, easy axes which constrain the sffins.an

within the antiferromagnetic phase, while recent experiment§Xtérnal magnetic field such a constraint leads to metamag-
on the specific hedf, neutron scattering and Faraday con- Netic transitions, with or without a spin-flop depending on
trast microscop* seem to provide evidence for aitical the strength of the spin-orbit interaction, as explained in Sec.
line CE — BCE. . , _ , . .

The conducting systems such as the uranium-based mixed A microscopic theory of strongly anisotropic antiferro-
system&® were hitherto described by the semiphenomeno-magnets should ultimately be able to take into account the
logical theories of Wohlfarth and Rhod&$or metamagnetic  Orbital degeneracy of the electrons and, by including the
phase transitions in paramagnets, and of Moriya and USamirelativistic spin-orbit interactior. -S in the Hamiltonian, to
for the coexistence of ferro- and antiferromagnetism in itin-generate an anisotropy axis within the model itself. At
erant electron systems. Anicroscopic understanding of present, this is technically not possiBfeTherefore we take
metamagnetism in these systems requires a fully quantuifie existence of the anisotropy axi$or granted: we employ
mechanical treatment of itinerant, correlated electrons. Sucthe Hubbard mode(l) and constrain the magnetic moments
an investigation, based on a Hubbard model with easy axis ito lie alonge|H. By this approach the kinetic energy and the
a magnetic field, was started by us recently for the insulatingcoulomb interaction are treated microscopically, whereas the
systems, and some results were reported in Ref. 24. We witielativistic corrections are not. We note that the relativistic
now present details of our calculations and further results focorrections are of the order of 18 eV and are thus small
the insulating case. Since the above model is the simplestompared to energies of the order of 1 eV for kinetic and
microscopic model for insulatingnd metallic, spin-localized Coulomb energy. Therefore the existenceeaind the corre-
and bandlike antiferromagnets with easy axis in a magnetidation physics described by the Hubbard modglare quite
field, we will now also investigate the metallic regirffiite  unrelated. This justifies our approach where the existence of
doping and consider the possibility of insulator-metal tran- e is a priori assumed®
sitions in a magnetic field.

In Sec. Il the underlying model, the Hubbard model with
easy axis, is introduced and its validity is discussed. Thenthe [II. DYNAMICAL MEAN-FIELD THEORY  (d—x)
dynamical mean-field equations which are used to investi- i . ) .
gate the correlation problem all the way from weak to strong For classical spin modele.g., the Ising modgit is well
coupling, as well as the gquantum Monte Carlo techniquenown _thgt the Weiss molec_ular f|<_eld theory become_s exact
employed to solve them, are discussed in Sec. IIl. The resuli§ the limit of high spatial dimensionsd&<). For lattice
obtained for a half filled band and for finite doping are pre-€lectrons this limit was introduced only recenitfjwith the
sented in Sec. IV and Sec. V, respectively. A discussion oProper scaling of the hopping element in Ef), t=t*/\Z
the results in Sec. VI closes the presentation. (Z = number of nearest neighbgyst leads to a quantum
mechanical dynamical mean-field theof®MFT); for re-
views see(Refs. 31 and 3R The interacting lattice model
then reduces to a self-consistent single site problem of elec-

The Hubbard mod&t is the generic microscopic model trons in an effective mediurf?,which may be described by a
for itinerant and localized antiferromagnetism in correlatedcomplex, frequency dependefite., dynamical self-energy
electron systems. For nearest-neighbor hopping of electrons’(w) . This problem is, in fact, equivalent to an Anderson

FIG. 1. Schematiti-T phase diagram df) a typical Ising-type

Il. HUBBARD MODEL WITH EASY AXIS

in the presence of a Zeeman term it has the form impurity model complemented by a self-consistency
condition34-36
A At oA A A - There are two limits in which the DMFT recovers well-
H= _tN%:U CigCioT UZ NN — IE; (u+oH)ni,, known static mean-field theories:
' ' (1) (1) Weak couplingin this situation the effective medium

may be approximated by static field which is generated by
where operators carry a hat. From the exact, analytic solutiothe averageddensities of the electrons. This leads to the
in dimensionsd=1 the (paramagneticground state of this Hartree-Fock approximation, e.&(w)=Un_ in the ho-
model at half filling =1) is known to exhibit metamag- mogeneous case, which is expected to give the qualitatively
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correct behavior at weak coupling. The averaged densijes G''=—(y!y!*)=0. From now ont*=1 will set our en-
have to be determined self-consistently. ergy scalé‘?3 i.e., the total bandwidth di°(e) is equal to 4.

(2) Strong coupling at half fillingHere modek1) can be  The Dyson equatiofi2) introduces the lattice into the prob-
mapped onto the antiferromagnetic spin 1/2 Heisenberdéem. It couplesA and B sublattices and can be solved by a
model for which the limitd= becomes equivalent to the simple integration, even analytically for the above DOS. The
Weiss molecular field theory. functional integral3) however is highly non—trivial since it

The results obtained in these two limits will be presentedcouples all Matsubara frequencies. Georges and Kdftliar
and compared to the results for intermediate coupling, ind Jarreff® realized that the actioff) is equivalent to that
Sec. IV. of an Anderson impurity model, and can therefore be treated

During the past few years the DMFT has provided valu-by standard techniques developed for this model. Here we
able insight into the physics of the Mott-Hubbard employ a finite temperature, auxiliary field quantum Monte
transitior>5%7and of transport properties of strongly corre- Carlo (QMC) method™**° In this approach the electron-
lated electron systeni&.The effect of the magnetic field electron interaction is formally replaced by an interaction of
in Eq. (1) was previously studied at half filling*'In par-  independent electrons with a dynamical, auxiliary field of
ticular, Lalouxet al*® investigated the magnetization behav- ISing-type spins. To this end the interydl 3] is discretized
ior of the paramagnetic phase. They found that, at stron§to A steps of sizeAr=p/A. Equivalently, there is a
enough interactiot, the magnetic field can trigger a metal- high energy cutoff of Matsubara frequencies, i.fu,|
insulator transition. Since on the insulating side the magne= 7T|2n+1[<w@/A7, n=—A/2,... Al2=1. All quantities
tization of the local moments is enhanced the metal-insulatdfave to be extrapolated tbr— 0. The computer time grows
transition shows up as a discontinuity in the susceptibilitylike A%x<p®, restricting A to values below~150 and
Hence this transition is also referred to as a “metamagneti@=<50...70 on present supercomputers. For small
transition.”? Giesekus and Brantittook into account also (A =<20) one can perform a full enumeratiénstead of the
the AF order. They considered the isotropic case where th¥lonte Carlo samplingof all 2* possible configurations of
field orients the staggered magnetization perpendicular to ithe auxiliary field. We never encountered a minus-sign prob-
self, such that a metamagnetic transition cannot occur.  lem, hence no further approximatiofige the “fixed-node”

To investigate the metamagnetic phase transition from amethod were necessary.
antiferromagnet to a paramagnet we consider a bipartite The self-consistency is obtained iteratively as follows: the
(A—B) lattice and allow for symmetry breaking with respect Green functiorG (omitting indices is calculated from some
to spin oe{l,]}={+,—} and sublattice «ac{A,B} initial self-energy, e.g.%x=0, by the Dyson equatioK2).
={+,—1. The self-energyt?,=3(iw,), with Matsubara Now the new Green functio® ., is determined by solving
frequenciesw,=7T(2n+1), n=0,+1,+2, ... (using the EQ. (3) with the QMC method. Finally, the calculation of the
conventionfi=kg=1), and the Green functio’, are de- NeW self-energy no,== — Gq,+ G ' completes one itera-

termined Se'f-consistent'y by two sets of Coup|edti0n. To imprOVe ConVergence in the Symmetry broken case
equations>3 G, and Gg are updated by the Dyson equati¢?®) after
every QMC simulation for one sublattid&q. (3)]. In the
% NO(e) symmetry broken phases, typically 1@0 iterations with
Gon= J de ———, (2) 20000 MC sweeps are necessary to obtain a convergence of
—E ZgnT €120,y ~107%in 3(iw,). The calculation of a magnetization curve
” N at =50 takes about 100 h on a Cray-Y-MP. Close to a
Gan= _Wrrn‘/’on)AL,- 3 phase transition the convergence is much slower and the sta-
tistical errors are larger due to strong fluctuations, in particu-
] i i ) ) lar in the case of a second order phase transition. These
operatorO in Eq. (3) is defined as a functional integral over effects limit the accuracy in the determination of the critical
the Grassmann variables *, with values of the model parameters, e.g., the critical magnetic
1 field (see Sec. IV ¢ At large U values U>4) the Monte
(O)p = _J D[ ] D[ * 1O[ i, y* JePal¥¥* 261 (4  Carlo sampling becomes more and more inefficient due to
« L, “sticking” problems, i.e., there are twr more minima in
the free energy and the single spin-flip algorithm is no longer
able to transfer between them.
From the resulting Green functions we calculate the den-

Herez), =iw,+p—27,, and the thermal average of some

an?

in terms of the single site action

Ap=2 U5 (GL) T30 W0n sities and the homogeneous and antiferromagnetic magneti-
o0 zation:
B
_Ufo dT‘/’?(T)‘ﬂT(T)l//f(T)l//L(T), (5) nw::H_TE GY,,,
n

whereZ,, is the partition function, antl®(¢) is the density 1
of states(DOS) of the non interacting electrons. As the re- m==>, onh,,,
sults do not much depend on its precise form we choose a 240
half-elliptic DOS NO°(e)=[(2t*)?—€?]Y%(27t*?). The
constraintmg||H is enforced by setting the off-diagon@h Mu= EE
. . . St aUnaU' (6)
spin spacg elements of the Green function equal to zero: 2%
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Since we are interested in the question whether the systethe paramagnetic minimum becomes the lowest, such that a
is insulating or metallic we also determine the electronicfirst order phase transition takes place. The reason for the
compressibilityx,=dn/du. It was calculated both by nu- occurrence of a first order phase transition is that, within the
merical differentiation ofn(w) and from the two-particle (statio Hartree-Fock approximation, the term becomes
correlation functiongsee Appendix A Both results agree minimal for largest(statio local moments. Therefore pure
within the statistical errors: however, the latter method isantiferromagnetic and ferromagnetic order are both energeti-

much more time consuming. cally favored. Mixed states witm=0 and mg# 0—which
would occur in the case of second order phase transitions—
IV. RESULTS FOR HALF EILLING have a small local moment, i.e., a high Hartree-Fock energy,

on every second site.
To calculate the magnetization curves the self-consistent
For weak coupling U <t) we expect the Hartree-Fock Hartree-Fock equations are obtained from the minimization
approximation to give an, at least qualitativéfycorrect pic-  conditionsd€Q2/dmg=0 anddQ/dm=0:
ture of the metamagnetic phase transitions, especially of their
order. Within thisstatic mean-field theory electronic corre- U —MgsSgr e€) 1
mS‘_EE f deN°(€)

lations are neglected and the interaction is decoupled as = U 211 efer )’
~ - HF €+ > M

NioNi— o= Nio{Ni— ) (MM —= (i) (M) (D) 12
Note, that while for dmg|m the Fock term vanishes,
(clici|)=0, its presence is essential in the casg. m (see . 1
Appendix B. We confine our investigations to states with m=2 J deN (E)Um- (13
homogeneous sublattice magnetization as described by the 7

ansatz, These equations are solved numerically by iteration and in-
tegration according to Newton-Cotes rules.
(Ricwo)= E(m_ om+aomy). (8) Within the_ -Har.tree-Fock apprqximation the metamagnetic
' 2 phase transition is found to be 6fst order for all T, even
Applying this Hartree-Fock decoupling scheme one obtaindor U=4 ( = bandwidth); see Figs. 2 and 3. Hence a tri-
the effective, one-particle Hamiltonian, critical point never occurs. In this parameter range the quan-
tum Monte Carlo calculations, however, already show sec-
R o U R ond order transitions in a broad range of temperat(ses
Hue= E tijcfacngr E E(n—am—aamsanig Sec. IV Q. Hence the Hartree-Fock solution can neither de-
NN.o aleaa scribe the experimental situation, where tricritical points are
R 1U known to occur, nor the correct behavior of the model for
—(utoHn, =5 > [n?—(m+amgy?]. intermediate values df .
aleao To estimate the anisotropy energy associated with the
9) easy axis we compare the Hartree-Fock energies of the con-
. e . . figurations withmg||m andmgL m (for details see Appendix
This Hamiltonian is diagonalized and the one-patrticle energ) At half filling and for U equal to the bandwidth, the

gies €, are calculated as difference between the free energy of these configurations

5 U does not exceed a few percent of the bandwidth, @€10~2
‘€, =sgr(e) \/ €+ gmst) - O'(EI'TH‘ H

(10) eV). Then the spin orbit interaction, which can be relatively
where sgné) denotes the sign of the noninteracting electron

strong,0(10 teV), indeed leads to a strong anisotropy, i.e.,
energye. In the antiferromagnetic phase the DOS has a gap,

an easy axi®, along whichmg, is rigidly fixed.
Metamagnetic phase transitions in itinerant, metallic sys-
of width Umg, with square root singularities at its edge.
From the one-particle energig40) the grand potential

ms were hitherto described by the theory of “itinerant elec-
tron metamagnetism(IEM). In the case of an antiferromag-

per lattice site L being the number of lattice sitess ob-

tained directly as &= — 1Un)

A. Weak coupling

netic system in a magnetic field Moriya and Us&mi
proposed a Landau theory with free energy,

1 1 ~ - I:(mmt)=im2+imz+am“+a’m4+bm2m2
Q/L=-ginz=- EZ f deNO(e)In(1+ e~ Aleo 1) Y e 2y st st
7 , +b’(m-mg)?—Hm, (14)
Un
+ Z(m§t+ m?) — R (1) wherey,, and x4 are the homogeneous and staggered sus-

ceptibility, respectively, and the coefficierdsa’, b, andb’
The potentiak) has two shallow minima, one corresponding are the fourth-order derivatives of the noninteracting free en-
to the paramagnetic statm 0, mg=0) and the other to the ergy. Within the IEM theory the Coulomb interaction is
antiferromagnetic stater(~0, mg#0). By applying a suffi- treated in random phase approximation. The corresponding
ciently strong magnetic field to the antiferromagnetic statesusceptibilities are given as
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andm as assumed in the IEM Landau theory is not possible
in general(for details see Appendix )C
B. Strong coupling

In the limit U>t the Hubbard model at half fillingn(= 1)
is equivalent to an effective Heisenberg spin model,

- J A A A
Ares= 5 2 §-§-2HX §, (16)

where the antiferromagnetic exchange coupling is obtained
in second order perturbation theoryzs 4t?/U. Spin opera-

tors are defined a§=3(n;;—n;)), S'=3(cf.ci,+cf ciyp),

|
o8r | == T=0.90 and &= (i/2)(c}, ¢, — ¢! ¢iy). For this model the Weiss
Y TR molecular field theory becomes exactdrr yielding, un-
m 0.6 [ o — T-0.40 der the constraint of uniaxial magnetization, the same results
st e ——— T=0 as for the Ising model. For Ising models metamagnetic phase
0.4 bl transitions are well-studiett.In the case of a purely antifer-
- i romagnetic nearest-neighbor couplifgee Eq.(16)] the
0.2 I bl b) . phase transitions are of first order onlyTat 0, but of sec-
i Pl ond order at allT>0. The transition line in théd-T phase
o Ll— i 1 L s L diagram has indeed the form shown in Figa)l but with a
0 0.2 0.4 0.6 tricritical temperature off,=0. This behavior can be under-

H stood already within Weiss molecular field theory, where the

o L . round state ener er site is
FIG. 2. (a) Magnetizationm vs magnetic fieldH in Hartree- 9 9y p

Fock approximation folJ =4 at different temperatureb showing J*

metamagnetic behaviotb) Order parameter for the metamagnetic E(m,mg) = g(mz_ mit) —Hm, 17
phase transitiorithe staggered magnetizatjomg; vs H. The first )
order phase transition is clearly seen. with
4t*2
* — —

1 1 1 1 J*=7J= U (18

=5 o=, as

XM Xm Xst Xt Minimization with respect tan andmg; shows that the fully

polarized antiferromagnetr;=1) has the lowest energy for
where x2, and x%, are the respective susceptibilities of the 1<J*/4, whereas the fully p:)larlzed ferromagnet< 1) is
noninteracting system. The random phase approximation fdf"€rgetically favored for >J*/4. Thus, by applymg a mag-
these susceptibilities is equivalent to the Hartree-Focietic field a.ﬁrst order transition is induced. Ht=_J /4 the _
scheme described above. Therefore we may ask whether \wi2tes are highly degenerated since all magnetic phases with
obtain the IEM in the limitU<t (where m,my<1). The _m+_mst=1 have the Same energy. For-0 this d_egeneracy
answer is not straightforward since the prefactors in the exS lifted by entropy which disfavors fully polarized phases.
pansion(14) depend, for example, on the lattice structure, 1 herefore the first order trar_15|t|on a=o0 |mmed|at§aly_ _be—
On bipartite lattices, as discussed here, they diverge foromes second order far>0, i.e., T;=0. Indeed, a tricritical

T—0. Thus an expansion of the free energy in powensigf point at afinite temperature is only obtained in the case of
spin interactions which simultaneously favor both fully po-

larized antiferromagnetic and ferromagnetic configurations.
In particular, adding a ferromagnetic interactidhbetween
next-nearest neighbo(BINN’s) on a simple cubic lattice sta-
bilizes both ferro- and antiferromagnetic ordér.

While in the case of effective spin models a ferromagnetic
NNN coupling term is introducedd hog simply to obtain
the first order phase transition, this term naturally arises if we
expand the strong coupling perturbation series of the Hub-
bard model taD(t*/U?). However, besides thi¥ term there
also appear additiondbur-spin terms. For the hypercubic
lattice the effective Hamiltoniah ¢ read$’

- J ~ )
Hetr=— 7 %}I Qij+7

0.3

0.2 |

0.1

2 Qi+7”,i+7‘
i #E*+r
FIG. 3. H-T phase diagram for different values dfin Hartree- t4

Fock approximation. All phase transitions are of first order. Below +—AD (Q1Qa4+ 014Q05— 018Q0), (19
the curves the antiferromagnetic phase is stable. ud o
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2zt 0.15 —
J=4 U+BU3 , (20 s
------ T=1/12 z
t4 0.10 | --—-—- T=1/16 / : -
J :4EC' (21) m g | :
|
Pl
Here 7 and 7’ are lattice vectors connecting a site to Zis 0.05 & i dlx .
neighbors, and] represents a plaquette. Each plaquette is 4’/ e
counted only once: the four sit¢4,2,3,4 represent its four [ _/_/9) (a)
corners in clockwise or anticlockwise order. The constants 0 —-—-‘ie-i--'j'* : . :
A, B, andC depend on the lattice, and the Hermitian opera- 0.50 J
torsQ;; are definedas BT N ]
0.40 | e T 4
. Lo 1 - i 8 ]
Qij= —2(3'51—2)- (22) 0.30 RN .
my [ § ' :

The plaquette contribution competes with the ferromag- 0.20 - x : : ]
netic NNN term (') and drives the system to second order 0.10 _ ------ T=1/24 / : i ]
phase transitions. For the hypercubic lattice the plaquette T - T=1R2 i : b)
contribution is stronger than the ferromagnetic NNN term, o .

L L 2
yielding second order phase transitions evenTer0. The 0 0 0.04 0.08 0.12
same is true for the Bethe lattice where, in fakt<0 (for
details see Appendix D Thus in strong coupling perturba-  FIG. 4. QMC results, including error bar&) for the magneti-
tion theory the metamagnetic phase transition isefond zationm(H) as obtained for thel=> Hubbard model with easy
order even at EO. axis at half filling andU=2 (= half band width for different
temperaturesb) Staggered magnetizationg(H) for the two tem-
peratures belowly, .

U=4 A

C. Intermediate coupling

The perturbation analysis described above demonstraté"§mp"C""_tGdZ-4 While the error bars do not permit an unam-
that the order of the metamagnetic phase transition dependdguous interpretation it seems that the order parameter de-
on the Coulomb interactiod in a delicate way. For smal) creases bytwo consecutive transitions: the first one—
the phase transition is purely of first order and for laggef ~ Separating an AF phase with~0 (AF,) and an AF phase
second order. Apparently, the tri- or multicritical point link- —
ing these two regimes must be found at intermediate cou- 03 | a) -
pling. In this important, nonperturbative regime quantum E% ‘§~\
Monte Carlo techniques are employed to solve the problem CEY
numerically without any further approximatiéfiThe results 0.2
for the magnetizatiom(H) and the staggered magnetization ' BCE ° \
mg(H) are shown in Fig. 4 fotJ=2. Below the Nel tem- H I
perature a metamagnetic behavior is clearly seen: for small \
magnetic fields the magnetization is exponentially sup- \
pressed with temperature. Then, towards the metamagnetic i ! '[
phase transition, the susceptibility increases drastically and , ,
becomes maximal at the critical field,. Second order
phase transitions are observed for HM<T\=0.114 03 b) )
+0.006, whereas the transition is of first order at lower tem- I
peratures, i.eT<1/16. At the phase transition the order pa- =
rameter, i.e., the staggered magnetization, vanishes. From the 0.2 F w ’s\e U=3
curvemg(H) the critical fieldH. and also the order of the H e

\

phase transition is determined by a square root fit for second \
order transitions and by the mean of the hysteresis for first 01 E‘E‘EU=2 \
order transitions. | <

Using these values df; the phase diagram, for different
values ofU is constructedFig. 5). The casdJ =4 (= band- 0 0 ' o 65 0 '1'6 5 0 '15 %'20 -
width) and half filling, Fig. %a), was already discussed in ’ ' T ) ’
Ref. 24° It is shown here to illuminate the changes occur- g, 5. H-T phase diagram for thé= Hubbard model with
ring under variation olJ. This phase diagram shows both e5sy axis at half filling as constructed from the QMC results for
first order(for T<1/16) and second order phase transitions m(H) andmg(H), (a) U=4, (b) U=2,3. Second order phase tran-
(for 1/8<T<Ty~0.2). At intermediate temperatures, i.e., sitions are indicated by dashed lines, first order transitions by solid
1/16<T<1/8, the field dependence is rather morelines. Curves are guides to the eye only.

\ -
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FIG. 6. Neel temperaturdy (circles and (tri-)critical tempera- FIG. 7. Particle numben vs chemical potentigh as calculated

ture T (diamonds vs U. Above Ty the system is paramagnetic. In y grand canonical QMC simulations in the antiferromagnetic
an external magnetic field the order parameter vanishes in a secopghase foru=4.

order metamagnetic phase transition Ta<T<Ty and in a first

order transition folT<T,, respectively. . . . .
commensurate antiferromagnetic phase remains stable in the

with m>0 (AF,)—is of first order or corresponds to an parameter regime under consideratiofi=(1—n|<0.075,
anomaly, and the second one, at higher fields, is of seconfi>=1/32). Incommensurate spin density waves become
order. Taken together the results seem to correspond to ttséable only in a small density regime at lower temperatfftes.
scenario of Fig. (b). For U=2 phase transitions of first Another possible instability of the antiferromagnetic phase
order are found forT<1/16 and of second order for away from half filling is phase separation, found within the
1/14<T<Ty=0.114+0.006[see Fig. ®)]. Here, the tem- Hartree-Fock approximation and in second order perturba-
perature regime with two consecutive transitions, as obtainetion theory at constant order parameteiat0.*° However,
for U=4, has disappeared or has become very small: thet least forT=1/16 we do not observe phase separation since
scenario is similar to Fig.(&). The phase diagram fd& =3,  the electronic compressibility,=dn/du is finite and posi-
also displayed in Fig.®), shows some features of the phasetive (see Fig. 7.
diagram in Fig. 1b) or U=4, respectively. In particular one  Upon doping the magnetization curve changes consider-
observes a maximum in the second order phase transitioghly and hardly indicates the existence of a metamagnetic
line and dlfferent'slopes for the second and first order “”e,abhase transitiorfFig. 8. This is due to the fact that in the
the crossover point. However, the numerical data do not inpetallic phase there is no longer a “Slater gap” at the Fermi
dicate the existence of two consecutive transitions. Thus thigergy- therefore the homogeneous susceptibility is not as
E(ha?ssngla](gbr)am lies in between the scenarios depicted in Figgyongly affected by the antiferromagnetic order as at half
To study .the influence of the interactiah qualitatively filing. The phase transition is, however, clearly seen in
J " , X mg(H). From themg vs H curve the phase diagra(fig. 9)
and gquantitatively, it would be desirable to calculéteT . ; " L
is constructed. The metamagnetic phase transition line is

hase diagrams at even larger valuetlofUnfortunately the . )
guantum I?/Ionte Carlo appr?)ach fails in this case dale to th(Ijound at lower temperatures and fields compared to half fill-

problem of “sticking” as mentioned in Sec. Ill. Therefore, M9 _ _ . L
we concentrate on the crossover from the intermediate cou- ASsociated with the metamagnetic phase transition is a
pling regime with firstand second order transitions to the change of the electrical resistivity. To study this important
weak coupling regime with first order transitionsly. The effect we calculated thiE dependence of the electronic com-
results for half filling are collected in Fig. 6 showing the  pressibilityxe. This quantity indicates whether the system is
dependence of two transition temperatures: the top curve igetallic or insulating. For an insulatad, vanishes folT=0
the Neel temperaturd’y at H=0 (taken from Ref. 45 The and is exponentially small for temperatures lower than the
lower curve corresponds to the temperatlitewhere the antiferromagnetic gap. In a Fermi liquid, on the other hand,
second order phase transition line terminates, i.e., it repre<.(T=0) is finite since it is proportional to the density of
sents either the tricritical or the critical temperature of Fig. 1.states at the Fermi level and hence proportional to the Drude
For temperatures beloW, a first order metamagnetic phase conductivity.
transition is observed in an external magnetic field. Figure 6 The results fork, as a function of magnetic fieltl at
reveals the crossover from intermediate coupling with firsty=2 are shown in Fig. 10. At half filingé=0, the com-
and second order phase transitions to weak coupling withressibility is seen to increase with. This effect is particu-
first order transitions only: abl decreases the regime with |5, pronounced at low temperatureE= 1/25) wherex, is
second order phase transitionB.T<Ty) shrinks, while  ggsentially zero at low fields and risessg~0.3 above the
the temperature regime for first order transitions remaingjticq| field, indicated by an arrow. Hence the metamagnetic
nearly unchanged up t0~2. phase transition is a transition from an antiferromagnetic in-
sulator to a metal with homogeneous magnetization. At
higher temperature§,=1/14, the compressibility is always
In the preceding sections metamagnetic transitions werénite due to thermal excitations. We note thatlat 4, when
investigated in the case of half filling. Beyond half filling the the electrons are essentially localized, remains small

V. RESULTS AWAY FROM HALF FILLING
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L H |
o0k ~°7 3=0 : i i of itinerant electrons, the Hubbard model with easy axis.
T 8=0.05 il b)) This approach is fundamentally different from previous in-
0 , ! , i - . vestigations since we identified and explicitly evaluated the
0 0.04 0.08 0.12 simplestelectronic i.e., fully quantum mechanical, correla-
H tion model that is able to explain the conditions for meta-

magnetism. For this electronic model we employ the dy-
FIG. 8. Change of@ the magnetizatiom(H), and (b) the  amjcal mean-field theory and show unambiguously that at
staggered magnetizationy(H) with doping forU=2 atT=1/16.  jntermediate coupling the phase transition is of first order at
o low temperatures and of second order near thel empera-

(0<k¢<0.03 atT=1/8; not shown in Fig. 10even above 1y j.e., the order of the phase transition changes.
the critical field, indicating an insulator-to-insulator transi- ¢ approach allows us to describe a broad range of
tion. The situation is very different at finite doping qgualitatively different metamagnets within a single model.
(6=0.05). Here Fig. 10 shows that, decreasesvith H by  \hile at present this simple model does not permit any
approximately 50% as the system goes through the metgpantitative calculation of material properties it does de-
magnetic transition from an antiferromagnetic metal to ascripe itinerant and localized, metallic, and insulating meta-

metal with homogeneous magnetization. magnets and the crossover between them. This crossover is
related to two fundamental experimental parameters, i.e.,
VI. DISCUSSION pressurdrelated toU/t which decreases with pressurnd
doping.

Metamagnetism in strongly anisotropic antiferromagnets a; half filling the Coulomb interaction leads to a cross-
has been of interest to various communities in classical st&yer from a band insulator to an insulator with localized
tistical mechanics for a long time already. In our paper Weyoments. Thereby the phase transition changes from first
showed that this phenomenon can be derived from a mod@jger for the bandlike metamagnet to second order for the

localized one. Only at intermediate couplings are both first
R 5-0.025 and second order phase transitions observed as found in ex-
o8 pr 52005 | periment. TheH-T phase diagram obtained for an interme-
Bo-F o 80075 diate Coulomb interaction=4 = bandwidth is strikingly
g e similar to that of FeBy (Refs. 17—20 and 50or the Ising
02 1 rm F R N model with weak ferromagnetic interactioh'>
\1 ] We note that in these insulating systems the applicability

- A of a theory which becomes exact in the limit of a large co-
01 F 1 ordination number is justified by the fact that the AF super-
exchange involves 20 equivalent sites in the two neighboring
iron planes’! At smaller values of the Coulomb interaction
0 —_ (U=2) the temperature regime with second order transitions

0 005 010 0.15 0.20 shrinks and the two step phase transition becomes less pro-
T nounced, reproducing the scenario of Figg)las observed

FIG. 9. Change of théd-T phase diagram with doping for ~ €.0-, in FeC}.®
U=4. QMC data are shown fo$=0.025, 0.05, and 0.07%For The calculations off half filling allow us to investigate the
8=0 see Fig. fa).] Second order phase transitions are indicated byproperties of metallic metamagnets, such as the uranium-
dashed lines, first order transitions by solid lines. Fer1/32 the  based mixed systemi$, for which a theory in terms of a
numerical error does not permit the determination of the order otcorrelated electron model is mandatory. In contrast to the
the phase transition unambiguously. insulating case, the metamagnetic phase transition in the me-
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tallic system is hardly visible in the magnetization curve. o H
This is because there is no longer a gap at the Fermi energy.
Quite generally, the critical temperatures and fields decrease v
upon doping. fox=1 1 for x=4 4, - (A2)
The metamagnetic transition is accompanied by pro-
nounced changes in the conductivity of the system. The Hub-
bard model with easy axis can qualitatively describe several
scenarios: Herex=H andx=Hglead to the ferromagnetic and antifer-
(i) In the insulating, localized regiméJ=4 at half fil- ~ fomagnetic susceptibilities= « to the electronic compress-
ing) a magnetic field causes a transition from an antiferrodbility, and x= ucpy to the charge density wave susceptibil-

magnetic insulator to an insulator with homogeneous magnéty- From the two self-consistency equatiof® and(3) one
tization. obtains two corresponding equations for the derivative of the

(i) At lower U values (e.g., U=2) at half filing an Green function with respect to the varialeThe derivative
insulator-to-metal transition occurs at the magnetic fieldof the functional integra(3) gives
where the AF order disappears. Such a phenomenon is ob- "
served, for example, in the AF phase of,L3Ca,MnO3, dGn TS paoe’ o'

a’',n’

a Mcbw

where the resistivity is found to change by several orders of IX nn',n'nYan’ (A3)

magnitude®® This is referred to as “colossal’” magnetoresis-

tance. We note that Lia ,Ca,MnO3; shows no strong anisot- whereT is the local two-particle correlation function,

ropy. Therefore our approach can only describe the general

features, in particular the existence of the insulator-to-metal paoe’ = P \I,g',q,o'f)_alm,(q,g Pk
2 anl a/r'l2

transition. nyng,n, ang * an, any ¥ an,
(iii) Away from half filling a magnetic field induces a o ox
transition from a metallic antiferromagnet to a metal without X<‘Pani\1’ané>' (A4)

staggered moment. Here the compressibility changes by less
than an order of magnitude, e.g., about 50% W2, The quantity yoX=(d/0x){(G%,) 1+2%} in Eq. (A3)
6=0.05. A similar effect is found in several strongly aniso- measures the response of the averaged medium to an infini-
tropic antiferromagnets, both in multilayers and bulk inter-tesimal change of the fiekl. This dynamical response func-
metallic compounds such as UPd6n these systems the tion is determined by an integral equation in frequency space
origin of this “giant” magnetoresistance is attributed to which does not explicitly depend on momentugiNote that
band structure effects and spin scatterih@y contrast, our there are no convolutions i space in thal= limit as is
approach stresses the importance of genuine electronic cdipical for a mean-field theoryThis property does not im-
relation effects. More detailed investigations, including bandply, however, that the response functigf). is local, too. It
degeneracy and spin-orbit interaction, may eventually proonly indicates thaty?X is diagonal in the momentumk.
vide even quantitative InSIght into these intel’esting and imMOmentum dependence enters |mp||C|t|y by the particﬂdar
portant phenomena. dependence of the external fielt=0 in the case of the
compressibility or the ferromagnetic susceptibility, and
k=(m, ...,m) for the staggered susceptibillty

In the presence of an external field the variatdgsin the

We acknowledge useful correspondence with N. Gior-Dyson equation(2) are replaced byz) =iw,+up+oH
dano, G. Lander, B. [thi, A. Ramirez, and W. Wolf, and are + aoHg+ aucpw—22,. The derivative of the Green func-
grateful to H. Capellmann, P. van Dongen, W. Metzner, H.tion yields
Muller-Krumbhaar, J. Schlipf, F. Steglich, G. Stewart, and,
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Y—an (G‘Ian)z —ax( Man»

APPENDIX A: CALCULATION OF SUSCEPTIBILITIES
FROM CORRELATION FUNCTIONS with

Quite generally susceptibilities can be obtained from the
derivativ.e of lthe order parameter, with respect to the cor- (o = f% deD(€)(z%,— €¥2° )2, (AB)
responding fieldk: —w

— Imy — 1 T E fo ﬂng ngn: JlxdED(f)(Zgn_ 62/Zfian)72€2/(2(1an)2‘ (A7)

XTox 2 A e gy (A1)

X

Since Eq.(A5) separates in Matsubara frequenciesand
with spin o it can be easily solved fa?G/dx,
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&ng (Ta(l’l (o oX -~ U
X =2 R (F ™ Yarn)s (A8) €,=5Sgr e~ 0| > m+H
with the 2x 2 array ina e {A,B}: u \? U 2
X imst +|le—0o §m+H (B4)
R7=—(detD) DJT?, (A9)

From these energies the free enefyys calculated, and the
minimization with respect ton and m, leads to the follow-
ing Hartree-Fock self-consistency equations:

wherebyD andT are defined as

_ {Bn Man
(Ggn)?  (Ggp)? U f — Mg
o_ My=—= deN°(e)— , B5)
(G)? (G’ !
e—o-(—m+H
T R => fd NP P — (B6)
,_[An A Mo ) T ey
= g, &) (A1) : .
As in Sec. IV A these Hartree-Fock equations are solved

- . numerically.
Now dG/dx can be eliminated by setting EGA3) equal
o Bq. (A8), yielding APPENDIX C: SERIES EXPANSION
, , , OF THE HARTREE-FOCK FREE ENERGY
D RIET = D (S BRI 4 8 TOETT 1

nn’,n'n

o' o a'n The itinerant electron metamagnetism theory of Moriya
oy and Usanf® can be derived from the Hartree-Fock approxi-
XY g - (A12)  mation only if the free energy is analytic m andms,. Since

in RPA the Hubbard interactiod contributes to the free
energy analyticallfsee Egs(14) and(15)] any nonanalytic
behavior must be due to the kinetic energy. Its expansion in
the order parametang at T=0 is analyzed in this section.

To calculate the expansion mg a staggered magnetic
field Hg, is introduced:

From this equation we determing by numerical inversion

of a 4A X4A matrix. Knowing y we obtaindG/dx via Eq.

(A3) or Eq.(A8) and thus the susceptibilityAl).
APPENDIX B: HARTREE-FOCK THEORY FOR M L m

Similar to the derivation of the Hartree-Fock equations for -

m||H[mg; (see Sec. IV A we will now investigate the case HZN%: tjel,¢o—He 2 aofy,. (CD
with perpendicular orientatiom||HL mg. The ansatz for the 7 wlems
one-particle densities On A-B lattices the one-particle energies for this Hamil-

1 1 tonian show a gap at=0 with square root singularities at its
<ﬁi eaa’>: E(n+ Um)1 <6|Te aa’éi ea*o’)zzams’[ (Bl) edge’

yields in addition to the Hartree term a Fock term in the ‘e=sgne)\e’+HE, (C2

decoupling(8
pling(8) We consider the half filled band, where the staggered

magnetizationmg, is calculated from the one-particle ener-

NigNi—g — Nig(Ni— ) T (Nig)Ni— = (Nig)(Ni— ) gies. It shows the following asymptotic nonanalytic behavior

_éiTU&i70’<6i‘r70'6i0>_<éiTo'6ifo'>6ino'6ia for HSt_>O:
+ <&iTa-6i 70’><éi‘rf oéio'>- (BZ) 0 —H
o . . . . = deNO(€)—=— C3
With this ansatz one readily obtains the effective one-particle Mst Z f -1 eN'(e) € €3
Hamiltonian
=2NO(0)HIn(1MH) + O(Hy). (Ca)
fm S 68l e - 2O (n2—m—md) - | | |
HE &, 1Tietie 2 44 st Similarly the asymptotic behavior of the enerl) is ob-
tained as

U .U
+ E E(n_am)nirr_gamstci(rci—(r 0 ~
aicao AE(mst)=2J deN°(e) (e — €) (C5)
o -1

—(p+aH)n;,. (B3)

Diagonalizing this Hamiltonian yields the one-particle ener-

1
gios =~ 5 Hsmy O(HE). (o)
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Subtracting the contribution due td;, AEHSF —Hgmg, ground state the energy must be minimized with respegct to
the asymptotic dependence of the kinetic energyngreads ~ andmg under the constrainfsn|<1 and|mg{<1—|m|. Dif-
. ferentiation ofE with respect tang, shows that, for fixedn,

a0 1 my E has one maximum abg=0 and two minima at
2 n(Tmg) - (€7

\/8U2+Am2—3A+88+80
This shows that\E,;,(mgy) is nonanalytic inmg;.. Therefore Mg=* A .
the itinerant electron metamagnetism theory cannot be de-

rived from the Hartree-Fock theory for the Hubbard modelFor sufficiently strong coupling (e.g.,U>2 in the case of

AEkin( mst)

(D2)

with an easy axis. the hypercubic lattice withA=20, C=2, and B=4) these
minima are outside the constraifrhg|<1—|m|. Therefore

APPENDIX D: THE METAMAGNETIC PHASE E becomes minimal at the border of the constraint, i.e., for
TRANSITION AT STRONG COUPLING Img{=1—|m[. Replacingmg; by 1—m the minimization

o ) . with respect tan readily yields for the ground state,
In the limit of strong coupling and half filling the

O(t*/U®) perturbation theory yields the effective spin ( 1 —A+2C+2U2%+2B
Hamiltonian(19). In the following, we study the metamag- 0 for H< 5 3
netic phase transition, and especially the order of the transi- U
tion, for this effective Hamiltonian. Restricting ourselves to —C+U?+B
solutions with mixtures of ferromagnetien) and antiferro- m=¢ 1 for H=———F0—- (D3)
magnetic (ng) order, the ground state energy is a polyno- U
mial in m andmg, (t*=1): A—2C—2U%-2B+2HU?® I
11 .11 , 11 ATAC o
E=EUmz—EUm§t+3—2—3{16Bm2—168m§t+Am4 .
U Mg=1—m. (D4)

— 2ANMPmZ— 2ANP + A+ AN, This ground state solution for the effective spin Hamil-
_ . 20 tonian shows a second order metamagnetic phase transition
16C’ —16CmG} —Hm+ const. (D1) for A>4C. This is the case for the hypercubic lattice

One can see that the ferromagnetic next-nearest-neighbor i(A=20, C=2) and for the Bethe lattice, wher®=0 but
teraction C favors both saturated antiferromagnetism andC= -1, i.e., the next-nearest-neighbor coupling is antiferro-
saturated ferromagnetism rather than ferrimagnetic phasesagnetic. In conclusion, the strong coupling theory shows
By contrast the plaquette terf has contributions that sup- second order phase transition for all temperatures, even at
port the formation of a ferrimagnetic state. To obtain theT=0.

*Electronic address: held@physik.uni-augsburg.de 123. M. Kincaid and E. G. D. Cohen, Phys. L&S0A, 317 (1974;
TPresent address: Theoretische Physik I, Universitat Augsburg, Phys. Rep22, 57 (1975.
D-86135 Augsburg, Germany. 13H. J. Herrmann and D. P. Landau, Phys. Rev& 239 (1993.
L. Néel, Ann. Phys(Pari9 18, 5 (1932. 1W. Selke and S. Dasgupta, J. Magn. Magn. Mafet7, L245
2L. D. Landau, Phys. Z. Sowjetuniof 675 (1933, reprinted in (1995.
Collected Papers of L. D. Landaedited by D. ter HaafPer-  '>W. Selke, Z. Phys. B.O1, 145 (1996.
gamon, London, 1965p. 73. 18M. Pleimling and W. Selke, Phys. Rev. 56, 8855(1997.
3J. Becquerel and J. van den Handel, J. Phys. RadiGm10 A, R. Fertet al, J. Phys. Chem. SolicB#4, 223(1973; C. Vettier,
(1939. H. L. Alberts, and D. Bloch, Phys. Rev. Lel1, 1414(1973.

4This name was apparently coined by H. A. Kramers; see J. Bec'®M. M. P. de Azevedoet al, J. Magn. Magn. Mater140-144
querel, inLe Magnéisme (Institut International de Cooperation 1557(1995; J. Pellothet al, Phys. Rev. B62, 15 372(1995.

Intellectuelle, CNRS, Paris, 194(. 97. 194, A. Katori, K. Katsumata, and M. Katori, Phys. Rev. &,
SFor a review see E. Stryjewski and N. Giordano, Adv. PI2G. R9620(1996.

487 (1977). 20K, Katsumata, H. A. Katori, S. M. Shapiro, and G. Shirane, Phys.
6V. Sechovskyet al, J. Appl. Phys76, 6913(1994. Rev. B55, 11 466(1997).
7J. H. V. J. Braberet al, Phys. Rev. B50, 16 410(1994. 210, Petracic, Ch. Binek, and W. Kleemann, J. Appl. PH§s.
8V. Ivanov et al, J. Alloys Compd218 L19 (1995. 4145(1997.
9For a review see B. Tthi et al, J. Magn. Magn. Mater90&91, 22E. P. Wohlfarth and P. Rhodes, Philos. M&g1817(1962.

37 (199). 23T, Moriya and K. Usami, Solid State Commu28, 935 (1977).
101, D. Landau, Phys. Z. Sowijetuniahl, 26 (1937, reprinted in 24K . Held, M. Ulmke, and D. Vollhardt, Mod. Phys. Lett. B), 203

Collected Papers of L. D. Landaedited by D. ter HaatPer- (1996.

gamon, London, 1965p. 193. 253, Hubbard, Proc. R. Soc. London, Ser226, 238(1963; M. C.
For a review see I. D. Lawrie and S. SarbachPimase Transi- Gutzwiller, Phys. Rev. Lettl0, 59 (1963; J. Kanamori, Prog.

tions and Critical Phenomenaedited by C. Domb and J. L. Theor. Phys30, 275(1963.
Lebowitz (Academic Press, New York, 1984/0l. 9, p. 1. 26\. Takahashi, Prog. Theor. Phy$2, 1098(1969.



14 480 K. HELD, M. ULMKE, N. BLUMER, AND D. VOLLHARDT 56

27In addition to the spin-orbit interaction there is also the dipole-*°L. Laloux, A. Georges, and W. Krauth, Phys. Rev.5B, 3092
dipole interaction between electronic spins. The latter is mainly  (1994).
responsible for the “shape anisotropy,” i.e., the fact that the“°T. Saso and T. Hayashi, J. Phys. Soc. %8.401 (1994.
direction of the easy axis depends on the shape of the probe. AHA. Giesekus and U. Brandt, Phys. Rev4B, 10 311(1993.
introduction into the origins and models of the magnetic anisot-*>This transition was also studied within a slave-boson mean-field
ropy is given by P. BrunoPhysical Origins and Theoretical theory. P. Korbel, J. Spatek, W. Wik, and M. Acquarone,

Models of Magnetic Anisotropyin Magnetismus von Festko Phys. Rev. B52, R2213(1995.
pern und Grenzflehen (Forschungszentrum lich, IFF Ferien-  “3Note that the energy scale has changed by a factor of two com-
kurs, 1993, p. 24.1; P. Bruno, Phys. Rev. 89, 865(1989. pared to Ref. 24 wher&* =1/2 was chosen. To compare the

28An attempt to treat this problem within the Stoner model was results, all numerical values of quantities with dimension energy
made by K. Kulakowski and B. Barbara, Trieste Report No.  (inverse energyin Ref. 24 have to be multiplieftivided) by a
1C/90/282, 199Qunpublisheg factor of two.

29This procedure is quite similar tassumingthe existence of a **J. E. Hirsch and R. M. Fye, Phys. Rev. L&, 2521(1986.
lattice on which the Hubbard model is defined. The existence of°For more details concerning the implementation see M. Ulmke,
a lattice and the correlation physics described by the Hubbard V. Janis and D. Vollhardt, Phys. Rev. B1, 10 411(1995, all
model area priori quite unrelated, and hence we do not need to  calculations were performed on a Cray YMP of the Forschung-

start on the level of interacting electrons in the continuum. szentrum Jlich.
30W. Metzner and D. Vollhardt, Phys. Rev. Lef2, 324 (1989. 481t can be shown that the Hartree-Fock results remain qualitatively
31D. Vollhardt, in Correlated Electron Systemsdited by V. J. correct within second order perturbation theory at fixed order
Emery (World Scientific, Singapore, 1993p. 57. parameter: P. G. J. van Dongen, Phys. Re%0B14 016(1994.
32p, Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod.*”M. Takahashi, J. Phys. @0, 1289(1977; P. G. J. van Dongen,
Phys.68, 13(1996. Phys. Rev. B49, 7904 (1994).
33y. Janis Z. Phys. B83, 227(1991). 483, K. Freericks and M. Jarrell, Phys. Rev. L&, 186 (1995.
34A. Georges and G. Kotliar, Phys. Rev.45, 6479(1992. 49p. G. J. van Dongen, Phys. Rev. Létt, 182(1995.
35M. Jarrell, Phys. Rev. Let69, 168 (1992. ONote that the mixed-phase region in the phase diagram of Ref. 39
36For a review see G. Kotliar, ifStrongly Correlated Electronic disappears when instead of the applied fidldthe internal field
Materials edited by K. S. Bedekt al. (Addison-Wesley, Read- H is plotted vsT.
ing, 1994, p. 141. 51L. Hernandez, H. T. Diep, and D. Bertrand, Europhys. Lét,
37F. GebhardThe Mott Metal-Insulator TransitigrSpringer Tracts 711(1993.
in Modern PhysicgSpringer, Heidelberg, 1997Vol. 137. 52A. P. Ramirez, J. Phys. Condens. Mat®e18171(1997.

38For a review see Th. Pruschke, M. Jarrell, and J. K. Freericks®>P. M. Levy and S. Zhang, J. Magn. Magn. Matd51, 315
Adv. Phys.44, 187 (1995. (1995.



