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Correlated-electron theory of strongly anisotropic metamagnets
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Metamagnetic transitions in strongly anisotropic antiferromagnets are investigated within a quantum me-
chanical theory of correlated electrons. We employ the Hubbard model with staggered magnetizationmst along
an easy axise in a magnetic fieldHie. On the basis of the dynamical mean-field theory~DMFT! this model is
studied both analytically and numerically. At intermediate couplings the self-consistent DMFT equations,
which become exact in the limit of a large coordination number, are solved by finite temperature quantum
Monte Carlo techniques. The temperature and magnetic-field dependence of the homogeneous and staggered
magnetization are calculated and the magnetic phase diagram is constructed. At half filling the metamagnetic
transitions are found to change from first order at low temperatures to second order near the Ne´el temperature,
implying the existence of a multicritical point. Doping with holes or electrons has a strong effect: the system
becomes metallic, the electronic compressibility increases, and the critical temperatures and fields decrease.
These results are related to known properties of insulating metamagnets such as FeBr2, metallic metamagnets
such as UPdGe, and the giant and colossal magnetoresistance found in a number of magnetic bulk systems.
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I. INTRODUCTION

The concept of antiferromagnetic order was proposed
dependently by Ne´el1 and Landau.2 Both sought to explain
the, at that time, puzzling low temperature behavior of
magnetic susceptibility of certain materials: of metals su
as Cr and Mn in the case of Ne´el, and of insulators with a
layered structure such as the chlorides of Cr, bivalent Fe,
and Ni in the case of Landau. While Ne´el correctly suggested
the existence of interpenetrating sublattices in Cr and
with opposite magnetization,1 Landau equally correctly pre
dicted the existence of stacks of ferromagnetically orde
layers whose magnetization alternates from layer to layer2 In
both cases the total spontaneous magnetization adds u
zero. Assuming the interlayer coupling to be weak, Land2

argued that a relatively small magnetic field would be su
cient to modify the mutual orientation of the moments
each layer. This leads to deviations from the linear dep
dence of the total moment on the field, i.e., to an anomal
increase of the susceptibility, and finally – at high fields –
a saturation of the magnetization. Such a behavior was
deed observed by Becquerel and van den Handel3 in the
carbonate of Fe and Mg at low temperatures. Not be
aware of Landau’s or Ne´el’s work they could not explain
their observation in terms of ferro- and paramagnetism,
therefore suggested for it the name metamagnetism.4

These carbonates and other systems like FeCl2 and
Dy3Al5O12 ~DAG! ~Ref. 5! belong to a class of insulator
where the valence electrons are localized at the Fe~Mg! and
Dy ions, respectively. The resulting local moments order
tiferromagnetically and are constrained to lie along an e
axis e, implying a strong anisotropy such that a spin fl
transition cannot occur. Under the influence of a large m
560163-1829/97/56~22!/14469~12!/$10.00
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netic field Hie the staggered magnetization vanishes in
phase transition, the so-called metamagnetic transition. T
phase transition may be of first or second order and sev
of these insulating systems even show both: the first or
phase transition becomes second order for temperatureT
higher than the tricritical temperature. At the metamagne
transition the homogeneous susceptibility has a discont
ity. Apart from the materials mentioned above, there are a
strongly anisotropic metamagnets that are conducting, e
uranium-based mixed systems,5,6 SmMn2Ge2,7 and probably
also TbRh22xIr xSi2.8 We note that the term metamagnet
transition has been adopted also to those systems wher
homogeneous susceptibility as a function of the magn
field shows no discontinuity but only a maximum. With th
definition many different systems become metamagnets.9

Theoretical investigations of metamagnetic transitio
and tricritical points, began with the work of Landau, wh
described multicritical behavior within his phenomenologic
theory of phase transitions.10 Clearly, a genuine understand
ing of the origin of tricritical points, etc. requires investig
tions on a more microscopic level. In the case of stron
anisotropic metamagnets those investigations where sofa
stricted to the insulating systems, such as FeCl2. They are
usually based on the Ising model with antiferromagnetic a
ferromagnetic interactions.11 In mean-field theory Kincaid
and Cohen12 showed that the tricritical point~TCP! may
separate into a critical endpoint~CE! and a bicritical end-
point ~BCE! ~see Fig. 1!. Numerical calculations13–16beyond
mean-field theory do not find this behavior. Instead Selk15

observed anomalously strong noncritical fluctuations in
vicinity of a BCE. Experimentally a scenario similar to th
shown in Fig. 1~b! was reported for FeBr2.17 Here magneti-
zation measurements18 merely showed weak anomalie
14 469 © 1997 The American Physical Society
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14 470 56K. HELD, M. ULMKE, N. BLÜMER, AND D. VOLLHARDT
within the antiferromagnetic phase, while recent experime
on the specific heat,19 neutron scattering,20 and Faraday con
trast microscopy21 seem to provide evidence for acritical
line CE↔ BCE.

The conducting systems such as the uranium-based m
systems5,6 were hitherto described by the semiphenome
logical theories of Wohlfarth and Rhodes22 for metamagnetic
phase transitions in paramagnets, and of Moriya and Usa23

for the coexistence of ferro- and antiferromagnetism in it
erant electron systems. Amicroscopic understanding of
metamagnetism in these systems requires a fully quan
mechanical treatment of itinerant, correlated electrons. S
an investigation, based on a Hubbard model with easy ax
a magnetic field, was started by us recently for the insula
systems, and some results were reported in Ref. 24. We
now present details of our calculations and further results
the insulating case. Since the above model is the simp
microscopic model for insulatingandmetallic, spin-localized
and bandlike antiferromagnets with easy axis in a magne
field, we will now also investigate the metallic regime~finite
doping! and consider the possibility of insulator-metal tra
sitions in a magnetic field.

In Sec. II the underlying model, the Hubbard model w
easy axis, is introduced and its validity is discussed. Then
dynamical mean-field equations which are used to inve
gate the correlation problem all the way from weak to stro
coupling, as well as the quantum Monte Carlo techniq
employed to solve them, are discussed in Sec. III. The res
obtained for a half filled band and for finite doping are p
sented in Sec. IV and Sec. V, respectively. A discussion
the results in Sec. VI closes the presentation.

II. HUBBARD MODEL WITH EASY AXIS

The Hubbard model25 is the generic microscopic mode
for itinerant and localized antiferromagnetism in correla
electron systems. For nearest-neighbor hopping of elect
in the presence of a Zeeman term it has the form

Ĥ52t (
NN,s

ĉis
† ĉ j s1U(

i
n̂i↑n̂i↓2(

i ,s
~m1sH !n̂is ,

~1!

where operators carry a hat. From the exact, analytic solu
in dimensionsd51 the ~paramagnetic! ground state of this
model at half filling (n51) is known to exhibit metamag

FIG. 1. SchematicH-T phase diagram of~a! a typical Ising-type
metamagnet and~b! the Ising model in mean-field theory with onl
weak ferromagnetic interaction. Solid lines: first order transiti
broken lines: second order transition; AF: antiferromagnetic ph
P: paramagnetic phase.
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netic behavior, i.e.,]x/]H.0, up to saturation.26 However,
this is entirely due to the convex shape of the density
states ind51 and occurs even atU50.

In general the Hubbard model in the form of Eq.~1! can-
not describe metamagnetic behavior. The Hubbard mode
isotropic in spin space and hence the antiferromagnetic ph
described by it is isotropic, too. Consequently, any fin
magnetic fieldH will orient the staggered magnetizationmst
perpendicularto itself. Real antiferromagnets are, howeve
never isotropic in spin space: the relativistic spin-orbit int
action L̂–Ŝ, whereL̂ and Ŝ are operators for the orbital an
gular momentum and spin, respectively, transfers the ani
ropy of position space ~caused by the broken rotationa
symmetry of the crystal lattice! into spin space, producing
one, or more, easy axes which constrain the spins.27 In an
external magnetic field such a constraint leads to metam
netic transitions, with or without a spin-flop depending
the strength of the spin-orbit interaction, as explained in S
I.

A microscopic theory of strongly anisotropic antiferro
magnets should ultimately be able to take into account
orbital degeneracy of the electrons and, by including
relativistic spin-orbit interactionL̂–Ŝ in the Hamiltonian, to
generate an anisotropy axis within the model itself.
present, this is technically not possible.28 Therefore we take
the existence of the anisotropy axise for granted: we employ
the Hubbard model~1! and constrain the magnetic momen
to lie alongeiH. By this approach the kinetic energy and th
Coulomb interaction are treated microscopically, whereas
relativistic corrections are not. We note that the relativis
corrections are of the order of 1022 eV and are thus smal
compared to energies of the order of 1 eV for kinetic a
Coulomb energy. Therefore the existence ofe and the corre-
lation physics described by the Hubbard model~1! are quite
unrelated. This justifies our approach where the existenc
e is a priori assumed.29

III. DYNAMICAL MEAN-FIELD THEORY „d˜`…

For classical spin models~e.g., the Ising model! it is well
known that the Weiss molecular field theory becomes ex
in the limit of high spatial dimensions (d5`). For lattice
electrons this limit was introduced only recently.30 With the
proper scaling of the hopping element in Eq.~1!, t5t* /AZ
(Z 5 number of nearest neighbors!, it leads to a quantum
mechanical dynamical mean-field theory~DMFT!; for re-
views see~Refs. 31 and 32! The interacting lattice mode
then reduces to a self-consistent single site problem of e
trons in an effective medium,33 which may be described by
complex, frequency dependent~i.e., dynamical! self-energy
Ss(v) . This problem is, in fact, equivalent to an Anderso
impurity model complemented by a self-consisten
condition.34–36

There are two limits in which the DMFT recovers wel
known static mean-field theories:

~1! Weak coupling:In this situation the effective medium
may be approximated by astaticfield which is generated by
the averageddensities of the electrons. This leads to t
Hartree-Fock approximation, e.g.,Ss(v)5Un2s in the ho-
mogeneous case, which is expected to give the qualitativ

,
e,
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56 14 471CORRELATED-ELECTRON THEORY OF STRONGLY . . .
correct behavior at weak coupling. The averaged densitiens

have to be determined self-consistently.
~2! Strong coupling at half filling:Here model~1! can be

mapped onto the antiferromagnetic spin 1/2 Heisenb
model for which the limitd5` becomes equivalent to th
Weiss molecular field theory.

The results obtained in these two limits will be present
and compared to the results for intermediate coupling
Sec. IV.

During the past few years the DMFT has provided va
able insight into the physics of the Mott-Hubba
transition32,35,37and of transport properties of strongly corr
lated electron systems.38 The effect of the magnetic fieldH
in Eq. ~1! was previously studied at half filling.39–41 In par-
ticular, Lalouxet al.39 investigated the magnetization beha
ior of the paramagnetic phase. They found that, at str
enough interactionU, the magnetic field can trigger a meta
insulator transition. Since on the insulating side the mag
tization of the local moments is enhanced the metal-insul
transition shows up as a discontinuity in the susceptibil
Hence this transition is also referred to as a ‘‘metamagn
transition.’’42 Giesekus and Brandt41 took into account also
the AF order. They considered the isotropic case where
field orients the staggered magnetization perpendicular t
self, such that a metamagnetic transition cannot occur.

To investigate the metamagnetic phase transition from
antiferromagnet to a paramagnet we consider a bipa
(A2B) lattice and allow for symmetry breaking with respe
to spin sP$↑,↓%5$1,2% and sublattice aP$A,B%
5$1,2%. The self-energySan

s [Sa
s( ivn), with Matsubara

frequenciesvn5pT(2n11), n50,61,62, . . . ~using the
convention\[kB[1), and the Green functionGan

s are de-
termined self-consistently by two sets of coupl
equations:33,34

Gan
s 5E

2`

`

de
N0~e!

zan
s 2e2/z2an

s
, ~2!

Gan
s 52^csncsn* &Aa

. ~3!

Herezan
s 5 ivn1m2San

s , and the thermal average of som
operatorÔ in Eq. ~3! is defined as a functional integral ove
the Grassmann variablesc,c* , with

^Ô&Aa
5

1

Za
E D@c#D@c* #O@c,c* #eAa[c,c* ,S,G] , ~4!

in terms of the single site action

Aa5(
s,n

csn* @~Gan
s !211San

s #csn

2UE
0

b

dtc↑* ~t!c↑~t!c↓* ~t!c↓~t!, ~5!

whereZa is the partition function, andN0(e) is the density
of states~DOS! of the non interacting electrons. As the r
sults do not much depend on its precise form we choos
half-elliptic DOS N0(e)5@(2t* )22e2#1/2/(2pt* 2). The
constraintmstiH is enforced by setting the off-diagonal~in
spin space! elements of the Green function equal to ze
rg

,
n
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Ga
↓↑52^ca

↓ca
↑* &[0. From now ont* [1 will set our en-

ergy scale,43 i.e., the total bandwidth ofN0(e) is equal to 4.
The Dyson equation~2! introduces the lattice into the prob
lem. It couplesA andB sublattices and can be solved by
simple integration, even analytically for the above DOS. T
functional integral~3! however is highly non–trivial since i
couples all Matsubara frequencies. Georges and Kotli34

and Jarrell35 realized that the action~5! is equivalent to that
of an Anderson impurity model, and can therefore be trea
by standard techniques developed for this model. Here
employ a finite temperature, auxiliary field quantum Mon
Carlo ~QMC! method.44,45 In this approach the electron
electron interaction is formally replaced by an interaction
independent electrons with a dynamical, auxiliary field
Ising-type spins. To this end the interval@0,b# is discretized
into L steps of sizeDt5b/L. Equivalently, there is a
high energy cutoff of Matsubara frequencies, i.e.,uvnu
5pTu2n11u,p/Dt, n52L/2, . . . ,L/221. All quantities
have to be extrapolated toDt→0. The computer time grows
like L3}b3, restricting L to values below;150 and
b<50 . . . 70 on present supercomputers. For smallL
(L<20) one can perform a full enumeration~instead of the
Monte Carlo sampling! of all 2L possible configurations o
the auxiliary field. We never encountered a minus-sign pr
lem, hence no further approximations~like the ‘‘fixed-node’’
method! were necessary.

The self-consistency is obtained iteratively as follows: t
Green functionG ~omitting indices! is calculated from some
initial self-energy, e.g.,S[0, by the Dyson equation~2!.
Now the new Green functionGnew is determined by solving
Eq. ~3! with the QMC method. Finally, the calculation of th
new self-energySnew5S2Gnew

21 1G21 completes one itera
tion. To improve convergence in the symmetry broken c
GA and GB are updated by the Dyson equation~2! after
every QMC simulation for one sublattice@Eq. ~3!#. In the
symmetry broken phases, typically 10220 iterations with
20 000 MC sweeps are necessary to obtain a convergenc
;1023 in S( ivn). The calculation of a magnetization curv
at b550 takes about 100 h on a Cray-Y-MP. Close to
phase transition the convergence is much slower and the
tistical errors are larger due to strong fluctuations, in parti
lar in the case of a second order phase transition. Th
effects limit the accuracy in the determination of the critic
values of the model parameters, e.g., the critical magn
field ~see Sec. IV C!. At large U values (U.4) the Monte
Carlo sampling becomes more and more inefficient due
‘‘sticking’’ problems, i.e., there are two~or more! minima in
the free energy and the single spin-flip algorithm is no lon
able to transfer between them.

From the resulting Green functions we calculate the d
sities and the homogeneous and antiferromagnetic mag
zation:

nas511T(
n

Gan
s ,

m5
1

2(a,s
snas ,

mst5
1

2(a,s
asnas . ~6!
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14 472 56K. HELD, M. ULMKE, N. BLÜMER, AND D. VOLLHARDT
Since we are interested in the question whether the sys
is insulating or metallic we also determine the electro
compressibilityke[]n/]m. It was calculated both by nu
merical differentiation ofn(m) and from the two-particle
correlation functions~see Appendix A!. Both results agree
within the statistical errors: however, the latter method
much more time consuming.

IV. RESULTS FOR HALF FILLING

A. Weak coupling

For weak coupling (U!t) we expect the Hartree-Foc
approximation to give an, at least qualitatively,46 correct pic-
ture of the metamagnetic phase transitions, especially of t
order. Within thisstatic mean-field theory electronic corre
lations are neglected and the interaction is decoupled as

n̂isn̂i 2s→
HF

n̂is^n̂i 2s&1^n̂is&n̂i 2s2^n̂i 2s&^n̂is&. ~7!

Note, that while for eimstim the Fock term vanishes

^ĉi↑
† ĉi↓&50, its presence is essential in the casemst'm ~see

Appendix B!. We confine our investigations to states wi
homogeneous sublattice magnetization as described by
ansatz,

^n̂i Pa,s&5
1

2
~n1sm1asmst!. ~8!

Applying this Hartree-Fock decoupling scheme one obta
the effective, one-particle Hamiltonian,

ĤHF5 (
NN,s

t i j ĉis
† ĉ j s1 (

a,i Pa,s

U

2
~n2sm2samst!n̂is

2~m1sH !n̂is2
1

2

U

4 (
a,i Pa,s

@n22~m1amst!
2#.

~9!

This Hamiltonian is diagonalized and the one-particle en
gies ẽ s are calculated as

ẽ s5sgn~e!Ae21S U

2
mstD 2

2sS U

2
m1H D , ~10!

where sgn(e) denotes the sign of the noninteracting electr
energye. In the antiferromagnetic phase the DOS has a
of width Umst with square root singularities at its edge.

From the one-particle energies~10! the grand potentia
per lattice site (L being the number of lattice sites! is ob-

tained directly as (m̃5m2 1
2 Un)

V/L52
1

b
lnZ52

1

b(
s

E deN0~e!ln~11e2b~ ẽ s2m̃ !!

1
U

4
~mst

21m2!2
Un2

4
. ~11!

The potentialV has two shallow minima, one correspondin
to the paramagnetic state (mÞ0, mst50) and the other to the
antiferromagnetic state (m'0, mstÞ0). By applying a suffi-
ciently strong magnetic field to the antiferromagnetic sta
m
c

s

ir

he

s

r-

p

,

the paramagnetic minimum becomes the lowest, such th
first order phase transition takes place. The reason for
occurrence of a first order phase transition is that, within
~static! Hartree-Fock approximation, theU term becomes
minimal for largest~static! local moments. Therefore pur
antiferromagnetic and ferromagnetic order are both energ
cally favored. Mixed states withmÞ0 andmstÞ0—which
would occur in the case of second order phase transition
have a small local moment, i.e., a high Hartree-Fock ene
on every second site.

To calculate the magnetization curves the self-consis
Hartree-Fock equations are obtained from the minimizat
conditions]V/]mst50 and]V/]m50:

mst5
U

2(
s

E deN0~e!
2mstsgn~e!

Ae21S U

2
mstD 2

1

11eb~ ẽ s2m̃ !
,

~12!

m5(
s

E deN0~e!s
1

11eb~ ẽ s2m̃ !
. ~13!

These equations are solved numerically by iteration and
tegration according to Newton-Cotes rules.

Within the Hartree-Fock approximation the metamagne
phase transition is found to be offirst order for all T, even
for U54 ~ 5 bandwidth!; see Figs. 2 and 3. Hence a tr
critical point never occurs. In this parameter range the qu
tum Monte Carlo calculations, however, already show s
ond order transitions in a broad range of temperatures~see
Sec. IV C!. Hence the Hartree-Fock solution can neither d
scribe the experimental situation, where tricritical points a
known to occur, nor the correct behavior of the model
intermediate values ofU.

To estimate the anisotropy energy associated with
easy axis we compare the Hartree-Fock energies of the
figurations withmstim andmst'm ~for details see Appendix
B!. At half filling and for U equal to the bandwidth, the
difference between the free energy of these configurati
does not exceed a few percent of the bandwidth, i.e.,O(1022

eV!. Then the spin orbit interaction, which can be relative
strong,O(1021eV!, indeed leads to a strong anisotropy, i.
an easy axise, along whichmst is rigidly fixed.

Metamagnetic phase transitions in itinerant, metallic s
tems were hitherto described by the theory of ‘‘itinerant ele
tron metamagnetism’’~IEM!. In the case of an antiferromag
netic system in a magnetic field Moriya and Usam23

proposed a Landau theory with free energy,

F~m,mst!5
1

2xm
m21

1

2xst
mst

21am41a8mst
41bm2mst

2

1b8~m•mst!
22Hm, ~14!

wherexm and xst are the homogeneous and staggered s
ceptibility, respectively, and the coefficientsa, a8, b, andb8
are the fourth-order derivatives of the noninteracting free
ergy. Within the IEM theory the Coulomb interaction
treated in random phase approximation. The correspond
susceptibilities are given as
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1

xm
5

1

xm
0

2U,
1

xst
5

1

xst
0

2U, ~15!

where xm
0 and xst

0 are the respective susceptibilities of th
noninteracting system. The random phase approximation
these susceptibilities is equivalent to the Hartree-F
scheme described above. Therefore we may ask whethe
obtain the IEM in the limitU!t ~where m,mst!1). The
answer is not straightforward since the prefactors in the
pansion~14! depend, for example, on the lattice structu
On bipartite lattices, as discussed here, they diverge
T→0. Thus an expansion of the free energy in powers ofmst

FIG. 2. ~a! Magnetizationm vs magnetic fieldH in Hartree-
Fock approximation forU54 at different temperaturesT showing
metamagnetic behavior.~b! Order parameter for the metamagne
phase transition~the staggered magnetization! mst vs H. The first
order phase transition is clearly seen.

FIG. 3. H-T phase diagram for different values ofU in Hartree-
Fock approximation. All phase transitions are of first order. Bel
the curves the antiferromagnetic phase is stable.
or
k
we

x-
.
or

andm as assumed in the IEM Landau theory is not possi
in general~for details see Appendix C!.

B. Strong coupling

In the limit U@t the Hubbard model at half filling (n51)
is equivalent to an effective Heisenberg spin model,

ĤHeis5
J

2 (
NN

Ŝi•Ŝj22H(
i

Ŝi
z , ~16!

where the antiferromagnetic exchange coupling is obtai
in second order perturbation theory asJ54t2/U. Spin opera-
tors are defined asŜi

z5 1
2 (n̂i↑2n̂i↓), Ŝi

x5 1
2 ( ĉi↑

† ĉi↓1 ĉi↓
† ĉi↑),

and Ŝi
y52( i /2)(ĉi↑

† ĉi↓2 ĉi↓
† ĉi↑). For this model the Weiss

molecular field theory becomes exact ind5` yielding, un-
der the constraint of uniaxial magnetization, the same res
as for the Ising model. For Ising models metamagnetic ph
transitions are well-studied.11 In the case of a purely antifer
romagnetic nearest-neighbor coupling@see Eq. ~16!# the
phase transitions are of first order only atT50, but of sec-
ond order at allT.0. The transition line in theH-T phase
diagram has indeed the form shown in Fig. 1~a!, but with a
tricritical temperature ofTt50. This behavior can be under
stood already within Weiss molecular field theory, where
ground state energy per site is

E~m,mst!5
J*

8
~m22mst

2 !2Hm, ~17!

with

J* 5ZJ5
4t* 2

U
. ~18!

Minimization with respect tom andmst shows that the fully
polarized antiferromagnet (mst51) has the lowest energy fo
H,J* /4, whereas the fully polarized ferromagnet (m51) is
energetically favored forH.J* /4. Thus, by applying a mag
netic field a first order transition is induced. AtH5J* /4 the
states are highly degenerated since all magnetic phases
m1mst51 have the same energy. ForT.0 this degeneracy
is lifted by entropy which disfavors fully polarized phase
Therefore the first order transition atT50 immediately be-
comes second order forT.0, i.e.,Tt50. Indeed, a tricritical
point at afinite temperature is only obtained in the case
spin interactions which simultaneously favor both fully p
larized antiferromagnetic and ferromagnetic configuratio
In particular, adding a ferromagnetic interactionJ8 between
next-nearest neighbors~NNN’s! on a simple cubic lattice sta
bilizes both ferro- and antiferromagnetic order.11

While in the case of effective spin models a ferromagne
NNN coupling term is introducedad hoc, simply to obtain
the first order phase transition, this term naturally arises if
expand the strong coupling perturbation series of the H
bard model toO(t4/U3). However, besides thisJ8 term there
also appear additionalfour-spin terms. For the hypercubi
lattice the effective HamiltonianHeff reads47

Ĥeff52
J

4 (
NN

Q̂i j 1
J8

4 (
i ,t8Þ6t

Q̂i 1t8,i 1t

1
t4

U3
A(

$h%
~Q̂12Q̂341Q̂14Q̂232Q̂13Q̂24!, ~19!



n
ra

ag
e
et
m

-

at
en

-
o
m

le

n

m
up
ne
an

m
a-

on
fir

t

n
ur
th
s
.,
re

-
de-

for
-

olid

14 474 56K. HELD, M. ULMKE, N. BLÜMER, AND D. VOLLHARDT
J54S t2

U
1B

Zt4

U3 D , ~20!

J854
t4

U3
C. ~21!

Here t and t8 are lattice vectors connecting a site to itsZ
neighbors, andh represents a plaquette. Each plaquette
counted only once: the four sites$1,2,3,4% represent its four
corners in clockwise or anticlockwise order. The consta
A, B, andC depend on the lattice, and the Hermitian ope
tors Q̂i j are defined as

Q̂i j 522S Ŝi•Ŝj2
1

4D . ~22!

The plaquette contribution competes with the ferrom
netic NNN term (J8) and drives the system to second ord
phase transitions. For the hypercubic lattice the plaqu
contribution is stronger than the ferromagnetic NNN ter
yielding second order phase transitions even forT50. The
same is true for the Bethe lattice where, in fact,J8,0 ~for
details see Appendix D!. Thus in strong coupling perturba
tion theory the metamagnetic phase transition is ofsecond
order even at T50.

C. Intermediate coupling

The perturbation analysis described above demonstr
that the order of the metamagnetic phase transition dep
on the Coulomb interactionU in a delicate way. For smallU
the phase transition is purely of first order and for largeU of
second order. Apparently, the tri- or multicritical point link
ing these two regimes must be found at intermediate c
pling. In this important, nonperturbative regime quantu
Monte Carlo techniques are employed to solve the prob
numerically without any further approximation.24 The results
for the magnetizationm(H) and the staggered magnetizatio
mst(H) are shown in Fig. 4 forU52. Below the Ne´el tem-
perature a metamagnetic behavior is clearly seen: for s
magnetic fields the magnetization is exponentially s
pressed with temperature. Then, towards the metamag
phase transition, the susceptibility increases drastically
becomes maximal at the critical fieldHc . Second order
phase transitions are observed for 1/14<T<TN50.114
60.006, whereas the transition is of first order at lower te
peratures, i.e.,T<1/16. At the phase transition the order p
rameter, i.e., the staggered magnetization, vanishes. From
curve mst(H) the critical fieldHc and also the order of the
phase transition is determined by a square root fit for sec
order transitions and by the mean of the hysteresis for
order transitions.

Using these values ofHc the phase diagram, for differen
values ofU is constructed~Fig. 5!. The caseU54 ~5 band-
width! and half filling, Fig. 5~a!, was already discussed i
Ref. 24.43 It is shown here to illuminate the changes occ
ring under variation ofU. This phase diagram shows bo
first order~for T,1/16) and second order phase transition
~for 1/8,T,TN'0.2). At intermediate temperatures, i.e
1/16,T,1/8, the field dependence is rather mo
is

ts
-

-
r
te
,

es
ds

u-
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-

the
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complicated.24 While the error bars do not permit an unam
biguous interpretation it seems that the order parameter
creases bytwo consecutive transitions: the first one—
separating an AF phase withm'0 ~AF I) and an AF phase

FIG. 4. QMC results, including error bars,~a! for the magneti-
zation m(H) as obtained for thed5` Hubbard model with easy
axis at half filling andU52 ~5 half band width! for different
temperatures.~b! Staggered magnetizationmst(H) for the two tem-
peratures belowTN .

FIG. 5. H-T phase diagram for thed5` Hubbard model with
easy axis at half filling as constructed from the QMC results
m(H) andmst(H), ~a! U54, ~b! U52,3. Second order phase tran
sitions are indicated by dashed lines, first order transitions by s
lines. Curves are guides to the eye only.
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with m.0 ~AF II)—is of first order or corresponds to a
anomaly, and the second one, at higher fields, is of sec
order. Taken together the results seem to correspond to
scenario of Fig. 1~b!. For U52 phase transitions of firs
order are found forT<1/16 and of second order fo
1/14<T,TN50.11460.006 @see Fig. 5~b!#. Here, the tem-
perature regime with two consecutive transitions, as obtai
for U54, has disappeared or has become very small:
scenario is similar to Fig. 1~a!. The phase diagram forU53,
also displayed in Fig. 5~b!, shows some features of the pha
diagram in Fig. 1~b! or U54, respectively. In particular on
observes a maximum in the second order phase trans
line and different slopes for the second and first order line
the crossover point. However, the numerical data do not
dicate the existence of two consecutive transitions. Thus
phase diagram lies in between the scenarios depicted in F
1~a! and 1~b!.

To study the influence of the interactionU qualitatively
and quantitatively, it would be desirable to calculateH-T
phase diagrams at even larger values ofU. Unfortunately the
quantum Monte Carlo approach fails in this case due to
problem of ‘‘sticking’’ as mentioned in Sec. III. Therefore
we concentrate on the crossover from the intermediate c
pling regime with firstand second order transitions to th
weak coupling regime with first order transitionsonly. The
results for half filling are collected in Fig. 6 showing theU
dependence of two transition temperatures: the top curv
the Néel temperatureTN at H50 ~taken from Ref. 45!. The
lower curve corresponds to the temperatureTc where the
second order phase transition line terminates, i.e., it re
sents either the tricritical or the critical temperature of Fig.
For temperatures belowTc a first order metamagnetic phas
transition is observed in an external magnetic field. Figur
reveals the crossover from intermediate coupling with fi
and second order phase transitions to weak coupling w
first order transitions only: asU decreases the regime wit
second order phase transitions (Tc,T,TN) shrinks, while
the temperature regime for first order transitions rema
nearly unchanged up toU'2.

V. RESULTS AWAY FROM HALF FILLING

In the preceding sections metamagnetic transitions w
investigated in the case of half filling. Beyond half filling th

FIG. 6. Néel temperatureTN ~circles! and~tri-!critical tempera-
tureTc ~diamonds! vs U. AboveTN the system is paramagnetic. I
an external magnetic field the order parameter vanishes in a se
order metamagnetic phase transition forTc,T,TN and in a first
order transition forT,Tc , respectively.
nd
he

d
e

on
at
-
is

gs.
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commensurate antiferromagnetic phase remains stable in
parameter regime under consideration (d5u12nu<0.075,
T>1/32). Incommensurate spin density waves beco
stable only in a small density regime at lower temperature48

Another possible instability of the antiferromagnetic pha
away from half filling is phase separation, found within th
Hartree-Fock approximation and in second order pertur
tion theory at constant order parameter atT50.49 However,
at least forT>1/16 we do not observe phase separation si
the electronic compressibilityke5]n/]m is finite and posi-
tive ~see Fig. 7!.

Upon doping the magnetization curve changes consid
ably and hardly indicates the existence of a metamagn
phase transition~Fig. 8!. This is due to the fact that in the
metallic phase there is no longer a ‘‘Slater gap’’ at the Fer
energy; therefore the homogeneous susceptibility is no
strongly affected by the antiferromagnetic order as at h
filling. The phase transition is, however, clearly seen
mst(H). From themst vs H curve the phase diagram~Fig. 9!
is constructed. The metamagnetic phase transition line
found at lower temperatures and fields compared to half
ing.

Associated with the metamagnetic phase transition i
change of the electrical resistivity. To study this importa
effect we calculated theH dependence of the electronic com
pressibilityke . This quantity indicates whether the system
metallic or insulating. For an insulatorke vanishes forT50
and is exponentially small for temperatures lower than
antiferromagnetic gap. In a Fermi liquid, on the other ha
ke(T50) is finite since it is proportional to the density o
states at the Fermi level and hence proportional to the Dr
conductivity.

The results forke as a function of magnetic fieldH at
U52 are shown in Fig. 10. At half filling,d50, the com-
pressibility is seen to increase withH. This effect is particu-
lar pronounced at low temperatures (T51/25) whereke is
essentially zero at low fields and rises toke'0.3 above the
critical field, indicated by an arrow. Hence the metamagne
phase transition is a transition from an antiferromagnetic
sulator to a metal with homogeneous magnetization.
higher temperatures,T51/14, the compressibility is alway
finite due to thermal excitations. We note that atU54, when
the electrons are essentially localized,ke remains small

nd

FIG. 7. Particle numbern vs chemical potentialm as calculated
by grand canonical QMC simulations in the antiferromagne
phase forU54.
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(0,ke,0.03 atT51/8; not shown in Fig. 10! even above
the critical field, indicating an insulator-to-insulator trans
tion. The situation is very different at finite dopin
(d50.05). Here Fig. 10 shows thatke decreaseswith H by
approximately 50% as the system goes through the m
magnetic transition from an antiferromagnetic metal to
metal with homogeneous magnetization.

VI. DISCUSSION

Metamagnetism in strongly anisotropic antiferromagn
has been of interest to various communities in classical
tistical mechanics for a long time already. In our paper
showed that this phenomenon can be derived from a m

FIG. 8. Change of~a! the magnetizationm(H), and ~b! the
staggered magnetizationmst(H) with doping forU52 at T51/16.

FIG. 9. Change of theH-T phase diagram with dopingd for
U54. QMC data are shown ford50.025, 0.05, and 0.075.@For
d50 see Fig. 5~a!.# Second order phase transitions are indicated
dashed lines, first order transitions by solid lines. ForT51/32 the
numerical error does not permit the determination of the orde
the phase transition unambiguously.
a-
a

s
a-
e
el

of itinerant electrons, the Hubbard model with easy ax
This approach is fundamentally different from previous
vestigations since we identified and explicitly evaluated
simplestelectronic, i.e., fully quantum mechanical, correla
tion model that is able to explain the conditions for me
magnetism. For this electronic model we employ the d
namical mean-field theory and show unambiguously tha
intermediate coupling the phase transition is of first orde
low temperatures and of second order near the Ne´el tempera-
ture, i.e., the order of the phase transition changes.

Our approach allows us to describe a broad range
qualitatively different metamagnets within a single mod
While at present this simple model does not permit a
quantitative calculation of material properties it does d
scribe itinerant and localized, metallic, and insulating me
magnets and the crossover between them. This crossov
related to two fundamental experimental parameters,
pressure~related toU/t which decreases with pressure! and
doping.

At half filling the Coulomb interaction leads to a cros
over from a band insulator to an insulator with localiz
moments. Thereby the phase transition changes from
order for the bandlike metamagnet to second order for
localized one. Only at intermediate couplings are both fi
and second order phase transitions observed as found in
periment. TheH-T phase diagram obtained for an interm
diate Coulomb interaction (U54 5 bandwidth! is strikingly
similar to that of FeBr2 ~Refs. 17–20 and 50! or the Ising
model with weak ferromagnetic interaction.12,15

We note that in these insulating systems the applicab
of a theory which becomes exact in the limit of a large c
ordination number is justified by the fact that the AF sup
exchange involves 20 equivalent sites in the two neighbor
iron planes.51 At smaller values of the Coulomb interactio
(U52) the temperature regime with second order transiti
shrinks and the two step phase transition becomes less
nounced, reproducing the scenario of Fig. 1~a!, as observed
e.g., in FeCl2.5

The calculations off half filling allow us to investigate th
properties of metallic metamagnets, such as the urani
based mixed systems,5,6 for which a theory in terms of a
correlated electron model is mandatory. In contrast to
insulating case, the metamagnetic phase transition in the

y

f

FIG. 10. Field dependence of the electronic compressibi
ke5]n/]m for U52 at d50 (T51/14,1/25) and d50.05
(T51/14). The arrows mark the respective critical fields for t
metamagnetic phase transition.
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tallic system is hardly visible in the magnetization curv
This is because there is no longer a gap at the Fermi ene
Quite generally, the critical temperatures and fields decre
upon doping.

The metamagnetic transition is accompanied by p
nounced changes in the conductivity of the system. The H
bard model with easy axis can qualitatively describe sev
scenarios:

~i! In the insulating, localized regime (U>4 at half fill-
ing! a magnetic field causes a transition from an antifer
magnetic insulator to an insulator with homogeneous mag
tization.

~ii ! At lower U values ~e.g., U52) at half filling an
insulator-to-metal transition occurs at the magnetic fi
where the AF order disappears. Such a phenomenon is
served, for example, in the AF phase of La12xCaxMnO3,
where the resistivity is found to change by several orders
magnitude.52 This is referred to as ‘‘colossal’’ magnetoresi
tance. We note that La12xCaxMnO3 shows no strong anisot
ropy. Therefore our approach can only describe the gen
features, in particular the existence of the insulator-to-m
transition.

~iii ! Away from half filling a magnetic field induces
transition from a metallic antiferromagnet to a metal witho
staggered moment. Here the compressibility changes by
than an order of magnitude, e.g., about 50% atU52,
d50.05. A similar effect is found in several strongly anis
tropic antiferromagnets, both in multilayers and bulk inte
metallic compounds such as UPdGe.6 In these systems th
origin of this ‘‘giant’’ magnetoresistance is attributed
band structure effects and spin scattering.53 By contrast, our
approach stresses the importance of genuine electronic
relation effects. More detailed investigations, including ba
degeneracy and spin-orbit interaction, may eventually p
vide even quantitative insight into these interesting and
portant phenomena.
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APPENDIX A: CALCULATION OF SUSCEPTIBILITIES
FROM CORRELATION FUNCTIONS

Quite generally susceptibilities can be obtained from
derivative of the order parametermx with respect to the cor-
responding fieldx:

xx5
]mx

]x
5

1

2
T (

a,s,n
f ax

s
]Gan

s

]x
, ~A1!

with
.
y.

se

-
b-
al

-
e-

d
b-

f

ral
al

t
ss

-

or-
d
-
-

-

.
,

t

e

f ax
s 55

s

a s

1

a 6 for x55
H

Hst

m

mCDW
6 . ~A2!

Herex5H andx5Hst lead to the ferromagnetic and antife
romagnetic susceptibilities,x5m to the electronic compress
ibility, and x5mCDW to the charge density wave susceptib
ity. From the two self-consistency equations~2! and~3! one
obtains two corresponding equations for the derivative of
Green function with respect to the variablex. The derivative
of the functional integral~3! gives

]Gan
s

]x
5T (

s8,n8
Gnn8,n8n

ass8 gan8
s8x , ~A3!

whereG is the local two-particle correlation function,

Gn1n
18 ,n

28n2

ass8 5^Can1

s Can2

s* Can
18

s8 Can
28

s8* &2dss8^Can1

s Can2

s* &

3^Can
18

s
Can

28
s* &. ~A4!

The quantity gan
s x5(]/]x)$(Gan

s )211San
s % in Eq. ~A3!

measures the response of the averaged medium to an in
tesimal change of the fieldx. This dynamical response func
tion is determined by an integral equation in frequency sp
which does not explicitly depend on momentum.~Note that
there are no convolutions ink space in thed5` limit as is
typical for a mean-field theory.! This property does not im-
ply, however, that the response functiongan

s x is local, too. It
only indicates thatgan

s x is diagonal in the momentumk.
Momentum dependence enters implicitly by the particulak
dependence of the external field@k50 in the case of the
compressibility or the ferromagnetic susceptibility, a
k5(p, . . . ,p) for the staggered susceptibility#.

In the presence of an external field the variableszan
s in the

Dyson equation~2! are replaced byzan
s 5 ivn1m1sH

1asHst1amCDW2San
s . The derivative of the Green func

tion yields

]Gan
s

]x
5H gan

sx1
]Gan

s /]x

~Gan
s !2

2 f a x
s J zan

s

1H g2an
s x 1

]G2an
s /]x

~G2an
s !2

2 f 2a x
s J han

s , ~A5!

with

zan
s 5E

2`

`

deD~e!~zan
s 2e2/z2an

s !22, ~A6!

han
s 5E

2`

`

deD~e!~zan
s 2e2/z2an

s !22e2/~z2an
s !2. ~A7!

Since Eq.~A5! separates in Matsubara frequenciesn and
spin s it can be easily solved for]G/]x,
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]Gan
s

]x
5(

a8
Rn

saa8~ f a8x
s

2ga8n
sx

!, ~A8!

with the 232 array inaP$A,B%:

Rn
s52~det D!21Dn

sTn
s , ~A9!

wherebyD andT are defined as

Dn
s5S 12

zBn
s

~GBn
s !2

hAn
s

~GBn
s !2

hBn
s

~GAn
s !2

12
zAn

s

~GAn
s !2

D , ~A10!

Tn
s5S zAn

s hAn
s

hBn
s zBn

s D . ~A11!

Now ]G/]x can be eliminated by setting Eq.~A3! equal
to Eq. ~A8!, yielding

(
a8

Rn
saa8 f a8x

s
5 (

s8,a8,n8
$dnn8dss8Rn

saa81daa8TGnn8,n8n
ass8 %

3ga8n8
s8x . ~A12!

From this equation we determineg by numerical inversion
of a 4L34L matrix. Knowingg we obtain]G/]x via Eq.
~A3! or Eq. ~A8! and thus the susceptibility~A1!.

APPENDIX B: HARTREE-FOCK THEORY FOR m st'm

Similar to the derivation of the Hartree-Fock equations
miHimst ~see Sec. IV A!, we will now investigate the cas
with perpendicular orientationmiH'mst. The ansatz for the
one-particle densities

^n̂i Pas&5
1

2
~n1sm!, ^ĉi Pas

† ĉi Pa2s&5
1

2
amst ~B1!

yields in addition to the Hartree term a Fock term in t
decoupling~8!

n̂isn̂i 2s →
HF

n̂is^n̂i 2s&1^n̂is&n̂i 2s2^n̂is&^n̂i 2s&

2 ĉis
† ĉi 2s^ĉi 2s

† ĉis&2^ĉis
† ĉi 2s&ĉi 2s

† ĉis

1^ĉis
† ĉi 2s&^ĉi 2s

† ĉis&. ~B2!

With this ansatz one readily obtains the effective one-part
Hamiltonian

ĤHF5 (
NN,s

t i j ĉis
† ĉ j s2

1

2

U

4(
i ,s

~n22m22mst
2 !

1 (
a,i Pa,s

U

2
~n2sm!n̂is2

U

2
amstĉis

† ĉi 2s

2~m1sH !n̂is . ~B3!

Diagonalizing this Hamiltonian yields the one-particle en
gies,
r

le

-

ẽ s5sgnS e2sH U

2
m1HJ D

3AS U

2
mstD 2

1S e2sH U

2
m1HJ D 2

. ~B4!

From these energies the free energyV is calculated, and the
minimization with respect tom andmst leads to the follow-
ing Hartree-Fock self-consistency equations:

mst5
U

2(
s

E deN0~e!
2mst

ẽ s

1

11eb~ ẽ s2m̃ !
, ~B5!

m5(
s

E deN0~e!s

e2sS U

2
m1H D

ẽ s@11eb~ ẽ s2m̃ !#
. ~B6!

As in Sec. IV A these Hartree-Fock equations are solv
numerically.

APPENDIX C: SERIES EXPANSION
OF THE HARTREE-FOCK FREE ENERGY

The itinerant electron metamagnetism theory of Mori
and Usami23 can be derived from the Hartree-Fock appro
mation only if the free energy is analytic inm andmst. Since
in RPA the Hubbard interactionU contributes to the free
energy analytically@see Eqs.~14! and ~15!# any nonanalytic
behavior must be due to the kinetic energy. Its expansion
the order parametermst at T50 is analyzed in this section.

To calculate the expansion inmst a staggered magneti
field Hst is introduced:

Ĥ5 (
NN,s

t i j ĉis
† ĉ j s2Hst (

a,i Pa,s
asn̂is . ~C1!

On A-B lattices the one-particle energies for this Ham
tonian show a gap ate50 with square root singularities at it
edge,

ẽ 5sgn~e!Ae21Hst
2. ~C2!

We consider the half filled band, where the stagge
magnetizationmst is calculated from the one-particle ene
gies. It shows the following asymptotic nonanalytic behav
for Hst→0:

mst5(
s

E
21

0

deN0~e!
2Hst

ẽ
~C3!

52N0~0!Hstln~1/Hst!1O~Hst!. ~C4!

Similarly the asymptotic behavior of the energy~C1! is ob-
tained as

DE~mst!5(
s

E
21

0

deN0~e!~ ẽ 2e! ~C5!

52
1

2
Hstmst1O~Hst

2 !. ~C6!
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Subtracting the contribution due toHst, DEHst
52Hstmst,

the asymptotic dependence of the kinetic energy onmst reads

DEkin~mst! ——→
Hst→0 1

2
mst

2

ln~1/mst!
. ~C7!

This shows thatDEkin(mst) is nonanalytic inmst. Therefore
the itinerant electron metamagnetism theory cannot be
rived from the Hartree-Fock theory for the Hubbard mod
with an easy axis.

APPENDIX D: THE METAMAGNETIC PHASE
TRANSITION AT STRONG COUPLING

In the limit of strong coupling and half filling the
O(t4/U3) perturbation theory yields the effective sp
Hamiltonian~19!. In the following, we study the metamag
netic phase transition, and especially the order of the tra
tion, for this effective Hamiltonian. Restricting ourselves
solutions with mixtures of ferromagnetic (m) and antiferro-
magnetic (mst) order, the ground state energy is a polyn
mial in m andmst (t* [1):

E5
1

2

1

U
m22

1

2

1

U
mst

21
1

32

1

U3
$16Bm2216Bmst

21Am4

22Am2mst
222Am21Amst

416Amst
2

216Cm2216Cmst
2%2Hm1 const. ~D1!

One can see that the ferromagnetic next-nearest-neighbo
teraction C favors both saturated antiferromagnetism a
saturated ferromagnetism rather than ferrimagnetic pha
By contrast the plaquette termA has contributions that sup
port the formation of a ferrimagnetic state. To obtain t
u

n

.

e-
l

i-

-

in-
d
es.

ground state the energy must be minimized with respect tom
andmst under the constraintsumu<1 andumstu<12umu. Dif-
ferentiation ofE with respect tomst shows that, for fixedm,
E has one maximum atmst50 and two minima at

mst56A8U21Am223A18B18C

A
. ~D2!

For sufficiently strong couplingU ~e.g.,U.2 in the case of
the hypercubic lattice withA520, C52, and B54! these
minima are outside the constraintumstu<12umu. Therefore
E becomes minimal at the border of the constraint, i.e.,
umstu512umu. Replacing mst by 12m the minimization
with respect tom readily yields for the ground state,

m55
0 for H<

1

2

2A12C12U212B

U3

1 for H>
2C1U21B

U3

A22C22U222B12HU3

A24C
else,

~D3!

mst512m. ~D4!

This ground state solution for the effective spin Ham
tonian shows a second order metamagnetic phase trans
for A.4C. This is the case for the hypercubic lattic
(A520, C52) and for the Bethe lattice, whereA50 but
C521, i.e., the next-nearest-neighbor coupling is antifer
magnetic. In conclusion, the strong coupling theory sho
second order phase transition for all temperatures, eve
T50.
.
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