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In this paper we present an extensive study of the thermodynamic properties of the two-dimensional quan-
tum Heisenberg antiferromagnet on the square lattice; the problem is tackled by the pure-quantum self-
consistent harmonic approximation, previously applied to quantum spin systems with easy-plane anisotropies,
modeled to fit the peculiar features of an isotropic system. Internal energy, specific heat, correlation functions,
staggered susceptibility, and correlation length are shown for different values of the spin, and compared with
the available high-temperature expansion and quantum Monte Carlo results, as well as with the available
experimental datd.S0163-182007)01846-9

I. INTRODUCTION dimensional down to those low temperatures where the weak
interplane interaction becomes relevant, driving the system
The fully isotropic Heisenberg model may well be con- towards a three-dimensional ordered phase; an antiferromag-
sidered the cornerstone of modern theory of magnetic sysietic Heisenberg interaction and a small spin value make
tems; the reason for such an important role is the simple¢hese compounds 2DQHAF’s. This is indeed the case of
structure of this model’s Hamiltonian, whose high symmetryhigh-T. superconductors of the L&uO, or Sr,CuO,Cl,
is responsible for most of its peculiar features. Recent yeartamily (S=1/2), of other magnets such as tBe-1 La,NiO ,
have seen a growing interest in the specific case of the twaand K,NiF,, and theS=5/2 Rb,MnF,. The interplane in-
dimensional quantum Heisenberg antiferromagneteraction in these compounds is several orders of magnitude
(2DQHAF) on the square lattice, due both to its theoreticallysmaller than the intraplane one, thus offering a large tem-
challenging properties and to its being the best candidate fgserature region where the two-dimensional behavior can be
modeling the magnetic behavior of the parent compounds ofafely studied. Furthermore, their having different values of
some high¥, superconductors? the spin allows a meaningful analysis of the spin dependence
As for the theory, the 2DQHAF cannot exhibit long-range of the thermodynamic properties, which is essential if the
order (LRO) for T>0 because of its being a two- interplay between thermal and quantum fluctuations is to be
dimensional model with a continuous symmefiMermin  clarified.
and Wagner theoref)) the study of the finite temperature In order to go beyond the very first treatmefitsainly,
paramagnetic phase is hence a matter of understanding whatean field theory and spin wave theprthat are mostly not
kind of disorder one is dealing with, i.e., what kind of cor- satisfactory in coping with its strong nonlinearity, the QHAF
relation exists amongst magnetic moments on different sitedas been tackled by the field theory of the quantum nonlinear
At T=0 quantum fluctuations make the system change fronw model (QNLoM).”~® Nevertheless, the approximations
the classical-like Nel state to a ground state that can beneeded to reduce the actual spin model to the related field
rigorously provef to be ordered foiS=1; for S=1/2 the theory are drastic, as they usually approximate the essential
situation is not clear yet, although more or less direct evifeatures of magnetic systems in solid state physics, i.e., dis-
dences for an ordered ground state, even in this extremereteness, strong nonlinearity of the Hamiltonian, and ap-
guantum case, can be drawn from many different studogs pearance of the angular momentum operatthat is, in a
a review, see, for instance, Ref, including the present one classical-like language, sphericity of the phase spabieis
(see also Ref. )6 inadequacy becomes more evident when experimental data
The experimental activity stems from the existence ofare available and a quantitative comparison with theoretical
several real compounds whose crystal structure is such thatedictions is attempted; realistic spin models and more re-
the magnetic ions form parallel planes and interact stronglfined methods must then be used, and the number of fit pa-
only if belonging to the same plane. As a consequence ofameters minimized to let the real compounds drive the over-
such structure, their magnetic behavior is indeed twoall comprehension of the problem. Indeed, despite the
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success in explaining some of the early experimental data, It is useful to see how disorder develops in the model
the QNLoM approach does not lead to a satisfactory underdescribed by Eq(1) when temperature is switched on: the
standing of the problem when higher values of the spin angjround state, hereafteissumed orderetbr any spin value,
higher temperatures are to be considéefed. becomes unstable because of long-wavelength excitations
This work follows a previous papérand, together with that gradually flip the spins as one moves far from the chosen
the latter, it is our attempt to move forward studying theorigin of the lattice; their energy is small and they do not
finite temperature properties of the 2DQHAF by the effectivedisturb thelocal order of the system. They have a classical
Hamiltonian method based on the pure-quantum selfeharacter in that their contribution to the thermodynamics is
consistent harmonic approximatigRQSCHA as developed almost the same in both the classical and the quantum case.
in Ref. 11; we report here on the detailed derivation of theWhat makes the latter different is the additional local disor-
effective spin Hamiltonian and more results are shown asler introduced by the short-range purely quantum fluctua-
temperature and spin value are varied, together with experiions, whose renormalizing effect decreases as temperature
mental datd? *°classical®'’ and quantum Monte Cart®'® increases.
(MC) simulations, and high-temperature expan%‘ic(HTE) The 2DQHAF model1) has been studied by several au-
results. No best-fit procedure is involved in the comparisorthors in terms of the QN&M field theory, involving a three-
with the experimental data, as we just need to know the spicomponent vector field) with the constrainfQ|=1 and
model, which is unambiguously defined, in the case of thespatial integrations subjected to a short-distance cutoft.
QHAF on the square lattice, once the values of the spin anthe model depends on two parameters: the bspim-
of the exchange integral are given. The agreement we finétiﬁnesspg and the barespin-wave velocity & the coupling
with the available data, together with the clarity of our ap-constant turns out to bgO:COA/pg. Despite their names,
proach, allows us to draw a comprehensive picture of thehe parameterp? andc, arenot directly related with those

subject, including both the analysis of the 2DQHAF behavior(J andS) defining the 2DQHAF: this relation is indeed the
and the discussion of previous approaches used for the samjg gkest point of the QNiM approach.

purpose. ) ) A first link between the two models was established by
In Sec. Il we introduce the 2DQHAF model and briefly 145 4ane and Affleckunder a larges condition, i.e., in the

describe the problems encountered by alternative aBsemiclassical limit. Their mapping gives, pg, andcy as

proaches. In Sec. Il the effective Hamiltonian method IS3-1, 39, and 2/2JSa respectively & is the lattice spac-

described, and the approximations involved in this specifiqng), it follows that go=22S %, which means that the
imp[ementation are Qiscussed; the effects of quantum ﬂu.céen;iclassical limit of t?}e spin méde5£> 1) corresponds to
tuations on the physics of the 2D_QHAF are then analyzed Mhe weak coupling regime of the field theorgy1). The
Leén;i:g;tgzc?%igt?\rp a:]%n\?rgiltlgﬁ;"ng r;”;;ig%g??hghterfvalidity of this approach when studying real compounds is

’ more than questionable, and Haldane's suggestion of replac-

modynamic propertieéinternal energy, specific heat, corre- . e
lation functions, correlation length, and staggered susceptf-ngl S by v5(S+1) does not solv_e the problem. 8
bility) compared with MC and HTE results, as well as with The way Chakravarty, Halperin, and Nels@ﬁHN) con-
the experimental data. Conclusions are drawn in Sec. VI. nected the two models has greater generality. They used
symmetry arguments to show that the long-wavelength phys-
ics of the QHAF must be the same of that of the QNW, a
IIl. THE QUANTUM HEISENBERG ANTIFERROMAGNET result that holds regardless of the spin value. However, they
The two-dimensional quantum Heisenberg Antiferromag-could not define the field theory parameters in terms of those
net is described by the Hamiltonian of the spin system; therefore the spin stiffness and spin wave
velocity are just phenomenological fitting parameters to be
Je determined from either experiments or simulations.
H= 52 S-S, (1) The analysis carried out by CHN on the QM leads to
hd the characterization of three different regimes, called quan-
. .. . A . tum disordered, quantum criticdQCR), and renormalized
V‘fhfre‘] Is positive a.nd th? qgathum spin operatﬁir'sat|sfy classical(RCR), the most striking difference amongst them
|SI*=S(S+1). The indexi=(i1,i) runs over the sites of a peing the temperature dependence of the spin correlations. If
square lattice, and represents the displacements of the fourg, js such as to guarantee LRO B0, the QNLoM is in
nearest neighbors of each site; 1,0) and (0+1). the RCR and its long-wavelengtti.e., low-temperatupe
The most important feature of this model is 0€3) sym-  physics is that of the classical model with parameters renor-
metry of its Hamiltonian, implying no spontaneously brokenmajized by quantum fluctuationsd— ps, co—c) and a
symmetry forT>0: the system does not support LRO at ghort-wavelength cutoff of ordez=c/T. As far as the cor-
finite temperature and the standard spin-wave theory Conseg|ation length¢ is concerned, the famous low-temperature

quently produces unphysical results. The existence of l0cgy-100p result for the renormalized classical regime is
alignment directions, due to the persistence of strong short-

range order up to high temperatures, makes possible the defi-
nition of a properly modified spin-wave thedfywhose re- £cim=C (
sults are remarkably good. However, spin-wave theory CHN™™¢
remains quite an inadequate tool to study the thermodynam-
ics of the 2DQHAF and this indeed stimulated several auwhere C, is a nonuniversal coefficient. Hasenfratz and
thors to search for alternative theories. Niedermayet have subsequently calculated the leading cor-

exp(2mps/T), 2
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rection inT/27pg to Eq. (2), and also found the coefficient physical problemgfor an extensive review see Ref.)2&e
C;=eal8, so that method is based on the path-integral formalism and allows us
to express the quantum statistical average of physical observ-
T T \2 ] ables in the form of classical-like phase-space integrals.
1- 477/[);LO 27ps) | 3 Other methods in quantum statistical mechanics formally
lead to this same forngsee, e.g., Ref. 34 but they differ
although Eq.(3) extends the temperature region where Eq.from each other because of the different approximations used
(2) can be used, both of them do not work for intermediate otto determine the effective phase-space density.
high temperature. The fact that the low-temperature experi- |n the effective Hamiltonian method developed for a flat
mental results forS=1/2 two-dimensional magnetic com- phase space, such approximation is the pure-quantum self-
pounds can be fitted by those of a 2DQ&VY in the renor-  consistent harmonic approximation, whose name, though
malized classical regime, has led to assert that the groungng, is at least self-explanatory. The PQSCHA does in fact
state of the 2DQHAF is ordered also in tBe-1/2 case. separate the classical from the pure-quantum contribution to

The results by CHN are of great general value and havéhe thermodynamics of the system, and then approximates
been extensively used to understand $zel/2 experimental  only the latter at a self-consistent harmonic level. This means
data, but their approach has several substantial drawbacks f@iat the classical physics is exactly described at any tempera-
that purpose. First of all, for precisely givéhandJ of the  ture, and so are the purely quantum linear effects, as the
real compound, the fundamental parameggyandc remain  self-consistent harmonic approximati®CHA) only affects
unknown; the necessary best fit procedure involved in theithe pure-quantum nonlinear contribution. In other words, we
determination introduces a substantial uncertainty in thelo not renounce the exact description of the classical behav-
whole of the work. Secondly, the restriction to low tempera-jor in its full nonlinearity just because we cannot deal with
tures cannot be avoided, thus making the HTE techniquehe nonlinear quantum corrections to it; we rather approxi-
extensively used by Elstnet al,'® of great help and impor- mate only the latter. This result is specially valuable in the
tance in this framework. Finally, things get worse for higherstudy of magnetic systems because their behavior is very
values of the spin, as has been recently pointed out by Elsbften characterized by long-wavelength excitati¢sisch as
neret al;!° further adjustments of the fit parameters are necsolitons, vortices, or Goldstone moglewhose character is
essary to reproduce the experimental tagnd the depen- indeed essentially classical.
dence of¢ upon S cannot be analyzed because it is not  The procedure leading to the effective Hamiltonian in the
directly addressed by the theory. Quantum MCmagnetic cas@ can be briefly summarized as follows. First
simulations®*° provide quite good results in a rather large of all, the spin Hamiltonian must be written in a bosonic
temperature region, but up to now they are only available foform through a properly chosen spin-boson transformation.
S=1/2. Secondly, the Weyl symb®l of the resulting bosonic Hamil-

As far as the different regimes of the 2DMM are con-  tonian has to be determined and the quantum
cerned, the RCR is the most interestiibging the one linked  renormalizations' made explicit. Finally, the resulting effec-
with the realS=1/2 compounds but the QCR has also at- tive Hamiltonian must be put into the form of a classical spin
tracted much interest in recent years. CHN found that anyamiltonian (by the inverse of the classical counterpart of
2DQNLoM with an ordered ground state crosses over fromthe spin-boson transformation used in the first stdfhe
the RCR to the QCR at sufficiently high temperature. Thisspecific case of the 2DQHAF is described in Appendix B,
statement cannot be ftrivially extended to the 2DQHAF, asvhere the detailed derivation of the effective spin Hamil-
we know that the relation between the two models only holdsonian, that was just sketched in Ref. 6, is reported.
for low temperature. Nevertheless, the lower the spin, the In choosing the spin-boson transformation for the isotro-
lower the temperature at which such a crossover should ogic Hamiltonian Eqy(1), we exclude the Villain transforma-
cur, so that for sufficiently sma® at least some signs of an tion which is designed for models with easy-plane anisot-
intervening QCR-like regime could be detectédAs the  ropy. Furthermore, neither the Holstein-PrimakR6tHP) nor
correlation length of the 2DQNEM in the QCR is ¢  the Dyson-Maleet? (DM) transformation apparently gives
«a(T)=c/T, such a sign could be, for instance, a temperaan alternative, as they both break the symmetry of the prob-
ture dependence of the measugedhich becomes less pro- lem. However, the broken symmetry of tliassumed or-
nounced ag increases. No such experimental evidence exdered ground state of the 2DQHAF is restored at finite tem-
ists for pure compounds, but some doped materials show perature by long-wavelength excitations whose effect, as
similar behavio? it has been argued that, by thinking of the mentioned above, is almost entirely taken into account al-
doping as causing an effective increase of the quantum coueady at the classical level. As a consequence, it is almost
pling, these experimental data could tell us that the dopeéntirely taken into account also by the PQSCHA, no matter
magnet is undergoing a transition of the same nature of thavhat spin-boson transformation is used to evaluate the quan-
between the renormalized classical and the QCR of théum renormalizations, as far as the bosonic effective Hamil-
2DQNLoM. This reasoning is still controversial and we will tonian is eventually put into the form of a classical spin
come back to this point at the end of Sec. V. Hamiltonian. This means that by using the DM or HP trans-
formation in the PQSCHA framework, we break thg3)
symmetry, but only as far as the pure-quantum fluctuations
are concerned, so that all the essential features due to the

The effective Hamiltonian approach has been successfullgymmetry of the Hamiltonian are actually kept and the use of
applied in the last decade in the study of many differentsuch transformations is consequently justified. As for the

Enn=€chn

Ill. THE EFFECTIVE HAMILTONIAN
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choice between HP and DM, we employed the latter in Refactually introduced a low-coupling approximati@nCA) to
6; in Appendix A we show them to be equivalent in this make the PQSCHA frequencies configuration independent
context. (see Appendix B On the other hand, since the effective
An important point is the ordering problem. Whenever aHamiltonian is affected by an approximate evaluation of the
theory prescribes a function or functional to be associatedenormalized frequencies just at a secondary level, the ap-
with a quantum operator, it should also specify the orderingporoximation is worthy and assures the final results to depend
rule to be used for that purpose, to avoid an unnecessamnly weakly on the specific LCA used.
uncertainty to enter the theory. When dealing with spin sys- There are in fact several ways of defining a possible LCA
tems, such uncertainty often manifests itself in the ambiguin this context. In Ref. 11, the fundamental phase-space-
ous definition of the spin length, leading to an arbitrarydependent parameters appearing in the thémryterms of
choice betweers,S(S+ 1), or others. The PQSCHA gives which the frequency are defingdayA(p,q), were approxi-
an unambiguous response to this point, by asking for thenated in the simplest way a&8(p,q)=A=A(py,qy); how-
Weyl symbol of the quantum operator to enter the formulaesver, in the specific case of the 2DQHAF the minimum en-
for its own renormalization and, as we will see later, it makesergy configuration becomes unstable as soon as the

the effective spin length temperature is switched on, so that a more refined LCA is in
fact necessary for a proper description of the low-

S_gt } @) temperature regime. In Ref. 11 we suggested for this case
2 that A(p,g) could be better approximated with its self-

naturally appedr (see Appendix A Consistently with its consistent average defined by the effective Hamiltonian, i.e.,

being the spin length in this formalisng sets the energy

scale through the combinatialS?. We therefore define the
reduced temperaturas

1
Apa)= [ doda Ap.aje #er=(A(p.)er, (11

where Z is the patrtition function relative t@7.;. However,

T if an analytical expression for such averages is not available,
=—. (5)  this approximation does not actually lighten the burden of
JS the numerical work. The best one can do analytically is to

evaluate them in the framework of the classical SCHA. In
Appendix B we show that this leads to two coupled equa-
tions that give us all the ingredients we need to actually use

The final result for the effective spin Hamiltonian is

Heft o* h . a1
—— LSt e effective Hamiltonian,
T 7 S SatNG(), (6) .
w =4k (l—yk)1 ;
t sinhf
- — 242 1 D
G0 =2 3 ek @ K2=1-5(D+Dg) =~ =, (12)
with the temperature and spin-dependent parameters where D, =t/2«? represents the contribution to the fre-
D guency renormalization due to the classical part of the fluc-
§2=1——, (g)  tuations; at variance with the pure-quantum coefficiént
2 which is a decreasing function of temperatulg, rises with
1 . t. As for the solution of the above equationg(t) is real
e 4 .
D= 1— 222 cothf, — _). and positive fort= 6%, b_ut_ becor_nes unphysically complex
SNzk: (1= (COt KR ©  for t=¢*. From the explicit solution
Wk K2:1[92+(04—t)1’2] (13)
fk:T; (10) 2
2St

one sees the instability to be originated just by the classical
moreover,y, = (cok;+cok,)/2, N is the number of sites of contribution tox?. This instability is typical of the SCHA
the lattice, andk=(ky,k,) is the wave vector in the first and it is now shared by the PQSCHA because of the particu-
Brillouin zone.D is the pure-quantuntenormalization coef- lar type of LCA chosen in order to optimize the low-
ficient, which takes the main contribution from the high- temperature results. A closer look to Eq&2) shows that
frequency part(short-wavelength of the spin-wave spec- what causes the instability is the contribution to the fre-
trum, because of the appearance of the Langevin function.quency renormalization due to spin waves with long wave-

As for the frequencies,, note that in the PQSCHA con- length. On the other hand, linear excitations witk 2¢ are

text they just appear in the evaluation of the pure-quantunin fact unphysical as they do not exist in a system with no
renormalizations. In the general PQSCHA they depend upotRO; in their stead the system develops nonlinear excita-
the phase-space coordinate, but such dependence, when tiens which are fundamental in determining the thermody-
system has many degrees of freedom, would make the evalmamics of the system, but whose contribution to the fre-
ation of the phase-space integrals with the effective Hamilgquency renormalization is seen to be negligible by the same
tonian a task as time demanding as a quantum MC simularguments showing them to be responsible for the vanishing
tion. Therefore, in deriving the above formulas, we haveof the magnetization.
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Although the instability only affects the evaluation of the 1.0
renormalized frequencies, we want to devise a reasonable
way to treat it, in order to optimize the description of the
temperature region where the above mentioned nonlinear ex-
citations become relevant in the thermodynamics of the sys-
tem, which is in fact the same region where the instability
occurs. The unphysical contribution in Egd2) is then
pulled up by inserting a cutofk|= /£, over the AFM Bril-
louin zone, in the evaluation dP.. Such a cutoff is obvi-
ously t dependent, being=£(t), and it is relevant in the
temperature region where quantum nonlinear excitations are
most important in the system. As we will see in Sec. V, such
region seems to coincide with that where other authors de- ' ‘ ‘ , ,
vised anomalous behaviors, ascribed to the occurrence of 0.0 0.2 0.4 0.6 0.8 1.0 1.2
quantum criticality in the theoretical work$,or to doping t
effects in the experimental onés.

Coming back to the effective Hamiltonia), we see the FIG. 1. Renormalization parametéf vs t, for (from the top
quantum effects to causs the appearance of the spin length ¢rvg s=5/2, 1, 1/2(solid lines, andS=0.4, 0.3, 0.2, 0.1dotted
S, (ii) the renormalization of the exchange integidby the lines).
factor #%(t)< 1, (iii ) the introduction of a uniform terré(t).

As far asg(t) is concerned, although it does not play any syggest that no critical behavior occurs, no matter how small
role in calculating thermal averages, it contains the essentighe spin value. What we rather see is that the sharp depen-
logarithmic term that transforms the spin-wave contributiongence oftes Upont brings to lower temperatures those fea-
to the free energy from classical to quantiimAt t=0,  tures which are indeed typical of the highly disordered, high-
G(0)=0 and the zero-temperature energy per site igsemperature regime of the classical model. In Sec. V C we
—26%(0), higher than the classical value2, because of the il come back to this point, in relation with the effects of
zero-point quantum fluctuations. We have already commagnetic doping, and we just recall here that any reasoning
mented on the appearance®fs a consequence of a preciseabout models withS<1/2 should just be considered as
ordering prescription; we just add here that this is a genuingpeculative when dealing with real magnets.
qguantum effect, being the noncommutativity of quantum op-
erators the only reason for an ordering rule to be necessary.

Let us now examine the exchange-integral renormaliza- IV. THERMODYNAMIC PROPERTIES
tion embodied in the factof*; the paramete#? depends on
both S andt, it is well defined as far as a physical solution
for 2 is available; it attains its minimum value fae=0,
where #%= k? coincides with the one-loop correction to the
spin-wave velocity. For increasir§jor t, 62 increases, going
asymptotically to 1 in the classicalS{~«) or high-
temperaturet(—o) limit. The instability value#?>=0 is not ~ 1 N e BH —~
reached for physical values of the spin, being (0)= gf d"sOe™ Pel=(O).r, (15)
6°>1—(2S) >0 for S>0.

The essential information we get from E®) is that the

Once the effective Hamiltonian has been determined, the
thermodynamic properties can be derived from the partition
function Z= [dpdgexp(— BH.f); more general statistical av-
erages are given by

2DQHAF at an actual temperatutebehaves as its classical 1.2 ' I S
counterpart at an effective temperature I
1.0 :
(14 08f 1 T _

RO

. . . 0.6
or, in other terms, that the energy scale is renormalized by a *

temperature dependent factéf(t). In Figs. 1 and 2 we
show #* andt as functions of, for different spins, includ-
ing someS<1/2 unphysical valuegdotted line$. As S de-
creases the difference betweeandt.; becomes more and
more pronounced, because @f getting smaller, indicating 0 , R ‘ ‘ A , .
larger quantum fluctuations in the system. D) 0.2 0.4 0.6 0.8 1.0
Our theory is quantitatively meaningful just as far as the t
renormalization coefficienD is small enough to justify the
self-consistent harmonic treatment of the pure-quantum ef- F|G. 2. Effective classical temperatutgy=t/6*(t) vs t, for
fects; although this is not obviously the case for 8%&1/2  (from the bottom cureS=5/2, 1, 1/2(solid lineg andS=0.4, 0.3,
low-temperature regime, the dotted lines at least qualitatively.2, 0.1(dotted lines.

0.4

0.2
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-0.3 T T & 2 T T T T
L (o]
-0.6f . .
= -0.9 b O 1r h
-1.2f 1
15T 04 06 08 10 12 0
t t
FIG. 3. Energy per spimu=(H)/(NJS) vs t, for (from the FIG. 4. Specific heat per spit=du/dt vst, for (from the top

bottom curve S=, 5/2, 1, and 1/2; the symbols are quantum MC curvg S=, 5/2, 1 and 1/2; circles as in Fig. 3; squares are our MC
data forS=1/2 [circles (Ref. 18 and trianglegRef. 19] and pre-  results. For thédotted S=1/2 curve see comments in the text.
vious classical MC datéRef. 16 (squares

pendence of the cutoff involved in the LCias described in
where O=0({s}) is obtained by the quantum operator  Sec. ), they are affected by consistent numerical uncer-
following the same procedure used to determine the configuainty and should not be considered but qualitatively for
rational part ofHe; (sSee Appendix B by (- - - )z we here-  S=1/2 where such dependence is more pronounced.
after mean the classical thermal average with the effective
Hamiltonian, which equals the classical average at the effec-
tive temperature; .

In order to evaluate the classical 2D phase-space integrals For the correlation functionsG(r)=(S5-S.,), with
appearing ir- - - )¢ according to Eq(15), a standard clas- r=(r,,r,) any vector on the square lattice, we fifiskee
sical MC simulation is perfectly suitable; being the existentAppendix B
classical MC dat¥''’ incomplete as far as the correlation
functions are concerned, we have performed our own simu- =4
lations (following the same procedure described in Ref. 30, G(r)=S"0r(S-S+r)eit 17)
with slight modifications of the overrelaxed moves made to
account for the fully isotropic exchang®n a 256<256  where ¢'=1—31D, and the renormalization paramet®x,
square lattice, for 0.54t<1.42. The dimension of the lat- (gads
tice ensures the data to be free from saturation effects, ac-
cording to theL=6¢ criterion, for all temperatures but the 1 14
first two (0.54 and 0.56 D, = ; ( Yk

B. Correlation functions

1/2 1
(cothfk— f—)(l—cosk~r);
k

A. Internal energy and specific heat (18

According to Eg.(15), the internal energy per spin

u=(FYI(NTS) is note that for nearest neighborss d, we haveDy="D.

Equation(17) shows that the quantum correlation func-
4 tions can be obtained by multiplying the classical ones at the
u(t)= 0" Uaiter), (16) effective temperaturetos by the temperature and spin-

whereuy is the classical energy; from the results shown independent renormalization fact&j‘sz. The overall effect is
Fig. 3 we see the quantum renormalizations to increase th&at of a strong reduction of the spin correlations, as it is
energy and flatten the curve(t) at all temperatures and clear from Fig. 5, wherés* (r)=|G(|r|)|/S? is shown for
more markedly for smaller spin. Quantum fluctuations arer=(r,0), at a fixed temperature and for different values of
responsible for both effects, as they introduce additional anthe spin.
almost temperature-independent disorder, thus making the In order to exploit some available quantum MC data for
system more unstable, i.e., with many different configura-S=1/2, we have performed four classical MC simulations
tions thermodynamically relevant, already at low temperawith the effective Hamiltonian, at the temperatures corre-
tures. sponding, via Eq(14), to those at which quantum MC simu-
Consistently with this picture, Fig. 4 shows the peak oflations have been performed by Makivdad Ding*® As seen
the specific heat moving towards lower temperatures and dén Fig. 6, the agreement we find is very good, and gives us
creasing in height, aS decreases. Our data for the specific confidence to proceed towards the evaluation of the suscep-
heat at finite spin are obtained by numerical derivation oftibility and of the correlation length, both indeed deriving
u(t), as given by Eq(16); because of the temperature de- from the correlation functions.
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FIG. 5. Absolute value of the spin correlation function FIG. 7. Staggered susceptibility* = x/S? vs t, for (from the

G*(r)=|G(r,O)|/§2 vsr, att=0.7 and for(from the top curve  rightmost curvg S=x, 5/2, 1, and 1/2; the crossgeur simula-

S=, 5/2, 1, and 1/2; the dotted lines are just guides for the eye.tions, see tejtand the square®ef. 16 are classical MC data, the
triangles are quantum MC datRef. 19 for S=1/2.
V. FACING THE EXPERIMENTAL DATA

In this last section we compare our results with the avail- A. The staggered susceptibility

able experimental data and show that, at variance with what The staggered susceptibility for the 2DQHAF is defined
seems to emerge from the analysis based on the SNNL as
approach, there is no substantial difference between the 1
agreement we find for systems wi8¥ 1/2, and those with _ = NTqHT
bl 4 X=32 (2)7126(r) (19
We consider two fundamental physical observables, the i
staggered susceptibility and the correlation length, and and by the PQSCHA result EGL7) we find
we underline once more that our results do not contain free
parameters and need nothing but the value$ ahdS to be X=3=
compared with the experimental data. In the case of the stag- 3
gered susceptibility, the latter come in arbitrary units so tha
a multiplicative factor must be determined by the standar
least-squares procedure. We also remind that our results f
S=1/2 and low temperatures£0.35) are obtained in a

S(S+1)+§2§o (=)' 20}s 51 Jenr|-  (20)

y using our classical MC data f@5- s, )¢ We then obtain
rpe quantum results for all values & as the spin- and
?emperature-dependent renormalization fagfbcan be eas-

region where the PQSCHA, given the relatively large vaIueIly evaluated for any value of.

. _ ~2 B
of the renormalization coefficienD, touches its limit of In Fig. 7 we showy* = x/S° as a function of temperature
validity.3! for different spin values. Fd8= we have reported our MC

data, as obtained from both the general definiti@0)
(curve and the classical expression* =(|=;s|?)/3N
(crossey also reported are classical MC data from Ref. 16,
as well as quantum MC data recently obtained by Kim
et al!® for S=1/2. Figure 8 shows our results f@=1/2
together with experimental ddfafor the real compound
Sr,CuO,Cl,; the quantum MC results by Makiviand Ding

8 o1k e . i are also shown. The caSe=1 is considered in Fig. 9, where
O R the experimental dat&'? for the compounds LgNiO, and
5 e e 1 K ,NiF 4, are reported. The agreement between our theoretical
e el ] curves and the experimental data is substantially equivalent
R - L | in both theS=1/2 andS=1 case, strongly suggesting that
s g T the difficulties encountered by a QMM-based analysis to
0.01k ‘ B : ] draw a unique picture for different spin values, derive from
o 2 a4 6 3 10 the inadequacy of the theory, rather than from an actual dif-

ference in the thermodynamics of the different compounds.

FIG. 6. Absolute value of the spin correlation function B. Correlation length

G*(r)=|G(r,0)|/'S? vsr, at S=1/2 and for(from the top curve _ The correlation length is deﬁned by t_he asymptotic behav-
t=0.45, 0.50, 0.60, 0.75; also reported are quantum MC @e#  ior for r=|r|—o of the correlation function,G(r)|~e™"¢.
18) (circles. The dotted lines are just guides for the eye. From the PQSCHA result, Eq(1l7), since for larger
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FIG. 8. Staggered susceptibility* = x/S2 vs t, for S=1/2. FIG. 10. Curvest(¢) as explained in text, fotfrom the top

Circles(Ref. 18 and trianglegRef. 19 are quantum MC datéhe ~ curve S=c, S=5/2, 1, and 1/2, the triangleef. 19 and the

dotted lines are just guides for the gy¢he squares are neutron squaregRef. 18 are quantum MC data fd8= 1/2, the circles are

scattering datdRef. 12 for Sr,CuO,Cl,. HTE results(Ref. 10, and the diamonds are classical MC ddaf.
17).

6} —const, we gets-S. )er~e "¢, which means, com-

ing. In other terms, we see that each vafueorresponds to
paring the definition15) and using Eq(14), g alu P

a temperature(£,S) which is different for different spin
values. This point of view is taken in Fig. 10, where we
§(t)=Ea(ter), (21 report our results fot(¢,S), together with MC and HTE
data. In the S=1/2 case, we find that
t(&,1/2)1t(£,0) = 6*=0.5 for £=10; as already pointed out
at the end of Sec. Ill, such a small value &f makes the
PQSCHA no more quantitatively reliable. Nevertheless, the
figure shows that the accuracy of our results ft#,S) at
S=1/2 andé=100, as from the comparison with the quan-

Eq.(21) ts th ¢ . f the i ktum MC data, is still better than 20%, which makes them
more, £q. represents the correct expression ot the fin ualitatively meaningful even in the extreme quantum

between the classical and the quantum discrete magnet 31 ; : “ A

: : gion’* However, the inaccuracy in the “renormalized
model, tq be compared W'th the one deV|§ed by CH.N for thetemperature gives larger inaccuracy in the inverse function,
QNLoM in the renormalized classical regime, leading from £(t), due to its exponential behavior
the classical result by Brin and Zinn-Justitf to Eq. (2). The experimental data f@= 1/2 andS—1 are compared

Iengghu?:éontn](tzhlé ?:Illggvssicﬁ ;%gbgs'gt;;gfea?;%n;:&rﬂ:tgcg with our theory in Fig. 11; at variance with what happens by

sing the QNIoM approach, the agreement does not get
worse in theS=1 case. For each spin we have also reported
the curves(dashed lines obtained by using the standard
LCA (high+t curves as well as the more accurate one de-
scribed in Sec. lll(low-t curves without cutoff and hence
truncated at= #*. They are smoothly connected by the con-
tinuous curves, i.e., those obtained by using the cutoff. For
each spin value, the temperature interval where the cutoff is
relevant identifies the region where nonlinear excitations are
present in the system, and hence suggests where a possible
crossover towards the QCR could occur.

In order to better understand why the Q&M theory
fails in describing the 2DQHAF when used to interpret the
available reference data f&=1, the functiony(t) =tIn¢ is
shown in Fig. 12 as a function @¢f We remind the reader
that the QNLloM approach givey(t)=mt+n in the quan-

t tum case(with m and n constant in temperature b& de-
penden), being such expression based on the classical two-

FIG. 9. Staggered susceptibility* =y/S? vs t, for S=1.  loop resultyq(t) =tin(ut)+v (with x and v constanty first
Circles and squares are neutron scattering data foNI@, (Ref. ~ of all, one must check whether or not this classical result can
13) and K;NiF, (Ref. 12, respectively. The classical resgitash-  be safely extended to the magnetic system.
dotted ling is also reported. Let us concentrate on th8= (classical MC data re-

i.e., the correlation length of the quantum model at a cer-
tain temperaturé equals the classical orfg, at the effective
temperaturd 4>t. It is easy to see that the relation empiri-
cally extracted by Elstneet all® from their HTE results
(i.e., &S, T)=&T/IIYS+1)] for S>1 and T=J9) is
nothing but the highF and highS limit of Eq. (21). Further-

1000 |

100

10¢
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not; actually one can easily see a change in the slope at
intermediate temperature, followed by a curvature inversion
at lowert. As in the classical case, hence, good fits with the
functiony, can be obtained either in the low- @mislead-
ingly) in the high-temperature region, but not on the whole
temperature range. To fit the experimental dateSferl with

a straight line is seemingly impossible, as pointed out by
several author§'213in the past few years.

Finally, if we look at theS=1/2 case it becomes clear
why the QNLoM approach gave such a good agreement
when first used to fit the experimental data. The change in
both the slope and the curvature thi¢ is less pronounced
and possibly occurs at lower temperatures, the lower the
spin: in theS=1/2 case, we find difficult to say whether
these features are still present or not, but, if yes, they occur
in a temperature region where the extremely high valué of
(~10% makes both the experimental and the simulation data
S=1. The symbols are experimental data; ®r 1/2: ©%Cu NQR ~ MOr€ difficult to be obtained. The experimental data, as well
data (Ref. 14 (circles and neutron scattering data for J@GuO, as our results, do actually suggest a (.:han%g in the Sl_ope; on
[squaresRef. 15] and for SLCUO,Cl, [up-triangles(Ref. 12]: thg other hand quantum MC data by Kahal,™ do not give
for S=1: neutron scattering data for LNIO, [down-triangles €vidence of such change.

100

10F

FIG. 11. Correlation lengtl¥ vs t, for S=1/2 (leftmos) and

334
(Ref. 13] and for K,NiF, [diamonds(Ref. 12]. The classical re- As for the very-low temperature data by Setal,™ it is

sult (dash-dotted lingis also reported; the dashed lines are the low-t0 be noticed that the authors explained the change in the
t and hight results of the PQSCHAsee text slope of their curve in terms of a crossover from an isotropic

towards an easy-planéosterlitz-Thouless-likg behavior.
ported in Fig. 1Arightmost curvg The complete curve can- We cannot question their interpretation, but we underline
not be fitted with a function of the form and such a fitis that their conclusion is based on the assumption thatltige
solely possible if one restricts himself to a limited tempera-curve for the 2DQHAF is a straight line, which is, as we are
ture range, as in the intermediate-temperature region there &eing, at least questionable.
a clear change in the slope. On the other hand, this should
not surprise, asiné=tin(ut)+v is a two-loop result and it is
hence bound to be correct only at lowest temperatures. We
now expect this problem to propagate to the quantum case, We have already pointed out that at intermediate tempera-
which is based on the classical result. tures there is an interval, whose width is larger the smaller

Let us then look at th&=5/2 andS=1 curves: according the spin, where quantum nonlinear effe¢thie to higher
to the QNLoM these should be straight lines, but they areorder terms in the couplingare significant; such interval is
identified, in our theory, by the temperature region where the
cutoff is relevant, a region which is very easily recognizable
in Fig. 11 (0.45t=<0.9 for S=1/2 and 0.65t=<1 for
S=1) and seems indeed to coincide with that where Chu-
bukov and Sachdéf suggested the occurrence of the QCR
in the QNLoM.

Experimental data for magnetically doped materials have
been interpreted by several authors in terms of a possible
crossover from the classical renormalized towards the QCR.
Let us concentrate, in particular, on the data by Carretta
et al,?° obtained by a scaling analysis of théfiCu nuclear
guadrupole relaxatiofNQR) data, for the correlation length
of La,CuQO, doped with nonmagnetic impurities, i.e., for the
. . . . compound LaCu; _,Zn,0,. In Fig. 13 we report their data

0.2 0.4 0.6 0.8 1.0 12 1.4 for x=0.018: it is evident that the doping causes a strong
reduction of the spin correlation, as well as a clear flattening
of ¢ as a function of temperature. Such flattening does occur

FIG. 12. The functiony(t)=tIn¢ vs t, for (from the rightmost in the same intermediate temperature region where the QCR
curve S=o, 5/2, 1, and 1/2; the triangle®Ref. 19 and the dia- has been suggested tc_’ occur. . .
monds(Ref. 18 are quantum MC data foB=1/2. Also reported The authors have interpreted their data in terms of an

are neutron scattering data for 4O, [circles(Ref. 13] and for  €ffective rgduction of t.he_ spin stiffness, consistently with our
K,NiF, [squares(Ref. 12]. The inset reports, together with our theory which shows similar effects to be caused by an effec-

result for S=1/2 (line), ®3Cu NQR data[circles (Ref. 14] and  tive _reduction of the spin vglue. The curve in F_ig. 13 is
neutron scattering data for L&uO, [squares(Ref. 159] and for  obtained by the PQSCHA wit=0.35, a value which has
Sr,CuO,Cl, [triangles(Ref. 12]. been empirically determined in order to optimize the agree-

C. Magnetic doping and quantum criticality
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announcet? experimental results for th&=5/2 square-

70
i lattice antiferromagnet RIMnF,, which are not yet avail-
able.
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FIG. 13. Experimental data for the correlation length, for the

magnetically doped compound k@u, _,Zn,0,, from Ref. 29. The APPENDIX A: SPIN-BOSON TRANSFORMATION
leftmost lines refer t&6=0.35, with the dashed lines as in Fig. 11; AND WEYL ORDERING

for comparison th&=1/2 curve is also reporte@ightmost curve

In this appendix we compare the Dyson-Mal&e(DM)
ment with the experimental data. Although the use of ourand the Holstein-Primakdif (HP) transformations as far as
approach foiS<1/2 is not fully justified, these results do at the ordering problem is concerned. The DM transformation
least qualitatively suggest that foB<1/2 the magnetic for the spin operatorS*=5*+iS¥ and &, in terms of
model moves towards a regime where nonlinear effects b
come relevant in a wider temperature regitiee one where
& shows a clear plateaand such behavior could be seen as . .
a signature of the crossover towards a QCR. S*=(29)"4,

%osonic operatorsa(’,a) is

VI. CONCLUSIONS S =(25)"Y4&af(2s-a'a),

In this paper we have applied the pure-quantum self-
consistent harmonic approximatfdfPQSCHA to the study F=s-a'a. (A1)
of the thermodynamics of the two-dimensional Heisenberg
antiferromagnet on the square lattice. The PQSCHA allowetthe transformation is canonical, as frd@,a’]=1 the spin

us to reduce the evaluation of quantum averages to the Caébmmutation relations follow witH§|2=S(S+ 1). Their
culation of classical-like phase-space integrals. ThereforeWeyl symbols are found to Be’ '

using classical MC simulations, we have been able to obtain
results for several quantum thermodynamic quantities. What
is remarkable is that these results are fully determined by the
system’s parameters, i.e., the spin vafiand the ratio be-

St= (28)1/23.,

tween the temperature and the exchange energy constant S =(25)"Y225-a*a)a*,
T/J.
The main effect is seen to be the temperature-dependent -
weakening of the effective classical exchange constant, so S=S-a*a. (A2)

that an effective classical temperature naturally arises, Eq.

(14); this leads to a very simple relation, E@1), directly ~ For the use of the DM transformation in the 2DQHAF con-
giving the quantum correlation length in terms of its classicaltext we refer to Ref. 6.

counterpart. For other thermodynamic quantities, such as The HP transformation reads instead

correlation functions and the staggered susceptibility, the ex-

pressions involve furt'her pure-quantum renormalization fgc- St= (25— ata)i2a,

tors that can be straightforwardly computed. Even pushing

down the theory to the extreme quantum cé&Se,1/2, we R R

find agreement both with quantum MC and experimental S =(8HT,

data, until the renormalization parameters of the theory be-

come too large forT/J=<0.35 making the results of only
qualitative value.

For higher spinS=1, the theory is reliable at any tem- . .
perature, and it agrees indeed with the available experiment&lnd Lcan be Lewrltten n tfarmsA of Aphass-space operators
data, while quantum MC simulations have not yet been feaﬂ:(<'=1T+<’=1)/(2~°-')1/2 and Dzl(flt— a)/gs)m, where
sible. It would be interesting to compare also with the S=S+1/2 and with commutatdrg,p]=i/S, as

§=s-a'a, (A3)
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§°=5 (a+ip),

1., ., 1
— 2| g2+ p2+ =
1 4q+p+,§)

S =(5HT,

o, P
S( 1- 5
We have now to determine the Weyl symbols of these op-
erators; indicating wittA,,, the Weyl symbol of the operator

A, the following product relatiof} holds:

& (A4)

Bw (A5)

[
(AB)w=Apnexg — —=(9,dq— d4dp)
w— Aw 5 7P%a %a%

Let us start with the operat@Jr which has indeed the form

of the product of two Weyl-ordered operatoS* SAB,
with

1/2

1 1
Aw=|1-Z| @?+p*+ = || =2 co(g?+p?)"
4 [S n

(AB)

and By=q+ip , where the coefficients, arise from the
expansion of the square root. By using E45) we then find

(AB)w=3 cy(a?+p?)"e” (pia =47/ +ip)

1
=2 cn(q2+pA)" q+ip— —=(Jq+idp)
= 23

=; Cn (q2+|02)“—%(qzwz)”‘1 (q+ip)
1 n
~2 ¢ @?+p?—=| (q+ip)
0 3
1 1/2
=|1=Z(a*+p?)| (a+ip), (A7)

where terms up to the first order inS/have been kept;
hence, beingS™=(S")* and the operatof? in Eq. (A4)
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Although no such approximation seems to appear when us-
ing the DM transformation, this is in fact a wrong conclu-
sion. Indeed, it is well known that, in order to apply the DM
transformation, and properly take into account the kinematic
interaction, one should use, rather than the simple trans-
formed Hamiltoniaripy,, the operatoPHpyP whereP is

the projector on the Hilbert subspace of the spin system.
Such subspace is generated by the eigenstates of the operator
a'a with posmve eigenvalues<2S, i.e., by the eigenstates
of the operatoz?=(q2+ p?)/2 with 25 equispaced positive

eigenvalues & 2z°<(2—1/2S). On the other hand, to deter-
mine the explicit form of the Weyl symbol for the operator
I57A{DMIA3 is an impossible task, unless one only keeps terms
up to the first order in B; this means to approximate with

the identity operator, which is in fact what we have done in
Sec. lll. Both transformations can hence be used in the
framework of the PQSCHA and do actually involve the same
semiclassical approximation.

APPENDIX B: THE EFFECTIVE SPIN HAMILTONIAN

The general expression given by the PQSCHA for the
LCA effective Hamiltonian i

mhfk

Hest=€ H(p,q) — 2 i+ 2 In (B1)

where H(p,q) is the Weyl symbol of the original Hamil-
tonian and

_2 [D(Pp)a (9 +D(qq J iaqj],

1 o
0=~ blaycok-(i-).

1 .
Di(jq‘*)zﬁg agecok-(i—j),

fi

2wy 2ok

ag=

1
Ek:COthfk— f—,
k

already Weyl ordered, the Weyl symbols of the HP operators

are
_ 1 1/2
S*=S{1—Z(q2+p2) (q=xip),
_ 2+ 2
= 5(1— ] 2p (A8)

Note that the valueS=S+ % appears as the natural spin

length of the theory, beings|?=(S9)?+S"S™=5?, both in
the DM caseg(A2) and in the HP caséA8).

Bhwy

fk: 2

o= by,

2 elk (i— J)AZ
i

1 Lo
bi=§2 €8],

In the above derivation for the HP case we have neglecte@herei andj are sites on the lattice, whik? and 52 are the

terms of the order B2 and higher: this apprOX|mat|on is
necessary to obtain reasonably simple expressionS,of

LCA approximations of the fundamental renormallzatlon pa-
rameters of the theory:



H(p.)=A,

B{(p.q)=0qdq€ H(p,0)=B{;

their dependence upon the phase-space coordipatg is
eliminated by the LCA.

AS(p.0) =3y, €

As suggested in Ref. 11, and for the reasons given in Sec.

I, in thIS work we define the specific LCA to be used, by
settingAs(p,q)~ (A7 (p.a))g¢ " [and similarly forB{(p,q)],
where (---)s¢™ is the SCHA approximation of the
classical-like averagd-- )¢ with the effective Hamil-
tonian, Eq.(B8) below. We then havésee Ref. 11

Af= (a0 H(P.O) e

B =(dq,dq e H(P.D)SF

Let us consider now the case of the spin Hamiltor(iBn

We consider the lattice as subdivided into the usual AFM
positive and negative sublattices and hereafter use the nota-

tion (—)'==1 for the sitei belonging to the former or the
latter, respectively. The Weyl symbol fé¢ (using the DM

transformationis given by’

1
_E%

H

J?

(1-2))(1-2}y)

Z| +Z|+d

+1-

)(q Qi+d— PiPi+a)

Zi—Zi4yq

+i(—)! (AiPi+gt PiGi+a) |, (B2

where @;,q;) are the Weyl symbols of canonical operators

(pi,G;) such that[q;,p;]=iS *5;, and z’=(q’+p?)/2.

It is simpler to use)'S? as the energy unit, i.e., to apply the
above framework to

sionless; in particular3— 1/t and#— 1/S.
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the dimensionless Hamiltonian
H(p,q)/JS?, so that all the relevant quantities are dimen-
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and

e (27 +27) (00— pipy) = (27 + 2"+ 4D) (a0 — pip;)
+4D’(z/+2})+8DD’,

e®(z7—z)) (a0 + pipy) = (27— 27) (0l + pipy) -

It is important that the imaginary part df(p,q) does not
contribute any renormalization term: this in fact assures the
final effective spin Hamiltonian, i.e., the one obtained after
having performed the classical version of the inverse of the
DM transformation onH.4(p,q), to be real. By defining
6°=1—"DJ2 with D=(D—-D"), we find

e*H(pg) 1
e =y | PE R+
z-2+22d
+ 92— : s )(Q|Q|+d plpi+d)
2
.Z-_
(=) T (AP gt P ) -

this is the only term ofH4(p,q) we need to determinaﬁ
and bﬁ (as configuration-independent terms do not enter the
evaluation of(- - - )5, which are easily found to be

ai=4x%(1+yy),

bf=4x*(1- ), (B5)

where y,=(co¥; +cok,)/2 and we introduced the SCHA
renormalization parameter

1
=1-——=> (1— ) Ycothf,,

2NSk (B9

that can also be written as in Eq42). The renormalized
frequenciesy, are hence given by Egél2); the dimension-

The first step to close the self-consistent scheme describdéiss parametefi, can be written as, = w, /(2St). With the

above is then the evaluation et(p,q). By performing the
transformatiork— (7r,7w) —k one can establish the identity
p(aw

Ii+r _( )r1+r2DII+I” (B3)

where r=(rq,r,); in particular, only the following two

renormalization parameters appear in the effective Hamil-

tonian:
D=D{@P=D{PP,

(pp)
i,i+d>

D'=D{%=-D! (B4)

whered=(%=1,0) or (0;£1) is a nearest-neighbor displace-
ment. We then find, for nearest neighbo@ndj=i+d,

e*z?=72+D,
eAQinZQin+D',
et Pikj=Pikj— DL
furthermore,
A22

€777

’z’=27'z"+D(z’+2')+ D' (qig;—pip;) +D?+D’?

above determinations one can expré&ssas in Eq.(9), and

the procedure is completed by the self-consistent solution of
Egs. (12). As for the first uniform term appearing in Eq.
(B1), one easily finds

1
N; wiak=

To recaste®H(p,q) in the form of a spin Hamiltonian, we
scale 0,0)—(6p, 6qg) so that

t
Ng f L= 2K°D. (B7)

e*H(p,g) ¢
T:_Ed (1-2))(1—-Z, o)
Z»2+Z g
+l1- T )(q.q.+d PiPi+ )
i —Z
+i(—)= I+d(Qipi+d+piQi+d) ;

this equation has the same functional form of the Weyl sym-
bol for the Hamiltonian, Eq(B2), so that performing the
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inverse of the classical DM transformation we eventuallyof the phase-space function
find the form reported in Eq6), where the change in the - R
phase-space measure by the fa@®} due to the above scal- O(p,g=e>O(p,a), (B9)

ing is absorbed in the effective Hamiltonian as an additiveWhere O(p,q) is the Weyl symbol of the operatoff)

logarithmic term,— Ntiné?. terms of the classical spin variables E&8) becomes jUSt
Finally, the PQSCHA expresses the general thermal avelzq. (15). In the case of the correlation functions

age of an observablé)(p q) as the classical-like average G(r)=(§-5.,) the procedure leading to the Weyl symbol
with the effective Hamiltonian S.i+r(p.g) of the operatoiS- S, and hence to the expres-

dpdg sion of eASi,iH(p,q) i; obyiously analog_ous to the one dg-
)= f O(p,q)e PrePA=(D) ., (B8)  Scribed for the Hamiltonian, and the final result is easily
(2m)N found to be as reported in E¢L7).
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