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In this paper we present an extensive study of the thermodynamic properties of the two-dimensional quan-
tum Heisenberg antiferromagnet on the square lattice; the problem is tackled by the pure-quantum self-
consistent harmonic approximation, previously applied to quantum spin systems with easy-plane anisotropies,
modeled to fit the peculiar features of an isotropic system. Internal energy, specific heat, correlation functions,
staggered susceptibility, and correlation length are shown for different values of the spin, and compared with
the available high-temperature expansion and quantum Monte Carlo results, as well as with the available
experimental data.@S0163-1829~97!01846-8#
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I. INTRODUCTION

The fully isotropic Heisenberg model may well be co
sidered the cornerstone of modern theory of magnetic
tems; the reason for such an important role is the sim
structure of this model’s Hamiltonian, whose high symme
is responsible for most of its peculiar features. Recent ye
have seen a growing interest in the specific case of the t
dimensional quantum Heisenberg antiferromag
~2DQHAF! on the square lattice, due both to its theoretica
challenging properties and to its being the best candidate
modeling the magnetic behavior of the parent compound
some high-Tc superconductors.1,2

As for the theory, the 2DQHAF cannot exhibit long-ran
order ~LRO! for T.0 because of its being a two
dimensional model with a continuous symmetry~Mermin
and Wagner theorem3!; the study of the finite temperatur
paramagnetic phase is hence a matter of understanding
kind of disorder one is dealing with, i.e., what kind of co
relation exists amongst magnetic moments on different s
At T50 quantum fluctuations make the system change fr
the classical-like Ne´el state to a ground state that can
rigorously proven4 to be ordered forS>1; for S51/2 the
situation is not clear yet, although more or less direct e
dences for an ordered ground state, even in this extr
quantum case, can be drawn from many different studies~for
a review, see, for instance, Ref. 5!, including the present one
~see also Ref. 6!.

The experimental activity stems from the existence
several real compounds whose crystal structure is such
the magnetic ions form parallel planes and interact stron
only if belonging to the same plane. As a consequence
such structure, their magnetic behavior is indeed tw
560163-1829/97/56~22!/14456~13!/$10.00
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dimensional down to those low temperatures where the w
interplane interaction becomes relevant, driving the sys
towards a three-dimensional ordered phase; an antiferrom
netic Heisenberg interaction and a small spin value m
these compounds 2DQHAF’s. This is indeed the case
high-Tc superconductors of the La2CuO4 or Sr2CuO2Cl 2
family (S51/2!, of other magnets such as theS51 La2NiO 4
and K2NiF 4, and theS55/2 Rb2MnF4. The interplane in-
teraction in these compounds is several orders of magni
smaller than the intraplane one, thus offering a large te
perature region where the two-dimensional behavior can
safely studied. Furthermore, their having different values
the spin allows a meaningful analysis of the spin depende
of the thermodynamic properties, which is essential if t
interplay between thermal and quantum fluctuations is to
clarified.

In order to go beyond the very first treatments~mainly,
mean field theory and spin wave theory!, that are mostly not
satisfactory in coping with its strong nonlinearity, the QHA
has been tackled by the field theory of the quantum nonlin
s model ~QNLsM!.7–9 Nevertheless, the approximation
needed to reduce the actual spin model to the related
theory are drastic, as they usually approximate the esse
features of magnetic systems in solid state physics, i.e.,
creteness, strong nonlinearity of the Hamiltonian, and
pearance of the angular momentum operators~that is, in a
classical-like language, sphericity of the phase space!. This
inadequacy becomes more evident when experimental
are available and a quantitative comparison with theoret
predictions is attempted; realistic spin models and more
fined methods must then be used, and the number of fit
rameters minimized to let the real compounds drive the ov
all comprehension of the problem. Indeed, despite
14 456 © 1997 The American Physical Society
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56 14 457TWO-DIMENSIONAL QUANTUM HEISENBERG . . .
success in explaining some of the early experimental d
the QNLsM approach does not lead to a satisfactory und
standing of the problem when higher values of the spin
higher temperatures are to be considered.10

This work follows a previous paper,6 and, together with
the latter, it is our attempt to move forward studying t
finite temperature properties of the 2DQHAF by the effect
Hamiltonian method based on the pure-quantum s
consistent harmonic approximation~PQSCHA! as developed
in Ref. 11; we report here on the detailed derivation of
effective spin Hamiltonian and more results are shown
temperature and spin value are varied, together with exp
mental data,12–15classical16,17 and quantum Monte Carlo18,19

~MC! simulations, and high-temperature expansion10 ~HTE!
results. No best-fit procedure is involved in the comparis
with the experimental data, as we just need to know the s
model, which is unambiguously defined, in the case of
QHAF on the square lattice, once the values of the spin
of the exchange integral are given. The agreement we
with the available data, together with the clarity of our a
proach, allows us to draw a comprehensive picture of
subject, including both the analysis of the 2DQHAF behav
and the discussion of previous approaches used for the s
purpose.

In Sec. II we introduce the 2DQHAF model and briefl
describe the problems encountered by alternative
proaches. In Sec. III the effective Hamiltonian method
described, and the approximations involved in this spec
implementation are discussed; the effects of quantum fl
tuations on the physics of the 2DQHAF are then analyze
terms of the quantum renormalizations introduced by
PQSCHA. Sections IV and V contain our results for the th
modynamic properties~internal energy, specific heat, corr
lation functions, correlation length, and staggered susce
bility ! compared with MC and HTE results, as well as w
the experimental data. Conclusions are drawn in Sec. VI

II. THE QUANTUM HEISENBERG ANTIFERROMAGNET

The two-dimensional quantum Heisenberg Antiferroma
net is described by the Hamiltonian

Ĥ5
J

2(i,d Ŝi•Ŝi1d , ~1!

whereJ is positive and the quantum spin operatorsŜi satisfy
uŜiu25S(S11). The indexi[( i 1 ,i 2) runs over the sites of a
square lattice, andd represents the displacements of the fo
nearest neighbors of each site, (61,0) and (0,61).

The most important feature of this model is theO~3! sym-
metry of its Hamiltonian, implying no spontaneously brok
symmetry forT.0: the system does not support LRO
finite temperature and the standard spin-wave theory co
quently produces unphysical results. The existence of lo
alignment directions, due to the persistence of strong sh
range order up to high temperatures, makes possible the
nition of a properly modified spin-wave theory20 whose re-
sults are remarkably good. However, spin-wave the
remains quite an inadequate tool to study the thermodyn
ics of the 2DQHAF and this indeed stimulated several
thors to search for alternative theories.
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It is useful to see how disorder develops in the mo
described by Eq.~1! when temperature is switched on: th
ground state, hereafterassumed orderedfor any spin value,
becomes unstable because of long-wavelength excitat
that gradually flip the spins as one moves far from the cho
origin of the lattice; their energy is small and they do n
disturb thelocal order of the system. They have a classic
character in that their contribution to the thermodynamics
almost the same in both the classical and the quantum c
What makes the latter different is the additional local dis
der introduced by the short-range purely quantum fluct
tions, whose renormalizing effect decreases as tempera
increases.

The 2DQHAF model~1! has been studied by several a
thors in terms of the QNLsM field theory, involving a three-
component vector fieldV with the constraintuVu51 and
spatial integrations subjected to a short-distance cutoffL21.
The model depends on two parameters: the barespin-
stiffnessrS

0 and the barespin-wave velocity c0; the coupling
constant turns out to beg05c0L/rS

0 . Despite their names
the parametersrS

0 andc0 arenot directly related with those
(J andS) defining the 2DQHAF: this relation is indeed th
weakest point of the QNLsM approach.

A first link between the two models was established
Haldane and Affleck7 under a large-S condition, i.e., in the
semiclassical limit. Their mapping givesL, rS , and c0 as
a21, JS2, and 2A2JSa, respectively (a is the lattice spac-
ing!; it follows that g052A2S21, which means that the
semiclassical limit of the spin model (S@1) corresponds to
the weak coupling regime of the field theory (g0!1). The
validity of this approach when studying real compounds
more than questionable, and Haldane’s suggestion of rep
ing S by AS(S11) does not solve the problem.

The way Chakravarty, Halperin, and Nelson~CHN!8 con-
nected the two models has greater generality. They u
symmetry arguments to show that the long-wavelength ph
ics of the QHAF must be the same of that of the QNLsM, a
result that holds regardless of the spin value. However, t
could not define the field theory parameters in terms of th
of the spin system; therefore the spin stiffness and spin w
velocity are just phenomenological fitting parameters to
determined from either experiments or simulations.

The analysis carried out by CHN on the QNLsM leads to
the characterization of three different regimes, called qu
tum disordered, quantum critical~QCR!, and renormalized
classical~RCR!, the most striking difference amongst the
being the temperature dependence of the spin correlation
g0 is such as to guarantee LRO atT50, the QNLsM is in
the RCR and its long-wavelength~i.e., low-temperature!
physics is that of the classical model with parameters ren
malized by quantum fluctuations (rS

0→rS, c0→c) and a
short-wavelength cutoff of ordera[c/T. As far as the cor-
relation lengthj is concerned, the famous low-temperatu
two-loop result for the renormalized classical regime is

jCHN5CjS c

2prS
Dexp~2prS /T!, ~2!

where Cj is a nonuniversal coefficient. Hasenfratz a
Niedermayer9 have subsequently calculated the leading c
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14 458 56CUCCOLI, TOGNETTI, VAIA, AND VERRUCCHI
rection inT/2prS to Eq. ~2!, and also found the coefficien
Cj5ea/8, so that

jHN5jCHNF12
T

4prS
1OS T

2prS
D 2G ; ~3!

although Eq.~3! extends the temperature region where E
~2! can be used, both of them do not work for intermediate
high temperature. The fact that the low-temperature exp
mental results forS51/2 two-dimensional magnetic com
pounds can be fitted by those of a 2DQNLsM in the renor-
malized classical regime, has led to assert that the gro
state of the 2DQHAF is ordered also in theS51/2 case.

The results by CHN are of great general value and h
been extensively used to understand theS51/2 experimental
data, but their approach has several substantial drawback
that purpose. First of all, for precisely givenS andJ of the
real compound, the fundamental parametersrS andc remain
unknown; the necessary best fit procedure involved in th
determination introduces a substantial uncertainty in
whole of the work. Secondly, the restriction to low tempe
tures cannot be avoided, thus making the HTE techniq
extensively used by Elstneret al.,10 of great help and impor-
tance in this framework. Finally, things get worse for high
values of the spin, as has been recently pointed out by E
neret al.;10 further adjustments of the fit parameters are n
essary to reproduce the experimental data12 and the depen-
dence ofj upon S cannot be analyzed because it is n
directly addressed by the theory. Quantum M
simulations18,19 provide quite good results in a rather larg
temperature region, but up to now they are only available
S51/2.

As far as the different regimes of the 2DNLsM are con-
cerned, the RCR is the most interesting~being the one linked
with the realS>1/2 compounds!, but the QCR has also at
tracted much interest in recent years. CHN found that
2DQNLsM with an ordered ground state crosses over fr
the RCR to the QCR at sufficiently high temperature. T
statement cannot be trivially extended to the 2DQHAF,
we know that the relation between the two models only ho
for low temperature. Nevertheless, the lower the spin,
lower the temperature at which such a crossover should
cur, so that for sufficiently smallS at least some signs of a
intervening QCR-like regime could be detected.21 As the
correlation length of the 2DQNLsM in the QCR is j
}a(T)5c/T, such a sign could be, for instance, a tempe
ture dependence of the measuredj which becomes less pro
nounced asT increases. No such experimental evidence
ists for pure compounds, but some doped materials sho
similar behavior;22 it has been argued that, by thinking of th
doping as causing an effective increase of the quantum
pling, these experimental data could tell us that the do
magnet is undergoing a transition of the same nature of
between the renormalized classical and the QCR of
2DQNLsM. This reasoning is still controversial and we w
come back to this point at the end of Sec. V.

III. THE EFFECTIVE HAMILTONIAN

The effective Hamiltonian approach has been success
applied in the last decade in the study of many differ
.
r

ri-

nd

e

for

ir
e
-
e,

r
t-
-

t

r

y

s
s
s
e
c-

-

-
a

u-
d
at
e

lly
t

physical problems~for an extensive review see Ref. 23!; the
method is based on the path-integral formalism and allows
to express the quantum statistical average of physical obs
ables in the form of classical-like phase-space integr
Other methods in quantum statistical mechanics forma
lead to this same form~see, e.g., Ref. 24!, but they differ
from each other because of the different approximations u
to determine the effective phase-space density.

In the effective Hamiltonian method developed for a fl
phase space, such approximation is the pure-quantum
consistent harmonic approximation, whose name, tho
long, is at least self-explanatory. The PQSCHA does in f
separate the classical from the pure-quantum contributio
the thermodynamics of the system, and then approxim
only the latter at a self-consistent harmonic level. This me
that the classical physics is exactly described at any temp
ture, and so are the purely quantum linear effects, as
self-consistent harmonic approximation~SCHA! only affects
the pure-quantum nonlinear contribution. In other words,
do not renounce the exact description of the classical beh
ior in its full nonlinearity just because we cannot deal w
the nonlinear quantum corrections to it; we rather appro
mate only the latter. This result is specially valuable in t
study of magnetic systems because their behavior is v
often characterized by long-wavelength excitations~such as
solitons, vortices, or Goldstone modes!, whose character is
indeed essentially classical.

The procedure leading to the effective Hamiltonian in t
magnetic case25 can be briefly summarized as follows. Fir
of all, the spin Hamiltonian must be written in a boson
form through a properly chosen spin-boson transformati
Secondly, the Weyl symbol26 of the resulting bosonic Hamil-
tonian has to be determined and the quant
renormalizations11 made explicit. Finally, the resulting effec
tive Hamiltonian must be put into the form of a classical sp
Hamiltonian ~by the inverse of the classical counterpart
the spin-boson transformation used in the first step!. The
specific case of the 2DQHAF is described in Appendix
where the detailed derivation of the effective spin Ham
tonian, that was just sketched in Ref. 6, is reported.

In choosing the spin-boson transformation for the isot
pic Hamiltonian Eq.~1!, we exclude the Villain transforma
tion which is designed for models with easy-plane anis
ropy. Furthermore, neither the Holstein-Primakoff27 ~HP! nor
the Dyson-Maleev28 ~DM! transformation apparently give
an alternative, as they both break the symmetry of the pr
lem. However, the broken symmetry of the~assumed or-
dered! ground state of the 2DQHAF is restored at finite te
perature by long-wavelength excitations whose effect,
mentioned above, is almost entirely taken into account
ready at the classical level. As a consequence, it is alm
entirely taken into account also by the PQSCHA, no ma
what spin-boson transformation is used to evaluate the qu
tum renormalizations, as far as the bosonic effective Ham
tonian is eventually put into the form of a classical sp
Hamiltonian. This means that by using the DM or HP tran
formation in the PQSCHA framework, we break theO(3)
symmetry, but only as far as the pure-quantum fluctuati
are concerned, so that all the essential features due to
symmetry of the Hamiltonian are actually kept and the use
such transformations is consequently justified. As for
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choice between HP and DM, we employed the latter in R
6; in Appendix A we show them to be equivalent in th
context.

An important point is the ordering problem. Wheneve
theory prescribes a function or functional to be associa
with a quantum operator, it should also specify the order
rule to be used for that purpose, to avoid an unneces
uncertainty to enter the theory. When dealing with spin s
tems, such uncertainty often manifests itself in the ambi
ous definition of the spin length, leading to an arbitra
choice betweenS,AS(S11), or others. The PQSCHA give
an unambiguous response to this point, by asking for
Weyl symbol of the quantum operator to enter the formu
for its own renormalization and, as we will see later, it mak
the effective spin length

S̃5S1
1

2
~4!

naturally appear6 ~see Appendix A!. Consistently with its
being the spin length in this formalism,S̃ sets the energy
scale through the combinationJ S̃2. We therefore define the
reduced temperatureas

t[
T

J S̃2
. ~5!

The final result for the effective spin Hamiltonian is

Heff

J S̃2
52

u4

2 (
i,d

si•si1d1NG~ t !, ~6!

G~ t !5
t

N(
k

ln
sinhf k

u2f k

22k2D, ~7!

with the temperature and spin-dependent parameters

u2512
D
2

, ~8!

D5
1

S̃N
(

k
~12gk

2!1/2S cothf k2
1

f k
D ; ~9!

f k5
vk

2S̃t
; ~10!

moreover,gk5(cosk11cosk2)/2, N is the number of sites o
the lattice, andk[(k1 ,k2) is the wave vector in the firs
Brillouin zone.D is thepure-quantumrenormalization coef-
ficient, which takes the main contribution from the hig
frequency part~short-wavelength! of the spin-wave spec
trum, because of the appearance of the Langevin functio

As for the frequenciesvk , note that in the PQSCHA con
text they just appear in the evaluation of the pure-quan
renormalizations. In the general PQSCHA they depend u
the phase-space coordinate, but such dependence, whe
system has many degrees of freedom, would make the ev
ation of the phase-space integrals with the effective Ham
tonian a task as time demanding as a quantum MC sim
tion. Therefore, in deriving the above formulas, we ha
f.
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actually introduced a low-coupling approximation~LCA! to
make the PQSCHA frequencies configuration independ
~see Appendix B!. On the other hand, since the effectiv
Hamiltonian is affected by an approximate evaluation of
renormalized frequencies just at a secondary level, the
proximation is worthy and assures the final results to dep
only weakly on the specific LCA used.

There are in fact several ways of defining a possible LC
in this context. In Ref. 11, the fundamental phase-spa
dependent parameters appearing in the theory~in terms of
which the frequency are defined!, sayA(p,q), were approxi-
mated in the simplest way asA(p,q).A[A(p0 ,q0); how-
ever, in the specific case of the 2DQHAF the minimum e
ergy configuration becomes unstable as soon as
temperature is switched on, so that a more refined LCA is
fact necessary for a proper description of the lo
temperature regime. In Ref. 11 we suggested for this c
that A(p,q) could be better approximated with its sel
consistent average defined by the effective Hamiltonian,

A~p,q!.
1

ZE dpdq A~p,q!e2bHeff[^A~p,q!&eff , ~11!

whereZ is the partition function relative toHeff . However,
if an analytical expression for such averages is not availa
this approximation does not actually lighten the burden
the numerical work. The best one can do analytically is
evaluate them in the framework of the classical SCHA.
Appendix B we show that this leads to two coupled equ
tions that give us all the ingredients we need to actually
the effective Hamiltonian,

vk54k2~12gk
2!1/2;

k2512
1

2
~D1Dcl!5u22

Dcl

2
, ~12!

where Dcl5t/2k2 represents the contribution to the fre
quency renormalization due to the classical part of the fl
tuations; at variance with the pure-quantum coefficientD,
which is a decreasing function of temperature,Dcl rises with
t. As for the solution of the above equations,k2(t) is real
and positive fort<u4, but becomes unphysically comple
for t.u4. From the explicit solution

k25
1

2
@u21~u42t !1/2# ~13!

one sees the instability to be originated just by the class
contribution tok2. This instability is typical of the SCHA
and it is now shared by the PQSCHA because of the part
lar type of LCA chosen in order to optimize the low
temperature results. A closer look to Eqs.~12! shows that
what causes the instability is the contribution to the f
quency renormalization due to spin waves with long wa
length. On the other hand, linear excitations withl*2j are
in fact unphysical as they do not exist in a system with
LRO; in their stead the system develops nonlinear exc
tions which are fundamental in determining the thermod
namics of the system, but whose contribution to the f
quency renormalization is seen to be negligible by the sa
arguments showing them to be responsible for the vanish
of the magnetization.
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Although the instability only affects the evaluation of th
renormalized frequencies, we want to devise a reason
way to treat it, in order to optimize the description of th
temperature region where the above mentioned nonlinea
citations become relevant in the thermodynamics of the s
tem, which is in fact the same region where the instabi
occurs. The unphysical contribution in Eqs.~12! is then
pulled up by inserting a cutoffuku*p/j, over the AFM Bril-
louin zone, in the evaluation ofDcl . Such a cutoff is obvi-
ously t dependent, beingj5j(t), and it is relevant in the
temperature region where quantum nonlinear excitations
most important in the system. As we will see in Sec. V, su
region seems to coincide with that where other authors
vised anomalous behaviors, ascribed to the occurrenc
quantum criticality in the theoretical works,21 or to doping
effects in the experimental ones.29

Coming back to the effective Hamiltonian~6!, we see the
quantum effects to cause~i! the appearance of the spin leng
S̃, ~ii ! the renormalization of the exchange integralJ by the
factoru4(t),1, ~iii ! the introduction of a uniform termG(t).

As far asG(t) is concerned, although it does not play a
role in calculating thermal averages, it contains the esse
logarithmic term that transforms the spin-wave contribut
to the free energy from classical to quantum.11 At t50,
G(0)50 and the zero-temperature energy per site
22u4(0), higher than the classical value22, because of the
zero-point quantum fluctuations. We have already co
mented on the appearance ofS̃ as a consequence of a preci
ordering prescription; we just add here that this is a genu
quantum effect, being the noncommutativity of quantum o
erators the only reason for an ordering rule to be necess

Let us now examine the exchange-integral renormal
tion embodied in the factoru4; the parameteru2 depends on
both S and t, it is well defined as far as a physical solutio
for k2 is available; it attains its minimum value fort50,
whereu25k2 coincides with the one-loop correction to th
spin-wave velocity. For increasingS or t, u2 increases, going
asymptotically to 1 in the classical (S→`) or high-
temperature (t→`) limit. The instability valueu250 is not
reached for physical values of the spin, bei
u2.12(2S̃)21.0 for S.0.

The essential information we get from Eq.~6! is that the
2DQHAF at an actual temperaturet behaves as its classica
counterpart at an effective temperature

teff5
t

u4~ t !
, ~14!

or, in other terms, that the energy scale is renormalized b
temperature dependent factoru4(t). In Figs. 1 and 2 we
showu4 andteff as functions oft, for different spins, includ-
ing someS,1/2 unphysical values~dotted lines!. As S de-
creases the difference betweent and teff becomes more and
more pronounced, because ofu2 getting smaller, indicating
larger quantum fluctuations in the system.

Our theory is quantitatively meaningful just as far as t
renormalization coefficientD is small enough to justify the
self-consistent harmonic treatment of the pure-quantum
fects; although this is not obviously the case for theS,1/2
low-temperature regime, the dotted lines at least qualitativ
le
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suggest that no critical behavior occurs, no matter how sm
the spin value. What we rather see is that the sharp de
dence ofteff upon t brings to lower temperatures those fe
tures which are indeed typical of the highly disordered, hig
temperature regime of the classical model. In Sec. V C
will come back to this point, in relation with the effects o
magnetic doping, and we just recall here that any reason
about models withS,1/2 should just be considered a
speculative when dealing with real magnets.

IV. THERMODYNAMIC PROPERTIES

Once the effective Hamiltonian has been determined,
thermodynamic properties can be derived from the partit
functionZ5*dpdqexp(2bHeff); more general statistical av
erages are given by

^Ô&5
1

ZE dNsÕe2bHeff[^Õ&eff , ~15!

FIG. 1. Renormalization parameteru4 vs t, for ~from the top
curve! S55/2, 1, 1/2~solid lines!, andS50.4, 0.3, 0.2, 0.1~dotted
lines!.

FIG. 2. Effective classical temperatureteff5t/u4(t) vs t, for
~from the bottom curve! S55/2, 1, 1/2~solid lines! andS50.4, 0.3,
0.2, 0.1~dotted lines!.
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where Õ[Õ($si%) is obtained by the quantum operatorÔ
following the same procedure used to determine the confi
rational part ofHeff ~see Appendix B!; by ^•••&eff we here-
after mean the classical thermal average with the effec
Hamiltonian, which equals the classical average at the ef
tive temperatureteff .

In order to evaluate the classical 2D phase-space integ
appearing in̂ •••&eff according to Eq.~15!, a standard clas
sical MC simulation is perfectly suitable; being the existe
classical MC data16,17 incomplete as far as the correlatio
functions are concerned, we have performed our own si
lations ~following the same procedure described in Ref. 3
with slight modifications of the overrelaxed moves made
account for the fully isotropic exchange! on a 2563256
square lattice, for 0.54<t<1.42. The dimension of the lat
tice ensures the data to be free from saturation effects,
cording to theL*6j criterion, for all temperatures but th
first two ~0.54 and 0.56!.

A. Internal energy and specific heat

According to Eq. ~15!, the internal energy per spi
u[^Ĥ&/(NJ S̃2) is

u~ t !5u4~ t !ucl~ teff!, ~16!

whereucl is the classical energy; from the results shown
Fig. 3 we see the quantum renormalizations to increase
energy and flatten the curveu(t) at all temperatures an
more markedly for smaller spin. Quantum fluctuations
responsible for both effects, as they introduce additional
almost temperature-independent disorder, thus making
system more unstable, i.e., with many different configu
tions thermodynamically relevant, already at low tempe
tures.

Consistently with this picture, Fig. 4 shows the peak
the specific heat moving towards lower temperatures and
creasing in height, asS decreases. Our data for the speci
heat at finite spin are obtained by numerical derivation
u(t), as given by Eq.~16!; because of the temperature d

FIG. 3. Energy per spinu5^Ĥ&/(NJ S̃2) vs t, for ~from the
bottom curve! S5`, 5/2, 1, and 1/2; the symbols are quantum M
data forS51/2 @circles ~Ref. 18! and triangles~Ref. 19!# and pre-
vious classical MC data~Ref. 16! ~squares!.
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pendence of the cutoff involved in the LCA~as described in
Sec. III!, they are affected by consistent numerical unc
tainty and should not be considered but qualitatively
S51/2 where such dependence is more pronounced.

B. Correlation functions

For the correlation functionsG(r )[^Ŝi•Ŝi1r&, with
r[(r 1 ,r 2) any vector on the square lattice, we find~see
Appendix B!

G~r !5 S̃2u r
4^si•si1r&eff , ~17!

where u r
4512 1

2Dr and the renormalization parameterDr

reads

Dr5
1

S̃N
(

k
S 11gk

12gk
D 1/2S cothf k2

1

f k
D ~12cosk•r !;

~18!

note that for nearest neighbors,r5d, we haveDd[D.
Equation~17! shows that the quantum correlation fun

tions can be obtained by multiplying the classical ones at
effective temperatureteff by the temperature and spin
dependent renormalization factoru r

4S̃2. The overall effect is
that of a strong reduction of the spin correlations, as it
clear from Fig. 5, whereG* (r )[uG(ur u)u/ S̃2 is shown for
r5(r ,0), at a fixed temperature and for different values
the spin.

In order to exploit some available quantum MC data
S51/2, we have performed four classical MC simulatio
with the effective Hamiltonian, at the temperatures cor
sponding, via Eq.~14!, to those at which quantum MC simu
lations have been performed by Makivic` and Ding.18 As seen
in Fig. 6, the agreement we find is very good, and gives
confidence to proceed towards the evaluation of the sus
tibility and of the correlation length, both indeed derivin
from the correlation functions.

FIG. 4. Specific heat per spinc[]u/]t vs t, for ~from the top
curve! S5`, 5/2, 1 and 1/2; circles as in Fig. 3; squares are our M
results. For the~dotted! S51/2 curve see comments in the text.
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V. FACING THE EXPERIMENTAL DATA

In this last section we compare our results with the av
able experimental data and show that, at variance with w
seems to emerge from the analysis based on the QNLsM
approach, there is no substantial difference between
agreement we find for systems withS51/2, and those with
S51.

We consider two fundamental physical observables,
staggered susceptibilityx and the correlation lengthj, and
we underline once more that our results do not contain
parameters and need nothing but the values ofJ andS to be
compared with the experimental data. In the case of the s
gered susceptibility, the latter come in arbitrary units so t
a multiplicative factor must be determined by the stand
least-squares procedure. We also remind that our result
S51/2 and low temperatures (t&0.35) are obtained in a
region where the PQSCHA, given the relatively large va
of the renormalization coefficientD, touches its limit of
validity.31

FIG. 5. Absolute value of the spin correlation functio

G* (r )5uG(r ,0)u/ S̃2 vs r , at t50.7 and for~from the top curve!
S5`, 5/2, 1, and 1/2; the dotted lines are just guides for the e

FIG. 6. Absolute value of the spin correlation functio

G* (r )5uG(r ,0)u/ S̃2 vs r , at S51/2 and for~from the top curve!
t50.45, 0.50, 0.60, 0.75; also reported are quantum MC data~Ref.
18! ~circles!. The dotted lines are just guides for the eye.
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A. The staggered susceptibility

The staggered susceptibility for the 2DQHAF is defin
as

x5
1

3(r
~2 !r 11r 2G~r ! ~19!

and by the PQSCHA result Eq.~17! we find

x5
1

3FS~S11!1 S̃2(
rÞ0

~2 !r 11r 2u r
4^si•si1r&effG . ~20!

By using our classical MC data for^si•si1r&eff we then obtain
the quantum results for all values ofS, as the spin- and
temperature-dependent renormalization factoru r

4 can be eas-
ily evaluated for any value ofr .

In Fig. 7 we showx* [x/ S̃2 as a function of temperatur
for different spin values. ForS5` we have reported our MC
data, as obtained from both the general definition~20!
~curve! and the classical expressionx* 5^u( isiu2&/3N
~crosses!; also reported are classical MC data from Ref. 1
as well as quantum MC data recently obtained by K
et al.19 for S51/2. Figure 8 shows our results forS51/2
together with experimental data12 for the real compound
Sr2CuO2Cl 2; the quantum MC results by Makivic` and Ding
are also shown. The caseS51 is considered in Fig. 9, wher
the experimental data13,12 for the compounds La2NiO 4 and
K 2NiF 4 are reported. The agreement between our theore
curves and the experimental data is substantially equiva
in both theS51/2 andS51 case, strongly suggesting th
the difficulties encountered by a QNLsM-based analysis to
draw a unique picture for different spin values, derive fro
the inadequacy of the theory, rather than from an actual
ference in the thermodynamics of the different compound

B. Correlation length

The correlation length is defined by the asymptotic beh
ior for r[ur u→` of the correlation function,uG(r )u;e2r /j .
From the PQSCHA result, Eq.~17!, since for large r

.

FIG. 7. Staggered susceptibilityx* 5x/ S̃2 vs t, for ~from the
rightmost curve! S5`, 5/2, 1, and 1/2; the crosses~our simula-
tions, see text! and the squares~Ref. 16! are classical MC data, the
triangles are quantum MC data~Ref. 19! for S51/2.
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u r
4→const, we get̂ si•si1r&eff;e2r /j , which means, com-

paring the definition~15! and using Eq.~14!,

j~ t !5jcl~ teff!, ~21!

i.e., the correlation lengthj of the quantum model at a ce
tain temperaturet equals the classical onejcl at the effective
temperatureteff.t. It is easy to see that the relation empi
cally extracted by Elstneret al.10 from their HTE results
„i.e., j(S,T)'jcl@T/JS(S11)# for S.1 and T>JS… is
nothing but the high-T and high-S limit of Eq. ~21!. Further-
more, Eq.~21! represents the correct expression of the l
between the classical and the quantum discrete magn
model, to be compared with the one devised by CHN for
QNLsM in the renormalized classical regime, leading fro
the classical result by Bre´zin and Zinn-Justin32 to Eq. ~2!.

Equation~21! allows us to obtain the quantum correlatio
length from the classical one by a simple temperature s

FIG. 8. Staggered susceptibilityx* 5x/ S̃2 vs t, for S51/2.
Circles~Ref. 18! and triangles~Ref. 19! are quantum MC data~the
dotted lines are just guides for the eye!; the squares are neutro
scattering data~Ref. 12! for Sr2CuO2Cl2.

FIG. 9. Staggered susceptibilityx* 5x/ S̃2 vs t, for S51.
Circles and squares are neutron scattering data for La2NiO4 ~Ref.
13! and K2NiF4 ~Ref. 12!, respectively. The classical result~dash-
dotted line! is also reported.
tic
e

l-

ing. In other terms, we see that each valuej corresponds to
a temperaturet(j,S) which is different for different spin
values. This point of view is taken in Fig. 10, where w
report our results fort(j,S), together with MC and HTE
data. In the S51/2 case, we find tha
t(j,1/2)/t(j,`)5u4*0.5 for j*10; as already pointed ou
at the end of Sec. III, such a small value ofu4 makes the
PQSCHA no more quantitatively reliable. Nevertheless,
figure shows that the accuracy of our results fort(j,S) at
S51/2 andj.100, as from the comparison with the qua
tum MC data, is still better than 20%, which makes the
qualitatively meaningful even in the extreme quantu
region.31 However, the inaccuracy in the ‘‘renormalized
temperature gives larger inaccuracy in the inverse funct
j(t), due to its exponential behavior.

The experimental data forS51/2 andS51 are compared
with our theory in Fig. 11; at variance with what happens
using the QNLsM approach, the agreement does not g
worse in theS51 case. For each spin we have also repor
the curves~dashed lines! obtained by using the standar
LCA ~high-t curves! as well as the more accurate one d
scribed in Sec. III~low-t curves! without cutoff and hence
truncated att5u4. They are smoothly connected by the co
tinuous curves, i.e., those obtained by using the cutoff.
each spin value, the temperature interval where the cuto
relevant identifies the region where nonlinear excitations
present in the system, and hence suggests where a pos
crossover towards the QCR could occur.

In order to better understand why the QNLsM theory
fails in describing the 2DQHAF when used to interpret t
available reference data forS>1, the functiony(t)5t lnj is
shown in Fig. 12 as a function oft. We remind the reade
that the QNLsM approach givesyq(t)5mt1n in the quan-
tum case~with m and n constant in temperature butS de-
pendent!, being such expression based on the classical t
loop resultycl(t)5t ln(mt)1n ~with m andn constants!; first
of all, one must check whether or not this classical result
be safely extended to the magnetic system.

Let us concentrate on theS5` ~classical! MC data re-

FIG. 10. Curvest(j) as explained in text, for~from the top
curve! S5`, S55/2, 1, and 1/2, the triangles~Ref. 19! and the
squares~Ref. 18! are quantum MC data forS51/2, the circles are
HTE results~Ref. 10!, and the diamonds are classical MC data~Ref.
17!.
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ported in Fig. 12~rightmost curve!: The complete curve can
not be fitted with a function of the formycl and such a fit is
solely possible if one restricts himself to a limited tempe
ture range, as in the intermediate-temperature region the
a clear change in the slope. On the other hand, this sh
not surprise, ast lnj5tln(mt)1n is a two-loop result and it is
hence bound to be correct only at lowest temperatures.
now expect this problem to propagate to the quantum c
which is based on the classical result.

Let us then look at theS55/2 andS51 curves: according
to the QNLsM these should be straight lines, but they a

FIG. 11. Correlation lengthj vs t, for S51/2 ~leftmost! and
S51. The symbols are experimental data; forS51/2: 63Cu NQR
data ~Ref. 14! ~circles! and neutron scattering data for La2CuO4

@squares~Ref. 15!# and for Sr2CuO2Cl2 @up-triangles~Ref. 12!# ;
for S51: neutron scattering data for La2NiO4 @down-triangles
~Ref. 13!# and for K2NiF4 @diamonds~Ref. 12!#. The classical re-
sult ~dash-dotted line! is also reported; the dashed lines are the lo
t and high-t results of the PQSCHA~see text!.

FIG. 12. The functiony(t)5t lnj vs t, for ~from the rightmost
curve! S5`, 5/2, 1, and 1/2; the triangles~Ref. 19! and the dia-
monds~Ref. 18! are quantum MC data forS51/2. Also reported
are neutron scattering data for La2NiO4 @circles ~Ref. 13!# and for
K 2NiF4 @squares~Ref. 12!#. The inset reports, together with ou
result for S51/2 ~line!, 63Cu NQR data@circles ~Ref. 14!# and
neutron scattering data for La2CuO4 @squares~Ref. 15!# and for
Sr2CuO2Cl2 @triangles~Ref. 12!#.
-
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e
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not; actually one can easily see a change in the slop
intermediate temperature, followed by a curvature invers
at lower t. As in the classical case, hence, good fits with t
function yq can be obtained either in the low- or~mislead-
ingly! in the high-temperature region, but not on the who
temperature range. To fit the experimental data forS51 with
a straight line is seemingly impossible, as pointed out
several authors10,12,13in the past few years.

Finally, if we look at theS51/2 case it becomes clea
why the QNLsM approach gave such a good agreem
when first used to fit the experimental data. The change
both the slope and the curvature oft lnj is less pronounced
and possibly occurs at lower temperatures, the lower
spin: in theS51/2 case, we find difficult to say whethe
these features are still present or not, but, if yes, they oc
in a temperature region where the extremely high value oj
('104) makes both the experimental and the simulation d
more difficult to be obtained. The experimental data, as w
as our results, do actually suggest a change in the slope
the other hand quantum MC data by Kimet al.,19 do not give
evidence of such change.

As for the very-low temperature data by Suhet al.,33 it is
to be noticed that the authors explained the change in
slope of their curve in terms of a crossover from an isotro
towards an easy-plane~Kosterlitz-Thouless-like! behavior.
We cannot question their interpretation, but we underl
that their conclusion is based on the assumption that thet lnj
curve for the 2DQHAF is a straight line, which is, as we a
seeing, at least questionable.

C. Magnetic doping and quantum criticality

We have already pointed out that at intermediate temp
tures there is an interval, whose width is larger the sma
the spin, where quantum nonlinear effects~due to higher
order terms in the coupling! are significant; such interval is
identified, in our theory, by the temperature region where
cutoff is relevant, a region which is very easily recognizab
in Fig. 11 (0.45&t&0.9 for S51/2 and 0.65&t&1 for
S51) and seems indeed to coincide with that where C
bukov and Sachdev34 suggested the occurrence of the QC
in the QNLsM.

Experimental data for magnetically doped materials ha
been interpreted by several authors in terms of a poss
crossover from the classical renormalized towards the Q
Let us concentrate, in particular, on the data by Carre
et al.,29 obtained by a scaling analysis of their63Cu nuclear
quadrupole relaxation~NQR! data, for the correlation length
of La2CuO4 doped with nonmagnetic impurities, i.e., for th
compound La2Cu12xZnxO4. In Fig. 13 we report their data
for x50.018: it is evident that the doping causes a stro
reduction of the spin correlation, as well as a clear flatten
of j as a function of temperature. Such flattening does oc
in the same intermediate temperature region where the Q
has been suggested to occur.

The authors have interpreted their data in terms of
effective reduction of the spin stiffness, consistently with o
theory which shows similar effects to be caused by an eff
tive reduction of the spin value. The curve in Fig. 13
obtained by the PQSCHA withS50.35, a value which has
been empirically determined in order to optimize the agr
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ment with the experimental data. Although the use of o
approach forS,1/2 is not fully justified, these results do a
least qualitatively suggest that forS,1/2 the magnetic
model moves towards a regime where nonlinear effects
come relevant in a wider temperature region~the one where
j shows a clear plateau! and such behavior could be seen
a signature of the crossover towards a QCR.

VI. CONCLUSIONS

In this paper we have applied the pure-quantum s
consistent harmonic approximation11 ~PQSCHA! to the study
of the thermodynamics of the two-dimensional Heisenb
antiferromagnet on the square lattice. The PQSCHA allow
us to reduce the evaluation of quantum averages to the
culation of classical-like phase-space integrals. Theref
using classical MC simulations, we have been able to ob
results for several quantum thermodynamic quantities. W
is remarkable is that these results are fully determined by
system’s parameters, i.e., the spin valueS and the ratio be-
tween the temperature and the exchange energy con
T/J.

The main effect is seen to be the temperature-depen
weakening of the effective classical exchange constant
that an effective classical temperature naturally arises,
~14!; this leads to a very simple relation, Eq.~21!, directly
giving the quantum correlation length in terms of its classi
counterpart. For other thermodynamic quantities, such
correlation functions and the staggered susceptibility, the
pressions involve further pure-quantum renormalization f
tors that can be straightforwardly computed. Even push
down the theory to the extreme quantum case,S51/2, we
find agreement both with quantum MC and experimen
data, until the renormalization parameters of the theory
come too large forT/J&0.35 making the results of only
qualitative value.

For higher spin,S>1, the theory is reliable at any tem
perature, and it agrees indeed with the available experime
data, while quantum MC simulations have not yet been f
sible. It would be interesting to compare also with t

FIG. 13. Experimental data for the correlation length, for t
magnetically doped compound La2Cu12xZnxO4, from Ref. 29. The
leftmost lines refer toS50.35, with the dashed lines as in Fig. 1
for comparison theS51/2 curve is also reported~rightmost curve!.
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announced10 experimental results for theS55/2 square-
lattice antiferromagnet Rb2MnF4, which are not yet avail-
able.
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APPENDIX A: SPIN-BOSON TRANSFORMATION
AND WEYL ORDERING

In this appendix we compare the Dyson-Maleev28 ~DM!
and the Holstein-Primakoff27 ~HP! transformations as far a
the ordering problem is concerned. The DM transformat
for the spin operatorsŜ6[Ŝx6 iŜy and Ŝz, in terms of
bosonic operators (â†,â) is

Ŝ15~2S!1/2â,

Ŝ25~2S!21/2â†~2S2â†â!,

Ŝz5S2â†â. ~A1!

The transformation is canonical, as from@ â,â†#51 the spin
commutation relations follow, withuŜu25S(S11). Their
Weyl symbols are found to be6

S15~2S!1/2a,

S25~2S!21/2~2S̃2a* a!a* ,

Sz5 S̃2a* a. ~A2!

For the use of the DM transformation in the 2DQHAF co
text we refer to Ref. 6.

The HP transformation reads instead

Ŝ15~2S2â†â!1/2â,

Ŝ25~Ŝ1!†,

Ŝz5S2â†â, ~A3!

and can be rewritten in terms of phase-space opera
q̂5(â†1â)/(2S̃)1/2 and p̂5 i (â†2â)/(2S̃)1/2, where
S̃5S11/2 and with commutator@ q̂,p̂#5 i / S̃, as
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Ŝ15 S̃F12
1

4S q̂21 p̂21
1

S̃
D G 1/2

~ q̂1 i p̂ !,

Ŝ25~Ŝ1!†,

Ŝz5 S̃S 12
q̂21 p̂2

2
D . ~A4!

We have now to determine the Weyl symbols of these
erators; indicating withAW the Weyl symbol of the operato
Â, the following product relation26 holds:

~AB!W5AWexpF2
i

2S̃
~]Q p]Wq2]Qq]W p!GBW . ~A5!

Let us start with the operatorŜ1, which has indeed the form
of the product of two Weyl-ordered operators,Ŝ15 S̃ÂB̂,
with

AW5F12
1

4S q21p21
1

S̃
D G 1/2

[(
n

cn~q21p2!n

~A6!

and BW5q1 ip , where the coefficientscn arise from the
expansion of the square root. By using Eq.~A5! we then find

~AB!W5(
n

cn~q21p2!ne2 i ~]Q p]Wq2]Qq]W p!/2S̃~q1 ip !

5(
n

cn~q21p2!nFq1 ip2
1

2S̃
~]Qq1 i ]Q p!G

5(
n

cnF ~q21p2!n2
n

S̃
~q21p2!n21G ~q1 ip !

'(
n

cnS q21p22
1

S̃
D n

~q1 ip !

5F12
1

4
~q21p2!G1/2

~q1 ip !, ~A7!

where terms up to the first order in 1/S̃ have been kept
hence, beingS25(S1)* and the operatorŜz in Eq. ~A4!
already Weyl ordered, the Weyl symbols of the HP operat
are

S65 S̃F12
1

4
~q21p2!G1/2

~q6 ip !,

Sz5 S̃S 12
q21p2

2 D . ~A8!

Note that the valueS̃[S1 1
2 appears as the natural sp

length of the theory, beinguSu25(Sz)21S1S25 S̃2 , both in
the DM case~A2! and in the HP case~A8!.

In the above derivation for the HP case we have neglec
terms of the order 1/S̃2 and higher: this approximation i
necessary to obtain reasonably simple expressions ofSW

6 .
-

rs

d

Although no such approximation seems to appear when
ing the DM transformation, this is in fact a wrong concl
sion. Indeed, it is well known that, in order to apply the D
transformation, and properly take into account the kinema
interaction, one should use, rather than the simple tra
formed HamiltonianĤDM , the operatorP̂ĤDMP̂ whereP̂ is
the projector on the Hilbert subspace of the spin syste
Such subspace is generated by the eigenstates of the ope
â†â with positive eigenvaluesn<2S, i.e., by the eigenstate
of the operatorẑ2[(q̂21 p̂2)/2 with 2S̃ equispaced positive
eigenvalues 0<z2<(221/2S̃). On the other hand, to deter
mine the explicit form of the Weyl symbol for the operat
P̂ĤDMP̂ is an impossible task, unless one only keeps ter
up to the first order in 1/S̃; this means to approximateP̂ with
the identity operator, which is in fact what we have done
Sec. III. Both transformations can hence be used in
framework of the PQSCHA and do actually involve the sa
semiclassical approximation.

APPENDIX B: THE EFFECTIVE SPIN HAMILTONIAN

The general expression given by the PQSCHA for
LCA effective Hamiltonian is11

Heff5eDH~p,q!2(
k

akvk
21

1

b(
k

ln
sinhf k

f k
, ~B1!

whereH(p,q) is the Weyl symbol of the original Hamil-
tonianĤ and

D5
1

2(ij
@D ij

~pp!]pi
]pj

1D ij
~qq!]qi

]qj
#,

D ij
~pp!5

1

N(
k

bk
2akcosk•~ i2 j !,

D ij
~qq!5

1

N(
k

ak
2akcosk•~ i2 j !,

ak5
\

2vk
Lk ,

Lk5cothf k2
1

f k
,

f k5
b\vk

2
,

vk5akbk ,

ak
25

1

N(
ij

eik•~ i2 j !Aij
2 ,

bk
25

1

N(
ij

eik•~ i2 j !Bij
2 ,

wherei andj are sites on the lattice, whileAij
2 andBij

2 are the
LCA approximations of the fundamental renormalization p
rameters of the theory:
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Aij
2~p,q![]pi

]pj
eDH~p,q!.Aij

2 ,

Bij
2~p,q![]qi

]qj
eDH~p,q!.Bij

2 ;

their dependence upon the phase-space coordinate (p,q) is
eliminated by the LCA.

As suggested in Ref. 11, and for the reasons given in S
III, in this work we define the specific LCA to be used, b
settingAij

2(p,q)'^Aij
2(p,q)&eff

SCHA @and similarly forBij
2(p,q)#,

where ^•••&eff
SCHA is the SCHA approximation of the

classical-like averagê •••&eff with the effective Hamil-
tonian, Eq.~B8! below. We then have~see Ref. 11!

Aij
25^]pi

]pj
eDH~p,q!&eff

SCHA,

Bij
25^]qi

]qj
eDH~p,q!&eff

SCHA.

Let us consider now the case of the spin Hamiltonian~1!.
We consider the lattice as subdivided into the usual AF
positive and negative sublattices and hereafter use the n
tion (2) i561 for the sitei belonging to the former or the
latter, respectively. The Weyl symbol forĤ ~using the DM
transformation! is given by6

H
J S̃2

52
1

2(i,d F ~12zi
2!~12zi1d

2 !

1S 12
zi

21zi1d
2

4 D ~qiqi1d2pipi1d!

1 i ~2 ! i
zi

22zi1d
2

4
~qipi1d1piqi1d!G , ~B2!

where (pi ,qi) are the Weyl symbols of canonical operato
( p̂i ,q̂i) such that @ q̂i ,p̂j#5 i S̃21d ij , and zi

2[(qi
21pi

2)/2.

It is simpler to useJ S̃2 as the energy unit, i.e., to apply th
above framework to the dimensionless Hamiltoni
H(p,q)/J S̃2, so that all the relevant quantities are dime
sionless; in particular,b→1/t and\→1/S̃.

The first step to close the self-consistent scheme descr
above is then the evaluation ofeDH(p,q). By performing the
transformationk→(p,p)2k one can establish the identity

D i,i1r
~qq! 5~2 !r 11r 2D i,i1r

~pp! , ~B3!

where r5(r 1 ,r 2); in particular, only the following two
renormalization parameters appear in the effective Ham
tonian:

D[D ii
~qq!5D ii

~pp! ,

D8[D i,i1d
~qq! 52D i,i1d

~pp! , ~B4!

whered5(61,0) or (0,61) is a nearest-neighbor displac
ment. We then find, for nearest neighborsi and j5 i1d,

eDzi
25zi

21D,

eDqiqj5qiqj1D8,

eDpipj5pipj2D8;

furthermore,

eDzi
2zj

25zi
2zj

21D~zi
21zj

2!1D8~qiqj2pipj !1D21D82
c.

ta-

-

ed

l-

and

eD~zi
21zj

2!~qiqj2pipj !5~zi
21zj

214D !~qiqj2pipj !

14D8~zi
21zj

2!18DD8,

eD~zi
22zj

2!~qiqj1pipj !5~zi
22zj

2!~qiqj1pipj !.

It is important that the imaginary part ofH(p,q) does not
contribute any renormalization term: this in fact assures
final effective spin Hamiltonian, i.e., the one obtained af
having performed the classical version of the inverse of
DM transformation onHeff(p,q), to be real. By defining
u2[12D/2 with D[(D2D8), we find

eDH~p,q!

J S̃2
52

1

2(i,d Fu42u2~zi
21zi1d

2 !1zi
2zi1d

2

1S u22
zi

21zi1d
2

4 D ~qiqi1d2pipi1d!

1 i ~2 ! i
zi

22zi1d
2

4
~qipi1d1piqi1d!G ;

this is the only term ofHeff(p,q) we need to determineak
2

andbk
2 ~as configuration-independent terms do not enter

evaluation of̂ •••&eff
SCHA), which are easily found to be

ak
254k2~11gk!,

bk
254k2~12gk!, ~B5!

where gk5(cosk11cosk2)/2 and we introduced the SCHA
renormalization parameter

k2512
1

2N S̃
(

k
~12gk

2!1/2cothf k , ~B6!

that can also be written as in Eqs.~12!. The renormalized
frequenciesvk are hence given by Eqs.~12!; the dimension-
less parameterf k can be written asf k5vk /(2S̃t). With the
above determinations one can expressD as in Eq.~9!, and
the procedure is completed by the self-consistent solution
Eqs. ~12!. As for the first uniform term appearing in Eq
~B1!, one easily finds

1

N(
k

vk
2ak5

t

N(
k

f kLk52k2D. ~B7!

To recasteDH(p,q) in the form of a spin Hamiltonian, we
scale (p,q)→(up,uq) so that

eDH~p,q!

J S̃2
5

u4

2 (
i,d

F ~12zi
2!~12zi1d

2 !

1S 12
zi

21zi1d
2

4 D ~qiqi1d2pipi1d!

1 i ~2 ! i
zi

22zi1d
2

4
~qipi1d1piqi1d!G ;

this equation has the same functional form of the Weyl sy
bol for the Hamiltonian, Eq.~B2!, so that performing the
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inverse of the classical DM transformation we eventua
find the form reported in Eq.~6!, where the change in th
phase-space measure by the factoru2N due to the above sca
ing is absorbed in the effective Hamiltonian as an addi
logarithmic term,2Ntlnu2.

Finally, the PQSCHA expresses the general thermal a

age of an observableÔ(p̂,q̂) as the classical-like averag
with the effective Hamiltonian

^Ô&5
1

ZE dpdq

~2p!N
Õ~p,q!e2bHeff~p,q![^Õ&eff , ~B8!
.

y

e

r-

of the phase-space function

Õ~p,q![eDO~p,q!, ~B9!

whereO(p,q) is the Weyl symbol of the operatorÔ. In
terms of the classical spin variables Eq.~B8! becomes just
Eq. ~15!. In the case of the correlation function
G(r )5^Ŝi•Ŝi1r& the procedure leading to the Weyl symb
Si,i1r(p,q) of the operatorŜi•Ŝi1r and hence to the expres
sion of eDSi,i1r(p,q) is obviously analogous to the one de
scribed for the Hamiltonian, and the final result is eas
found to be as reported in Eq.~17!.
i,

B
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