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We have considered the properties of anisotropic two-leg ladder modelsSwitli2 or S=1 spins on the
rungs, using White's density-matrix renormalization-group method. We have generalized the method by taking
into account the symmetries of the model in order to reduce the dimensions of the matrix to be diagonalized,
thereby making it possible to consider more states. The boundaries in the parameter space of the extended
region, where the Haldane phase exists, are estimgd®d63-18207)05542-7

I. INTRODUCTION II. LADDER MODELS AND THEIR EXPECTED PHASE
DIAGRAM

The properties of magnetic systems where the localized In a two-leg ladder model the spins at rungwill be
moments form a ladderlike structule’ have been inten- denoted byo; and 7;. The length of the spin can be arbi-
sively studied recently. Most of such materials can be detrary. In most of the calculations we will také= 1/2 spins,
scribed by an isotropic spin Hamiltonian, therefore the theobut a comparison with th6=1 case will also be considered.
retical studies were almost exclusively done on isotropic When the coupling between the legs is neglected, the
models®*~° The question arises as to what effect the anisotHamiltonian of two decoupled anisotropic Heisenberg chains
ropy might have. The answer to the question is not trivial. 1S recovered. It can be written in the form

It is known that two-leg ladder models with= 1/2 spins
on both legs behave basically like & 1 spin model if the _2 1 L _ 4 7 7
rung coupling between the spins on the two legs is strong 0 2307 Tt oy o) 0o
enough. It is also known that integer and half-odd integer
spin models have essentially different phase diagrams, when +E
considered as a function of the anisotropy of the exchange. i
Beside the ferromagnetic, antiferromagnetic, and planar
phases an additional phase, the Haldane phappears fora Thexy part of the exchange is written in terms of the raising
finite range of anisotropy. Our aim in this paper is to study,and lowering operators, and its coupling is allowed to differ
how this phase appears in anisotropic ladder models for infrom that of thezz part.
termediate values of the interchain couplings. Introducing now the couplings between the chains, differ-

For this purpose we have determined the low-lying part ofent kinds of ladder models can be constructed depending of
the energy spectrum of an anisotropic Heisenberg laddghe choice of this coupling. Usually this coupling is assumed
model by using the density-matrix renormalization-groupto act between spins on the same rung only. In an anisotropic
(DMRG) method proposed recently by WhiteWe have model this would mean a coupling of the form
generalized the method in such a way that together with any
spin configuration that is kept after the truncation of the Hil- S D
bert space, the other configurations related to it by the sym- lez Fdgloi T Foip )+ IzoiT). @
metries of the ladder model are also automatically taken into

accou_nt. This _aIIows us to cgnS|der more states_wnhout INTn the limit when this coupling is ferromagnetic and strong,
creasing the size of the matrices and thereby to improve thg o o spins on the same rung couple into a single larger
accuracy. spin. That is the reason why a spin-1/2 ladder can behave
The layout of the paper is as follows. In Sec. Il we give ajike g spin-1 chain, or a spin-1 ladder like a spin-2 chain.
short description of the ladder model and show what phase Assuming that the diagonally situated nearest-neighbor
diagrams are expected, if the value of the spins on the legs kpins are also coupled, it was shdwrhat this coupling
S=1/2 orS=1. The symmetry considerations introduced in makes the hidden topological long-range order characteristic
the application of the DMRG procedure are briefly discussedor the Haldane phase even stronger.
in Sec. lll. Section IV presents the numerical results. Finally An alternative way to introduce interchain coupling is to
Sec. V contains a brief discussion of the results. choose the following form for the interaction:

)
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In this paper we look at the properties of the model defined
by Egs.(1) and(3). In a special case this is equivalent to one 0
0 1

of the models studied by Whité, but we will consider a
larger parameter space, although the anisotropy ratio will be
taken to be the same for the intrachain and interchain cou-

plings

FIG. 1. Schematic phase diagram of tBe 1/2 ladder model in
the (\,J,/Jyy) plane. The dashed line shows an alternative phase
Jz/‘]xy:‘]él‘];(yv (4) t:)houndary between the Haldane and planar phases, as discussed in
e text.
and therefore a single parameter
ropy. The numbers obtained for the critical values of the

N = ‘J_>,<y_ ﬂ ) anisotropy are somewhat different in the different calcula-
3, tions, but the best estimates give the range
will be used to characterize the strength of the interchain

—1. <0.
couplings. 1.18<J;/,y=<0 ®)

An interesting feature of our model is that by interchang-The value of the critical anisotropy,Jf/Jy,)c1= — 1.18,
ing the spins between the two legs on every even or odd sit§yhere the transition from the Haldane phase with singlet
the intrachain and interchain couplings change their role. Around state to the doubly degenerate antiferromagnetic state
A=1, where the intrachain and interchain COUpIingS ar%ccurS, is not determined by any Symmetry_ It is an |Sing_
equal, the model is transformed into itself. For other valueqype transition. Close to it, on both sides of the transition
of A, the energy scale has to be changed. Taking this intgoint, the gap opens linearly.
account, we find that fon>0 all energy levels satisfy a |t follows from the duality relationship for the energy lev-
simple self-duality relationshtf els that if\, is a critical point, then N, should also be a
critical coupling. The phase boundary of the antiferromag-
E(V)=AE(1A). ©6) netic phase should therefore start frody (J,,)c;=—1 at
This allows us to connect the weak- and strong-couplingh =0, returning to this value whem —o, and passing
limits of the model. Fon <0 the model would include fer- through Q,/J,y)c;=—1.18 at\=1.
romagnetic and antiferromagnetic interchain couplings, Looking at the boundary between the Haldane and planar
which requires the modificatidhof Eq. (6). phases, the massive phase appears from the critical planar
The self-dual\=1 point plays a special role in other phase via a Kosterlitz-Thouless-type transition. In the con-
respects as well. At this point, with our choice of the cou-tinuum limit of the S=1 chain the value I,/J,),=0 is
plings, the Hamiltonian of a single chain with composite spinobtained® for the critical anisotropy. This particular value
is recovered suggests that it is determined by a hidden symmetry of the
model, and therefore it is expected that this same critical
value could be found in th&=1/2 spin-ladder model at any
\. This would mean that for-1<J,/J,,<0 the interchain
L coupling is a relevant perturbation. An arbitrarily small cou-
where S;=o0;+ 7;. It is obvious that if botho and 7 are  pling will already generate a Haldane gap. The correspond-
spin-1/2 operators, this model is not a tt&e 1 Heisenberg ing phase boundary is shown in Fig. 1 by a vertical straight
model, since the two spins can form not only the triplet, butiine atJ,/J,,=0.
also the singlet combination. It has been shdfvhowever, This natural assumption becomes questionable, however,
that the low-lying levels of the Hamiltonian in E¢7) and  if we compare this phase diagram with that of the spin-1
that of the trueS=1 Heisenberg model are identical, and ladder. Based on similar considerations we can argue that at
therefore they have the same phase diagram. A=0 the behavior is that of two decoupled spin-1 chains,
The phase diagram expected for the model in the planevhile atA =1 the properties of the spin-2 Heisenberg model
spanned by the anisotropy,/J,, andX\, is shown schemati- should be recovered. Since both are integer spin models, the
cally in Fig. 1. In drawing the phase boundaries we haveHaldane phase exists in both cases in an extended range of
taken into account that the ferromagnetic phase appears fanisotropy around the isotropic antiferromagnetic point. In
J,13xy=1, independently ofA. On the other hand, the the spin-2 model this range is, however, much narrétver
boundary between the Haldane and antiferromagnetic phaséisan in the spin-1 case, so clearly the boundaries of the
is expected to depend on At A =0 the ladder model con- Haldane phase to both the planar and the antiferromagnetic
sists of two decoupled spin-1/2 chains, and therefore th@hases should strongly depend on the interchain coupling, as
Haldane phase does not exist. & 1, according to previ- shown in Fig. 2.
ous finite-size calculation$°on the equivalens=1 chain, Moreover the value of the Haldane gap is much smaller in
the massive Haldane phase exists in a finite range of anisothe S=2 spin chain than fo=1. This is known reliably for

H= Ei [J(S'S  + Y, )+3,5,.], (D)
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interchain coupling is in fact a relevant perturbation for

—1=<J,/3,,<0, and perhaps the phase boundary between
| Plonar the Haldane and planar phases does not go in the way dis-
52 5 R R cussed above. An alternative possibility is shown in Fig. 1 by
Antifeno- : Haldane Ferno- a daShed I|ne
< magnet phase magnet
S=1 :
0 2‘ * i I1l. NUMERICAL PROCEDURE
- -1 0 1

2w In this paper we try to elucidate this problem by looking
at the degeneracy of the ground state and the generation or
FIG. 2. Schematic phase diagram of the 1 ladder model in  disappearance of gaps when the interchain couplings are
the (\,J;/Jy,) plane. switched on. In order to do this we have applied the DMRG

. o , 722 method? to the model defined by Eqél) and(3) using the
the Isotropic qntlferrqmagnetlc model ortf/Zbut should b,e anisotropyJ,/Jy, and the relative strength of the interchain
true in the anisotropic case as well. We show schematlcall}éoup”ng \ as the two parameters

in Fig. 3 how the antiferromagnetic and Haldane gaps de- It has been found earlier in various applications that the

pend on the anisotropy for the spin-1/2, spin-1, and spin- . .
Heisenberg models. In all cases the antiferromagnetic sta l\:ljﬁc?arr;ect:r?git%;/(%ngtttﬁ;rﬁzlrjI;:)Se:i%r discyzt:)aﬂ?da\l,:;/thc:r?en
has a doubly degenerate ground state with a finite ener )

y aeg 9 99 ition (PBC). On the other hand, when OBC is used, the free

to the spin-wave excitations. F&=1/2 the transition into . o : )
this state is of Kosterlitz-Thouless type, and the gap openSPINS remaining at the ends in the valence-bond-like state of

exponentially slowly. For spin-1 and spin-2 chains the tranthe ladder model introdu<_:e extra energy-level degeneracies,
sition from the Haldane phase is of second order, so the ga@nd therefore the analysis of the spectrum becomes some-
opens linearly on both sides. The vanishing of the Haldan&hat more difficult. In that region of the couplings, where

gap at §,/Jy,) > happens again in a Kosterlitz-Thouless-like the gap is very small, in order to get more accurate results,
manner. we have used OBC, otherwise we have done calculations

By coupling now two spin-1 chains into a spin-1 ladder, with both boundary conditions.
the effect of the interchain coupling is expected to be oppo- The major limiting factor in the application of the DMRG
site to that discussed above. The Haldane gap decreases omethod is that only a subset of all possible states is kept, and
might even vanish when this coupling is switched on. Thisthe eigenvalue matrix is diagonalized in this subspace only.
raises the question whether in the spin-1/2 ladder model th®he accuracy can be improved, if first the Hilbert space is
block diagonalized by taking into account the natural sym-
metries of the Hamiltonian, and the DMRG procedure is ap-

o3l & 5=1/2 plied to the blocks separately, considering the same fixed
g number of states in each block. When using OBC, transla-
01 quantum number. In the anisotropic model we also lose the
=t SU(2) symmetry. Therefore only the component of the to-
2 - 0 .z .
tal spin, St can be used to classify the energy levels.

It is easily seen that the ladder model Hamiltonian has
051 two further symmetries, two mirror planes that are perpen-

b.
1 dicular to the plane of the ladder. One goes across the middle
@ $=1 of the rungs of the ladder. It transforms theand 7 spins
03t into each other ¢-7 symmetry. The other cuts the legs of
2 o

/ tional symmetry is lost, so the total momentum is not a good

1
Iy

the ladder in the middle, reflecting the spins on the left onto

0.1 1 / spins on the rightleft-right symmetry. Moreover, theS;=0

, subspace, which will be of particular interest for us, has an
1 additional symmetry, the spin reversal or up-down symme-
try. The corresponding operators will be denotedR3s ,,
c. P, andP; . The eigenstates of the system can be either
0.3 §=2 symmetric or antisymmetric under these operations. An
even-parity state will be labeled by, while an odd-parity

Jghy

01 \/\ / state by—.
NN It is advantageous to include these symmetries in the
2 -1 0 1 DMRG procedure by choosing wave functions that are
Yy eigenstates of the parity operators. Using the notation of
White 2% the superblock wave functiofi(«S; + 1S+ 23 + 3) IS
FIG. 3. The energy gap of th8=1/2,1, and 2 Heisenberg formed out of the statea, and 8, ; of the two blocks and
chains as a function of the anisotropy/J,, . the states, ., ands, ., of the two added spins,
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right symmetry can be used in the infinite-system method

)= 2 Aus, s ob ol (18141814281 43) only, but by keeping more states it would produce better
Sl‘i‘;‘glis starting vectors for the diagonalization procedure in the
finite-system method.
=P S +1S1+281+3)}- (9) Using these symmetry considerations the Hilbert space is

i L i split into subspaces characterized by theomponent of the
Aus i 181,85 1S @ Normalization constant which takes the o spin and the parity. In order to obtain the ground state
value 1/2 or 142, depending on whether the state obtainedand some low-lying states of the ladder, in principle, one has
by the symmetry operation is identical with the original oneto determine a few low-lying eigenstates of all subspaces.
or not. For a finite chain withN sites thenth energy level of the

The o- 7 and spin-reversal operations are products of locaSt=s sector with parityp will be denoted byEs ,(N).

operators that act on the spin states of a single rung, so the§imilarly the energy gap between the states with energies
can be used even if the left and right blocks are not of equdks’ n',p @dEs, , Will be denoted byAg , 5./ o7 p(N)-

length. The four statel] | ), |1 1), |T1), and|11) of the & Except for the ferromagnetic regime, in the spin-1/2 chain
and  spins on the same rung span a basis on which the lowest-lying energy level belongs to t8g=0 sector and
it has odd parity under left-right and spin reflection symme-
1 0 0O 0 0 01 tries for N mod 4 = 0, while it has even parity for chains
0 0 1 1 0 with N mod 4 = 2. The parity of the first excited state is
7’,1;7 = ; 73% = ) opposite to that of the ground state and the parity changes for
0100 0100 every higher lying level. Therefore, in the infinite-lattice al-
0O 0 0 1 1 0 0 O gorithm of the DMRG method the parity has to be changed

(10 in every iteration cycle.
This difficulty does not arise either in the spin-1 chain or
In each iteration cycle of building larger blocks the opera-in the ladder models. In the spin-1 chain the ground state was
tors are renormalized &'**=OP'O" and they are stored found to be in theS2=0 sector with even parity under left-
with the other block operators. The matrix contains the right reflection for all chain lengthBl. In the ladder model
new truncated basis states of the subsequent iteration cyclsasige the left to right reflection we also have ther sym-
A local operator acting on a block state gives metry. The ground state of this model has positive parity
Plla y=a, |a) (11) und_er both reflections for all non_—nega}tive valueskofl’he
! ol =/ excited states also preserve their parity as a functiok.of
where the coefficient, is 1 or —1 for the symmetric or Therefon_a in this case the same symmetry combinatior_l has to
: be used in every successive step of the DMRG algorithm.
Because the energy gaps are expected to be rather small
close to the phase boundaries, we have used the finite-lattice
method version of the DMRG with two or three iteration
] cycles. We calculated the energy gaps for ladders with
row and that value givea, .. Therefore, the local symme- N= 16 32 48,64,82,100,128 sites, and used a finite-size scal-

antisymmetric combination, respectively.

In the first step of the infinite algorithm, when the block
consists of the states of a single rufa;)=|s ;) and
a,=1. The iterated matri®' "1 has one element in each

tries simply give ing procedure to extrapolate to infinite system. Due to our
B L , restricted computational facility the number of staliégep-
Plocatl( @15 +181+2B1+3) = 8a 8, (@[ S] 11/ 4281 15)- resenting the block in the DMRG method could be chosen

12 betweenM =100 and 200 states. The truncation error was

. the worst close to the critical points. For the second and
On the other hand, the operaf_, mixes the states of higher excited states it was about £8-10"7, correspond-

different rungs and can be used only when the two blocks are
Ihg to a real error of about 1G.

of equal length. When acting on a superblock wave function, Several formulas have been proposed to extrapolate the

It gives finite-size results to the thermodynamic limit. When a finite

P S .S _ S .S (13 gap is expected, th— oo limit of the gap can be obtained
-r@Si181:2B1+3) = P BirsSioSiaan). - (139 by fitting the energy difference of the vario&s ,, , energy

The total parity of the wave function is the product of the [evels to the forfi A(N)=A+Aexp(~N/¢). On the other
left-right, 7| and o~ parities. In what follows, unless oth- hand, for open systems, where the finite-size effects are more
erwise specified, only the total parity will be given. It is Pronounced, the forf A(N):A+5A/N or an inverse
worth mentioning that if several symmetries are used, théduared dependerféel (N) = A+ A/N? should be used. The
factorA,s s s .. has to be included for each symmetry former one is known to give a lower-bound estimate of the

A3 +151+2P1+3 ’

This ensures that every configuration is taken into accoun?aP: .
only once y 9 In most cases we have used the formulas witN bf

2 . .
All these symmetry operations reduce the size of the Hil—llN - The exponential dependence was assumed when nei-

bert space of the superblock Hamiltonian by a factor of abouiher theN™" nor theN™? fit gave satisfactory result.
2. This decreases the memory requirements and allows us to
keep more spin configurations, which improves the accuracy
of the DMRG method. The local symmetries can be included In this section we present the results of our numerical

into both the infinite- and finite-system algorithms. The left- calculations. Since the gaps are expected to be rather small,

IV. NUMERICAL RESULTS
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resulting in relatively large errors in the extrapolation to in- 0.08 . | 0.08
finite systems, we are not able to locate exactly the phas
boundaries, where the gaps vanish. We will therefore restric L/ =—1.15 L /d =110
ourselves to a qualitative check of how the phase diagran . o 1 0.06
may look. + A=0.1 + 2=0.05

X A=1.0 X A=0.1

Because nothing particularly interesting is expected or
the J,/J,,>0 side, the system is ferromagneticif/ J,,>1
and planar if 6<J,/J,,<1 independently ok, in what fol-
lows we will consider thel,/J,,<0 region only. We have
chosen four different values of the anisotropy, namely

AH—,OH—

0.04

AH~,01+

J;134y=—-2,-1.1,-0.8,-0.5 and varieck from O to 1, to 0.02 - x 0.02
see how the character of the ground state changes. The e ~
ergies will always be measured in units Bf; . x
0.00 LX) L ' L L1 0.00
0.005 0.10 0.015 0 0.005 0.10 0.015 ’
N N

A. The A\=0 andA=1 lines

As mentioned above, at=0 the properties of two decou- FIG. 4. The antiferromagnetic gafp;;- o1+ as a function of
pled spin-1/2 chains should be recovered, whilevatl at N~ 'at(a) J,/Jy,=—1.15A=0.1and\=1 and(b) J,/Jy,= — 1.1,
least the low-energy part of the spectrum is identical to thak =0.05, and\=0.1.
of the spin-1 chain. Our calculations along these lines aimed
to test the accuracy of the method and to find the relevant
subspaces of the Hilbert space. . _ .

Let us consider first the case=0. WhenJ,/J,,<—1, netic phase fod,/J,,<—1. Since the phase boundary is not
the antiferromagnetic chains give ax2-fold degenerate determined by any symmetry, it is expected that for
ground state in thes:=0 subspace. Accordingly the gap —1.18<J;/J,,<—1 the antiferromagnetic gapd;;- o1+
Aoz o1+ and two other gaps in th& =0 sector should go to which is finite atA =0, should vanish for a finita., and
zero in the limitN— . In fact our calculation gives an ex- then for larger\ the Haldane gap i, o1 should open up.
trapolated value of the order of 18, This shows the real Since the values of the gaps are very small, it is difficult to
accuracy of the numerical calculations. determm_e accurately the valw_%, Wh_ere this happens.

The next levels above this fourfold degenerate ground AS @ first attempt, we have investigated the closing of the
state have one or two spins flipped. The corresponding gap&ntiferromagnetic and the opening of the Haldane gap as a
Ay o1 and Ay, o were found to be finite, opening function of\ atJ,/J,,=—1.1. The thermodynamlc I|m|t of
slowly as the anisotropy increases. Above this gap a cont-h‘fz""'Jlldane gap could be determined very well using the
tinuum of states is found as shown by the vanishing of thé\ ~ dependence fox>0.1. In this region this gap is finite.
gapA . 11 . At the same time the antiferromagnetic gap is found to van-

In the planar phase all these gaps should vanish. In fact ilsh. Forn=<0.1, however, no reliable extrgpolation proced.ulre
the range—1<J,/J,,<0 the gapsiy; o, andAyy, o, WAS found and therefore we can only claim that the transition

were found to be of the order of 18, which we consider to "om the antiferromagnetic to the Haldane phase occurs at a
be zero. very small value o\, between\ =0 and\ =0.05. This in-
Along the linex=1 the antiferromagnetic phase appearsdicates that due to the smallness of the antiferromagnetic gap
for J,/3,,<—1.18. The twofold degeneracy of the ground of the. spln—llz c':h'am avery small, although finite, interchain
state is in fact recovered, since the gag, o, scales to coupling is sufficient to drive the system into the Haldane

values of the order of IC. The antiferromagnetic gap phase. This means that the phase boundary starts from the
Ayy o1 remains finite. J,/3xy=—1, \=0 point with an almost horizontal slope.

In the Haldane phase; 1.18<J,/J,,<0, we have again Taking a somewhat larger anisotroply/J,,= —1.15, the
a fourfold degenerate ground state, if the ladder has fre@ntiferromagnetic state survives to a larger valuexofas
ends, but here the gap&, o. andAq; op. should scale shown in Fig. 4. '_rhe lower bou_nd e_stlmate of the gap
to zero exponentially. The values obtained for the gap are of11- 01+ A A=0.11s 0'0303)' This point, therefore, be-
the order of 10%. The next levels above them aEg,. and angs to thg antiferromagnetic phase. Moving upin the phase
Ei, , which cross each other a3/J,,= — 1. Therefore the diagram with\ to J,/J,,= —1.15,A =1 or to the right to the

real gap above the ground statelis,, o1, for J,/J,,> 1, point J,/J,,=—1.1, A=0.1, .thi_s same antiferromagnetic
while it is A1y, oy, for J,/d,,<— 1. This gap was found to gap clearly scales to zero, indicating that these points are

b 0.1471).  0.410%3), 0.2231), 0.0983) f already in the Haldane phas_e. The_ phase boundary should
Jze/ny= _f.]?’_ 1,—0.83 8.5' our ?;e)sult atheliij _olr therefore have the shape indicated in Fig. 1.

agrees quite well with the best estim&tfor the Haldane gap

of the isotropicS=1 model. C. The planar phase

Next we considered the stability of the planar phase in the
—1<J,/3,y<0 regime. We have measured the gap
Taking now intermediate values far, we consider first A1 g1+, Which should vanish ax=0, as a function oh
the transition from the Haldane phase to the antiferromagfor several values of the anisotropy.

B. The antiferromagnetic regime
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0.10 , : : have looked at the gap,;: g1+, Which is finite in the
om0 A0 Haldane phase, but vanishes_in the planar one. It was found
0.09 W il that atJ,/Jyy,= —0.7A=0.5 this gap was already zero. Al-
X though we could not locate the boundary precisely, it is clear
008 7 i that, taking into account again the self-duality relationship,
3 /// the phase boundary should be perpendicular to the anisot-
Soor| T | ropy axis at\=1 and have the shape shown in Fig. 2.
0.06 |- 4 V. DISCUSSION

In this paper we have studied the stability of the Haldane
0 15 2.0, phase in a magnetic ladder model. Our special choice of the
N e coupling between the chains allowed us to investigate and
. > smoothly interpolate between both the half-odd integer and
FIG. 5. The energy gajz; o1+ as a function ofN"% at  jqager spin Heisenberg models. We have applied the DMRG
A=0.2,3,/3,=-08. method which was improved to reduce the computational
time and to increase the accuracy.
We have found that for th&=1/2+1/2 composite spin
The accuracy of our calculations was checked by comparmodel the phase boundary between the antiferromagnetic
ing the energy values calculated for<1 andA>1, using  and the Haldane phase is a smooth curve and the valug of
the self-duality relationship of E¢6). We have got the same s a function of the anisotropy parameté,/J,,. For the
energies to at least 6 or 8 digits. We show in Fig. 5 thehoundary between the Haldane and planar phases our results
results obtained fad,/J,,= —0.8. AtA=0 the gap scales to indicate that it is atJ,/J,,=0 independently of\. For
0.008(2) as M. At A=0.2 an excellent fit can be obtained 0=<J,/3,y<1 the system remains in the planar phase, while
by the 1N? fit for N=128,100,82. The extrapolated gap wasfor — 1<J,/3,y<0 the interchain coupling is relevant. The

0.0 0.5

found to be 0.05(2). critical value where the Haldane gap starts to open up is
The finite-size scaling procedure is not that clear for) =0.
A=0.1. Neither a M nor a 1N fit is satisfactory. This This is, however, not the only possibility. Our results are

indicates that the available chain lengths are still not longhot in contradiction with the assumption thet is finite,
enough to determiné accurately. The estimated value of glthough small, except whedy, /J,, is rather close to 0, as
the gap is between 0.025(3) and 0.085 Comparing this  shown by the dashed line in Fig. 1.
with the gap at=0.2, we could conclude that in the ther- We should also mention that since the point
modynamic limit the gap opens linearly with,=0, in the  \=1J,/J,,=0 on the boundary between the Haldane and
same way’ as ford,/d,=—1. planar phases was obtained in the continuum limit, it cannot
For J,/J,, closer to zero, the Haldane gap is too smallbe excluded that in the lattice model this boundary atl is
even at\=1. At J,/J,,= — 0.5 the extrapolated value of the not exactly atJ,/J,,=0, but at a small negative value. In
gap is about 0.09@). Forsmall values of of the order of this case the boundary between the Haldane and planar
0.1 the error of the DMRG method becomes comparable tphases should be slightly deformed from that shown in Fig.
the value of the gap and no reliable extrapolation procedure.
was found. The results are, however, in agreement with the On the basis of our calculations, unfortunately, we are
assumption thak .=0. unable to decide, which scenario takes place. The argument
These results indicate that the interchain coupling is relthat gave {,/J,).,=0 atA=1 would give a phase bound-
evant in the whole—1<J,/J,,<0 region. An arbitrarily  ary which is independent of, meaning that the interchain
weak interchain coupling of this type would drive the spin-coupling is relevant for anyJ,/Jy, in the range
1/2 ladder into the Haldane phase. —1<J,/3,y<0. The same reasoning might then indicate
that the interchain coupling is relevant also in the case when
four S=1/2 chains are coupled. With an appropriate choice
of the couplings this would, however, generate a four-leg
The spin-1 ladder model is constructed in the same way aladder that behaves like aB=2 chain. In this model the
the spin-1/2 model except that the and 7; operators in Eq. phase boundary between the planar and Haldane phases can-
(1) and (3) are now spin-1 operators. In the=0 limit, not be independent of, in the same way as in the two-leg
which in this case corresponds to two decoupled spin-15=1 ladder. Further calculations, keeping probably close to
chains, the Haldane phase exists for a wide range of anisot:000 states in the DMRG procedure, are necessary to decide
ropy, namely for—1.18<J,/J,,<0. At A=1 this model between these possible scenarios and to determine the pre-
should behave like a spin-2 chain, in which the Haldanecise shape of the phase boundaries.
phase is squeezed into a very narrow region around the iso-
tropic point. The gap itself is also small. According to the
best estimaf& it is A=0.085(5) at the isotropic point. ACKNOWLEDGMENTS
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