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Stability of the Haldane phase in anisotropic magnetic ladders
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JenöSólyom
Research Institute for Solid State Physics, P.O. Box 49, H-1525 Budapest, Hungary

~Received 18 June 1997!

We have considered the properties of anisotropic two-leg ladder models withS51/2 or S51 spins on the
rungs, using White’s density-matrix renormalization-group method. We have generalized the method by taking
into account the symmetries of the model in order to reduce the dimensions of the matrix to be diagonalized,
thereby making it possible to consider more states. The boundaries in the parameter space of the extended
region, where the Haldane phase exists, are estimated.@S0163-1829~97!05542-2#
ze

de
eo
pi
o
l.

on
ge
h
g
na

dy
i

t o
d
up

an
il

ym
in
in
th

a
as
s
in

se
ll

i-

.
the
ins

ng
fer

er-
g of
ed

opic

g,
ger
ave
.
bor

istic

to
I. INTRODUCTION

The properties of magnetic systems where the locali
moments form a ladderlike structure,1–3 have been inten-
sively studied recently. Most of such materials can be
scribed by an isotropic spin Hamiltonian, therefore the th
retical studies were almost exclusively done on isotro
models.4–10 The question arises as to what effect the anis
ropy might have. The answer to the question is not trivia

It is known that two-leg ladder models withS51/2 spins
on both legs behave basically like anS51 spin model if the
rung coupling between the spins on the two legs is str
enough. It is also known that integer and half-odd inte
spin models have essentially different phase diagrams, w
considered as a function of the anisotropy of the exchan
Beside the ferromagnetic, antiferromagnetic, and pla
phases an additional phase, the Haldane phase11 appears for a
finite range of anisotropy. Our aim in this paper is to stu
how this phase appears in anisotropic ladder models for
termediate values of the interchain couplings.

For this purpose we have determined the low-lying par
the energy spectrum of an anisotropic Heisenberg lad
model by using the density-matrix renormalization-gro
~DMRG! method proposed recently by White.12 We have
generalized the method in such a way that together with
spin configuration that is kept after the truncation of the H
bert space, the other configurations related to it by the s
metries of the ladder model are also automatically taken
account. This allows us to consider more states without
creasing the size of the matrices and thereby to improve
accuracy.

The layout of the paper is as follows. In Sec. II we give
short description of the ladder model and show what ph
diagrams are expected, if the value of the spins on the leg
S51/2 or S51. The symmetry considerations introduced
the application of the DMRG procedure are briefly discus
in Sec. III. Section IV presents the numerical results. Fina
Sec. V contains a brief discussion of the results.
560163-1829/97/56~22!/14449~7!/$10.00
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II. LADDER MODELS AND THEIR EXPECTED PHASE
DIAGRAM

In a two-leg ladder model the spins at rungi will be
denoted bys i and t i . The length of the spin can be arb
trary. In most of the calculations we will takeS51/2 spins,
but a comparison with theS51 case will also be considered

When the coupling between the legs is neglected,
Hamiltonian of two decoupled anisotropic Heisenberg cha
is recovered. It can be written in the form

H05(
i

F1

2
Jxy~s i

1s i 11
2 1s i

2s i 11
1 !1Jzs i

zs i 11
z G

1(
i

F1

2
Jxy~t i

1t i 11
2 1t i

2t i 11
1 !1Jzt i

zt i 11
z G . ~1!

Thexy part of the exchange is written in terms of the raisi
and lowering operators, and its coupling is allowed to dif
from that of thezz part.

Introducing now the couplings between the chains, diff
ent kinds of ladder models can be constructed dependin
the choice of this coupling. Usually this coupling is assum
to act between spins on the same rung only. In an anisotr
model this would mean a coupling of the form

H15(
i

F1

2
Jxy8 ~s i

1t i
21s i

2t i
1!1Jz8s i

zt i
zG . ~2!

In the limit when this coupling is ferromagnetic and stron
the two spins on the same rung couple into a single lar
spin. That is the reason why a spin-1/2 ladder can beh
like a spin-1 chain, or a spin-1 ladder like a spin-2 chain

Assuming that the diagonally situated nearest-neigh
spins are also coupled, it was shown13 that this coupling
makes the hidden topological long-range order character
for the Haldane phase even stronger.

An alternative way to introduce interchain coupling is
choose the following form for the interaction:
14 449 © 1997 The American Physical Society
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H15(
i

F1

2
Jxy8 ~s i

1t i 11
2 1s i

2t i 11
1 !1Jz8s i

zt i 11
z G

1(
i

F1

2
Jxy8 ~t i

1s i 11
2 1t i

2s i 11
1 !1Jz8t i

zs i 11
z G . ~3!

In this paper we look at the properties of the model defin
by Eqs.~1! and~3!. In a special case this is equivalent to o
of the models studied by White,13 but we will consider a
larger parameter space, although the anisotropy ratio wil
taken to be the same for the intrachain and interchain c
plings

Jz /Jxy5Jz8/Jxy8 , ~4!

and therefore a single parameter

l5
Jxy8

Jxy
5

Jz8

Jz
~5!

will be used to characterize the strength of the interch
couplings.

An interesting feature of our model is that by interchan
ing the spins between the two legs on every even or odd
the intrachain and interchain couplings change their role
l51, where the intrachain and interchain couplings
equal, the model is transformed into itself. For other valu
of l, the energy scale has to be changed. Taking this
account, we find that forl.0 all energy levels satisfy a
simple self-duality relationship14

E~l!5lE~1/l!. ~6!

This allows us to connect the weak- and strong-coupl
limits of the model. Forl,0 the model would include fer
romagnetic and antiferromagnetic interchain couplin
which requires the modification15 of Eq. ~6!.

The self-duall51 point plays a special role in othe
respects as well. At this point, with our choice of the co
plings, the Hamiltonian of a single chain with composite sp
is recovered

H5(
i

@Jxy~Si
xSi 11

x 1Si
ySi 11

y !1JzSi
zSi 11

z #, ~7!

where SW i5sW i1tW i . It is obvious that if boths and t are
spin-1/2 operators, this model is not a trueS51 Heisenberg
model, since the two spins can form not only the triplet, b
also the singlet combination. It has been shown,14 however,
that the low-lying levels of the Hamiltonian in Eq.~7! and
that of the trueS51 Heisenberg model are identical, an
therefore they have the same phase diagram.

The phase diagram expected for the model in the pl
spanned by the anisotropy,Jz /Jxy andl, is shown schemati-
cally in Fig. 1. In drawing the phase boundaries we ha
taken into account that the ferromagnetic phase appear
Jz /Jxy>1, independently ofl. On the other hand, the
boundary between the Haldane and antiferromagnetic ph
is expected to depend onl. At l50 the ladder model con
sists of two decoupled spin-1/2 chains, and therefore
Haldane phase does not exist. Atl51, according to previ-
ous finite-size calculations16–19on the equivalentS51 chain,
the massive Haldane phase exists in a finite range of an
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ropy. The numbers obtained for the critical values of t
anisotropy are somewhat different in the different calcu
tions, but the best estimates give the range

21.18,Jz /Jxy,0. ~8!

The value of the critical anisotropy, (Jz /Jxy)c1.21.18,
where the transition from the Haldane phase with sing
ground state to the doubly degenerate antiferromagnetic s
occurs, is not determined by any symmetry. It is an Isin
type transition. Close to it, on both sides of the transiti
point, the gap opens linearly.

It follows from the duality relationship for the energy lev
els that if lc is a critical point, then 1/lc should also be a
critical coupling. The phase boundary of the antiferroma
netic phase should therefore start from (Jz /Jxy)c1521 at
l50, returning to this value whenl→`, and passing
through (Jz /Jxy)c1.21.18 atl51.

Looking at the boundary between the Haldane and pla
phases, the massive phase appears from the critical pl
phase via a Kosterlitz-Thouless-type transition. In the c
tinuum limit of the S51 chain the value (Jz /Jxy)c250 is
obtained20 for the critical anisotropy. This particular valu
suggests that it is determined by a hidden symmetry of
model, and therefore it is expected that this same crit
value could be found in theS51/2 spin-ladder model at an
l. This would mean that for21<Jz /Jxy,0 the interchain
coupling is a relevant perturbation. An arbitrarily small co
pling will already generate a Haldane gap. The correspo
ing phase boundary is shown in Fig. 1 by a vertical strai
line at Jz /Jxy50.

This natural assumption becomes questionable, howe
if we compare this phase diagram with that of the spin
ladder. Based on similar considerations we can argue th
l50 the behavior is that of two decoupled spin-1 chai
while atl51 the properties of the spin-2 Heisenberg mod
should be recovered. Since both are integer spin models
Haldane phase exists in both cases in an extended rang
anisotropy around the isotropic antiferromagnetic point.
the spin-2 model this range is, however, much narrowe21

than in the spin-1 case, so clearly the boundaries of
Haldane phase to both the planar and the antiferromagn
phases should strongly depend on the interchain coupling
shown in Fig. 2.

Moreover the value of the Haldane gap is much smalle
theS52 spin chain than forS51. This is known reliably for

FIG. 1. Schematic phase diagram of theS51/2 ladder model in
the (l,Jz /Jxy) plane. The dashed line shows an alternative ph
boundary between the Haldane and planar phases, as discuss
the text.
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56 14 451STABILITY OF THE HALDANE PHASE IN . . .
the isotropic antiferromagnetic model only,12,22but should be
true in the anisotropic case as well. We show schematic
in Fig. 3 how the antiferromagnetic and Haldane gaps
pend on the anisotropy for the spin-1/2, spin-1, and spi
Heisenberg models. In all cases the antiferromagnetic s
has a doubly degenerate ground state with a finite energy
to the spin-wave excitations. ForS51/2 the transition into
this state is of Kosterlitz-Thouless type, and the gap op
exponentially slowly. For spin-1 and spin-2 chains the tra
sition from the Haldane phase is of second order, so the
opens linearly on both sides. The vanishing of the Hald
gap at (Jz /Jxy)c2 happens again in a Kosterlitz-Thouless-li
manner.

By coupling now two spin-1 chains into a spin-1 ladde
the effect of the interchain coupling is expected to be op
site to that discussed above. The Haldane gap decreases
might even vanish when this coupling is switched on. T
raises the question whether in the spin-1/2 ladder model

FIG. 2. Schematic phase diagram of theS51 ladder model in
the (l,Jz /Jxy) plane.

FIG. 3. The energy gap of theS51/2,1, and 2 Heisenberg
chains as a function of the anisotropyJz /Jxy .
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interchain coupling is in fact a relevant perturbation f
21<Jz /Jxy,0, and perhaps the phase boundary betw
the Haldane and planar phases does not go in the way
cussed above. An alternative possibility is shown in Fig. 1
a dashed line.

III. NUMERICAL PROCEDURE

In this paper we try to elucidate this problem by lookin
at the degeneracy of the ground state and the generatio
disappearance of gaps when the interchain couplings
switched on. In order to do this we have applied the DMR
method12 to the model defined by Eqs.~1! and~3! using the
anisotropyJz /Jxy and the relative strength of the intercha
coupling,l as the two parameters.

It has been found earlier in various applications that
DMRG method gives better results for systems with op
boundary condition~OBC! than for periodic boundary con
dition ~PBC!. On the other hand, when OBC is used, the fr
spins remaining at the ends in the valence-bond-like stat
the ladder model introduce extra energy-level degenerac
and therefore the analysis of the spectrum becomes so
what more difficult. In that region of the couplings, whe
the gap is very small, in order to get more accurate resu
we have used OBC, otherwise we have done calculati
with both boundary conditions.

The major limiting factor in the application of the DMRG
method is that only a subset of all possible states is kept,
the eigenvalue matrix is diagonalized in this subspace o
The accuracy can be improved, if first the Hilbert space
block diagonalized by taking into account the natural sy
metries of the Hamiltonian, and the DMRG procedure is a
plied to the blocks separately, considering the same fi
number of states in each block. When using OBC, tran
tional symmetry is lost, so the total momentum is not a go
quantum number. In the anisotropic model we also lose
SU~2! symmetry. Therefore only thez component of the to-
tal spin,ST

z can be used to classify the energy levels.
It is easily seen that the ladder model Hamiltonian h

two further symmetries, two mirror planes that are perp
dicular to the plane of the ladder. One goes across the mi
of the rungs of the ladder. It transforms thes and t spins
into each other (s-t symmetry!. The other cuts the legs o
the ladder in the middle, reflecting the spins on the left o
spins on the right~left-right symmetry!. Moreover, theST

z50
subspace, which will be of particular interest for us, has
additional symmetry, the spin reversal or up-down symm
try. The corresponding operators will be denoted asPs2t ,
Pl 2r , andP↑↓ . The eigenstates of the system can be eit
symmetric or antisymmetric under these operations.
even-parity state will be labeled by1, while an odd-parity
state by2.

It is advantageous to include these symmetries in
DMRG procedure by choosing wave functions that a
eigenstates of the parity operators. Using the notation
White,23 the superblock wave functionc(a lsl 11sl 12b l 13) is
formed out of the statesa l andb l 13 of the two blocks and
the statessl 11 andsl 12 of the two added spins,
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uc6&5 (
a l sl 11

sl 12b l 13

Aa l sl 11sl 12b l 13
$c~a lsl 11sl 12b l 13!

6Pc~a lsl 11sl 12b l 13!%. ~9!

Aa l sl 11sl 12b l 13
is a normalization constant which takes t

value 1/2 or 1/A2, depending on whether the state obtain
by the symmetry operation is identical with the original o
or not.

Thes-t and spin-reversal operations are products of lo
operators that act on the spin states of a single rung, so
can be used even if the left and right blocks are not of eq
length. The four statesu↓↓&, u↓↑&, u↑↓&, and u↑↑& of the s
andt spins on the same rung span a basis on which

Ps2t
1 5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D , P↑↓1 5S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D .

~10!

In each iteration cycle of building larger blocks the ope
tors are renormalized asPl 115OPlO† and they are stored
with the other block operators. TheO matrix contains the
new truncated basis states of the subsequent iteration cy
A local operator acting on a block state gives

Pl ua l&5aa l
ua l8&, ~11!

where the coefficientaa l
is 1 or 21 for the symmetric or

antisymmetric combination, respectively.
In the first step of the infinite algorithm, when the bloc

consists of the states of a single rung,ua1&5usl 11& and
aa l

51. The iterated matrixPl 11 has one element in eac

row and that value givesal 11. Therefore, the local symme
tries simply give

Plocal
l c~a lsl 11sl 12b l 13!5aa l

ab l 13
c~a l8sl 118 sl 128 b l 138 !.

~12!

On the other hand, the operatorPl 2r
l mixes the states o

different rungs and can be used only when the two blocks
of equal length. When acting on a superblock wave functi
it gives

Pl 2r
l c~a lsl 11sl 12b l 13!5c~b l 13sl 12sl 11a l !. ~13!

The total parity of the wave function is the product of t
left-right, ↑↓ ands-t parities. In what follows, unless oth
erwise specified, only the total parity will be given. It
worth mentioning that if several symmetries are used,
factor Aa l sl 11sl 12b l 13

has to be included for each symmetr
This ensures that every configuration is taken into acco
only once.

All these symmetry operations reduce the size of the H
bert space of the superblock Hamiltonian by a factor of ab
2. This decreases the memory requirements and allows u
keep more spin configurations, which improves the accur
of the DMRG method. The local symmetries can be includ
into both the infinite- and finite-system algorithms. The le
d
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right symmetry can be used in the infinite-system meth
only, but by keeping more states it would produce bet
starting vectors23 for the diagonalization procedure in th
finite-system method.

Using these symmetry considerations the Hilbert spac
split into subspaces characterized by thez component of the
total spin and the parity. In order to obtain the ground st
and some low-lying states of the ladder, in principle, one
to determine a few low-lying eigenstates of all subspac
For a finite chain withN sites thenth energy level of the
ST

z5s sector with parityp will be denoted byEs,n,p(N).
Similarly the energy gap between the states with energ
Es8,n8,p8 andEs,n,p will be denoted byDs,n,p;s8,n8,p8(N).

Except for the ferromagnetic regime, in the spin-1/2 ch
the lowest-lying energy level belongs to theST

z50 sector and
it has odd parity under left-right and spin reflection symm
tries for N mod 4 5 0, while it has even parity for chain
with N mod 4 5 2. The parity of the first excited state i
opposite to that of the ground state and the parity changes
every higher lying level. Therefore, in the infinite-lattice a
gorithm of the DMRG method the parity has to be chang
in every iteration cycle.

This difficulty does not arise either in the spin-1 chain
in the ladder models. In the spin-1 chain the ground state
found to be in theST

z50 sector with even parity under left
right reflection for all chain lengthsN. In the ladder model
beside the left to right reflection we also have thes-t sym-
metry. The ground state of this model has positive pa
under both reflections for all non-negative values ofl. The
excited states also preserve their parity as a function ol.
Therefore in this case the same symmetry combination ha
be used in every successive step of the DMRG algorithm

Because the energy gaps are expected to be rather s
close to the phase boundaries, we have used the finite-la
method version of the DMRG with two or three iteratio
cycles. We calculated the energy gaps for ladders w
N516,32,48,64,82,100,128 sites, and used a finite-size s
ing procedure to extrapolate to infinite system. Due to o
restricted computational facility the number of statesM rep-
resenting the block in the DMRG method could be chos
betweenM5100 and 200 states. The truncation error w
the worst close to the critical points. For the second a
higher excited states it was about 102621027, correspond-
ing to a real error of about 1023.

Several formulas have been proposed to extrapolate
finite-size results to the thermodynamic limit. When a fin
gap is expected, theN→` limit of the gap can be obtained
by fitting the energy difference of the variousEs,n,p energy
levels to the form4 D(N)5D1Aexp(2N/j). On the other
hand, for open systems, where the finite-size effects are m
pronounced, the form22 D(N)5D1A/N or an inverse
squared dependence24 D(N)5D1A/N2 should be used. The
former one is known to give a lower-bound estimate of t
gap.

In most cases we have used the formulas with 1/N or
1/N2. The exponential dependence was assumed when
ther theN21 nor theN22 fit gave satisfactory result.

IV. NUMERICAL RESULTS

In this section we present the results of our numeri
calculations. Since the gaps are expected to be rather s
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56 14 453STABILITY OF THE HALDANE PHASE IN . . .
resulting in relatively large errors in the extrapolation to
finite systems, we are not able to locate exactly the ph
boundaries, where the gaps vanish. We will therefore res
ourselves to a qualitative check of how the phase diag
may look.

Because nothing particularly interesting is expected
theJz /Jxy.0 side, the system is ferromagnetic ifJz /Jxy.1
and planar if 0,Jz /Jxy,1 independently ofl, in what fol-
lows we will consider theJz /Jxy,0 region only. We have
chosen four different values of the anisotropy, nam
Jz /Jxy522,21.1,20.8,20.5 and variedl from 0 to 1, to
see how the character of the ground state changes. The
ergies will always be measured in units ofJxy .

A. The l50 and l51 lines

As mentioned above, atl50 the properties of two decou
pled spin-1/2 chains should be recovered, while atl51 at
least the low-energy part of the spectrum is identical to t
of the spin-1 chain. Our calculations along these lines aim
to test the accuracy of the method and to find the relev
subspaces of the Hilbert space.

Let us consider first the casel50. WhenJz /Jxy,21,
the antiferromagnetic chains give a 232-fold degenerate
ground state in theST

z50 subspace. Accordingly the ga
D022,011 and two other gaps in theST

z50 sector should go to
zero in the limitN→`. In fact our calculation gives an ex
trapolated value of the order of 1023. This shows the rea
accuracy of the numerical calculations.

The next levels above this fourfold degenerate grou
state have one or two spins flipped. The corresponding g
D112,011 and D211,011 were found to be finite, opening
slowly as the anisotropy increases. Above this gap a c
tinuum of states is found as shown by the vanishing of
gapD121,112 .

In the planar phase all these gaps should vanish. In fac
the range21,Jz /Jxy,0 the gapsD112,011 and D211,011

were found to be of the order of 1023, which we consider to
be zero.

Along the linel51 the antiferromagnetic phase appea
for Jz /Jxy,21.18. The twofold degeneracy of the groun
state is in fact recovered, since the gapD022,011 scales to
values of the order of 1023. The antiferromagnetic gap
D112,011 remains finite.

In the Haldane phase,21.18,Jz /Jxy,0, we have again
a fourfold degenerate ground state, if the ladder has
ends, but here the gapsD022,011 andD112,011 should scale
to zero exponentially. The values obtained for the gap ar
the order of 1024. The next levels above them areE211 and
E121 , which cross each other atJz /Jxy521. Therefore the
real gap above the ground state isD211,011 for Jz /Jxy.21,
while it is D121,011 for Jz /Jxy,21. This gap was found to
be 0.147~1!, 0.4105~3!, 0.223~1!, 0.096~3! for
Jz /Jxy521.1,21,20.8,20.5. Our result atJz /Jxy521
agrees quite well with the best estimate12 for the Haldane gap
of the isotropicS51 model.

B. The antiferromagnetic regime

Taking now intermediate values forl, we consider first
the transition from the Haldane phase to the antiferrom
se
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netic phase forJz /Jxy,21. Since the phase boundary is n
determined by any symmetry, it is expected that
21.18,Jz /Jxy,21 the antiferromagnetic gap,D112,011

which is finite atl50, should vanish for a finitelc , and
then for largerl the Haldane gapD121,011 should open up.
Since the values of the gaps are very small, it is difficult
determine accurately the valuelc , where this happens.

As a first attempt, we have investigated the closing of
antiferromagnetic and the opening of the Haldane gap a
function of l at Jz /Jxy521.1. The thermodynamic limit of
the Haldane gap could be determined very well using
N22 dependence forl.0.1. In this region this gap is finite
At the same time the antiferromagnetic gap is found to v
ish. Forl<0.1, however, no reliable extrapolation procedu
was found and therefore we can only claim that the transit
from the antiferromagnetic to the Haldane phase occurs
very small value ofl, betweenl50 andl50.05. This in-
dicates that due to the smallness of the antiferromagnetic
of the spin-1/2 chain a very small, although finite, intercha
coupling is sufficient to drive the system into the Halda
phase. This means that the phase boundary starts from
Jz /Jxy521, l50 point with an almost horizontal slope.

Taking a somewhat larger anisotropy,Jz /Jxy521.15, the
antiferromagnetic state survives to a larger value ofl, as
shown in Fig. 4. The lower bound estimate of the g
D112,011 at l50.1 is 0.030(3). This point, therefore, be-
longs to the antiferromagnetic phase. Moving up in the ph
diagram withl to Jz /Jxy521.15,l51 or to the right to the
point Jz /Jxy521.1, l50.1, this same antiferromagnet
gap clearly scales to zero, indicating that these points
already in the Haldane phase. The phase boundary sh
therefore have the shape indicated in Fig. 1.

C. The planar phase

Next we considered the stability of the planar phase in
21,Jz /Jxy,0 regime. We have measured the g
D211,011 , which should vanish atl50, as a function ofl
for several values of the anisotropy.

FIG. 4. The antiferromagnetic gapD112,011 as a function of
N21 at ~a! Jz /Jxy521.15,l50.1 andl51 and~b! Jz /Jxy521.1,
l50.05, andl50.1.
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14 454 56ÖRS LEGEZA AND JENÖSÓLYOM
The accuracy of our calculations was checked by comp
ing the energy values calculated forl,1 andl.1, using
the self-duality relationship of Eq.~6!. We have got the sam
energies to at least 6 or 8 digits. We show in Fig. 5
results obtained forJz /Jxy520.8. At l50 the gap scales to
0.008(2) as 1/N. At l50.2 an excellent fit can be obtaine
by the 1/N2 fit for N5128,100,82. The extrapolated gap w
found to be 0.057(2).

The finite-size scaling procedure is not that clear
l50.1. Neither a 1/N nor a 1/N2 fit is satisfactory. This
indicates that the available chain lengths are still not lo
enough to determineD accurately. The estimated value
the gap is between 0.025(3) and 0.035(3). Comparing this
with the gap atl50.2, we could conclude that in the the
modynamic limit the gap opens linearly withlc50, in the
same way15 as forJz /Jxy521.

For Jz /Jxy closer to zero, the Haldane gap is too sm
even atl51. At Jz /Jxy520.5 the extrapolated value of th
gap is about 0.096(3). Forsmall values ofl of the order of
0.1 the error of the DMRG method becomes comparable
the value of the gap and no reliable extrapolation proced
was found. The results are, however, in agreement with
assumption thatlc50.

These results indicate that the interchain coupling is
evant in the whole21<Jz /Jxy,0 region. An arbitrarily
weak interchain coupling of this type would drive the sp
1/2 ladder into the Haldane phase.

D. The spin-1 ladder model

The spin-1 ladder model is constructed in the same wa
the spin-1/2 model except that thes i andt i operators in Eq.
~1! and ~3! are now spin-1 operators. In thel50 limit,
which in this case corresponds to two decoupled spi
chains, the Haldane phase exists for a wide range of an
ropy, namely for21.18,Jz /Jxy,0. At l51 this model
should behave like a spin-2 chain, in which the Halda
phase is squeezed into a very narrow region around the
tropic point. The gap itself is also small. According to t
best estimate22 it is D50.085(5) at the isotropic point.

Therefore, as shown in Fig. 2, the Haldane gap is
pected to vanish at a finite value of the interchain coupl
whenJz /Jxy is not too close to21. In order to see this, we

FIG. 5. The energy gapD211,011 as a function ofN22 at
l50.2, Jz /Jxy520.8.
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have looked at the gapD211,011 , which is finite in the
Haldane phase, but vanishes in the planar one. It was fo
that atJz /Jxy520.7,l50.5 this gap was already zero. A
though we could not locate the boundary precisely, it is cl
that, taking into account again the self-duality relationsh
the phase boundary should be perpendicular to the an
ropy axis atl51 and have the shape shown in Fig. 2.

V. DISCUSSION

In this paper we have studied the stability of the Halda
phase in a magnetic ladder model. Our special choice of
coupling between the chains allowed us to investigate
smoothly interpolate between both the half-odd integer a
integer spin Heisenberg models. We have applied the DM
method which was improved to reduce the computatio
time and to increase the accuracy.

We have found that for theS51/211/2 composite spin
model the phase boundary between the antiferromagn
and the Haldane phase is a smooth curve and the value olc
is a function of the anisotropy parameter,Jz /Jxy . For the
boundary between the Haldane and planar phases our re
indicate that it is atJz /Jxy50 independently ofl. For
0<Jz /Jxy,1 the system remains in the planar phase, wh
for 21<Jz /Jxy,0 the interchain coupling is relevant. Th
critical value where the Haldane gap starts to open up
lc50.

This is, however, not the only possibility. Our results a
not in contradiction with the assumption thatlc is finite,
although small, except whenJz /Jxy is rather close to 0, as
shown by the dashed line in Fig. 1.

We should also mention that since the po
l51,Jz /Jxy50 on the boundary between the Haldane a
planar phases was obtained in the continuum limit, it can
be excluded that in the lattice model this boundary atl51 is
not exactly atJz /Jxy50, but at a small negative value. I
this case the boundary between the Haldane and pl
phases should be slightly deformed from that shown in F
1.

On the basis of our calculations, unfortunately, we a
unable to decide, which scenario takes place. The argum
that gave (Jz /Jxy)c250 at l51 would give a phase bound
ary which is independent ofl, meaning that the interchain
coupling is relevant for any Jz /Jxy in the range
21<Jz /Jxy,0. The same reasoning might then indica
that the interchain coupling is relevant also in the case w
four S51/2 chains are coupled. With an appropriate cho
of the couplings this would, however, generate a four-
ladder that behaves like anS52 chain. In this model the
phase boundary between the planar and Haldane phases
not be independent ofl, in the same way as in the two-le
S51 ladder. Further calculations, keeping probably close
1000 states in the DMRG procedure, are necessary to de
between these possible scenarios and to determine the
cise shape of the phase boundaries.
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