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Quantum lattice fluctuations in the ground state of anXY spin-Peierls chain
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An analytical approach, based on the unitary transformation method, has been developed to study the effect
of quantum lattice fluctuations on the ground state ofXan spin-Peierls chain, which is equivalent to the
spinless Su-Schrieffer-Heeger model in half-filling after the Jordan-Wigner transformation. We show that when
the spin-phonon coupling constant/4K decreases or the phonon frequensy increases, the lattice dimer-
ization and the gap in the fermion spectrum decrease gradually. At some critical w&l4&), or w_., the
system becomes gapless and the lattice dimerization disappears. This can be attributed to the fact that the
ground state fails to develop the spin-Peierls long-range order because of the quantum lattice fluctuations.
[S0163-18207)03545-5

I. INTRODUCTION
S = ﬁexp(

i3, 1)

Recently the physics of quasi-one-dimensional spin- n<t

Peierls systems has attracted considerable interests of both
theoretists and experimentalists because of the discovery of a Z_cte E

e - : S=fifi—5, 2
spin-Peierls transition &isg~14 K in the cuprate compound 2
CuGeQ.! Below Tgpthe lattice is dimerizedand a spin gap
has been observéd.

From the theoretical viewpoint the quasi-one-dimensional
spin-Peierls system can be described by the Heisenberg an-
tiferromagnetic chain coupled with lattice phonons. Within
the adiabatic approximation, that is, treating the phonon de-
grees of freedom classically, Bragt al* and Cross and +2
Fisher treated this type of model systems and uncovered
some interesting physics. But the nonadiabatic effect related
to the finite phonon frequency, which tends to decrease th&his is a Hamiltonian for Jordan-Wigner fermions in a half-
Peierls transition temperature and the order parameter, wdidled band. Note that it is the spinless version of the Su-
not taken into account. Very recently, Caron and Moukouri Schrieffer-Heeger mod&ivhich was introduced in the stud-
suggested studying the effect of quantum lattice fluctuationges of properties of a quasi-one-dimensional electron-phonon
in the spin-Peierls system by starting from N spin chain  system such as polyacetylene. As pointed out by Caron and
in which the phonons interact with the spins by modifying Moukouri, this may be the simplest model but contains the
the magnetic interaction, essential elements for a spin-Peierls system. In this work we

start from this model.
Within the adiabatic approximation the model can be
_ X X YaY solved easily. In the half-filled case the system undergoes a
H _E| [t alu=u-) S8+ Peierls instaybility and the ground state isydimerized w?th an
energy gap & at the Fermi point&= =+ 7/2.8 The theoreti-
+ E ( UL y)? 1) cal_analysis be_comes much more difficult when the quantum
2M p| I+ lattice fluctuations are taken into account. Fradkin and
Hirsch’ have calculated the electronic and lattice structure of
the half-filled SSH model by the Monte Carlo simulations,
Here,S andS)' are the spin} operators on site J>0 isthe  and concluded that for spinless fermions quantum lattice
usual antiferromagnetic exchange energy,is the spin-  fluctuations destroy the Peierls dimerization for a small cou-
phonon coupling constanty; and p; are the displacement pling constant if the ionic mass is finite. Caron and
and momentum operators of the magnetic ion onlsitd is  Moukourf calculated thél =0 K phase diagram of the sys-
the mass of the magnetic ion aidthe spring constant. By tem by using the density matrix renormalization group
using the Jordan-Wigner transformatfon (DMRG) method. Their results showed a power-law depen-
dence of the critical spin-phonon coupling on the phonon
frequency for the onset of a spin gap. They also observed a
S = ff“ex;{ S flfn), classical quantum crossover when the spin-Peierls dais 2
of orderw,,.

whereffr andf, are spinless fermion operators, we can get
1 t i
H=-5 ZI [I+a(u—up ) J(fifaa+ . f)

K 2
2M p| ( u|+l) . (3)
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In this work, we use the unitary transformation to takewhere ¢,=—J cosk) is the band function. The coupling
into account the fermion-phonon correlat®and show that  function g(k+q,k) is
when o, >0 there may exist a static dimerization of the
lattice but the quantum lattice fluctuations play a very impor- 1
tant role. When the spin-phonon coupling constaft4K g(k+q,k)=— [sink—sin(k+q)]. (7)
decreases or the phonon frequeney increases the lattice 2Mwyq
dimerization and the spin gap decrease gradually. At some
critical value @?/4K), or w,, the dimerization disappears  In order to take into account the fermion-phonon correla-
and the system becomes gapless. This can be attributed to thgn a unitary transformation is applied b,
fact that the ground state fails to develop a spin-Peierls long-
range order because of the quantum lattice fluctuations. ,

Throughout this paper we ptit=1 andkg=1. H'=expS)Hexp(—S), 8)

Il. THEORETICAL ANALYSIS where the generatd is
In Hamiltonian(3) the operators of the latttice modes, (k.0
andp,, can be expanded by using the phonon creation and 1 g(k+q, +
Ml = S=— 2 (b" .~ by S(k+q,k)f}
annihilation operators, N kzq wq (b=q=bg) 8(k+a,K)fis ofi
©)
=2 Voyng Platboexial, @) , , o _
q Here we introduce a functiod(k’,k) which is a function of

the energies of the incoming and outgoing fermions in the
:iZ Mayq (b o~ byexpial). (5) fermion-phonon scattering process. The fordef_’,k)_wiII_
2N be defined later. We divide the original Hamiltonian into
H=H%+H?, whereH® contains the first two terms artd’
the last term. Then the transformation can proceed order by
order,

N is the total number of site&)éz (4K/M)sir?(g/2). Then
H becomes

H :2k efifi+ > wgblbg L
‘ H'=H+H +[SH]+[S,H1]+ [[H,S],S]+ O(a?).

+i2 k+q,k)(b" 4+ bg)f 6
\/Nk,q g( q! )( )k+q ()I

The first-order terms i’ are

H1+[S,H°]—\/—_ kZ g(k+a,k)(b" g+ b fl, o fk— f > g(k+a,k)8(k+a,k)(b" +by) L ofi

E g(k+a,k) k)

.
N Y (€ €wsq) S(k+a,K) (BT g =be) Fi o fy. (10

Now we can choose the functional form &fk + g,k) to make the contribution of these first-order terms as small as possible.
Note that the ground statg,) of H°, the noninteracting system, is a direct product of a filled FermiE8aand a phonon
vacuum statdph,0:

|90)=IFS|ph,0. (11)
Applying the first-order terms ofg,) we get
1
(H1+[S,H°])|go>=\/—ﬁ k% g(k+a,kb i fil 1—d(k+a, k)+ﬂ5(k+q k) |190), (12
) Wq

smcebq|ph 0=0. As the band is half-filled the Fermi energy= 0. Thusfk+q (FS #0 only if €c+q=0 ande,<0. So, if
we choose

S(k+09,k) =11+ |€sq— €/ wq), (13

we have
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(H'+[S,H])[go)=0. (14)

We believe that this form o8(k’,k) makes the contribution of first-order terms as small as possible. The second-order terms
in H' can be collected as follows:

2 D g(k+a,k)g(k’+q’,k")

(l)q(l)q/

1
[SH+ SI[HOS]SI= 5 (b7 4= bg) (b~ by )€ g = €W kKIS +' k')

qq k,k’

g(k+q,k)g(k’+q’,k")
E g’ Wq

X (b 4 +bg)[28(k+0,k) = (k+0,k) (K’ +0" k)L 4 oFie Sivqr i Fro s g Fidicr quer]

X[fl+qfk!6kl+q!'k fl’-%—q/fkék‘*'q Kk’ ]+ 2N (btq_bq)

1 k+q,k)g(k’—q,k’
_oy s SEARIORTID ) sk g,k - sk 6.k OK KD I it e

N a4 Kk’ q
(15
O +q' k IS the Kroneckers symbol. All terms of higher order tham? will be omitted in the following treatment.
Then we make a displacement transformatiomitoto take into account the static phonon-staggered ordering,
H=expR)H'exg —R). (16)

Here

Mo,
=~ (~D'ug/ 5" (b ~b) an

and expR) is a displacement operator:

exp(R)uexp —R)=(—1)'ug+ >, ;(b* +by)expiql). (18)
q 2MNw, -a°"a

If the ground state o is |g), then the ground state o is 1g"):1g)=exp(—Sexp(-R)|g’). We assume that fdig’) the

fermions and phonons can be decoupled)~|fe)|ph,0), where|fe) is the ground state for fermions. After averagirg
over the phonon vacuum state we get an effective Hamiltonian for the fermions,

Her=(ph,0HIph,0=2KUiN+ > Eo(k)fifict 2 i8o(k) (Fify = fi 410

1 g(k+q,k)g(k'—q,k")
N2 8(k+a,k)[ 2= 8(k =0, k)L gfif oo (19
kK’ Wq
where
B la(k" k7,
Eo(k)= ——2 (ex— €) —— (K’ ,K), (20)
“’k'—k
Ao(K)=2augsin(k)[1— 8(k,k—m)]. (21)
We find by means of the variational principle
Up= — 2 2a sin(k)[1— 8(k,k—m))(fe|fif,_.—fl__f.|fe). (22)

4KN ¢

We note that in the adiabatic limit where,=0 one hass(k’,k)=0 andH.s goes back to the adiabatic mean-field
Hamiltonian,

Her(@,=0)=2KUZN+ >, e flf+ > i2auosin(k)(fif_—fl__f,). (23)
k k>0

On the other hand, in the antiadiabatic limit where—«, we haveuy=0, 8(k’,k) =1, andH .+ becomes
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1 g(k+a,k)g(k’—q,k")
Heﬁ(u)ﬂ.—>00):2 kaifk_ N 2 E fIJrqfkfI'—qfk’ . (24)
k a Kk’ Wq
Returning to the real space, this Hamiltonian is
J a?
He(@,—°)=— > Z (Flf i+l f)+ K Z (78 f— ). (25

This is the antiferromagneti¥ XZ model (through Jordan-Wigner transformatjchit can be solved exactly and there exists
a transition point at?/4K =J.1! Thus our effective Hamiltonian works well in these two limits. Whead, <o, we have
0<8(k',k)<1 and our effective Hamiltoniahl o is complicated and evolves from the adiabatic limit to the antiadiabatic
limit.

The last term inH is a four-fermion interaction. As we are dealing with a one-dimensional system, how to treat the
four-fermion interaction is a difficult problem. Since the case for the small w,<2J, is very different from that for the
largew,., w,.>2J, we treatH in these two cases with different methods.

. w,<2J
In this case we leH oy=HZ+H.y, Where
Hai=2KUgN+ 2 Eo(k)fifi+ 2 180(K)(fifin =l fu) (26)
K k>0

contains a gap terrtso it describes an insulating st}atblgff will be treated as an unperturbed Hamiltoniét; contains all
four-fermion terms and will be treated as a perturbation since it is small at least,f62J (H =0 whenw ,/2J=0). Usually
people think that for the fermionic metallic state in one dimension the perturbation theory is not suitable for treating the
four-fermion interactiort? But for the gapped stat@nsulating statgl believe the perturbation theory is still a good one. In this
work, the perturbative results will be justified by the good agreement with the DMRG results of Caron and M8ukouri.

The four-fermion terms can be rewritten as

,_ 1 g(k+a,K)g(k' — k") e , .
) kzk o S(k+a,k)[2= 8(K =,k ) I(FLy gfi— Fls g afie ) (Flr_ofie = Flo g nfio—a)
1 k+q,k—m)g(k’ —q,k —
L1y s gkrakmek—aki—m) S(k+ g, k—m)[2— (K — A,k = ) 1(F gFi Tl o fie
N qd Kk’ (J)q,ﬂ. q-m
1 g(k+q,k—m)g(k'—q,k" —m) , .
g Tk gfl-n) — g 2 2 S(k+a,k—m[2=8(K' ~q,k' ~m)]
a4 Kkk' Wg—ar
X(FL s ofkenfiogfk—at e qoafifi g nfko)- 27)

In these terms we have the constraints
k+g>0, k>0, k'—g>0, k’>0.

We can distinguish between different physical processes. The first term if2Bds the forward scattering on@, andg,
terms in theg-ology languagg®® the second is the back scattering dgeg term), and the last is the Umklapp scattering one
(g3 term). g#0 in the first term means that there are no phonong=00.

We use the Green’s function method to implement the perturbation treatfrieris more convenient to work within a
two-component representation,

f
\Pk:(fkkﬂ')’ (28)

in which k>0. Thus the Hamiltonian becomes

HY=2KugN+ > Eo(K)Wlo, ¥+ > iAok Plio, Wy, (29)
k>0 k>0
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g(k+q,k)g(k"—q,k")
g’ Wq
g(k+q,k—m)g(k’' —q,k'—m)

- 5N % > — S(k+q,k—m)[2—8(k'—q,k' — )]

S(k+0,K)[2= (k' —q.k )W, o, W, W), oW

Z|H
_Q
O

. . g(k+q,k=m)g(k’—q,k’ —m)
X(Wlgioy W W], oy W=V, o WP, o Wy)— %

K.k’ Wq— 7
X 8(k+q,k— m)[2— 8(K' — QK — m) (W] i oy W, P, oy Y + WL oW T, o). (30)

oz (B=X,Yy,2) is the Pauli matrix. The matrix Green’s function is definedtas temperature Green’s function is used and at
the endT—0)

Gk, 7)=—(T, ¥ (N¥(0)=T> exp—iw,7)G(k,wy). (31)
n
The Dyson equation is
G(k,wn)ZGo(k,wn)-i-Go(k,wn)z(k,wn)G(k,wn), (32)
where
Go(k,wn) ={iwy—Eg(kK) o, +Ag(K) oy} 1 (33
is the unperturbed Green’s function. The self-ene¥dk, »,,) can be calculated by the perturbation thebty,
g(k.k—mg(k' k' =) , o o
3k, wn>—— 52> [8(k)+ 8(K) = 8(k) S(k" ) {THi 7, Go(K',0m) i 7y

w

|<>0m T

, T gk W : : ,
FToGo(K omlod+ 5 2 2 = ——— (k" k)[2= 8(k. k') {Go(k',wm) + 7,Go(k’wm) o}

k>0 m W -k

T k' k—m)g(k,k -
piy s SCTORITT) 5 k2 sl k= m) i 7y GolK' ol oy — o5 Go(K comla.
N W= “m W k=

(34

Here 6(k) = 6(k,k— ) and Tf---] is the trace of-- . When making the perturbation calculation we have taken into account
the fact that the forward and back scattering term contribute nothing to the “charge’ @aen, by using the Dyson equation
we can get

G(k,wn):{iwn—E(k)oZ+A(k)ay}‘1. (35
From G(k,w,) the fermionic spectrum in the gapped state can be derived
W(k) = VE2(k) + A?(k). (36)
The renormalized band function is
E(O=Eq(k)— = 3 1 o2 XK e o2 stk
( )_ O( ) Nk’>o R co T ( ’ )[ ( ) )]
k'+k Eo(k’
—sinZ(—) 5(k’—7r,k)[2—5(k'—w,k)]} olk) . (37)
2 VE2(K')+AZ(K)
The gap function is
A(k)=2augsin(k)[c—d&(k)], (39
where
1 a? Ap(k)
c=1+— >, — sin(k)8(k) , (39)
N =0 2K 2auyVE2(K) +A2(k)



1 a?

d=1—— > oK sin(k)[1—8(K)]

N k>0

The equation to determing, is

2

1_2
N &b

In the nonadiabatic casg is a variational parameter and cannot be measured by experiment or Monte Carlo simulations. The

quantity which can be measuredns,,
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Ag(k)
: (40)
2augVE3(K)+A3(K)
A(K) ”

oK) S Wik

1 1 1 .
mp=y 2 ((~D'uy=5 2 (—1)'% VzMqu (gl(b" 4+bg)e™|g)

1
2MNw

(g'|e®eS(b’ 4+ by e e Se R|g)

1 [2 g(kk—) ,
_uO_Nk>o M—%w—wﬁ(k)<fe|‘1'kla'yllfk|fe)

Up z A(k)
Sink) 5 oWk

These are basic equations for the<2J case. Ifw =0 we
have §(k’ ,k)=0 andc=1, Eq. (41) becomes the same as
that in the adiabatic theory. In our theodfk) has a sharp
peak at the Fermi point and, since

4 T T T 1 H T T
= 35 | A
2 sl
S 25}
2
8 r
— -
3z 15
pd 1F

05 | )
0 ] 1 1 1 i 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(@) o/J

3 1 1 1 1 1 1 T

0.3
— 25t 4
o .
c 2 | 0.15 _
=] ~
€ 15Fo03 [ -
& e
—_ | £ ]
g ! / .
< o5t .
1 - 1 [ i i 1 1 1

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
(b) o/J
FIG. 1. The density of states of fermions f@) gz—g§:0.15
with »,=0.002), 0.02%, and 0.3, and (b) w,=0.025 with
g2—g2=0.03, 0.15, and 0.3.

(42

2J|cog k)|

w1 23[cos k)]’ (43

1— (k)=

the logarithmic singularity in the integration of E@1) in
the adiabatic case is removed by the facter (k) as long
as the ratiow ,/J is finite.
Comparing Eq.(38) with that in the adiabatic case,
A (k) =2augsin(), we have the gap in the nonadiabatic case,

A=A(7l2)=2auy(c—d). (44)

This is the true gap in the fermionic spectrum. Figure 1
shows the density of statéBOS) of fermions,

(=
g 1.6%=0.2,0,,=0.03J
041 2.¢=0.30,,=0.13) T
3.0%=0.4,0,,=0.31J
021 4.67=0.50,,=0.55)
00 0T2 0?4 0?6 0; 1
Or/WOnc

FIG. 2. The normalized dimerization paramet@r,/m,, as
functions of the normalized phonon frequensy /o, for g?=0.2
(curve 1, 0.3(2), 0.4 (3), and 0.5(4).
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24 1
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:
+ SR
1 15 2 25 3 35 4 45 5 12 [ o000 |
@ 1/g2 %@
1 1 1 1 I
T T T T T T T 0 0.05 0.1 25),15 0.2 0.25

FIG. 4. The values of fitting parametefdsandB in Eq. (46).

E because, for smallap,, wpeae~2A. From an experimental
®,=0.3J ] view point, whenw . /J<<1, detection of the true gap may be
¢?=0.396 ] difficult and could be misinterpreted.

We list some of our numerical results in following figures.

001 Ly a4y E Note that the fermion-phonon couplimgused in this work is
1 12 14 16 18 2 22 24 26 different from that of Caron and Moukofiritheirs is denoted
(b) 1/g? as agm): a=a.mV2Mw . Besides, they used dispersion-

less phonons with frequencyw.,, and we assume
wem=w,. Thus we have the relation? ,/J?=g%w ,/2]J.
3 Figure 2 shows the normalized dimerization parameter
] m,/myo (My is the adiabatic value whew .= 0) as func-
tions of the normalized phonon frequeney,/w . (¢ IS
the critical frequency of the transitiprior several coupling
constanig? values. It is obvious that quantum lattice fluctua-
tions reduce the dimerization gradually @s increases. The
behavior is not universal with respect to differegt. For
smallerg?, it is easier to reduce the long-range dimerization
order than for larger one. In the figure the corresponding
13 14 15 16 values of the critical frequency . are listed.
© 1/¢? Figure 3 shows the dimerization parametern2,/J as
S _ functions of the coupling constang? in the cases of
FI(_B. 3. The dlmze_rlzatlon parametete®n, /J as functions of the w,=0.025), 0.3, and J. As pointed out by Caron and
coupling constang* in the cases ofa) w,=0.023), (b) 0.3J, and  \15,k0uri® there exists a classical-quantum crossover when

(c) J. The solid lines are results of our theory, the dashed lines ar . .

. . . ~ . >

fitted results of Eq(46), and the dash-dotted lines are fitted results%a;n p W f I;orc"[_he C_Iass_|cal reglonf Whe_renmp 2 W tf:)e
ehavior of the dimerizatiom, as a function ofg” can be

of Eq. (47). described by the form of an adiabatic mean-field solution,

1 2\ — 2

N(w)== D Slo— EXK+AZK)], (45 1 4 4dmy) 4a’my

N % — |1 —" Kl1— ——

g’> Amw J%B? J?B?
for somew, and g?>=«?/4KJ values. One can see that a Ao
nonzero DOS starts from the gap edge and, for smaller val- _ e

. i El1 , (46)

ues of w,/J, there is a peak above the gap edge with a J’B?

significant tail between it and the true gap edge. The inverse-
square-root singularity at the gap edge in the adiabatic®caséut the mean-field parameters are renormalized by the quan-
disappears. tum lattice fluctuations. In Eq46) E[ m] andK[m] are first-
The adiabatic theory predicts a ratfdamp=2.6'8*9 But and second-type complete elliptic functiors.and B are
our calculations show that/am, is around or smaller than fitting parameters and in the adiabatic c#sel andB=1.
1 whenw_>0. The DMRG results of Caron and Moukduri In Fig. 4 we show the fitted values éfandB for w,=<0.5J.
is similar to ours. This fact seems to indicate that there mighBoth A andB increase with increasing ., however, in our
be a discontinuous transition of the ratio betweep=0 and  caseA<B but in Caron and Moukouri's worldA>B.
o ,>0. But if we use the peak position in the DO, t0 For the quantum region wherea? <w, we use the
calculate the ratiav,ea/ am, there will be no discontinuity  form
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1.6 T T T . 2ampoc

(9°—g2) %%xd —b(g®—g2) %%, (49

1.4

is not good for fitting our calculations compared with the
form of Eq. (47). We believe this is because of the retarda-
tion effect of the spin-phonon interaction.

Figure 5 shows the phase diagram. We use
w,l(w,+2J), instead ofw,, as the variable because it
goes to 1 whenw ,—. The solid line is the result of this
section. The dashed line is

' 0.4
0 : . . L 9:=0.857 12{5 (49
0 0.2 0.4 0.6 0.8 2]
0/ +2J)
We can see that a power law is quite good to fit our calcu-
FIG. 5. The phase diagram. See text for details. lations. The power-law relationsh'g;f~ w?TA is the result of
Caron and Moukoufi[they showed (yc m)e™ 4 and we
2am have the relationy? ,/J°= g?w,,/2J andwcm w ]
520790 %exl —b(g°~g) > (47)
. . L _ V. w,>2]
to fit our calculations, wherb is a fitting parameter. We find
that the form used by Caron and Moukofiri, In this caseH ¢ can be rewritten as
Her= 2Ku0N+2 poerfifi— E 2 cos(k+q/2)cos{k’ ST E,_qfk,+; [Eo(K)— poer] Fify

Kk’
1 a?
+ > i1 AG(K)(Fif_ = fl_ f)— = > > = codk+q/2)cogk’ —q/2)
) N 2K

a kk'
x{8(k+q,k)[2—8(k' =,k )= VI, off o fir (50)
where
2
~Ipo=g 2 cogKIEo(K), (51)
=%2 >, cog(k+a/2)cod(k’ —a/2) d(k+q,k)[2— 8k —q,k")]. (52)

4 kk’

One can show thapy<1 andV=<1. Whenw_>2J, Uy is a small quantity and the last three terms can be treated as
perturbation because they go to zero Whﬁ,p—>00 The unperturbed Hamiltonian is

Heir= 2 poeidfic- E E cos(k+q/2>cos(k' A/2)F s gfif i

k,k’
1 2
:_—JpOE (F )+ —— K }I‘, (F1 80— ). (53)

It is the antiferromagneti®XZ model with Jy=Jy=Jp, and Yang® shows that there exists a transition point at
and J,=a?V/4K. This means that, because of the spin-Jx=Jy=Jz, thatis, at

phonon coupling, wherw_>2J we can get an effective 5

XXZ model as the unperturbed Hamiltonian with a phonon- @"VIAK=Jpo. (54)
inducedZ interactiona®V/4K and theXY magnetic interac- The transition points determined by this equation are shown
tion being renormalized by a fact@r. The result of Yang in Fig. 5 by the dash-dotted line. The dotted line is a fit by
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) 0.4 standard perturbation approach is used to treat the interaction
9= - (59  term
¢ o, +2J '

In our model system, quantum lattice fluctuations com-
One can see that, although the formula is very simple, th@ete with the long-range dimerization order and the physical
interpolated result is, at least, qualitatively correct. Note thaproperties of the system should be determined by this com-
the powerlaw of Eq(49) cannot be used for the whole range petition. When 2xm,>w , the long-range dimerization order
0<w,<o because it leads tg?—» whenw,— . dominates and the system is in the classical region. In this
region the behavior of the dimerization, can be described
by the form of an adiabatic mean-field solution but the mean-
field parameters are renormalized by the quantum lattice
An analytical approach has been developed to study thBuctuations. For the quantum region wherery< . the
effect of quantum lattice fluctuations on the ground state opehavior ofm, can be described by an exponential function
an XY spin-Peierls chain, which is equivalent to the spinlesdf (92—g2) ~%° which is similar to, but different from, the
Su-Schrieffer-Heeger model in half-filling after the Jordan-fitting formula of Caron and MoukoufiWe believe that this
Wigner transformation. We have shown that when the spinfype of difference comes from the retardation effect of the
phonon coupling constarg® decreases or the phonon fre- SPin-phonon coupling.
quencyw, increases the lattice dimerizatiom, and the gap In this work we mainly concentrated on the long-range
functionA (k) in the fermionic spectrum decreases gradually.0rdering phase, whene,>0 and there is a gap in the fer-

At some critical valuey? or ... the system becomes gap- mionic spectrum, and the pha;e transition point. The proper-
e e Y gap ties of the disordered phase with gapless fermions are also of

less and the lattice dimerization disappears. This can be a| b he disordered oh hould b Lutti
tributed to the fact that the ground state fails to develop th nterest because the disordered phase should be a Luttinger
uid with fermion-phonon interaction. This will be the

spin-Peierls long-range order because of the quantum latti @au
fluctuations. A phase diagram in thf~w_ plane is de- topic of next work.
rived.

From our work we can see that the main effect of quan-
tum lattice fluctuations is twofold. One is to lower the effec- The author would like to thank Yu Lu for stimulating
tive dimerization potential seen by Jordan-Wigner fermionsdiscussions on these and related topics. This work was sup-
as is represented by the factor (k) in Eq.(41). The other  ported partly by the China National Natural Science Founda-
is to induce a four-fermion interaction term. In this work the tion and the China State Committee of Education.

V. CONCLUSIONS
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