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Quantum lattice fluctuations in the ground state of anXY spin-Peierls chain

H. Zheng
International Center for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy

and Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
~Received 12 November 1996!

An analytical approach, based on the unitary transformation method, has been developed to study the effect
of quantum lattice fluctuations on the ground state of anXY spin-Peierls chain, which is equivalent to the
spinless Su-Schrieffer-Heeger model in half-filling after the Jordan-Wigner transformation. We show that when
the spin-phonon coupling constanta2/4K decreases or the phonon frequencyvp increases, the lattice dimer-
ization and the gap in the fermion spectrum decrease gradually. At some critical value (a2/4K)c or vpc , the
system becomes gapless and the lattice dimerization disappears. This can be attributed to the fact that the
ground state fails to develop the spin-Peierls long-range order because of the quantum lattice fluctuations.
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I. INTRODUCTION

Recently the physics of quasi-one-dimensional sp
Peierls systems has attracted considerable interests of
theoretists and experimentalists because of the discovery
spin-Peierls transition atTSP'14 K in the cuprate compoun
CuGeO3.

1 Below TSP the lattice is dimerized2 and a spin gap
has been observed.3

From the theoretical viewpoint the quasi-one-dimensio
spin-Peierls system can be described by the Heisenberg
tiferromagnetic chain coupled with lattice phonons. With
the adiabatic approximation, that is, treating the phonon
grees of freedom classically, Brayet al.4 and Cross and
Fisher5 treated this type of model systems and uncove
some interesting physics. But the nonadiabatic effect rela
to the finite phonon frequency, which tends to decrease
Peierls transition temperature and the order parameter,
not taken into account. Very recently, Caron and Moukou6

suggested studying the effect of quantum lattice fluctuati
in the spin-Peierls system by starting from anXY spin chain
in which the phonons interact with the spins by modifyi
the magnetic interaction,
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Here,Sl
X andSL

Y are the spin-12 operators on sitel , J.0 is the
usual antiferromagnetic exchange energy,a is the spin-
phonon coupling constant,ul and pl are the displacemen
and momentum operators of the magnetic ion on sitel . M is
the mass of the magnetic ion andK the spring constant. By
using the Jordan-Wigner transformation7
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where f l
† and f l are spinless fermion operators, we can ge
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This is a Hamiltonian for Jordan-Wigner fermions in a ha
filled band. Note that it is the spinless version of the S
Schrieffer-Heeger model8 which was introduced in the stud
ies of properties of a quasi-one-dimensional electron-pho
system such as polyacetylene. As pointed out by Caron
Moukouri, this may be the simplest model but contains
essential elements for a spin-Peierls system. In this work
start from this model.

Within the adiabatic approximation the model can
solved easily. In the half-filled case the system undergoe
Peierls instability and the ground state is dimerized with
energy gap 2D at the Fermi pointsk56p/2.8 The theoreti-
cal analysis becomes much more difficult when the quan
lattice fluctuations are taken into account. Fradkin a
Hirsch9 have calculated the electronic and lattice structure
the half-filled SSH model by the Monte Carlo simulation
and concluded that for spinless fermions quantum lat
fluctuations destroy the Peierls dimerization for a small c
pling constant if the ionic mass is finite. Caron an
Moukouri6 calculated theT50 K phase diagram of the sys
tem by using the density matrix renormalization gro
~DMRG! method. Their results showed a power-law depe
dence of the critical spin-phonon coupling on the phon
frequency for the onset of a spin gap. They also observe
classical quantum crossover when the spin-Peierls gap 2D is
of ordervp .
14 414 © 1997 The American Physical Society
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56 14 415QUANTUM LATTICE FLUCTUATIONS IN THE GROUND STATE . . .
In this work, we use the unitary transformation to ta
into account the fermion-phonon correlation10 and show that
when vp.0 there may exist a static dimerization of th
lattice but the quantum lattice fluctuations play a very imp
tant role. When the spin-phonon coupling constanta2/4K
decreases or the phonon frequencyvp increases the lattice
dimerization and the spin gap decrease gradually. At so
critical value (a2/4K)c or vpc , the dimerization disappear
and the system becomes gapless. This can be attributed t
fact that the ground state fails to develop a spin-Peierls lo
range order because of the quantum lattice fluctuatio
Throughout this paper we put\51 andkB51.

II. THEORETICAL ANALYSIS

In Hamiltonian~3! the operators of the latttice modes,ul
and pl , can be expanded by using the phonon creation
annihilation operators,

ul5(
q
A 1

2MNvq
~b2q

† 1bq!exp~ iql !, ~4!

pl5 i(
q
AMvq

2N
~b2q

† 2bq!exp~ iql !. ~5!

N is the total number of sites.vq
25 (4K/M )sin2(q/2). Then

H becomes
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k
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where ek52J cos(k) is the band function. The coupling
function g(k1q,k) is

g~k1q,k!52 iaA 1

2Mvq
@sink2sin~k1q!#. ~7!

In order to take into account the fermion-phonon corre
tion a unitary transformation is applied toH,

H85exp~S!Hexp~2S!, ~8!

where the generatorS is

S5
1
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† 2bq!d~k1q,k! f k1q
† f k .

~9!

Here we introduce a functiond(k8,k) which is a function of
the energies of the incoming and outgoing fermions in t
fermion-phonon scattering process. The form ofd(k8,k) will
be defined later. We divide the original Hamiltonian in
H5H01H1, whereH0 contains the first two terms andH1

the last term. Then the transformation can proceed order
order,
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1

2
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The first-order terms inH8 are
ible.
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Now we can choose the functional form ofd(k1q,k) to make the contribution of these first-order terms as small as poss
Note that the ground stateug0& of H0, the noninteracting system, is a direct product of a filled Fermi seauFS& and a phonon
vacuum stateuph,0&:

ug0&5uFS&uph,0&. ~11!

Applying the first-order terms onug0& we get

~H11@S,H0# !ug0&5
1

AN
(
k,q

g~k1q,k!b2q
† f k1q

† f kS 12d~k1q,k!1
ek2ek1q

vq
d~k1q,k! D ug0&, ~12!

sincebquph,0&50. As the band is half-filled the Fermi energyeF50. Thusf k1q
† f kuFS&Þ0 only if ek1q>0 andek<0. So, if

we choose

d~k1q,k!51/~11uek1q2eku/vq!, ~13!

we have
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~H11@S,H0# !ug0&50. ~14!

We believe that this form ofd(k8,k) makes the contribution of first-order terms as small as possible. The second-order
in H8 can be collected as follows:
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† f kf k82q
† f k8 .

~15!

dk81q8,k is the Kroneckerd symbol. All terms of higher order thana2 will be omitted in the following treatment.
Then we make a displacement transformation toH8 to take into account the static phonon-staggered ordering,

H̃5exp~R!H8exp~2R!. ~16!

Here

R52(
l

~21! lu0AMvp

2
~bl

†2bl ! ~17!

and exp(R) is a displacement operator:

exp~R!ulexp~2R!5~21! lu01(
q
A 1

2MNvq
~b2q

† 1bq!exp~ iql !. ~18!

If the ground state ofH is ug&, then the ground state ofH̃ is ug8&:ug&5exp(2S)exp(2R)ug8&. We assume that forug8& the
fermions and phonons can be decoupled:ug8&'u f e&uph,0&, whereu f e& is the ground state for fermions. After averagingH̃
over the phonon vacuum state we get an effective Hamiltonian for the fermions,

Heff5^ph,0uH̃uph,0&52Ku0
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where

E0~k!5ek2
1
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~ek2ek8!
ug~k8,k!u2

vk82k
2 d2~k8,k!, ~20!
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We find by means of the variational principle

u052
i

4KN (
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2a sin~k!@12d~k,k2p!#^ f eu f k
†f k2p2 f k2p

† f ku f e&. ~22!

We note that in the adiabatic limit wherevp50 one hasd(k8,k)50 and Heff goes back to the adiabatic mean-fie
Hamiltonian,

Heff~vp50!52Ku0
2N1(

k
ekf k

†f k1 (
k.0

i2au0sin~k!~ f k
†f k2p2 f k2p

† f k!. ~23!

On the other hand, in the antiadiabatic limit wherevp→`, we haveu050, d(k8,k)51, andHeff becomes
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Heff~vp→`!5(
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Returning to the real space, this Hamiltonian is

Heff~vp→`!52
J

2 (
l

~ f l
†f l 111 f l 11

† f l !1
a2

4K (
l

~ f l
†f l f l 11

† f l 112 f l
†f l !. ~25!

This is the antiferromagneticXXZ model ~through Jordan-Wigner transformation!.9 It can be solved exactly and there exis
a transition point ata2/4K5J.11 Thus our effective Hamiltonian works well in these two limits. When 0,vp,`, we have
0,d(k8,k),1 and our effective HamiltonianHeff is complicated and evolves from the adiabatic limit to the antiadiab
limit.

The last term inHeff is a four-fermion interaction. As we are dealing with a one-dimensional system, how to tre
four-fermion interaction is a difficult problem. Since the case for the smallvp , vp,2J, is very different from that for the
largevp , vp.2J, we treatHeff in these two cases with different methods.

III. vp<2J

In this case we letHeff5Heff
0 1Heff8 , where

Heff
0 52Ku0

2N1(
k

E0~k! f k
†f k1 (

k.0
iD0~k!~ f k

†f k2p2 f k2p
† f k! ~26!

contains a gap term~so it describes an insulating state!. Heff
0 will be treated as an unperturbed Hamiltonian.Heff8 contains all

four-fermion terms and will be treated as a perturbation since it is small at least forvp!2J ~Heff8 50 whenvp/2J50!. Usually
people think that for the fermionic metallic state in one dimension the perturbation theory is not suitable for treat
four-fermion interaction.12 But for the gapped state~insulating state! I believe the perturbation theory is still a good one. In th
work, the perturbative results will be justified by the good agreement with the DMRG results of Caron and Moukour6

The four-fermion terms can be rewritten as

Heff8 52
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vq
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1
1
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† f k2p f k82q2p
† f k8
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3~ f k1q
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† f k82p1 f k1q2p
† f kf k82q2p

† f k8!. ~27!

In these terms we have the constraints

k1q.0, k.0, k82q.0, k8.0.

We can distinguish between different physical processes. The first term in Eq.~27! is the forward scattering one~g2 andg4
terms in theg-ology language!,13 the second is the back scattering one~g1 term!, and the last is the Umklapp scattering o
~g3 term!. qÞ0 in the first term means that there are no phonons ofq50.

We use the Green’s function method to implement the perturbation treatment.14 It is more convenient to work within a
two-component representation,

Ck5S f k

f k2p
D , ~28!

in which k.0. Thus the Hamiltonian becomes

Heff
0 52Ku0

2N1 (
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E0~k!Ck
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2N (
q

(
k,k8

g~k1q,k2p!g~k82q,k82p!

vq2p
d~k1q,k2p!@22d~k82q,k82p!#

3~Ck1q
† isyCkCk82q

† isyCk82Ck1q
† sxCkCk82q

† sxCk8!2
1

2N (
q

(
k,k8

g~k1q,k2p!g~k82q,k82p!

vq2p

3d~k1q,k2p!@22d~k82q,k82p!#~Ck1q
† isyCkCk82q

† isyCk81Ck1q
† sxCkCk82q

† sxCk8!. ~30!

sb (b5x,y,z) is the Pauli matrix. The matrix Green’s function is defined as~the temperature Green’s function is used and
the endT→0!

G~k,t!52^TtCk~t!Ck
†~0!&5T(

n
exp~2 ivnt!G~k,vn!. ~31!

The Dyson equation is

G~k,vn!5G0~k,vn!1G0~k,vn!S~k,vn!G~k,vn!, ~32!

where

G0~k,vn!5$ ivn2E0~k!sz1D0~k!sy%
21 ~33!

is the unperturbed Green’s function. The self-energyS(k,vn) can be calculated by the perturbation theory,14

S~k,vn!52
T

N (
k8.0

(
m

g~k,k2p!g~k8,k82p!

vp
@d~k!1d~k8!2d~k!d~k8!#$Tr@ isyG0~k8,vm!# isy

1Tr@sxG0~k8,vm!#sx%1
T

N (
k8.0

(
m

ug~k8,k!u2

vk82k
d~k8,k!@22d~k,k8!#$G0~k8,vm!1szG0~k8,vm!sz%

1
T

N (
k8.0

(
m

g~k8,k2p!g~k,k82p!

vk82k2p
d~k8,k2p!@22d~k,k82p!#$ isyG0~k8,vm!isy2sxG0~k8,vm!sx%.

~34!

Hered(k)5d(k,k2p) and Tr@•••# is the trace of••• . When making the perturbation calculation we have taken into acc
the fact that the forward and back scattering term contribute nothing to the ‘‘charge’’ gap.12 Then, by using the Dyson equatio
we can get

G~k,vn!5$ ivn2E~k!sz1D~k!sy%
21. ~35!

From G(k,vn) the fermionic spectrum in the gapped state can be derived

W~k!5AE2~k!1D2~k!. ~36!

The renormalized band function is

E~k!5E0~k!2
1

N (
k8.0

a2

2K Fcos2S k81k

2 D d~k8,k!@22d~k8,k!#

2sin2S k81k

2 D d~k82p,k!@22d~k82p,k!#G E0~k8!

AE0
2~k8!1D0

2~k8!
. ~37!

The gap function is

D~k!52au0sin~k!@c2dd~k!#, ~38!

where

c511
1

N
(
k.0

a2

2K
sin~k!d~k!

D0~k!

2au0AE0
2~k!1D0

2~k!
, ~39!
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d512
1

N
(
k.0

a2

2K
sin~k!@12d~k!#

D0~k!

2au0AE0
2~k!1D0

2~k!
. ~40!

The equation to determineu0 is

15
2

N (
k.0

a2

2K
sin~k!@12d~k!#

D~k!

2au0W~k!
. ~41!

In the nonadiabatic caseu0 is a variational parameter and cannot be measured by experiment or Monte Carlo simulation
quantity which can be measured ismp ,

mp5
1

N (
l

^~21! lul&5
1

N (
l

~21! l(
q
A 1

2MNvq
^gu~b2q

† 1bq!eiql ug&

5
1

N (
l

~21! l(
q
A 1

2MNvq
^g8ueReS~b2q

† 1bq!eiqle2Se2Rug8&

5u02
1

N (
k.0

A 2

Mvp

g~k,k2p!

vp
d~k!^ f euCkisyCku f e&

5
u0

N (
k.0

a2

K
sin~k!

D~k!

2au0W~k!
. ~42!
s

,
se,

1

These are basic equations for thevp,2J case. Ifvp50 we
haved(k8,k)50 andc51, Eq. ~41! becomes the same a
that in the adiabatic theory. In our theoryd(k) has a sharp
peak at the Fermi point and, since

FIG. 1. The density of states of fermions for~a! g22gc
250.15

with vp50.002J, 0.025J, and 0.3J, and ~b! vp50.025J with
g22gc

250.03, 0.15, and 0.3.
12d~k!5
2Jucos~k!u

vp12Jucos~k!u
, ~43!

the logarithmic singularity in the integration of Eq.~41! in
the adiabatic case is removed by the factor 12d(k) as long
as the ratiovp /J is finite.

Comparing Eq.~38! with that in the adiabatic case
D(k)52au0sin(k), we have the gap in the nonadiabatic ca

D5D~p/2!52au0~c2d!. ~44!

This is the true gap in the fermionic spectrum. Figure
shows the density of states~DOS! of fermions,

FIG. 2. The normalized dimerization parametermp /mp0 as
functions of the normalized phonon frequencyvp /vpc for g250.2
~curve 1!, 0.3 ~2!, 0.4 ~3!, and 0.5~4!.
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N~v!5
1

N (
k

d@v2AE2~k!1D2~k!#, ~45!

for somevp and g25a2/4KJ values. One can see that
nonzero DOS starts from the gap edge and, for smaller
ues of vp /J, there is a peak above the gap edge with
significant tail between it and the true gap edge. The inve
square-root singularity at the gap edge in the adiabatic c8

disappears.
The adiabatic theory predicts a ratioD/amp52.6,8,9 But

our calculations show thatD/amp is around or smaller than
1 whenvp.0. The DMRG results of Caron and Moukour6

is similar to ours. This fact seems to indicate that there mi
be a discontinuous transition of the ratio betweenvp50 and
vp.0. But if we use the peak position in the DOS,vpeak, to
calculate the ratiovpeak/amp there will be no discontinuity

FIG. 3. The dimerization parameter 2amp /J as functions of the
coupling constantg2 in the cases of~a! vp50.025J, ~b! 0.3J, and
~c! J. The solid lines are results of our theory, the dashed lines
fitted results of Eq.~46!, and the dash-dotted lines are fitted resu
of Eq. ~47!.
l-
a
e-
e

t

because, for smallervp , vpeak'2D. From an experimenta
view point, whenvp /J!1, detection of the true gap may b
difficult and could be misinterpreted.

We list some of our numerical results in following figure
Note that the fermion-phonon couplinga used in this work is
different from that of Caron and Moukouri6 ~theirs is denoted
as ac.m.!: a5ac.m.A2Mvp. Besides, they used dispersio
less phonons with frequencyvc.m. and we assume
vc.m.5vp . Thus we have the relationac.m.

2 /J25g2vp/2J.
Figure 2 shows the normalized dimerization parame

mp /mp0 ~mp0 is the adiabatic value whenvp50! as func-
tions of the normalized phonon frequencyvp /vpc ~vpc is
the critical frequency of the transition! for several coupling
constantg2 values. It is obvious that quantum lattice fluctu
tions reduce the dimerization gradually asvp increases. The
behavior is not universal with respect to differentg2. For
smallerg2, it is easier to reduce the long-range dimerizati
order than for larger one. In the figure the correspond
values of the critical frequencyvpc are listed.

Figure 3 shows the dimerization parameter 2amp /J as
functions of the coupling constantg2 in the cases of
vp50.025J, 0.3J, and J. As pointed out by Caron and
Moukouri,6 there exists a classical-quantum crossover wh
2amp;vp . For the classical region where 2amp.vp the
behavior of the dimerizationmp as a function ofg2 can be
described by the form of an adiabatic mean-field solution

1

g2 5
4

Ap
S 12

4a2mp
2

J2B2 D 21S KF12
4a2mp

2

J2B2 G
2EF12

4a2mp
2

J2B2 G D , ~46!

but the mean-field parameters are renormalized by the q
tum lattice fluctuations. In Eq.~46! E@m# andK@m# are first-
and second-type complete elliptic functions.A and B are
fitting parameters and in the adiabatic caseA51 andB51.
In Fig. 4 we show the fitted values ofA andB for vp<0.5J.
Both A andB increase with increasingvp , however, in our
caseA,B but in Caron and Moukouri’s workA.B.

For the quantum region where 2amp,vp we use the
form

re

FIG. 4. The values of fitting parametersA andB in Eq. ~46!.
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2amp

J
}~g22gc

2!0.5exp@2b~g22gc
2!20.5# ~47!

to fit our calculations, whereb is a fitting parameter. We find
that the form used by Caron and Moukouri,6

FIG. 5. The phase diagram. See text for details.
in

n

2amp

J
}~g22gc

2!20.5exp@2b~g22gc
2!20.5#, ~48!

is not good for fitting our calculations compared with th
form of Eq. ~47!. We believe this is because of the retard
tion effect of the spin-phonon interaction.

Figure 5 shows the phase diagram. We u
vp /(vp12J), instead ofvp , as the variable because
goes to 1 whenvp→`. The solid line is the result of this
section. The dashed line is

gc
250.857 125Fvp

2J G0.4

. ~49!

We can see that a power law is quite good to fit our cal
lations. The power-law relationshipgc

2;vp
0.4 is the result of

Caron and Moukouri6 @they showed (ac.m.
2 )c;vc.m.

1.4 and we
have the relationac.m.

2 /J25g2vp/2J andvc.m.5vp#.

IV. vp>2J

In this caseHeff can be rewritten as
d as
Heff52Ku0
2N1(

k
r0ekf k

†f k2
1

N (
q

(
k,k8

a2V

2K
cos~k1q/2!cos~k82q/2! f k1q

† f kf k82q
† f k81(

k
@E0~k!2r0ek# f k

†f k

1 (
k.0

iD0~k!~ f k
†f k2p2 f k2p

† f k!2
1

N (
q

(
k,k8

a2

2K
cos~k1q/2!cos~k82q/2!

3$d~k1q,k!@22d~k82q,k8!#2V% f k1q
† f kf k82q

† f k8 , ~50!

where

2Jr05
2

N (
k

cos~k!E0~k!, ~51!

V5
4

N3 (
q

(
k,k8

cos2~k1q/2!cos2~k82q/2!d~k1q,k!@22d~k82q,k8!#. ~52!

One can show thatr0<1 and V<1. When vp.2J, u0 is a small quantity and the last three terms can be treate
perturbation because they go to zero whenvp→`. The unperturbed Hamiltonian is

Heff
0 5(

k
r0ekf k

†f k2
1

N (
q

(
k,k8

a2V

2K
cos~k1q/2!cos~k82q/2! f k1q

† f kf k82q
† f k8

52
1

2
Jr0(

l
~ f l

†f l 111 f l 11
† f l !1

a2V

4K (
l

~ f l
†f l f l 11

† f l 112 f l
†f l !. ~53!
at

wn
y

It is the antiferromagneticXXZ model with JX5JY5Jr0

and JZ5a2V/4K. This means that, because of the sp
phonon coupling, whenvp.2J we can get an effective
XXZ model as the unperturbed Hamiltonian with a phono
inducedZ interactiona2V/4K and theXY magnetic interac-
tion being renormalized by a factorr0 . The result of Yang
-

-

and Yang11 shows that there exists a transition point
JX5JY5JZ , that is, at

a2V/4K5Jr0 . ~54!

The transition points determined by this equation are sho
in Fig. 5 by the dash-dotted line. The dotted line is a fit b
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gc
25F vp

vp12JG0.4

. ~55!

One can see that, although the formula is very simple,
interpolated result is, at least, qualitatively correct. Note t
the powerlaw of Eq.~49! cannot be used for the whole rang
0,vp,` because it leads togc

2→` whenvp→`.

V. CONCLUSIONS

An analytical approach has been developed to study
effect of quantum lattice fluctuations on the ground state
anXY spin-Peierls chain, which is equivalent to the spinle
Su-Schrieffer-Heeger model in half-filling after the Jorda
Wigner transformation. We have shown that when the sp
phonon coupling constantg2 decreases or the phonon fr
quencyvp increases the lattice dimerizationmp and the gap
functionD(k) in the fermionic spectrum decreases gradua
At some critical valuegc

2 or vpc , the system becomes gap
less and the lattice dimerization disappears. This can be
tributed to the fact that the ground state fails to develop
spin-Peierls long-range order because of the quantum la
fluctuations. A phase diagram in theg2;vp plane is de-
rived.

From our work we can see that the main effect of qu
tum lattice fluctuations is twofold. One is to lower the effe
tive dimerization potential seen by Jordan-Wigner fermio
as is represented by the factor 12d(k) in Eq. ~41!. The other
is to induce a four-fermion interaction term. In this work th
e
t

e
f
s
-
-

.

at-
e
ce

-

,

standard perturbation approach is used to treat the interac
term.

In our model system, quantum lattice fluctuations co
pete with the long-range dimerization order and the phys
properties of the system should be determined by this c
petition. When 2amp.vp the long-range dimerization orde
dominates and the system is in the classical region. In
region the behavior of the dimerizationmp can be described
by the form of an adiabatic mean-field solution but the me
field parameters are renormalized by the quantum lat
fluctuations. For the quantum region where 2amp,vp the
behavior ofmp can be described by an exponential functi
of (g22gc

2)20.5 which is similar to, but different from, the
fitting formula of Caron and Moukouri.6 We believe that this
type of difference comes from the retardation effect of t
spin-phonon coupling.

In this work we mainly concentrated on the long-ran
ordering phase, wheremp.0 and there is a gap in the fer
mionic spectrum, and the phase transition point. The prop
ties of the disordered phase with gapless fermions are als
interest because the disordered phase should be a Lutt
liquid with fermion-phonon interaction. This will be th
topic of next work.
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