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Stabilization of nonlinear excitations by disorder
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Using analytical and numerical techniques we analyze the static and dynamical properties of solitonlike
excitations in the presence of parametric disorder in the one-dimensional nonlinear Schro¨dinger equation with
a homogeneous power nonlinearity. Both the continuum and the discrete problem are investigated. We find that
otherwise unstable excitations can be stabilized by the presence of disorder in the continuum problem. For the
very narrow excitations of the discrete problem we find that the disorder has no effect on the averaged
behavior. Finally, we show that the disorder can be applied to induce a high degree of controllability of the
spatial extent of the stable excitations in the continuum system.@S0163-1829~97!06346-7#
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I. INTRODUCTION

Understanding the interplay between disorder and non
earity is of fundamental importance in several physical c
texts, and this combination raises a number of unsol
questions.1 A considerable effort has been invested in und
standing the roles of disorder and nonlinearity separat
Each may lead to localizations effects, namely, solitons
collapse effects due to nonlinearity and Anderson locali
tion due to disorder. A natural and important question
therefore how these effects might complement, frustrate
reinforce each other. It is also an issue of great experime
concern in several fields of modern physics, such as non
ear optics,2,3 polaron formation in solid-state materials,4,5 vi-
bron localization in biomolecules,6,7 and energy transport in
organic thin films.8

Investigations of stationary problems in one-dimensio
systems have shown that nonlinearity may change the tr
mission properties of disordered systems, such that the,
linear system, characteristic exponential decay of the tra
mission coefficient with systems length changes into a po
law in the presence of nonlinearity.9 This theoretical predic-
tion has recently been confirmed experimentally using n
linear surface waves on a superfluid helium film.10 In non-
stationary problems nonlinearity creates modulatio
instabilities, which can be enhanced by disorder.11 The im-
portance of the modulation instabilities resides in the po
bility of formation of nonlinear localized excitations instea
of plane waves. It has been demonstrated12 that due to these
nonlinear waves strong nonlinearity may completely inhi
the localization effects stipulated by the disorder. Usually
investigations have been carried out on systems that are
tegrable — soliton bearing — in the absence of disorder
common argument is that the equations, despite their e
integrability, provide a sufficient description of the physic
systems to display the essential behavior. However, the m
common physical situation is that integrability, and thus
exact soliton, is absent. This is the case in discrete system
well as in continuum systems. In such systems the mod
tional instabilities are still present but they do not cre
560163-1829/97/56~22!/14407~7!/$10.00
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solitonic excitations from plane waves. The result is mo
likely some condensation of the plane waves into intrin
localized excitations in discrete systems or collapsing ex
tations in continuum systems.

As an initial step in gaining understanding of the role
disorder in such systems we consider the ubiquitous non
ear Schro¨dinger ~NLS! equation. This is a natural choic
because tight-binding models have proven to be impor
for gaining insight into the effects of disorder on linear soli
state problems~Anderson model, Hubbard model, etc.! and
the discrete NLS model is simply incorporating nonline
effects into these models. Among these nonlinear mode
the model of the so-called self-trapping of electrons in io
crystals through polaronic lattice distortion13 ~general model
for coupled-field systems7! where the nonlinearity arise
from adiabatic elimination of the lattice distortions. Th
study of such models with disorder and temporal noise
shown that the ground state is always localized in the p
ence of disorder13 while the temporal noise always leads
destruction of the localized states.14 However, the studied
models all have long-lived solitonlike solutions because
continuum limit of these equations is exactly integrable. T
situation may change drastically if the continuum limit al
is nonintegrable. A relevant example of such an equatio
the two-dimensional~or higher-dimensional! NLS equation.
The two-dimensional NLS equation is nonintegrable a
possesses an unstable ground state solution which in
presence of perturbations either collapses or disperses
view of the results of Ref. 13 there is a reason to believe t
the presence of disorder can stabilize this behavior. T
would be an important result in nonlinear optics15 and in the
modeling of organic thin films.8

In the present paper we study the effects of disorder
the localized excitations in a one-dimensional NLS equat
which is generalized by an arbitrary degree of nonlinearity
allows us to study the effect of disorder on excitations wh
are unstable when no disorder is present. This model has
a close relation to higher-dimensional models~for the con-
tinuum equation see Ref. 16 and Ref. 17 for the discr
14 407 © 1997 The American Physical Society
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FIG. 1. The normN vs nonlin-
ear frequencyL for various disor-
der strengthsh. Homogeneous
case h50 ~solid line!, h50.01
~long-dashed line!, h50.04
~short-dashed line!, h50.07 ~dot-
ted line!, andh50.1 ~dash-dotted
line!. In all cases s52 and
a53p2/4.
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model! and studying it allows us to predict the behavior
higher-dimensional systems.

The paper is organized as follows. In Sec. II we introdu
the model and describe its basic properties in the homo
neous discrete and continuum cases, and we discuss th
merical results obtained when disorder is included in
problem. We present numerical results showing that only
broad excitations are significantly affected by the disor
while the intrinsically localized excitations are rather un
fected. Most importantly, we find that the disorder stabiliz
the very broad excitations. In Sec. III we address the prob
analytically in the continuum limit. Using a collective coo
dinate approach we show that the disorder indeed creat
stability window for the localized excitations. Finally, Se
IV gives a summary.

II. MODEL AND NUMERICAL RESULTS

We shall in the present paper investigate the disc
equation

i ċn1~cn1122cn1cn21!1aucnu2scn1encn50. ~1!

Herecn(t) is a complex function of time and of the discre
coordinaten. The disorderen is diagonal and assumed to b
Gaussian distributed with the probability

p~en!5
1

hAp
exp@2~en /h!2# ~2!

and have the correlation function

^en8en&5h2dn8,n , ~3!

where the bracketŝ•••& denote averaging over all realiza
tions of the disorder. Equation~1! has the following two
conserved quantities: namely, the normN, defined as
e
e-
nu-
e
e
r

-
s
m

s a

te

N5(
n

ucnu2, ~4!

and the HamiltonianH, defined as

H5(
n

ucn112cnu22
a

s11(n
ucnu2~s11!2(

n
enucnu2.

~5!

Equation~1! can be derived from the Hamiltonian~5! using
the equation of motioni ċn5]H/]cn* .

Considering the stationary solution of Eq.~1! in the form

cn~ t !5fnexp~ iLt !, ~6!

the dependenceN(L) can be found numerically. The cas
s52 @with a53p2/4 yieldingN51 in the continuum limit;
see Eq.~10! below# is shown with solid line in Fig. 1. It has
previously been shown17 that the stability criterion for the
stationary states in the discrete case isdN/dL.0. This to-
gether with the solid curve in Fig. 1 shows that an instabil
region appears in the discrete case, as previously analytic
predicted.17,18 In the discrete case the two-dimensional cub
version of Eq.~1! has similar properties as Eq.~1! with
s52. The discrete two-dimensional cubic system has b
studied earlier,19–21 and comparing Fig. 1 to the two
dimensional result~Fig. 1 of Ref. 21! we see that the feature
are qualitatively the same, although there is a quantita
difference asL tends to infinity sinceN}L1/s independent
of the dimension. Evidently the continuum limit can be re
ized asL→0 and it means thatN51 anddN/dL50 in this
limit.

In the continuum limit Eq.~1! takes the form

ic t1cxx1aucu2sc1e~x!c50. ~7!

Here the random potential is also Gaussian distributed
the correlation function becomes
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FIG. 2. Evolution of an initial
excitation of the form ~9! per-
turbed such that N50.95
(a53p2/4, s52) in a con-
tinuum system with disorder
strengthh50.05.
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^e~x!e~x8!&5h2d~x2x8!. ~8!

In the case of no disorder the continuum, Eq.~7!, has the
stationary solution

c~x,t !5L1/~2s!S s11

a D 1/2s

sech1/s~sALx!eiLt, ~9!

which has the norm

N5S s11

a D 1/s G2~1/s!

sG~2/s!
~4L!1/s21/2. ~10!

The stability of the stationary solution is determined by t
Vakhitov-Kolokolov criterion22 so that it is stable when
dN/dL.0. Thus from Eq. ~10! we have for s
52 dN/dL50 which signifies marginal stability of the sta
tionary solutions. This marginal stability also occurs in t
cubic two-dimensional NLS equation.

Further we show in Fig. 1 the dependenceN on L for the
stationary solutions of Eq.~1! in the presence of disorde
Results for four values of the varianceh50.01~long-dashed
line!, 0.04 ~short-dashed line!, 0.07 ~dotted line!, and 0.1
~dash-dotted line! are shown. The results have been obtain
as averages of 100 realizations of the disorder. Several
features arise as a consequence of the disorder. In the
tinuum limit we no longer haveN51 anddN/dL50. In-
stead we haveN→0 anddN/dL.0, signifying that the dis-
order stabilizes the excitations in the continuum limit. T
disorder creates a stability window so that a bistability p
nomenon emerges. Consequently there is an interval of
citation norm in which two stable excitations with signifi
cantly different widths have the same norm.

Furthermore, we see that the disorder creates a ga
small L in which no localized excitation can exist, and th
the size of this gap apparently is increased as the varianc
the disorder is increased. It is also clearly seen that aL
increases~decreasing width! the effect of the disorder van
ishes so that the very narrow excitations are in average
affected by the disorder and only the continuum results
affected by disorder. It is important to stress that this is
average effect, because for each realization of the diso
the narrow excitation will be affected. The narrow excitati
d
w

on-

-
x-

at
t
of

n-
re
n
er

will experience a shift in the nonlinear frequency equal to
amplitude of the disorder at the position of the excitation

The qualitative form of the dependenceN(L) for a par-
ticular realization is very similar to the form of the avera
dependence shown in Fig. 1. It is noteworthy that for
realizations the curveN(L) is a smooth curve. The basi
difference from realization to realization is a displacement
the curve along theL axis.

The bistability we observe from Fig. 1 is very similar t
the bistability that occurs when long-range effects are
cluded in the NLS framework. An example of this has be
studied recently by Gaidideiet al.23 who also showed tha
the bistability occurred due to competition between two d
ferent length scales of the problem, one length scale be
defined by the relation between the nonlinearity and the
persion, while the range of the nonlocal interaction defin
the other length scale. The same effect is present in Eq~1!
whens is in the range 1.4,s,2 ~see Ref. 17, e.g.!. In our
case the bistability arises on similar grounds because of
competition between the length scale defined by the rela
between the nonlinearity and the dispersion and the len
scale defined by the disorder.

Another interesting numerical experiment is to launch
localized excitation into a disordered chain or a disorde
continuum system and then observe the behavior of the
citation. We have done this experiment launching an exc
tion with a norm below the critical into a continuum syste
governed by Eq.~7!, and observing the behavior of the e
citation which in the corresponding homogeneous sys
would disperse. One example of this experiment is shown
Fig. 2. As is seen the localized excitation initially dispers
but after a short period, during which the center-of-mass m
tion is clearly seen, this process is arrested by the diso
and the excitation attains some approximately station
width. Attempting to quantify the observed behavior we ha
calculated numerically the averaged behavior of the quan

R5E
2`

`

ucu6dx. ~11!

This quantity should clearly give a measure of the spa
extension of the excitation. However, we have observe
phenomenon which invalidates the usability of this quan
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for the purpose of quantifying the averaged behavior. T
problematic phenomenon is that occasionally the disor
forces the initially localized excitation into two~or more!
smaller and spatially separated localized excitations,
which caseR is not directly related to the spatial extension
the excitation. Therefore the dynamical simulations can
be averaged in a meaningful way. Despite this problem
example in Fig. 2 clearly shows that the presence of
disorder has a stabilizing effect on the otherwise unsta
excitations. This can be taken as a dynamical confirmatio
the stationary results, which also showed that a stable
tionary state emerged in the continuum limit in the prese
of disorder. The conclusion of the dynamical simulations
thus that the disorder allows a stable state to exist eve
these systems which have no stable localized excitat
when disorder is absent. We merely cannot estimate the
eraged behavior of the systems because of the described
nomenon.

III. ANALYTICAL RESULTS

The competition between disorder and nonlinearity has
mentioned above been addressed previously for simple
grable models. In particular Scharf and Bishop24 have dis-
cussed the effects of a periodic potential on the soliton of
cubic NLS equation, and shown on the basis of an avera
NLS equation that the periodic potential leads to a sim
renormalization of the solitons and creates a ‘‘dressing’’
the soliton. It was also mentioned that this averaged met
in principle could be generalized to account of any poten
composed of finitely many short-length-scale~compared to
the soliton size! components. Compared to the proble
treated by Scharf and Bishop our problem has two distin
different aspects, namely, that there exists no stable so
solution and that the perturbing potential is composed
infinitely many short- and long-length-scale components.
have therefore chosen a different approach in order to g
some analytical understanding of how the presence of di
der affects the dynamics of the nonlinear excitations. App
ently, for the average dynamics there are only signific
effects of the disorder in the limit of small nonlinear freque
ciesL, and we shall therefore apply the analytical approa
in the continuum limit only. Thus it is assumed that the d
namics can be described in terms of collective coordina
using a localized self-similar trial functionc(x,t) of the
form

c~x,t !5AA~ t !

b~ t !
sech1/sFx2X~ t !

b~ t ! Gexp$ ia~ t !@x2X~ t !#2

1 ik~ t !x1 if~ t !%. ~12!

The real-valued time-dependent parametersA(t) and f(t)
determine the amplitude and the phase of the excitation
spectively, whileb(t) anda(t) determine the width and th
chirp of the excitation. Finally, the real-valued paramet
X(t) and k(t) determine the excitation center-of-mass m
tion.

Equation~7! is the Euler-Lagrange equation for the acti

S5E
2`

`

dt L, ~13!
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L5E
2`

`

dxS i

2
~c* ] tc2c.c.!2ucxu2

1
a

s11
ucu2~s11!1e~x!ucu2D ~14!

is the Lagrangian density of the system. Inserting the t
function ~12! into Eq. ~13! the following equations are de
rived via the Euler-Lagrange equations:

2AS ḟ1
1

2
ẌX1

1

4
~X!2D sS 0,

2

s D2
A

4
b̈bsS 2,

2

s D
1a

s

s11

As11

bs
sS 0,

2

s
12D5U~b!2F~$e%,b,X!,

~15!

AsS 2,
2

s D
2

b̈52
]

]b
@U~b!2F~$e%,b,X!#, ~16!

1

2
Ẍ5

]F~$e%,b,X!

]X
, ~17!

where

U~b!5
A

s2 FsS 0,
2

s D2sS 0,
2

s
12D G 1

b2

2a
As11

s11
sS 0,

2

s
12D 1

bs
~18!

is the effective potential function in the case of no disord
and

F~$e%,b,X!5
A

b E dxe~x!sech2/sS x2X

b D ~19!

is the additional part of the potential arising from the diso
der. The coefficientss(n,m) are defined by

s~n,m!5E
2`

`

dx xnsechm~x!. ~20!

The stationary solutions defined byẌ5Ẋ5b̈5ḃ50 and
f(t)5Lt @see Eq.~9!# are found by solving

]

]b
@U~b!2F~$e%,b,X!#50, ~21!

]

] X
F~$e%,b,X!50. ~22!

Considering the center-of-mass motion described by Eq.~17!
we observe that for each realization of the random poten
e(x) the stationary positionX5Xm($e%,b) of the excitation
is defined by the point whereF($e%,b,X) has a maximum
with respect toX. Formally we can now insert the valu
X5Xm($e%,b) into Eq. ~21!. Solving the resulting equation
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the value of the excitation width,b($e%), that minimizes the
potentialU(b)2F($e%,b,X) for a given realization$e(x)%
can be obtained. Finally, the average value^b($e%)& must be
calculated. However, it is difficult to realize the describ
program simply because we cannot solve Eqs.~21! and~22!
for given e(x). Therefore we will use an approximate a
proach.

Introducing

b5B1d, B5^b&, ~23!

and averaging Eq.~21!, we get to zeroth order ind

]

]B
U~B!2S ]

]B
F~$e%,B,X! D

X5Xm~$e%,B!

50. ~24!

Equation~24! shows that the stationary value of the me
excitation widthB is determined by the extrema of the fun
tion

W5U~B!2^F„$e%,B,Xm~$e%,B!…&. ~25!

Clearly the last term in the right-hand side of Eq.~25! can be
written as

^F„$e%,B,Xm~$e%,B!…&5E
2`

`

dXE
2`

`

d f f P~ f ,X!,

~26!

where P( f ,X)d f dX is the probability of the function
F($e%,B,X) having a maximum in the rectangl
(X,X1dX, f , f 1d f).

To calculate W we apply the following theorem by
Rice:25 Let f be a random curve given by

f 5F~e1 , . . . ,eN ;z!. ~27!

The probability that f has a maximum in the rectang
(z,z1dz, f , f 1d f), dz and d f being of the same order o
magnitude, is

P~ f ,z!d f dz52
1

M
d f dz E

2`

0

dz zp~ f ,0,z!. ~28!

Herep(j,u,z) is the probability density function for the ran
dom variables

f ~z!5F~e1 , . . . ,eN ;z!,

f 8~z!5
]F

]z
, f 9~z!5

]2F

]z2
, ~29!

i.e.,

p~j,u,z![^d„j2 f ~z!…d„u2 f 8~z!…d„z2 f 9~z!…&, ~30!

andM is a normalization factor. In the case wheref (z) is a
stationary centered Gaussian process the probability distr
tion p(j,u,z) can be expressed as26
u-

p~j,u,z!5
exp~2T@Z#@C#21@Z#/2!

~2p detC!3/2
, ~31!

whereZ5T@j,u,z# and

C5S M0 0 2M2

0 M2 0

2M2 0 M4

D ~32!

is the covariance of the random vector„f (z), f 8(z), f 9(z)….
Here

M05^@ f ~z!#2&, M25^@ f 8~z!#2&,

M45^@ f 9~z!#2& ~33!

are the spectral moments. From Eqs.~31! and ~32! we get

p~j,0,z!

5
exp@2~M4j212M2jz1M0z2!/2~M0M42M2

2!#

~2p!3/2M2
1/2~M0M42M2

2!1/2
.

~34!

Applying this theorem to our case we see that the rand
variable

f ~z!5
A

B E dx e~x!sech2/sS x2z

B D , ~35!

where the properties of the random functionse(x) are given
by Eq. ~8!, is Gaussian and centered. Its spectral mome
are

M05A2sS 0,
4

s Dh2

B
,

M25A2
4

s2 FsS 0,
4

s D2sS 0,21
4

s D Gh2

B3
,

M45A2 S 2

s D 2 F 4

s2
sS 0,

4

s D2
4

sS 11
2

s D sS 0,21
4

s D
1S 11

2

s D 2

sS 0,41
4

s D G h2

B5
. ~36!

The spectral moments do not depend onz and consequently
the process„f (z), f 8(z), f 9(z)… is stationary. In this case Eq
~26! can be represented in the form

^F„$e%,B,Xm~$e%,B!…&5
*2`

` dj j*2`
0 dz zp~j,0,z!

*2`
` dj *2`

0 dz zp~j,0,z!
.

~37!

Inserting Eqs.~34! and ~36! into Eq. ~37! we get

^F„$e%,B,Xm~$e%,B!…&5~p/2!1/2M2M4
21/25S~s!AhB21/2,

~38!

where the abbreviation
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S~s!5~p/2!1/2
2

s

s~0,4/s!2s~0,214/s!

A~4/s2!s~0,4/s!2~4/s!~112/s!s~0,214/s!1~112/s!2s~0,414/s!
~39!

FIG. 3. The width of the gap,
Lgap vs the disorder strengthh.
Results of numerical calculation
are indicated by squares while th
analytical dependence given b
Eq. ~46! is shown by the solid
line. The gap is measured a
N50.4.
tia
po
s
ca

xist
ill

the
dy
m-

ich

Eq.
was used. Thus the effective averaged potentialW takes the
form

W5
A

s2 FsS 0,
2

s D2sS 0,
2

s
12D G 1

B2

2a
As11

s11
sS 0,

2

s
12D 1

Bs
2S~s!AhB21/2. ~40!

Using this and Eq.~15! the nonlinear frequencyḟ5L can be
determined:

L52
1

N FW2a
s

s11
sS 0,

2

s
12DAs11

Bs G . ~41!

In the case of the cubic NLS equation (s51) the potential
function ~40! can be written as

W5
N

3
B222

aN2

6
B212N

A42p

30
hB21/2. ~42!

Equation~42! has the same form as the effective poten
obtained in Ref. 13 where the effects of disorder on the
laron ground state were studied. The authors of Ref. 13 u
a quite different approach that combines statistical and s
ing analysis.

In the case of the quintic (s52) NLS equation Eqs.~39!
and ~40! yield
l
-

ed
l-

W5
N

8 S 12
4 aN2

3p2 D B222NA 10

42p
hB21/2. ~43!

Minimizing the potential~43! we obtain for the mean value
of the excitation width

B.1.49S 12
4 aN2

3p2 D 2/3

h22/3. ~44!

Thus, in the presence of disorder stable excitations e
when aN2,3p2/4. In the opposite case the excitation w
collapse.16

From Eq.~41! we obtain that the nonlinear frequencyL
in the case of the quintic NLS equation has the form

L5S h

336
A420

p D 4/3 324aN2/3p2

~124aN2/3p2!4/3
. ~45!

Since the nonlinear frequencyL is tightly related to the
width of the excitation, this expression clearly shows that
disorder controls a length scale of the problem. As alrea
discussed in Sec. II this gives rise to the bistability pheno
enon of the discrete problems.

Equation~45! also shows the appearance of the gap wh
was seen in the numerical simulations. The widthLgapof the
gap is clearly given by the relation

Lgap}h4/3. ~46!

In Fig. 3 we have compared this dependence using
~46! @since the numerical coefficient in Eq.~45! is only
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within the correct order of magnitude as is common for
collective coordinate method we disregard it in Fig. 3# with
the numerically obtained dependence of the gap. Since
essentially equivalent behavior is found, this confirms t
the essential features of the problem are captured by the
lytical approach.

IV. SUMMARY

In summary we have in this paper shown that the prese
of parametric disorder permits the existence of stable lo
ized excitations in the continuum limit. We have shown t
via analytical analysis and via numerical simulations of
stationary as well as the dynamical problem. Analyzing
discrete problem the appearance of a bistability phenome
was observed, and the source of this bistability was identi
to be the competition between two length scales. The
length scale was found to be directly related to the stren
of the disorder.

Analytically and numerically we have shown the ex
tence of a gap for small nonlinear frequencies in which
stationary state exists. This gap and the appearance of a
row region where stable excitations exist allows rather ac
rate controllability of the excitations via the disorder.

In view of the similarity between the dynamics of th
c
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two-dimensional cubic (s51) NLS equation and the one-
dimensional quintic (s52) NLS equation,16 our results in-
dicate that a two-dimensional optical beam propagating in
Kerr medium can be controlled by disorder effects, at lea
when the beam power~norm! is below the critical power for
collapse. Such stable propagation is not possible in homo
neous two-dimensional Kerr media since the beam will e
ther disperse or collapse. Additionally the beam wai
~width! can be controlled by the disorder strength. The sam
scenario could be important in the modeling of energy tran
fer and transport in molecular dynamics.
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