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Nonradiative energy transfer from the impurity ion into the host lattice
for Cr 41-doped forsterite laser crystal
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A theoretical model explaining the nonradiative energy transfer from a photoexcited impurity ion into the
lattice in a laser crystal is presented. The energy-transfer mechanism consists of electronic energy transfer to
local vibrations that then dissipate their energy to lattice~phonon! modes of the same energy creating a
nonequilibrium phonon population. The model explains the experimental temporal profiles of nonequilibrium
optical phonons probed by time-resolved Raman scattering in Cr-doped forsterite laser crystal. The electronic
transition time and relaxation lifetimes for phonon and for local modes are;3, 4, and 8 ps, respectively.
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INTRODUCTION

Understanding nonradiative processes occurring
impurity-doped crystals is of importance for the lasing pro
erties of a material. Although the study of nonradiative
laxation was pioneered more than forty years ago~see paper
by Huang and Rhys1! and has involved a significant amou
of research~for references see the book by Englman2! many
questions regarding the dynamics of nonradiative proce
of photoexcited ions in host media have not yet receive
satisfactory answer. Numerous theoretical models using v
ous approaches for nonradiative relaxation mechanis3

have yielded varying results. Luminescence measurem
~Sturge4! using a nanosecond time scale yield results wh
differ by several orders of magnitude from nonradiative d
cay rates derived from the activation energy law.2 Only re-
cently temporal profiles of lattice modes involved in non
diative relaxation processes of ions in a laser crystal h
been probed directly by Raman scattering with subpicos
ond temporal resolution.5

In this paper, a theoretical model is applied to explain
dynamics of phonon modes measured in photoexc
Cr:Mg2SiO4. The electronic transition time and the phon
and local mode lifetimes are estimated from fitting the res
of a theoretical model to the experimental data.

The present paper considers a laser crystal with deep
purity levels, where the proposed nonradiative ener
transfer mechanism from the photoexcited state of the im
rity center into the lattice is quite different from the on
reported in semiconductors.6–9 The photoexcited zone
electron transfers energy directly to the lattice~phonon!
modes. We consider for the first time coupling between lo
vibrations of an impurity center and phonon modes as
main path for energy redistribution. It will be demonstrat
that when the energies of oscillation of local vibrations of t
impurity center are close to the energies of optical phon
560163-1829/97/56~22!/14391~8!/$10.00
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with zero quasimomentum, a nonequilibrium population
phonons is created.

The calculated dynamics of phonon occupation num
excess

n̄~«,t !2n0~«! ~1!

relative to the equilibrium value

n0~«!5~e«/kT21!21

is compared to the experimental results of Demos a
Alfano.5 In Eq. ~1!, n̄(«,t) is the average occupation numb
of Raman-active phonons with energy« at time momentt.
Details of the derivation and solution of the rate equatio
are presented in the Appendixes.

MODEL FOR RELAXATION OF LOCAL AND PHONON
MODES

The impurity centers will be considered as clusters ma
of an impurity ion and its nearest neighbors, possessing
crete electronic and vibrational states. The electronic lev
of the center are located deep in the wide forbidden ene
gap of the host crystal allowing one to neglect interactio
between the electrons of the impurity and the rest of
crystal. Each mode of vibration of an impurity center~local
mode! is characterized by its energy«c . Due to inhomoge-
neous interactions, this value differs slightly for differe
centers throughout the crystal, having the value«c

( i ) at thei th
center. The set of values$«c

( i )% form a band of local vibra-
tions with its own density of states. Different sets of$«c

( i )%
will be considered independently. A harmonic interaction b
tween local and phonon modes will be taken into accoun

In such a model, the vibrational Hamiltonian of a
impurity-doped crystal can be written as
14 391 © 1997 The American Physical Society
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H5(
i

«c
~ i !~Bi

†Bi11/2!1(
j

« j~bj
†bj1

1
2 !1H int . ~2!

In Eq. ~2!, Bi
† , Bi are creation and annihilation operators

a local mode of energy«c
( i ) , summation indexi goes over all

local modes of the same band.bj
† , bj are creation and anni

hilation operators of thej th phonon mode of energy« j .
The H int term is the sum of a harmonic (Hh) and an an-

harmonic (Hanh) term, as follows:

H int5Hh1Hanh,

Hh5(
i j

a i j ~Bi
†1Bi !~bj

†1bj !,

Hanh5
1

6 (
l jq

h l jq~bl
†1bl !~bj

†1bj !~bq
†1bq!. ~3!

In Eqs.~3! a i j is the constant of interaction of thei th local
mode with thej th phonon mode andh l jq is the constant of
anharmonic interaction between thel th, j th, andqth phonon
modes. The anharmonic termHanh permits energy exchang
between phonons of the host crystal. In the following de
vation all harmonic interaction constants will be consider
for simplicity, independent of impurity mode number:

a i j 5a j . ~4!

The equations for occupation numbers will be derived
the lowest possible order inH int . To second order in the
local mode-phonon couplingHh , the transition rate from the
Ni th local mode of energy«c

( i ) to a set of phonons with
energies close to«c

( i ) is given by the Fermi golden rule as
sum over these lattice modes:

2p

\ (
j

a j
2u^Ni ,nj u~bj1bj

†!~Bi1Bi
†!uNi21,nj11&u2

3d~«c
~ i !2« j !5

2p

\ (
j

a j
2d~«c

~ i !2« j !Ni~nj11!. ~5!

In Eq. ~5!, Ni is the occupation number for thei th local
mode,nj is the occupation number for thej th phonon mode.
Similarly, the reverse transition rate from phonon states w
energies close to«c

( i ) to local states is given by the expre
sion

2p

\ (
j

a j
2u^Ni ,nj u~bj1bj

†!~Bi1Bi
†!uNi11,nj21&u2

3d~«c
~ i !2« j !5

2p

\ (
j

a j
2d~«c

~ i !2« j !~Ni11!nj . ~6!

If one neglects the anharmonic interaction~temporarily! and
considers a purely harmonic crystal, the equation for the
erage occupation number of thei th local mode becomes

dN̄i~ t !

dt
5

2p

\ (
j

a j
2d~«c

~ i !2« j !@2N̄i~ t !1n̄ j~ t !#, ~7!
-
,

o

h

v-

N̄i(t) is the average over time-dependent ensemble of
occupation number of thei th local mode, andn̄ j (t) is the
corresponding average occupation number of thej th phonon
mode.

In order to evaluate the sum in Eq.~7! for a continuous
distribution of energies of phonon modes coupled to lo
modes the density of phonon statesg(«) has to be introduced
as was done, for example, by Louisell10 where g(«)d«
equals the number of phonon states in the energy inte
d«. Introducing

a~«! ~8!

to characterize the coupling of the phonon mode of energ«
to local modes, one obtains

(
j

a j
2n̄ j~ t !d~«c

~ i !2« j !5E d«d~«c
~ i !2«!g~«!n̄~«,t !a2~«!

5g~«c
~ i !!a2~«c

~ i !!n̄~«c
~ i ! ,t !. ~9!

Since the band of local vibrations is much narrower th
the phonon band, one can consider the density of state
phonon modes as well as their occupation numbers to
constant within an interval of$«c

( i )%

g~«c
~ i !!5g~«c!, n̄~«c

~ i ! ,t !5n̄~«c ,t !. ~10!

Assuming that the occupation numberN̄i(t) does not vary
significantly among different local vibrations within th
same band, i.e.,

N̄i~ t !5N̄~ t !, ~11!

one obtains an expression for the time derivative ofN̄(t)
from Eq. ~7!:

dN̄~ t !

dt
5g@2N̄~ t !1n̄~«c ,t !#. ~12!

The relaxation parameterg in Eq. ~12! is given by

g5
2p

\
g~«c!a

2~«c!. ~13!

In Eq. ~12!, phonon mode occupation numbern̄(«c ,t)
depends on time. This time dependence makes Eq.~12! dif-
ferent from the well-known rate equation for the relaxati
of an oscillator in contact with a reservoir11,12 @see Eq.~15!
below#. To obtain a simplified rate equation11,12 from Eq.
~12! the assumption that the lattice is always in thermal eq
librium can be made~temporarily!:

n̄~«c ,t !5n0~«c!5~e«c /kT21!21. ~14!

Equation~12! becomes

dN̄~ t !

dt
5g@2N̄~ t !1n0~«c!#. ~15!

Then the occupation numberN̄(t) behaves according to th
equation of relaxation of a harmonic oscillator in conta
with an equilibrium reservoir as discussed by Cheng a
Lax12 and Louisell and Walker.13 The following treatment in
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which both local and phonon modes are out of equilibrium
similar to the more symmetric approach of Lax.14

Upon examining the validity of Eq.~15!, we start by not-
ing that the difference in transition rates between phon
modes and local modes for thej th phonon mode is

2p

\ (
i

a j
2d~«c

~ i !2« j !@2n̄ j~ t !1N̄i~ t !#, ~16!

which leads to the rate equation for occupation number
the j th phonon mode:

dn̄j~ t !

dt
52

2p

\
a j

2@ n̄ j~ t !2N̄~ t !#G~« j !. ~17!

In Eq. ~17!, G(« j ) is the density of local modes with th
same energy as the phonon mode. One can rewrite Eq.~17!
in continuous notation,

dn̄~«,t !

dt
5

2p

\
a2~«!G~«!@2n̄~«,t !1N̄~ t !#. ~18!

The density of phonon statesg(«) is proportional to the
number of atoms in the host crystal, while the density
local modesG(«) is proportional to the number of impurit
atoms. Ifg(«)@G(«) the relaxation of phonon modes due
their interaction with local vibrations is negligible. Then th
relaxation of local modes does not change the occupa
number of phonon modes, and Eq.~15! is correct. This case
was considered in detail by Lax.11 However, at the edges o
the Brillouin zone the phonon density of statesg(«) is small
and becomes comparable with the local mode density
statesG(«). This particular case, when the energies of lo
modes coincide with the energies of edge-zone pho
modes is considered in the present paper.

The rate equations for the occupation numbers for lo
vibrations and the phonon modes coupled to them, provi
anharmonicity is not taken into account~yet!, are

dN̄~ t !

dt
5g@2N̄~ t !1n̄~«c ,t !#, ~19a!

dn̄~«,t !

dt
5m~«!@2n̄~«,t !1N̄~ t !#, ~19b!

where the phonon relaxation parameterm~«! is

m~«!5
2p

\
a2~«!G~«!. ~19c!

Since no information is available at this stage on
broadening of impurity levels in the crystal under consid
ation, it is reasonable to neglect the dispersion ofm~«! within
the band of local modes, setting

m~«!'m. ~20!

Anharmonicity will add a term to Eq.~19b!. Details of
computation of this term are given in Appendix A. The fin
expression for the anharmonicity induced transition ra
when thei th phonon mode is not at equilibrium, is
s

n

f
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2p

\ (
jk

h i jk
2 @d~« i2« j2«k!~11n0 j1n0k!

12d~«k2« i2« j !~n0 j2n0k!#~ n̄i~ t !2n0i !. ~21!

Equations~19!–~21! yield equations for the occupatio
numbers for each local and phonon mode, respectively,~an-
harmonicity is taken into account!

dN̄~ t !

dt
5g@2N̄~ t !1n̄~«c ,t !#,

dn̄~«c ,t !

dt
5m@2n̄~«c ,t !1N̄~ t !#

1z~«c!@2n̄~«c ,t !1n0~«c!#. ~22!

In Eq. ~22! the relaxation parameter due to anharmonic
z~«! is obtained from Eq.~21! after converting the sum into
an integral:

z~«!5
2p

\ E d«8$h2~«,«8,«2«8!g~«8!g~«2«8!

3@11n0~«8!1n0~«2«8!#

12h2~«,«8,«82«!g~«8!

3g~«82«!@n0~«82«!2n0~«8!#%. ~23!

Equation ~22! describes the energy-transfer process
tween phonons and local modes, without taking into acco
how the nonequilibrium population is produced. In this p
per, we consider creation of nonequilibrium population
local modes due to nonradiative electronic transitions. T
role of these transitions might be crucial in the energy
change process. Weeks, Tully, and Kimerling15 analyzed the
situation when, due to an electronic transition, an energy
the order of electron volts was transferred to vibrations.
analogous situation with an electronic transition, accom
nied by energy transfer to local vibrations, is discussed in
present work. The process is qualitatively presented in F
1, with adiabatic potentials drawn~figuratively! for a single
vibrational coordinate. Optical excitation brings the syste
into an excited state~step 1 on Fig. 1!, which relaxes nonra-
diatively ~step 2! via electronic transition, creating nonequ
librium population of local modes. We assume a rapid rel
ation mechanism between local vibrations, some of which
not act as accepting modes~step 3!. Due to this rapid relax-
ation we omit a backward energy flow from the modes in
the photoexcited state. Since the excited state is created
sharp pulse, its flow to the local modes can be character
by the exponential time decay of the occupancy of the
cited state. An exponential time decay acts as a sou
ke2Gt, to the local vibrations. The system of equations d
scribing the nonradiative relaxation of a phonon mode due
the relaxation of the photoexcited state then becomes

dN̄~ t !

dt
5g@2N̄~ t !1n̄~«c ,t !#1ke2Gt,
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dn̄~«c ,t !

dt
5m@2n̄~«c ,t !1N̄~ t !#

1z~«c!@2n̄~«c ,t !1n0~«c!#. ~24!

Equations~24! are solved forN̄(t)2N0 , n̄(t)2n0 , tak-
ing into account that equilibrium occupancies are equal,

N05n0 ,

and by setting the initial conditions

N~0!5n~0!5n0 . ~25!

The general solution is presented in Appendix B. Here,
limit the number of parameters, the solution forn̄2n0 is
specialized to the casem5g,

n̄2n05
kg

R E
0

t

dt expF2~ t2t!S g1
z

2D Gsinh@R~ t2t!#

3exp~2Gt!, ~26!

with R given by Eq.~B17!:

R5Ag21z2/4. ~27!

The integration in Eq.~26! yields

n̄2n05
kg

R@~G2g2z/2!22R2#
$R exp~2Gt !

1exp@2~g1z/2!t#@~G2g2z/2!sinh~Rt!

2R cosh~Rt!#%. ~28!

Eq. ~28! will be used to fit the experimental data. A discu
sion of the fitting of theoretical results and the derivation
lifetimes G21, g21, andz21 follows.

FIG. 1. Optical excitation and following nonradiative relax
ation: ~1! optical transition from the ground state to state produ
ing bottleneck,~2! transition to a lower electronic state~in the
present case, a spin triplet!, ~3! fast energy redistribution between
local modes resulting in a loss of energy to the initial mode, with
redistribution~not shown! to other local modes.
o

f

NONRADIATIVE RELAXATION PARAMETERS VALUES
EXTRACTED FROM THE EXPERIMENTAL DATA

The above theoretical model will be fitted to experiment
data5 to extract the nonradiative relaxation fundamental p
rameters. Ultrafast pump-probe, time-resolved, Rama
scattering measurements were performed on a Cr:Mg2SiO4
laser crystal, having Cr41 active centers,16 using 500 fs, 590
nm linearly polarized pulses. The experimental setup uses
adjustable time delay line between the cross polarized pu
and probe pulses.5 Anti-Stokes Raman spectra were mea
sured for different delay times between the pump and pro
pulses. The differences in anti-Stokes Raman-scattering
tensities for different delay times are presented in Ref. 5.
was shown5 that only three Raman-active phonon mode
demonstrate time-dependent behavior. Energies of th
modes are equal to 335, 370, and 225 cm21. This conclusion
was also confirmed by up-converted hot luminescen
measurements.17 Here for sake of brevity we present only
time-dependent occupancy behavior for 370 cm21 mode
~Fig. 2!.

The mechanism we propose to explain the temporal d
pendence of the phonon mode population is as follows.
590 nm photon excites the Cr41 impurity center in
Cr:Mg2SiO4 from the ground state to a short-lived state in
terpreted by Demos, Takiguchi and Alfano17 as a bottleneck.
Adding the energy of the exciting photon of 16 960 cm21

and the thermal energy of vibrations at room temperature
210 cm21, one obtains that the photoexcited state of the im
purity center is 17 170 cm21 higher in energy than the
ground 3A2 state~for levels structure of Cr-doped forsterite
see paper18 by Jiaet al.!. Results of Demos and co-workers17

demonstrate that two luminescence peaks are close to
energy, at 17 213 cm21 and 16 995 cm21. As stated in Ref.
17, the singlet spin state1E participates strongly in the cre-
ation of a bottleneck. Though the origin of the states relat
to these peaks is subject to discussion that is beyond scop

-

a

FIG. 2. Difference in Raman-scattering intensities betwee
probe and pump pulses as a function of delay time for the 370 cm21

phonon mode. The delay time is in picoseconds. Arbitrary units a
used for the intensity. Experimental points are boxed~j!. The solid
line is the result of the theoretical computation ofn̄2n0 @Eq. ~28!#
with lifetimes of 3 ps for decay of excited electronic state, 8 ps fo
relaxation of local vibrational excitation, and 4 ps for the decay
nonequilibrium population of optical phonons.
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the present paper, it is clear that the photoexcited state h
vibrational energy of no more than 175 cm21 ~difference be-
tween 17 170 and 16 995 cm21!, which is close to the ther
mal energy of 210 cm21 corresponding to 300 K. In this
case, the local vibrations obtain their excess energy no
once, but in the process of decay of the photoexcited s
The decay of the photoexcited state is mainly nonradiat
Emitted power from the bottleneck, as estimated from
periment, is of the order of 1028 of the pump power, so the
radiative relaxation channel can be neglected.

All electronic states of the Cr41 impurity center with en-
ergies less than energy of the bottleneck are spin triple18

The nonradiative transition rate between the spin sin
state, composing the bottleneck, and the spin triplet, is p
portional to the spin-orbit interaction, which is of order
100 cm21 for the Cr41 center,18 about two or three times les
than the energy of vibrations under consideration. The
ergy of the electron-phonon interaction for Cr41 in forsterite
is comparable to the energy of vibrations.18 The closest spin
triplet state with energy less than the energy of photoexc
tion is at;15500 cm21 ~see Ref. 18!. So the energy interva
between spin singlet and lower spin triplet approximat
equals five energies of vibration.

The spin triplet states for Cr41 form multilevel structures.
Hot luminescence measurements17 demonstrate that in this
system relaxation occurs fast, practically without emissi
In our simplified model the triplet states system is rep
sented by one electronic state, with fast energy redistribu
between local vibrations. This energy redistribution is t
reason why backward energy flow into the photoexcited s
is not taken into account.

Figure 1 is drawn on the assumption that electron-pho
interaction of the spin singlet state1E(e2), which is pro-
duced by twoe electrons, similarly to the ground stat
3A2(e2), is weaker than for spin tripletT state, produced
with participation of thet2 electron.

As seen from Eq.~18!, a nonnegligible change in occupa
tion numbers of phonon modes takes place due to relaxa
of local vibrations only if the densities of local vibration
states and of phonon modes are comparable. All th
phonons that displayed time-dependent populations~225,
335, and 370 cm21! reported by Demos and co-workers17 are
Raman active and have quasimomentum close to ze19

Since no direct information on densities of states is availa
at this time, in order to reduce the number of fitting para
eters the assumption that the density of states of local vi
tions equals the density of zone-edge phonons is made.
yields equality of the relaxation parametersg andm used in
the derivation of Eq.~28!. Observable energy transfer from
local vibrations to phonon modes takes place in Cr:Mg2SiO4
due to the fact that the energies of local vibrations,20 are
close in value to the energy of zone-edge phonon mode

In the casek50 in Eq.~24!, corresponding to the absenc
of energy transfer from the electronic state to local mod
the solution of Eq.~24! with initial conditions

N̄5N~0!Þn0 , n~0!5n0 ~29!

and g5m yields for the nonequilibrium population of pho
non modes@see Eqs.~B11! and ~B17!#

n̄2n0}exp@2~g1z/2!t#sinh~Rt!. ~30!
s a

at
te.
e.
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The fitting to experiment in such a case is much worse than
for three step energy transfer schematically presented on Fig.
1.

The right-hand side of Eq.~28! @obtained from Eq.~24!
with kÞ0 and initial conditions given by Eq.~25!# for long
delay times the decay is proportional to

n̄2n0}exp@2~g2R1z/2!t#. ~31!

Fitting of the experimental curve for long delay times re-
quires

~g2R1z/2!21'13 ps ~32!

for modes of 335 and 370 cm21 energy, and 14 ps for the
225 cm21 energy mode. Keeping that in mind, one obtains
the best fit with parameters

g21'8 ps, andz21'4 ps ~33!

for the 370 cm21 mode, and, correspondingly, 9 and 4 ps
values forg21 andz21 for 335 and 225 cm21 modes. These
values yield an approximate equation

g'z/2. ~34!

For all three modes the best fit yields an electronic transition
time

G21'3 ps. ~35!

Results of fitting are presented in Fig. 2 for the 370 cm21

mode. The curve shape is quite similar for two other modes.

DISCUSSION

A schematic diagram describing the theoretical model and
the derived relaxation parameters is shown in Fig. 3. Follow-
ing photoexcitation, an electronic relaxation with change in

FIG. 3. Schematic diagram describing the proposed theoretical
model and the fitted relaxation parameters.
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electronic state and creation of nonequilibrium population
local modes takes place. This process is characterized b
electronic transition timeG21;3 ps. The newly created non
equilibrium local mode population transfers energy to iso
ergetic phonon modes located at the edges of the vibrati
zones. The relaxation time of this process isg21;8 or 9 ps.
Thermal equilibrium of the system is achieved due to anh
monicity described by the characteristic relaxation tim
z21;4 ps. The temporal behavior of the 225, 335, a
370 cm21 phonon modes is described by approximately
same set of lifetime parametersg, G, andz.

The value obtained for the electronic relaxation parame
G is surprisingly large:

G51/3 ps'331011 s21. ~36!

This large value can be explained as follows. According
the paper of Henry and Lang,20 the rate constant for nonra
diative relaxation equals the probability of transition for o
vibrational period, 2PLZ , divided by the periodT ~PLZ is the
Landau-Zener transition probability during one crossing
electronic levels!. ThenG equals

G52PLZ /T. ~37!

For a vibration of;300 cm21 energy this period equals ap
proximately to 10213 s so

G51013 s21
•2PLZ . ~38!

Equation ~38! yields a small transition probabilityPLZ
;1022 for each crossing of the levels.

The present model of relaxation of local and phon
modes resembles a model used in the study of spin-la
relaxation,21 when cooling of multilevel system is due t
interaction with phonons. Only certain lattice phonons eff
tively participate in the spin cooling. In our problem, th
local modes are similar to spins in the spin-lattice relaxat
problem. They are considered to be in thermal equilibri
with each other, but not with the lattice. Their relaxati
changes equilibrium conditions for resonant phonons,
does cooling of spin system. The only qualitative differen
from corresponding rate equations for spins discussed in
21 is presence of the electronic ‘‘source’’ in Eq.~24!. In
coming publications, we are going to perform an analysis
effective temperatures of vibrational subsystems in forste

The model of nonradiative relaxation presented in t
paper differs from the one discussed by Demos and Alfa5

with respect to the first step of the relaxation. The rate eq
tions used in Ref. 5 consider that the electronic energy of
impurity center is transferred directly into the lattice, wh
the contribution of local modes was not taken into accou
Since the phenomenological rate equations were simila
the ones obtained in this paper, the results are comparab
this paper, the total lifetime of the vibrational relaxatio
given by the sum of the lifetimes of local and phonon mod
is 12 ps. In Ref. 5 almost the same number is obtained for
sum of the lifetimes of the intermediate electronic state a
nonequilibrium phonon modes. The present paper prov
different characteristic times:;3 ps for the electronic tran
sition, ;8 ps for the local mode lifetime at the impurity ce
ter, and;4 ps for relaxation of the phonon modes.
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CONCLUSION

In conclusion, we have shown that from the point of vie
of nonradiative relaxation there are two sets of vibrations
a Cr:Mg2SiO4 crystal. One set~local modes! has a longer
lifetime ~;8 or 9 ps! while the other set~phonon modes! has
shorter lifetimes (;4 ps). We have also shown for the fir
time that the occupation number of certain zone-edge p
non modes can be changed during the vibrational relaxa
of the local mode.
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APPENDIX A. ANHARMONICITY INDUCED TERM IN
RATE EQUATION

Let us compute change in occupancy ofi th phonon mode
due to anharmonic interaction, represented byHanh in inter-
action Hamiltonian, Eq.~3!. The Hamiltonian will be taken
into account to the second order of perturbation theory.
Hanh, the term responsible for creation ofi th phonon and
annihilation of phononsk, j , equals

h i jkbi
†bjbk . ~A1!

The rate of creation of thei th phonon due to annihilation o
phononsj ,k is

2p

\
uh i jk u2d~« i2« j2«k!^bk

†bj
†bibi

†bjbk&

5
2p

\
uh i jk u2d~« i2« j2«k!~ n̄i11!n̄ j n̄k .

~A2!

Total rate of creation of thei th phonon due to annihilation o
a phonon pair equals

2p

\ (
j ,k

uh i jk u2d~« i2« j2«k!~ n̄i11!n̄ j n̄k . ~A3!

Corresponding rate of annihilation equals

2p

\ (
j ,k

uh i jk u2d~« i2« j2«k!n̄i~ n̄ j11!~ n̄k11!/2.

~A4!

Combining Eqs.~A.3! and~A.4!, one obtains rate of chang
of occupancy ofi th phonon due to creation or annihilation o
two other phonons:

2p

\ (
j ,k

uh i jk u2d~« i2« j2«k!$~ n̄i11!n̄ j n̄k

2n̄i~ n̄ j11!~ n̄k11!%/2. ~A5!

Equation~A5! can be simplified. Onlyi th phonon, interact-
ing with the local vibrations, has nonequilibrium occupan
number. Replacing allnj ,k in Eq. ~A5! by equilibrium values
and making use of the identity22
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n0~«1!~n0~«2!11!~n0~«3!11!

5~n0~«1!11!n0~«2!n0~«3!expS «21«32«1

kT D
~A6!

one obtains

~ n̄i11!n̄ j n̄k2n̄i~ n̄ j11!~ n̄k11!

5~n0i11!n0 jn0k1~ n̄i2n0i !n0 jn0k

2n0i~n0 j11!~n0k11!

2~ n̄i2n0i !~n0 j11!~n0k11!

52~ n̄i2n0i !~11n0 j1n0k!. ~A7!

Combining Eq.~A5! and Eq.~A7!, one obtains expressio
for change of occupancy ofi th phonon due to creation o
annihilation of a phonon pair

2
2p

\ (
j ,k

uh i jk u2d~« i2« j2«k!~ n̄i2n0i !~11n0 j1n0k!.

~A8!

Other transitions, wherei th phonon, together with the pho
non of different energy, participates in annihilation or cr
ation of another phonon, also change occupancy of thei th
phonon state. Corresponding energy conservation is re
sented byd function d(«k2« i2« j ). Operators responsibl
for these processes are proportional tobi

†bj
†bk ,bibjbk

† ,
bi

†bjbk
† ,bibj

†bk . Calculations are similar to those demo
strated by Eqs.~A2!–~A7!, and yield the result

2
2p

\ (
j ,k

uh i jk u22d~« i2« j2«k!~ n̄i2n0i !~n0 j2n0k!.

~A9!

Combining Eq.~A8! and Eq.~A9!, one obtains Eq.~21!.

APPENDIX B. SOLUTION OF RATE EQS. „24…

First, the solution of Eq.~22! will be presented. Then
using this solution, the solution of the inhomogeneous
~24! will be obtained.

Introducing the new variables

Dc5N̄~ t !2n0~«c!; D t5n̄~«c ,t !2n0~«c!. ~B1!

Equation~22! can be written as

d

dt S Dc

D l
D5S 2g

m
g

2~m1z! D S Dc

D l
D . ~B2!

The solution of Eq.~B2! is @see, for example, Bellman23#

S Dc~ t !
D l~ t ! D5expF tS 2g

m
g

2~m1z! D G S Dc~0!

D l~0! D . ~B3!

One can express the matrixK,

K5S g
2m

2g
~m1z! D ~B4!

through the Pauli matrixessx , sy , sz , and unit matrixs0 :
-

re-

.

K5 1
2 @s0~g1m1z!2~g1m!sx1~m2g!isy

1~g2m2z!sz#. ~B5!

Then, the term exp(2Kt) can be written as

exp~2Kt !5exp@2t~g1m1z!/2#expS t(
j

Rjs j D ,

~B6!

where j 5x,y,z, and

Rx5~g1m!/2; Ry5 i ~g2m!/2; Rx5~m1z2g!/2.

IntroducingR,

R5ARx
21Ry

21Rz
25Agm1~z1m2g!2/4, ~B7!

a unit vectorn with componentsnj5Rj /R ( j 5x,y,z), and
vector s with componentssx ,sy ,sz , one can rewrite the
second term in Eq.~B6! as

expS t(
j

Rjs j D 5exp~ tRn•s!5cosh~Rt!1n•s sinh~Rt!.

~B8!

Then Eq.~B3!, which is the solution of Eq.~B2!, yields

Dc~ t !5exp@2t~g1m1z!/2#$@cosh~Rt!

1nzsinh~Rt!#Dc~0!1sinh~Rt!~nx2 iny!D l~0!%,

D l~ t !5exp@2t~g1m1z!/2#$@cosh~Rt!

2nzsinh~Rt!#D l~0!1sinh~Rt!~nx1 iny!Dc~0!%.

~B9!

For the relaxation taking place within the same electro
state the initial conditions are

Dc~0!Þ0; D l~0!50, ~B10!

and Eq.~B9! then simplifies:

Dc~ t !5exp@2t~g1m1z!/2#

3@cosh~Rt!1nzsinh~Rt!#Dc~0!,

D l~ t !5exp@2t~g1m1z!/2#sinh~Rt!~nx1 iny!Dc~0!.
~B11!

The inhomogeneous Eq.~24! can be written as

d

dt S Dc

D l
D5S 2g

m
g

2~m1z! D S Dc

D l
D1S k exp~2Gt !

0 D .

~B12!

Its solution is obtained with the help of the solution of th
homogeneous Eq.~B2!.23 Eqs.~B3! and ~B4! yield

S Dc~ t !
D l~ t ! D5exp~2tK !S Dc~0!

D l~0! D1exp~2tK !E
0

l

d t exp~Kt!

3S k exp~2Gt!

0 D . ~B13!

Evaluation of Eq.~B13! with initial conditions
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Dc~0!5D l~0!50 ~B14!

eliminates the first term on the right-hand side and yields

Dc~ t !5kE
0

t

d t exp@2~ t2t!~g1m1z!/2#$cosh@R~ t2t!#

1nzsinh@R~ t2t!#%exp~2Gt!,

D l~ t !5kE
0

t

d t exp@2~ t2t!~g1m1z!/2#sinh@R~ t2t!#

3~nx1 iny!exp~2Gt!. ~B15!
ds

s.

n

ca

e

The integration yields for the second of Eq.~B15!

D l~ t !5
k~nx1 iny!

@G2~g1m1z!/2#22R2 $2R exp~2Gt !

1exp@2t~g1m1z!/2#@sinh~Rt!~G2~g1m

1z!/2!2R cosh~Rt!#%. ~B16!

In the special caseg5m, Eq. ~B.16! remains valid with

nx5g/R; ny50, nz5z/~2R!; R5Ag21z2/4.
~B17!
tt.
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