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Nonradiative energy transfer from the impurity ion into the host lattice
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A theoretical model explaining the nonradiative energy transfer from a photoexcited impurity ion into the
lattice in a laser crystal is presented. The energy-transfer mechanism consists of electronic energy transfer to
local vibrations that then dissipate their energy to lattipeonor) modes of the same energy creating a
nonequilibrium phonon population. The model explains the experimental temporal profiles of nonequilibrium
optical phonons probed by time-resolved Raman scattering in Cr-doped forsterite laser crystal. The electronic
transition time and relaxation lifetimes for phonon and for local modes~&3e 4, and 8 ps, respectively.
[S0163-18207)06142-0

INTRODUCTION with zero quasimomentum, a nonequilibrium population of
ir{:)honons is created.

The calculated dynamics of phonon occupation number
cess

Understanding nonradiative processes occurring
impurity-doped crystals is of importance for the lasing Prop-oy
erties of a material. Although the study of nonradiative re-
laxation was pioneered more than forty years &gge paper
by Huang and Rhy$ and has involved a significant amount
of res_earcl”(for references see the book by Erllgllr?‘bamany relative to the equilibrium value
guestions regarding the dynamics of nonradiative processes
of photoexcited ions in host media have not yet received a
satisfactory answer. Numerous theoretical models using vari-
ous approaches for nonradiative relaxation mechariisms

have yielded varying results. Luminescence measuremen fano? In Eq. (1), n(e,t) is the average occupation number

(Sturgé) using a nanosecond “”?e scale yield reSL_JIts_; Whid})f Raman-active phonons with energyat time moment.
differ by several orders of magnitude from nonradiative de-petais of the derivation and solution of the rate equations
cay rates derived from the activation energy fa®nly re- are presented in the Appendixes.

cently temporal profiles of lattice modes involved in nonra-

diative relaxation processes of ions in a laser crystal have

been probed directly by Raman scattering with subpicosec-MODEL FOR RELAXATION OF LOCAL AND PHONON
ond temporal resolution. MODES

In this paper, a theoretical model is applied to explain the - The jmpurity centers will be considered as clusters made
dynamics of phonon modes measured in photoexcite@f an impurity ion and its nearest neighbors, possessing dis-
Cr:Mg,Si0,. The electronic transition time and the phonon crete electronic and vibrational states. The electronic levels
and local mode lifetimes are estimated from fitting the resultsf the center are located deep in the wide forbidden energy
of a theoretical model to the experimental data. gap of the host crystal allowing one to neglect interactions

The present paper considers a laser crystal with deep inbbetween the electrons of the impurity and the rest of the
purity levels, where the proposed nonradiative energyerystal. Each mode of vibration of an impurity centlacal
transfer mechanism from the photoexcited state of the impumode is characterized by its energy.. Due to inhomoge-
rity center into the lattice is quite different from the one neous interactions, this value differs slightly for different
reported in semiconductofs® The photoexcited zone- centers throughout the crystal, having the vasi@éat theith
electron transfers energy directly to the lattigghonon  center. The set of valugs:{’} form a band of local vibra-
modes. We consider for the first time coupling between locations with its own density of states. Different sets{ef"}
vibrations of an impurity center and phonon modes as theyill be considered independently. A harmonic interaction be-
main path for energy redistribution. It will be demonstratedtween local and phonon modes will be taken into account.
that when the energies of oscillation of local vibrations of the In such a model, the vibrational Hamiltonian of an
impurity center are close to the energies of optical phonongmpurity-doped crystal can be written as

n(e,t)—np(e) @

no(e) = (e”¥T—1)7

s compared to the experimental results of Demos and
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N;(t) is the average over time-dependent ensemble of the
occupation number of thgh local mode, anm_j(t) is the
corresponding average occupation number ofjthgophonon

In Eq. (2), BiT, B; are creation and annihilation operators of mode.

H=>, sg‘>(B?Bi+1/2)+; gj(b/bj+3) +Hix. (2

a local mode of energy”, summation index goes over all In order to evaluate the sum in E€) for a continuous
local modes of the same bar‘mf., b; are creation and anni- distribution of energies of phonon modes coupled to local
hilation operators of th¢th phonon mode of energy; . modes the density of phonon statg{s) has to be introduced
The H,, term is the sum of a harmonid() and an an- as was done, for example, by Louis@lwhere g(e)de
harmonic H,,) term, as follows: equals the number of phonon states in the energy interval
de. Introducing
Hint=Hn+Hann,
int h anh a(s) (8)
to characterize the coupling of the phonon mode of energy
- t T
Hh—z aij(Bi'+Bj)(bj+by), to local modes, one obtains

1]

1 E oz-zn_-(t)é(s(i)—s-)=J’ ds5(8(i)—8)g(8)n_(8,t)(12(8)
Hani=g 2 mig(Dl+b)(b]+b)(b+by). (3 T 110 i

. . _ _ =g(e)a’(el (=), (9

In Egs.(3) «;; is the constant of interaction of thiéh local

mode with thejth phonon mode and;, is the constant of Since the band of local vibrations is much narrower than
anharmonic interaction between thf, jth, andgth phonon the phonon band, one can consider the density of states of
modes. The anharmonic terfh,,, permits energy exchange phonon modes as well as their occupation numbers to be
between phonons of the host crystal. In the following deri-constant within an interval ofs ("}

vation all harmonic interaction constants will be considered,

for simplicity, independent of impurity mode number: 9(ef)=g(er), Nl ,H)=n(ec,1). (10

Assuming that the occupation numUETr(t) does not vary
significantly among different local vibrations within the

The equations for occupation numbers will be derived toS@Me band, i.e.,
the lowest possible order iHl;,;. To second order in the — —
local mode-phonon coupling,, the transition rate from the Ni()=N(V), (1D
N;th local mode of energy! to a set of phonons with one obtains an expression for the time derivativeNgt)
energies close t@f:') is given by the Fermi golden rule as a from Eg. (7):
sum over these lattice modes:

aijZaJ. (4)

dN(t)
dt
The relaxation parameterin Eq. (12) is given by

== N(D) +n(ec,0)]. (12
zh_ﬂ- 2 a]2|(N, ,nJ|(bJ+b]T)(B|+B|T)|N,—1,nJ+1>|2

. 2T .
() _ o y=_—" 2500 _ o YN.(N. 2
x 8l —e)=— ; als(ed’—epNi(nj+1). (5 y= _h” g(s0)a(sy). (13

In Eq. (5), N; is the occupation number for theh local In Eq. (12), phonon mode occupation numbete, 1)

mode,n; is the occupation number for théh phonon mode. depends on time. This time dependence makes(E2).dif-

Similarly, the reve(r:);e transition rate from phonon states Witr}erent from the well-known rate equation for the relaxation
. i o
energies close ta. to local states is given by the expres- ¢ ., ccillator in contact with a reservbir? [see Eq(15)

sion below]. To obtain a simplified rate equatitrt? from Eq.
o (12) the assumption that the lattice is always in thermal equi-
- 2 a1‘2|<Ni ,nj|(bj+b]:r)(Bi+BiT)|Ni+l,nj_1>|2 librium can be madétemporarily:

, N(eg,t)=ng(e,)=(e%/*T—1)"1, (14)
. ' .
X 8(sl!—e)=—— 2 afd(e’—e)(N+1)nj.  (6)  Equation(12) becomes

J

If one neglects the anharmonic interactidg@mporarily and M: Y[ = N(t) +ng(e)]. (15)

considers a purely harmonic crystal, the equation for the av- dt

erage occupation number of tii local mode becomes Then the occupation numbg(t) behaves according to the

dﬁ(t) 5 equation of relaxation of a harmonic oscillator in contact
i\t _em 2o (i) N with an equilibrium reservoir as discussed by Cheng and
— = “o(eg’—e)[—N;i(H)+n;(t)], (7 X > \
dt h 2 ajdlec — ) -Ni)+n(O], () Lax'? and Louisell and Walkel® The following treatment in
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which both local and phonon modes are out of equilibrium is 2
similar to the more symmetric approach of L¥x. 7 > 75 88— &j— &) (1+Ng;+Noy)
Upon examining the validity of Eq15), we start by not- Jk
ing that the difference in transition rates between phonon +25(8k—8i—Sj)(no,'—nOk)](n_i(t)—nm)- (21

modes and local modes for thith phonon mode is

5 Equations(19)—(21) yield equations for the occupation
il 2 (1'25(8(i)_8')[_n_'(t)+n(t)] (16) numbers for each local and phonon mode, respectivaty,
hog I ! e harmonicity is taken into account

which leads to the rate equation for occupation number of

the jth phonon mode: %:y[—N_(t)jLn_(sc,t)],
dn_j(t) 27 , —
T __Taj[nj(t)_N(t)]G(gj)- 17) dn(e.,t)

_ _ _ gt mlen(ec,HEND)]
In Eq. (17), G(e;) is the density of local modes with the
same energy as thg phonon mode. One can rewrité1&y. +{(e)[—N(ee,t)+nolee)]. (22)
in continuous notation,

ditet) 2 In Eq. (22) the relaxation parameter due to anharmonicity
n(e,t) _°T az(s)G(s)[—n_(s,t)+N_(t)]. (18  {(e) is obtained from Eq(21) after converting the sum into
dt h an integral:

The density of phonon statgy(e) is proportional to the
number of atoms in the host crystal, while the density of g(s)zz_w j de'{7%(s,e" e—e")g(s")g(e—¢")
local modesG(e) is proportional to the number of impurity h T

atoms. Ifg(e)> G(¢) the relaxation of phonon modes due to

their interaction with local vibrations is negligible. Then the X[1+no(e") oz —e")]

relaxation of local modes does not change the occupation +279%(e,e’ ' —e)g(e’)
number of phonon modes, and E45) is correct. This case
was considered in detail by L% However, at the edges of Xg(e'—&)[no(e’—&)—ng(e)]} (23

the Brillouin zone the phonon density of statgg) is small
and becomes comparable with the local mode density of Equation(22) describes the energy-transfer process be-
statesG(e). This particular case, when the energies of localtween phonons and local modes, without taking into account
modes coincide with the energies of edge-zone phonohow the nonequilibrium population is produced. In this pa-
modes is considered in the present paper. per, we consider creation of nonequilibrium population of
The rate equations for the occupation numbers for localocal modes due to nonradiative electronic transitions. The
vibrations and the phonon modes coupled to them, providetble of these transitions might be crucial in the energy ex-
anharmonicity is not taken into accoulyet), are change process. Weeks, Tully, and Kimerfihgnalyzed the
situation when, due to an electronic transition, an energy of

dN(t) — the order of electron volts was transferred to vibrations. An

gt~ N +n(ec. ], (198 analogous situation with an electronic transition, accompa-

nied by energy transfer to local vibrations, is discussed in the

dne.t) . present w_ork. '_I'he process is qua_llitativ_ely presente_d in Fig.
dt, =pu(e)[—n(e,t) +N(1)], (19b) 1, with adiabatic potentials draw(figuratively) for a single

vibrational coordinate. Optical excitation brings the system
into an excited statéstep 1 on Fig. L which relaxes nonra-
diatively (step 2 via electronic transition, creating nonequi-
- librium population of local modes. We assume a rapid relax-
u(e)= - a@?(e)G(e). (199  ation mechanism between local vibrations, some of which do
not act as accepting modéstep 3. Due to this rapid relax-
. . L . . ation we omit a backward energy flow from the modes into
Slnce' no |nformqt|on IS ayallable at this stage on they,e photoexcited state. Since the excited state is created by a
broadening of impurity levels in the crystal under consider-gpar, hyise, its flow to the local modes can be characterized
ation, it is reasonable to negle_ct the dispersiop@f) within by the exponential time decay of the occupancy of the ex-
the band of local modes, setting cited state. An exponential time decay acts as a source,
ke ', to the local vibrations. The system of equations de-
(&)~ p. (20 scribing the nonradiative relaxation of a phonon mode due to
the relaxation of the photoexcited state then becomes

where the phonon relaxation parametee) is

Anharmonicity will add a term to Eq(19b). Details of
computation of this term are given in Appendix A. The final —
expression for the anharmonicity induced transition rate, dN(t)_ [—N_t)+n_ £)]+ke It
when theith phonon mode is not at equilibrium, is dat 7 ( (ec, €
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FIG. 2. Difference in Raman-scattering intensities between
probe and pump pulses as a function of delay time for the 37¢ cm
phonon mode. The delay time is in picoseconds. Arbitrary units are

present case, a spin triplet3) fast energy redistribution between gseq for the intensity. Experlmgntal points are boiligi The solid
L N . _line is the result of the theoretical computationrof ny [Eq. (28)]
local modes resulting in a loss of energy to the initial mode, witha .~ = " . . .
s with lifetimes of 3 ps for decay of excited electronic state, 8 ps for
redistribution(not shown to other local modes. I ) . o
relaxation of local vibrational excitation, and 4 ps for the decay of
nonequilibrium population of optical phonons.

FIG. 1. Optical excitation and following nonradiative relax-
ation: (1) optical transition from the ground state to state produc-
ing bottleneck,(2) transition to a lower electronic statgn the

dn(ec,t)

= u[—N(ee,t)+N(t
dt Hl=n(ee EN()] NONRADIATIVE RELAXATION PARAMETERS VALUES

— EXTRACTED FROM THE EXPERIMENTAL DATA
Tl —n(ec,t) +No(ec)].  (29)

. The above theoretical model will be fitted to experimental

Equations(24) are solved folN(t)—Ng, n(t)—n,, tak-  dat& to extract the nonradiative relaxation fundamental pa-

ing into account that equilibrium occupancies are equal, rameters. Ultrafast pump-probe, time-resolved, Raman-
scattering measurements were performed on a GSi@

No=ng, laser crystal, having ¢r active centers® using 500 fs, 590
nm linearly polarized pulses. The experimental setup uses an
and by setting the initial conditions adjustable time delay line between the cross polarized pump
and probe pulses.Anti-Stokes Raman spectra were mea-
NO=nO=n,. (25)  sured for different delay times between the pump and probe

o ) ) pulses. The differences in anti-Stokes Raman-scattering in-
The general solution is presented in Appendix B. Here, tqensities for different delay times are presented in Ref. 5. It

limit the number of parameters, the solution flor-no is  \was showh that only three Raman-active phonon modes
specialized to the case= v, demonstrate time-dependent behavior. Energies of these
modes are equal to 335, 370, and 225 énThis conclusion

— _k7 t ANy was also confirmed by up-converted hot luminescence
n=No=Tg fodT exp —(t=7)| y+ 5] |sin{R(t—7)] measurements. Here for sake of brevity we present only
time-dependent occupancy behavior for 370 ¢nmode
xexp(—I'7), (26 (Fig. 2.
) ) The mechanism we propose to explain the temporal de-
with R given by Eq.(B17): pendence of the phonon mode %opulation is as follows. A
590 nm photon excites the TCr impurity center in
R=\y*+°/4. (270 cr:Mg,SiO, from the ground state to a short-lived state in-

terpreted by Demos, Takiguchi and Alfdfi@s a bottleneck.
Adding the energy of the exciting photon of 16 960¢m
and the thermal energy of vibrations at room temperature of
= e = Ky {R exp(—Tt) 210 cm'%, one obtains that the photoexcited state of the im-
O R[(T—y—¢/2)>—R?] purity csenter is 17 170 cit higher in energy than the
. ground *A, state(for levels structure of Cr-doped forsterite,
+exi = (y+ LI = y={/2)sinh(RY see papéf by Jiaet al). Results of Demos and co-workéfs
—R coshRt)]}. (28)  demonstrate that two luminescence peaks are close to this
energy, at 17 213 cit and 16 995 cm'. As stated in Ref.
Eq. (28) will be used to fit the experimental data. A discus- 17, the singlet spin statéE participates strongly in the cre-
sion of the fitting of theoretical results and the derivation ofation of a bottleneck. Though the origin of the states related
lifetimesT' %, 1, and¢~? follows. to these peaks is subject to discussion that is beyond scope of

The integration in Eq(26) yields
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the present paper, it is clear that the photoexcited state has
vibrational energy of no more than 175 ch(difference be-
tween 17 170 and 16 995 ¢, which is close to the ther- o Excited phonons

mal energy of 210 cm® corresponding to 300 K. In this Photoexcited ion

case, the local vibrations obtain their excess energy not ¢ Lattice
once, but in the process of decay of the photoexcited stat:
The decay of the photoexcited state is mainly nonradiative
Emitted power from the bottleneck, as estimated from ex:
periment, is of the order of I¢ of the pump power, so the
radiative relaxation channel can be neglected.

All electronic states of the & impurity center with en-
ergies less than energy of the bottleneck are spin tripfets.
The nonradiative transition rate between the spin single
state, composing the bottleneck, and the spin triplet, is pro
portional to the spin-orbit interaction, which is of order of
100 cm ! for the CF* centert® about two or three times less
than the energy of vibrations under consideration. The en
ergy of the electron-phonon interaction for*Ciin forsterite
is comparable to the energy of vibratiolfsThe closest spin
triplet state with energy less than the energy of photoexcita
tion is at~ 15500 cm* (see Ref. 18 So the energy interval
between spin singlet and lower spin triplet approximately
equals five energies of vibration.

The spin triplet states for €F form multilevel structures. FIG. 3. Schematic diagram describing the proposed theoretical
Hot luminescence measureménitdemonstrate that in this model and the fitted relaxation parameters.
system relaxation occurs fast, practically without emission.

In our simplified model the triplet states system is repre-The fitting to experiment in such a case is much worse than
sented by one electronic state, with fast energy redistributiofor three step energy transfer schematically presented on Fig.
between local vibrations. This energy redistribution is thei.

reason why backward energy flow into the photoexcited state The right-hand side of Eq28) [obtained from Eq(24)

is not taken into account. with k# 0 and initial conditions given by Ed25)] for long

Figure 1 is drawn on the assumption that electron-phonogelay times the decay is proportional to
interaction of the spin singlet statéE(e?), which is pro-

Excited local modes

duced by twoe electrons, similarly to the ground state, n—noxexy — (y—R+/2)t]. (3D
3 2y in
Az(e), is weaker than for spin tripleT state, produced Fiting of the experimental curve for long delay times re-
with participation of thet, electron. quires
As seen from Eq(18), a nonnegligible change in occupa-
tion numbers of phonon modes takes place due to relaxation (y—R+¢/2)"1~13 ps (32

of local vibrations only if the densities of local vibrational
states and of phonon modes are comparable. All thre
phonons that displayed time-dependent populati®&5,
335, and 370 cm?t) reported by Demos and co-workétare
R_aman ac}ive gnd ha\{e quasimom_entum closg to ]Zero. y1~8 ps, and{ l~4 ps (33)
Since no direct information on densities of states is available
at this time, in order to reduce the number of fitting param-for the 370 cm* mode, and, correspondingly, 9 and 4 ps
eters the assumption that the density of states of local vibravalues fory™* and{~* for 335 and 225 cm' modes. These
tions equals the density of zone-edge phonons is made. Thiglues yield an approximate equation
yields equality of the relaxation parameterand u used in
the derivation of Eq(28). Observable energy transfer from y={[2. (34
local vibrations to phonon modes takes place in C:8@,  For all three modes the best fit yields an electronic transition
due to the fact that the energies of local vibrati6hsre time
close in value to the energy of zone-edge phonon modes.

In the casé&=0 in Eq.(24), corresponding to the absence I~'~3 ps. (35
of energy transfer from the electronic state to local modes
the solution of Eq(24) with initial conditions

r modes of 335 and 370 cm energy, and 14 ps for the
25 cmi' ! energy mode. Keeping that in mind, one obtains
the best fit with parameters

Results of fitting are presented in Fig. 2 for the 370¢m
mode. The curve shape is quite similar for two other modes.

N=N©@=%n,, n@=n, (29
DISCUSSION
and y= u yields for the nonequilibrium population of pho- o o _
non modegsee Eqgs(B11) and(B17)] A schematic diagram describing the theoretical model and
the derived relaxation parameters is shown in Fig. 3. Follow-

n—nyxexd — (y+ Z/2)t]sinhRt). (30 ing photoexcitation, an electronic relaxation with change in
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electronic state and creation of nonequilibrium population of CONCLUSION

local modes takes place. This process is characterized by the . . .
. o In conclusion, we have shown that from the point of view
electronic transition tim& ~*~ 3 ps. The newly created non- o ; L :
L . . of nonradiative relaxation there are two sets of vibrations in
equilibrium local mode population transfers energy to isoen- Cr:MgSiO; crystal. One setlocal modes has a longer
. . . . 4 .
ergetic phonon modes located at the edges of the vibration ttetime (—8 or 9 ps while the other sefphonon modeshas

zones. The relaxation time of this procesgis'~8 or 9 ps. e .
Thermal equilibrium of the system is achieved due to anhar?fhorter lifetimes -4 p_s). We have also shown for the first
time that the occupation number of certain zone-edge pho-

monicity described by the characteristic relaxation time . L .
{1~4ps. The temporal behavior of the 225 335 and™" modes can be changed during the vibrational relaxation
bs. P ! f of the local mode.

370 cm ! phonon modes is described by approximately the
same set of lifetime parameteysI’, and .
The value obtained for the electronic relaxation parameter ACKNOWLEDGMENTS

Iis surprisingly large: This work was supported by the Army Research Office
and the Department of Energy.
I=1/3 ps~3x101 s (36) P 9y

This large value can be explained as follows. According to APPENDIX A. ANHARMONICITY INDUCED TERM IN
the paper of Henry and Larf§,the rate constant for nonra- RATE EQUATION

diative relaxation equals the probability of transition for one
vibrational period, P, ,, divided by the period (P, is the
Landau-Zener transition probability during one crossing o
electronic levels ThenI' equals

Let us compute change in occupancyi tbf phonon mode
fdue to anharmonic interaction, representedyyy, in inter-
action Hamiltonian, Eq(3). The Hamiltonian will be taken
into account to the second order of perturbation theory. In
_ H.nn, the term responsible for creation tth phonon and
[=2Pz/T. 87 annihilation of phonong,j, equals
For a vibration of~300 cm ! energy this period equals ap-

;
proximately to 1013 s so 7ijkbi bjby. (A1)

The rate of creation of thgth phonon due to annihilation of

— 3 1
=102 s t.2pP,. (38 phononsj k is
Equation (38) yields a small transition probabilityP, , o
~10 2 for each crossing of the levels. - |77ijk|25(8i_8j_8k)<blb;bibrbjbk>

The present model of relaxation of local and phonon
modes resembles a model used in the study of spin-lattice -
relaxation;” when cooling of multilevel system is due to =7 | 7ijk|“8(ei—€j— &) (N +1)njn.
interaction with phonons. Only certain lattice phonons effec-
tively participate in the spin cooling. In our problem, the (A2)
local modes are similar to spins in the spin-lattice relaxation ) ) N
problem. They are considered to be in thermal equiIibriumTOtal rate of creation of theth phonon due to annihilation of
with each other, but not with the lattice. Their relaxation @ Phonon pair equals
changes equilibrium conditions for resonant phonons, as 5
does cooling of spin system. The only qualitative difference kil > | mil?8(ei—ei—e)(ni+1)nng (A3)
. . . . . P ijk i j k i k-
from corresponding rate equations for spins discussed in Ref. ik
21 is presence of the electronic “source” in E@®4). In
coming publications, we are going to perform an analysis o
effective temperatures of vibrational subsystems in forsterite. 2
.. . . . o 2 - N
The model of nonradlatl\_/e relaxation presented in this — 2 |,7ijk| S(ei—ej—eni(nj+1)(ne+1)/2.
paper differs from the one discussed by Demos and Affano h Tx
with respect to the first step of the relaxation. The rate equa- (A4)

tions used in Ref. 5 consider that the electronic energy of th%ombining Eqgs(A.3) and (A.4), one obtains rate of change

impurity center is transferred directly into the lattice, while ¢ occpancy ofth phonon due to creation or annihilation of
the contribution of local modes was not taken into account, ; other phonons:

Since the phenomenological rate equations were similar to

porresponding rate of annihilation equals

the ones obtained in this paper, the results are comparable. In o .
this paper, the total lifetime of the vibrational relaxation — | 7ik|20(8i—&;— e {(n;+1)njny
. o ho Tk
given by the sum of the lifetimes of local and phonon modes
is 12 ps. In Ref. 5 almost the same number is obtained for the —n(nj+1)(ne+1)}/2. (A5)

sum of the lifetimes of the intermediate electronic state and

nonequilibrium phonon modes. The present paper provideEquation(A5) can be simplified. Onlyth phonon, interact-
different characteristic times: ~ 3 ps for the electronic tran- ing with the local vibrations, has nonequilibrium occupancy
sition, ~ 8 ps for the local mode lifetime at the impurity cen- number. Replacing ali; , in Eq. (A5) by equilibrium values
ter, and~4 ps for relaxation of the phonon modes. and making use of the identf
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No(e1)(No(e2) +1)(Np(e3) +1)

=(ng(eq) + 1)”0(82)n0(83)eXF< %)
(A6)
one obtains
(ni+Hnne—ni(nj+1)(n+1)

= (Ngi + 1)NojNok+ (Nj— Ng;) Ngj Noi
—Ngi(Ngj+1)(Ng+1)
—(N;=Ng;)(Ng;+ 1) (N +1)

= —(Nj—Ng;)(1+ng;+Ngy). (A7)

14 397

K=3loo(y+ut)—(y+p)oxt(u—7ylioy
T(y=n—0o,]. (B5)
Then, the term exp{Kt) can be written as

exp—Kt)=exd —t(y+u+ g)/2]ex;{ tE R0 ) ,
i
(B6)
wherej=x,y,z, and
Ry=i(y—w)/2;

Re=(y+w)/2; Re=(u+{—y)l2.

IntroducingR,

R=VRZ+RI+Re=\yu+({+pu—y)%4, (BY)

Combining Eq.(A5) and Eq.(A7), one obtains expression a unit vectorn with components);=R;/R (j=x,y,z), and
for change of occupancy ath phonon due to creation or vector o with componentss, ,oy,0,, one can rewrite the

annihilation of a phonon pair

2 _
Ny % | 7| 28(&i— &= &) (Nj—Ng;) (1+Ng; +Ngy).
(A8)

second term in Eq(B6) as

ex;{ tz Rj(rj) =eXptRn- o) =coshRt)+n- o sinh(Rt).
J
(B8)

Other transitions, whergth phonon, together with the pho- Then Eq.(B3), which is the solution of Eq(B2), yields

non of different energy, participates in annihilation or cre-
ation of another phonon, also change occupancy ofitie
phonon state. Corresponding energy conservation is repre-
sented byé function &(e—e;—g;). Operators responsible

for these processes are proportional bbby bbb},

bib;b{ ,bib/by. Calculations are similar to those demon-

strated by Eqs(A2)—(A7), and yield the result

2
T % | 7ijk| 22 8(8i— &= &) (Ni—Ng;) (Ng; — Nok) .
(A9)
Combining Eq.(A8) and Eq.(A9), one obtains Eq(21).

APPENDIX B. SOLUTION OF RATE EQS. (24)

First, the solution of Eq(22) will be presented. Then,
using this solution, the solution of the inhomogeneous Eq.

(24) will be obtained.
Introducing the new variables

Ac=N()=no(ee); A=N(ec,t)—no(ee). (BI)
Equation(22) can be written as
d Ac) :< —y Y
dt | 4 wo —(untd
The solution of Eq(B2) is [see, for example, Bellmaf

Ac

A (B2)

A(t) -y Y A.(0)
A«t)):exr{‘ poo—(p+d) Mmm) - ®9
One can express the matr
| —y
K_(_M (M+§)) B4

through the Pauli matrixes, , oy, o,, and unit matrixo:

Ag(t)=exd —t(y+u+)/2){[coshRY)
+nSin(Rt) JA(0) +sinh(Rt)(n,—iny)A(0)},

Aj(t)=exd —t(y+u+)/2){[coshRY)
—n,Sin(RYJA(0) + sinh(Rt)(ny+iny)Ac(0)}.
(B9)

For the relaxation taking place within the same electronic
state the initial conditions are

A(0)#0;
and Eq.(B9) then simplifies:

A,(0)=0, (B10)

A(t)=exd —t(y+u+)/2]
X [coshRt) + n,sinh(Rt)]JA(0),

At =exi] —t(y+ p+ O)I2]sinh(RY (N, +iny) A(0).
B

11)
The inhomogeneous EQ4) can be written as
d (Ac)_ -y v (Ac N keX[:(—Ft))
dtla)) | a —(utd/\4 0 '
(B12

Its solution is obtained with the help of the solution of the
homogeneous EqB2).2% Egs.(B3) and (B4) yield

Ac(t) Ac(0) !
A(t) =exp(—tK)(A|(0) +exp(—tK)fod T exp(K7)
o k exp(o—l“r)). (B13

Evaluation of Eq.(B13) with initial conditions
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A(0)=A,(0)=0 (B14) The integration yields for the second of E&15)
eliminates the first term on the right-hand side and yields k(ny+iny)

t
A(t)= kJod Texd —(t—7)(y+u+)/2]{coshR(t—7)] ex —t(y+ p+ OI2ISInHRY (T — (y+

+n,sinHR(t—7)]}exp(—T'7), +¢)/12)— R coshR1)]}. (B16)
In the special case= u, Eg.(B.16) remains valid with

n=79/R; ny=0, n,=¢/(2R); R=\y*+%4.
X(net+iny)exp(—T'7). (B15) (B17)

A|(t)=kj0td 7 exf — (t— 1) (y+ p+ O)I2]sin R(t— 7)]
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